
HAL Id: hal-00781238
https://hal.science/hal-00781238

Submitted on 28 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed finite element discretization of a model for
organic pollution in waters Part I. The problem and its

discretization
Faker Ben Belgacem, Christine Bernardi, Frédéric Hecht, Stéphanie Salmon

To cite this version:
Faker Ben Belgacem, Christine Bernardi, Frédéric Hecht, Stéphanie Salmon. Mixed finite element
discretization of a model for organic pollution in waters Part I. The problem and its discretization.
2013. �hal-00781238�

https://hal.science/hal-00781238
https://hal.archives-ouvertes.fr


Mixed finite element discretization

of a model for organic pollution in waters

Part I. The problem and its discretization

Faker Ben Belgacem1, Christine Bernardi2, Frédéric Hecht3, and Stéphanie Salmon4

.

Abstract

We consider a mixed reaction diffusion system describing the organic pollution in stream-waters.
It may be viewed as the static version of Streeter–Phelps equations relating the Biochemical
Oxygen Demand and Dissolved Oxygen to which dispersion terms are added. In this work, we
propose a mixed variational formulation and prove its well-posedness. Next, we develop two
finite element discretizations of this problem and establish optimal a priori error estimates for
the second discrete problem.

Résumé

Nous nous intéressons à un système d’équations aux dérivées partielles qui modélise la pollution
organique dans des rivières et nous prouvons qu’il est bien posé. Puis nous proposons deux
discrétisations par éléments finis de ce problème et démontrons pour la seconde des estimations
a priori optimales de l’erreur.

Key words: Variational formulation, non-symmetric mixed problem, mixed finite elements, gen-

eralized saddle point theory, organic pollution.
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1 Introduction

Since the early (advection-)reaction formulation written by Streeter and Phelps in 1925 to study

the Ohio river (see [22]), sophisticated modeling of the organic pollution in stream-waters has been

elaborated. Taylor’s dispersion is particularly incorporated that bring substantial difficulties in the

mathematical study. Readers interested in are referred to [20, 11, 21] for the dispersion-reaction

models so as more complete (non-linear) ones. The central element of such problems is the oxygen.

The main tracers currently used are the density b of the Biochemical Oxygen Demand (BOD) and

the concentration c of the Dissolved Oxygen (DO). In the steady state, they are solutions of the

reaction-dispersion equations, in a bounded two or three-dimensional domain Ω,

−div (d∇b) + r b = f in Ω,

−div (d∇c) + r∗ c+ r b = g in Ω,

c = α on ∂Ω, (1.1)

d ∂nc = β on ∂Ω.

The symbol d is the dispersion coefficient and (r, r∗) are reaction parameters. They are all space-

varying. The BOD is the amount of oxygen per unit volume, necessary for the micro-organisms

and aerobic bacteria to break down the organic matter contained in the water. The DO is the

oxygen concentration housed in a unit volume of water. The right-hand side f in (1.1), describes

the source of the pollution, while the datum g can be for instance the uptake oxygen from the

atmosphere to reduce the deficit of oxygen caused by the biodegradation of the organic pollutants.

Some authors favor the oxygen deficit density which is the gap between the saturation oxygen level

and the actual dissolved oxygen content. The coupling term represented by r b in the second equa-

tion is the depletion of oxygen due to elevated BOD. The boundary data (α, β) are the measures of

the DO and its flux at the boundary. Currently, no oxygen flux is generated by the environmental

medium so that β is very near zero.

Differential system (1.1) is the steady form of the full time-dependent BOD/DO model, set in

two- or three-dimensional body of water such as a lake, a lagoon or an estuary. It is actually

obtained by adding to the elementary Streeter–Phelps differential equation the dispersion term.

Solving the steady problem may have its own interest, the related problem aims the reconstruction

of some polluting flux d ∂nb, through the boundary ∂Ω, caused by many factor such as domestic,

agricultural or breeding activities. The lack of boundary data on b is balanced by two conditions

on the dissolved oxygen c. Indeed, measurements on c are easy and instantaneously obtained while

those on b need conducting a strict chemical protocol and last five days. Note that we do not

include the advection in our model. Nevertheless, the study conducted here extends as well to that

case.

Deriving theoretical results for the steady model is important, in view of the unsteady problem

which is ill-posed (see [5, 4]). There is a great analogy between the steady dispersion-reaction

BOD/DO model and the steady stream-function/vorticity formulation of the incompressible fluid

flow in the two-dimensional case, due to the non-symmetry of the boundary conditions on b and c
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(see [7]). The main difference lies in the reaction terms in equations (1.1) which play a preponderous

role. The fact that the related coefficients (r, r∗) are not equal arise tedious mathematical difficul-

ties when they are non-constant. The stream-function/vorticity problem is a symmetric variational

saddle point problem while the variational problem that follows from the BOD/DO model turns

out to be non-symmetric. The corresponding theory originally developed by F. Brezzi (see [10])

applies to the former system while for the latter one, the generalized theory proposed in [19] (see

also [6]) is better suited and therefore necessary for our purpose. The inf-sup statements required

in the saddle point analysis turn out to be complicated. The results proven here are restricted to a

class of reaction parameters, roughly characterized by the fact that the oscillations of the ratio r∗/r

are bounded. Nevertheless, we do not consider this limitation as stringent since this assumption

covers a wide part of the physical situations (see [17]).

Once the structure of system (1.1) is understood, we construct a first finite element discrete

problem by the Galerkin method. But the same difficulties as for the stream-function/vorticity

problem lead to a lack of convergence of its solution. So, following the approach in [2] and [3], we

propose a modified problem where stabilization terms are added to overcome the previous difficulty.

The a priori analysis is then performed for a wide class of reaction parameters (r, r∗). The mixed

finite element method we propose is proved to be optimal. Some numerical experiments confirm

the interest of the stabilization, in good coherence with the analysis.

The outline of the paper is as follows:

• In Section 2, we write the variational formulation of problem (1.1) and prove its well-posedness.

• Section 3 is devoted to the description of the first finite element discrete problem.

• In Section 4, we introduce a stabilized finite element discrete problem and prove its well-posedness

together with optimal a priori estimates.

• Numerical experiments leading to a comparison of the two discrete problems are presented in

Section 5.

• Some concluding remarks are stated in Section 6.

Functional notation. From now on, Ω is a bounded connected domain in Rk, k = 2 or 3, and

its boundary ∂Ω is Lipschitz-continuous. The Lebesgue space of square integrable functions over Ω

is denoted by L2(Ω), and (·, ·) is the associated scalar product. The Sobolev space H1(Ω) contains

all the functions that belong to L2(Ω) so as their first-order derivatives. We also denote by H1
0 (Ω),

the subspace of H1(Ω) made of all functions whose traces on ∂Ω vanish (see [1]). The dual space

of H1
0 (Ω) is H−1(Ω) and the duality pairing is represented by 〈·, ·〉H−1,H1

0
. The space H1/2(∂Ω) is

the range of H1(Ω) by the trace operator and H−1/2(∂Ω) is its dual space. We refer to [1] for more

details on these functional spaces.
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2 The mixed variational framework

From now on, we assume that the reaction and diffusion coefficients r, r∗ and d are piecewise

continuous on Ω and also that there exist positive real constants r[, r], d[ and d] such that

∀x ∈ Ω, r[ ≤ r(x), r∗(x) ≤ r] and d[ ≤ d(x) ≤ d]. (2.1)

We also suppose the diffusion coefficient d to be piecewise continuously differentiable on Ω. Some

further regularity of the boundary and these coefficients is needed for some specific properties of

problem (1.1), we assume them only when needed.

To develop our analysis we make a simplification assumption about the boundary data, that is

(α, β) = (0, 0), and discuss the case of non-homogeneous boundary data only at the end of this

section. We take the data f in H−1(Ω) and g in L2(Ω), respectively.

2.1 The variational formulation

The functional framework well fit to the system is the same as the one introduced in [7] (see also

[8, Section II.4]) for the stream-function/vorticity formulation of the incompressible fluid flow. It

has already been used in [5] for the organic pollution with constant reaction parameters. Before

providing details, we need some further notation. Consider the functional space

V =
{
χ ∈ L2(Ω); div(d∇χ) ∈ H−1(Ω)

}
.

which is a Hilbert space when endowed with the graph norm

‖χ‖V =
(
‖ div(d∇χ)‖2H−1(Ω) + ‖χ‖2L2(Ω)

)1/2
.

Observe that H1
0 (Ω) is a closed subspace of V and that the norm ‖ · ‖V is equivalent to ‖ · ‖H1(Ω)

in H1
0 (Ω).

To write down the mixed variational formulation of problem (1.1), we multiply the first line in

(1.1) by a function ψ in H1
0 (Ω). This leads to

〈− div(d∇b) + r b, ψ〉H−1,H1
0

= 〈f, ψ〉H−1,H1
0
.

Next, we multiply the second line in (1.1) by a function ϕ in V, and using the duality yields that

〈−div(d∇ϕ) + r∗ ϕ, c〉H−1,H1
0

+ (r b, ϕ) = (g, ϕ).

To write the variational formulation of the system, let us introduce three bilinear forms,

∀(χ, ϕ) ∈ V× V, a(χ, ϕ) = (r χ, ϕ),

∀(ψ,ϕ) ∈ H1
0 (Ω)× V, m(ψ,ϕ) = 〈−div(d∇ϕ) + r ϕ, ψ 〉H−1,H1

0
,

∀(ψ,ϕ) ∈ H1
0 (Ω)× V, m∗(ψ,ϕ) = 〈−div(d∇ϕ) + r∗ ϕ,ψ 〉H−1,H1

0
,

and also the linear form

∀ϕ ∈ V, `(ϕ) = (g, ϕ).
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All these forms are continuous on the spaces where they are defined.

The mixed variational problem may then be expressed in terms of these bilinear forms as follows:

Find (b, c) in V×H1
0 (Ω) fulfilling

∀ψ ∈ H1
0 (Ω), m (ψ, b) = 〈f, ψ〉H−1,H1

0
, (2.2)

∀ϕ ∈ V, m∗(c, ϕ) + a(b, ϕ) = `(ϕ).

The following equivalence property is easily derived from the arguments in [4, Lemma 2.1].

Lemma 2.1 A pair (b, c) in V×H1
0 (Ω) is a solution of the mixed variational problem (2.2) if and

only if it satisfies the boundary value system (1.1) with α = β = 0.

We recall that, according to the analysis of the abstract problem achieved in [19] and [8, Thm

1.3.14], necessary and sufficient conditions on the bilinear forms are required to ensure existence,

uniqueness, and stability for the mixed problem (2.2). The bilinear form a(·, ·) must satisfy an

inf-sup condition and a positivity property on both null-spaces of the forms m(·, ·) and m∗(·, ·);
similar inf-sup conditions must also be satisfied by m(·, ·) and m∗(·, ·) in H1

0 (Ω)× V.

2.2 The bilinear forms m(·, ·) and m∗(·, ·)

The next results easily follow from the imbedding of H1
0 (Ω) into V, see [5, Lemma 3.2] or [7, Section

2], and are derived by taking ϕ equal to ψ.

Lemma 2.2 The bilinear form m(·, ·) satisfies the inf-sup condition on the space H1
0 (Ω) × V, for

a positive constant η only depending on r[ and d[,

∀ψ ∈ H1
0 (Ω), sup

ϕ∈V

m(ψ,ϕ)

‖ϕ‖V
≥ η ‖ψ‖H1(Ω). (2.3)

Lemma 2.3 The bilinear form m∗(·, ·) satisfies the inf-sup condition on the space H1
0 (Ω)×V, for

a positive constant η∗ only depending on r[ and d[,

∀ψ ∈ H1
0 (Ω), sup

ϕ∈V

m∗(ψ,ϕ)

‖ϕ‖V
≥ η∗ ‖ψ‖H1(Ω). (2.4)

2.3 The bilinear form a(·, ·)

The inf-sup conditions on a(·, ·) use the kernels of the bilinear forms m(·, ·) and m∗(·, ·) and require

therefore their characterization. They are defined to be

N =
{
ϕ∈V; ∀ψ ∈H1

0 (Ω), m (ψ,ϕ) = 0
}

N∗ =
{
ϕ∈V; ∀ψ ∈H1

0 (Ω), m∗ (ψ,ϕ) = 0
}
.

The following statement is readily checked

N =
{
ϕ∈V, −div(d∇ϕ) + r ϕ = 0 in Ω

}
,

N∗ =
{
ϕ∈V, −div(d∇ϕ) + r∗ ϕ = 0 in Ω

}
.
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Note that N and N∗ are closed subspaces in V and are then Hilbert spaces, when endowed with

‖ · ‖V. Furthermore, the norm ‖ · ‖L2(Ω) is obviously equivalent to ‖ · ‖V in both spaces N and N∗,
where the constants of equivalence depend only on r[ and r].

Remark 2.4 In the case f = 0, problem (2.2) turns out to be equivalent to the reduced one: Find

b in N fulfilling

∀ϕ ∈ N∗, a(b, ϕ) = `(ϕ).

To solve this equation, one needs the couple of inf-sup conditions we look for.

The main purpose now is to bound from below the following inf-sup quantities

inf
ψ∈N

sup
ϕ∈N∗

a(ϕ,ψ)

‖ϕ‖V‖ψ‖V
and inf

ψ∈N∗
sup
ϕ∈N

a(ϕ,ψ)

‖ϕ‖V‖ψ‖V
.

This relies on the construction of a suitable isomorphism K between N and N∗. To do this, for

any χ in N , we consider the solution θ in H1
0 (Ω) of the Poisson problem

−div (d∇θ) + r∗ θ = (r − r∗)χ in Ω. (2.5)

This elliptic boundary value problem is obviously well-posed. Then, we set: Kχ = θ + χ. The

function Kχ belongs to N∗. The operator K is then well-defined from N into N∗. Its properties

are stated in the next lemma. For simplicity, we introduce the weighted norms defined by

‖χ‖L2
r(Ω) = (χ, χ r)1/2 and ‖ϕ‖L2

r∗ (Ω) = (ϕ,ϕ r∗)
1/2.

Lemma 2.5 The operator K is an isomorphism between the spaces N and N∗. Moreover, the

following inequalities hold

∀χ ∈ N , σ[‖χ‖L2(Ω) ≤ ‖Kχ‖L2(Ω) ≤ σ]‖χ‖L2(Ω), (2.6)

for constants σ[ and σ] only depending on r[ and r].

Proof. It is straightforward that equation (2.5) is equivalent to

−div (d∇θ) + r θ = (r − r∗)ϕ in Ω. (2.7)

With any function ϕ in N , we associate the function ϕ = Kχ in N∗. We have that K−1ϕ = ϕ− θ,
so that the inverse K−1 of K is well-defined.

To prove (2.6), with any χ in N , we associate the function ϕ = Kχ = θ+χ in N∗, where θ belongs

to H1
0 (Ω) and satisfies equation (2.5). It is therefore easily derived that

‖ϕ‖L2
r∗ (Ω) = ‖θ + χ ‖L2

r∗ (Ω) ≤ ς] ‖χ‖L2
r(Ω),

for a positive constant ς] only depending on the quantities r] and r[ introduced in (2.1). Exactly

the same arguments, now relying on equation (2.7), yield

‖χ‖L2
r(Ω) = ‖ϕ− θ‖L2

r(Ω) ≤
1

ς[
‖ϕ‖L2

r∗ (Ω),
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for another positive constant ς[. By using the equivalence of the norms ‖ · ‖L2
r(Ω) (resp. ‖ · ‖L2

r∗ (Ω))

and ‖ · ‖L2(Ω), we conclude the proof.

This lemma is of great help for establishing the inf-sup conditions on a(·, ·) for a class of reaction

parameters. Let us introduce the assumption

osc

√
r∗
r

= max
x∈Ω

√
r∗
r

(x)−min
x∈Ω

√
r∗
r

(x) < 2. (2.8)

Before stating the inf-sup conditions, we need a further technical lemma. We skip its proof which

is nearly obvious.

Lemma 2.6 Let ρ be a piecewise continuous and positive function in Ω. There exists a positive

real number ξ such that

∀x ∈ Ω, 1− (ρ2(x)− ξ)2

4ρ2(x)
≥ ζ

for some ζ > 0, if and only if

osc ρ = max
x∈Ω

ρ(x)−min
x∈Ω

ρ(x) < 2.

Lemma 2.7 If assumption (2.8) holds, the bilinear form a(·, ·) satisfies the two inf-sup conditions,

for a positive constant τ , only depending on r[ and r],

∀χ ∈ N , sup
ϕ∈N∗

a(χ, ϕ)

‖ϕ‖V
≥ τ ‖χ‖V,

∀ϕ ∈ N∗, sup
χ∈N

a(χ, ϕ)

‖χ‖V
≥ τ ‖ϕ‖V.

Proof. Let χ be given in N , we associate ϕ = Kχ in N∗. The function θ = ϕ − χ belongs to

H1
0 (Ω) and satisfies (2.5), or equivalently

−div (d∇θ) + r∗ ϕ− r χ = 0 in Ω.

Multiplying this equation by θ and using Green’s formula results in

‖
√
d∇θ‖2L2(Ω)d + ‖ϕ‖2L2

r∗ (Ω) + ‖χ‖2L2
r(Ω) = (r χ, ϕ) + (r∗ χ, ϕ)

= a(χ, ϕ) + (r∗ χ, ϕ) = (1 + ξ)a(χ, ϕ) + ((r∗ − ξr)χ, ϕ),

where ξ is some positive real number to be appropriately fixed later on. Owing to Young’s inequality

ts ≤ t2 + s2/4, this formula yields

(1 + ξ) a(χ, ϕ) + ‖ϕ‖2L2
r∗ (Ω) + (

[
(r∗ − ξr)2

4rr∗

]
r χ, χ) ≥ ‖ϕ‖2L2

r∗ (Ω) + ‖χ‖2L2
r(Ω)

whence

(1 + ξ) a(χ, ϕ) ≥
∫

Ω
r χ2(x)

[
1− (r∗ − ξr)2

4rr∗

]
dx.
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Now, in view of assumption (2.8) and Lemma 2.6, the real number ξ may be selected such that

min
x∈Ω

[
1− (r∗ − ξr)2

4rr∗

]
= ζ > 0. (2.9)

Taking this bound into account yields that

a(χ, ϕ)

‖χ‖L2(Ω)
≥ c ζ

1 + ξ
‖χ‖L2(Ω) ≥ c

ζ

σ](1 + ξ)
‖ϕ‖L2(Ω) = τ‖ϕ‖L2(Ω).

The first inf-sup condition is therefore proved since K is an isomorphism and the norms ‖ · ‖L2(Ω)

and ‖ · ‖V are equivalent on the kernels N and N∗. The second one is checked following the same

lines.

Remark 2.8 In the symmetric case where r = r∗, the forms m(·, ·) and m∗(·, ·) coincide, so that

things are pretty easy. Indeed, the isomorphism K reduces to the identity. As in the previous proof,

choosing ϕ = Kχ = χ gives that

a(χ, ϕ) = ‖ϕ‖2L2
r(Ω).

A direct consequence is the proof of the inf-sup conditions on a(·, ·).

Remark 2.9 Despite the fact that we did not succeed in establishing both inf-sup conditions

without assumption (2.8), we believe that this is only a technical problem and we suggest that it

would be possible to prove that Lemma 2.7 holds without that assumption.

2.4 Existence and uniqueness

All the tools which are necessary and sufficient for the well-posedness of the mixed problem (2.2)

are now available. We are hence in a position to state the main result of this section, which is

straightforwardly derived from [6, Corollary 2.1] (see also [8, Thm 1.3.14]) and the generalized

inf-sup conditions stated in Lemmas 2.2, 2.3 and 2.7.

Theorem 2.10 Assume that (2.8) holds true. Then, for any data (f, g) in H−1(Ω) × L2(Ω), the

mixed problem (2.2) has a unique solution (b, c) in V×H1
0 (Ω). Moreover this solution satisfies

‖b‖V + ‖c‖H1(Ω) ≤ C(‖f‖H−1(Ω) + ‖g‖L2(Ω)). (2.10)

2.5 Further regularity

We provide some indication about the “hidden” regularity of the solution (b, c) without investigating

the issue in details. We then consider that the physical parameters d, r and r∗ are constant. We

put them all to unity, only for simplicity. The conclusions we make here are also valid for smooth

space-varying coefficients. We begin with a basic result.

Lemma 2.11 If the domain Ω is convex or has a boundary of class C 1,1, the part c of the solution

(b, c) of problem (1.1) belongs to H2(Ω).
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Proof. The second and third lines of problem (1.1) in the case α = 0 can be written as

−∆c+ c = g − b in Ω,

c = 0 on ∂Ω.

Due to the fact that g − b belongs to L2(Ω), we derive the desired result which follows from the

elliptic regularity (see [14, Thms 2.4.2.5 & 3.2.1.2]).

Stating the regularity of the full solution (b, c) is more tricky and a further argument is needed.

Proposition 2.12 Assume that the domain Ω is a convex polygon or polyhedron or has a boundary

of class C 1,1. For any data (f, g) in H−1(Ω)×H1(Ω), the solution (b, c) of problem (1.1) belongs

to H1(Ω)×H3(Ω).

Proof. Applying the Laplace operator to the second line in (1.1) yields the fourth order elliptic

problem

−∆c+ ∆2c = −∆g − f + b in Ω,

c = ∂nc = 0 on ∂Ω.

The right-hand side of this equation belongs to H−1(Ω). The regularity property of c is hence a

consequence of [15, Cor. 3.4.2], according to the geometry of Ω. The regularity of b is then a direct

consequence of the second line of (1.1).

2.6 Nonhomogeneous boundary conditions

Enforcing the nonhomogeneous boundary conditions on the boundary ∂Ω is worth some comments.

In view of the functional framework used in our analysis, prescribing the Dirichlet condition c = α

seems natural in H1/2(∂Ω) while imposing the Neumann one d ∂nc = β arises some trouble. The

main difficulty for this problem is to derive its variational formulation. It reads as follows: Find

(b, c) in V×H1
0 (Ω) satisfying c|∂Ω = α and

∀ψ ∈ H1
0 (Ω), m (ψ, b) = 〈f, ψ〉H−1,H1

0
,

∀ϕ ∈ V, m∗(c, ϕ) + a(b, ϕ) = `(ϕ)− 〈β, ϕ〉∂Ω.

The point is that the duality product 〈β, ϕ〉∂Ω is meaningless for all ϕ in V. To give a rigorous

sense to it, we recall from [15, Section 1.5] that, if the boundary ∂Ω is smooth, any ϕ in V has a

trace ϕ|∂Ω that belongs to H−1/2(∂Ω). As a result for 〈β, ϕ〉∂Ω to make sense, it is necessary to

assume that β lies in H1/2(∂Ω). This regularity seems too strong to consider on a Neumann data.

This difficulty can be overcome by using an appropriate lifting and we have therefore the following

result.

Theorem 2.13 Assume that (2.8) holds true. Then, for any data (f, g) in H−1(Ω) × L2(Ω) and

(α, β) in H1/2(∂Ω) × H−1/2(∂Ω), the boundary value system (1.1) has a unique solution (b, c) in

V×H1(Ω).
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Proof. Since the problem is linear, the uniqueness of its solution follows from the fact that the

only solution for zero data is zero, which is a consequence of Lemma 2.1 and Theorem 2.10. On

the other hand, the problem

−div (d∇c̄) + r∗ c̄ = 0 in Ω

d ∂nc̄ = β on ∂Ω,

has a unique solution c̄ in H1(Ω). Then, the same arguments as for Lemma 2.1 yield that (b, c) is

a solution of problem (1.1) if and only if (b, c0), with c0 = c− c̄, is a solution in V×H1(Ω) of

c0 = α− c̄ on ∂Ω,

and

∀ψ ∈ H1
0 (Ω), m (ψ, b) = 〈f, ψ〉H−1,H1

0
,

∀ϕ ∈ V, m∗(c0, ϕ) + a(b, ϕ) = `(ϕ).

Proving the existence of a solution to this problem is performed as for Theorem 2.10, whence the

desired result.

Remark 2.14 When the boundary ∂Ω and the data (f, g) are smooth enough, the unknown b

belongs to H1(Ω), hence has a trace on ∂Ω. Moreover, we can write, for any function ψ in H1(Ω)

〈d ∂nb, ψ〉 = (div(d∇b), ψ) + (d∇b,∇ψ),

which gives a sense to the BOD flux d ∂nb. This is important, since even if these quantities do not

appear in system (1.1), they have a physical meaning and computing them is of high interest.
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3 A first finite element discrete problem

We aim to write a finite element discretization of the variational problem (2.2). The domain Ω is

then assumed to be a polygon (k = 2) or a polyhedron (k = 3) to be splitted in a finite number

of triangles or tetrahedra. We introduce a regular family (Th)h of triangulations of Ω, in the sense

that, for each h,

• Ω is the union of all elements of Th;

• The intersection of two different elements of Th, if not empty, is a vertex or a whole edge or

a whole face of both of them;

• The ratio of the diameter hK of any element K of Th to the diameter of its inscribed circle

or sphere is smaller than a constant σ independent of h.

As usual, h stands for the maximum of the diameters hK . We refer to [12, 9] for the basics of the

finite element method.

The previous analysis of the continuous BOD-DO model illustrates the complication due by the

lack of symmetry of the variational saddle point formulation. This is caused by the fact that the

reaction parameters are different, and the same difficulty appears in the discrete case.

3.1 The discrete problem

We introduce the discrete spaces Vh ⊂ V and Hh ⊂ H1
0 (Ω), defined by

Vh =
{
χh ∈ H1(Ω); ∀K ∈ Th, (χh)|K ∈ P1(K)

}
, Hh = Vh ∩H1

0 (Ω),

where P1(K) stands for the space of restrictions to K of affine functions on Rk. Using finite

elements of degree higher than unity is allowed and the analysis in this case can be carried out

similarly. Then, the first discrete problem in the case α = β = 0 is constructed from (2.2) by the

Ritz–Galerkin method. It reads as: Find (bh, ch) in Vh ×Hh fulfilling

∀ψh ∈ Hh, mh (ψh, bh) = 〈f, ψh〉H−1,H1
0
, (3.1)

∀ϕh ∈ Vh, m∗,h(ch, ϕh) + a(bh, ϕh) = `(ϕh),

where the bilinear forms mh(·, ·) and m∗,h(·, ·) are defined by

∀(ψh, ϕh) ∈ Hh × Vh, mh(ψh, ϕh) = (d∇ϕh,∇ψh) + (r ϕh, ψh),

∀(ψh, ϕh) ∈ Hh × Vh, m∗,h(ψh, ϕh) = (d∇ϕh,∇ψh) + (r∗ ϕh, ψh).

Note that the new bilinear formsmh(·, ·) andm∗,h(·, ·) coincide withm(·, ·) andm∗(·, ·), respectively,

on H1
0 (Ω)×H1(Ω), hence on Hh × Vh.

Remark 3.1 Since Hh is a closed subspace of H1
0 (Ω), for reasons already stated in Section 2, the

norm ‖ · ‖V is equivalent to ‖ · ‖H1(Ω) in Hh.

Remark 3.2 When the coefficients r and r∗ (and d) are too complex to be exactly taken into

account in the practical computations, they are most often replaced by their Lagrange interpolates

in Vh. We do not consider this modification here because it only generates technicalities.
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3.2 Existence and Uniqueness

Proving the well-posedness of the discrete problem (3.1) relies on the same arguments as for the

continuous problem (2.2). Therefore, we need first some inf-sup conditions on the forms mh(·, ·),
and m∗,h(·, ·).

Lemma 3.3 There exist two positive constants η′ and η′∗ independent of h such that the bilinear

forms mh(·, ·) and m∗,h satisfy the discrete inf-sup conditions

∀ψh ∈ Hh, sup
ϕh∈Vh

mh(ψh, ϕh)

‖ϕh‖V
≥ η′ ‖ψh‖H1(Ω),

∀ψh ∈ Hh, sup
ϕh∈Vh

m∗,h(ψh, ϕh)

‖ϕh‖V
≥ η′∗ ‖ψh‖H1(Ω).

Proof. For any ψh in Hh, taking ϕh equal to ψh yields

mh(ψh, ϕh) ≥ c ‖ψh‖2H1(Ω) = c ‖ψh‖H1(Ω)‖ϕh‖H1(Ω) ≥ η′ ‖ψh‖H1(Ω)‖ϕh‖V.

This and the same argument applied to m∗,h(·, ·) yield the desired result.

Proving the required inf-sup conditions on the bilinear form a(·, ·) requires more work. We first

introduce the discrete kernels

Nh =
{
ϕh ∈Vh; ∀ψh ∈Hh, mh (ψh, ϕh) = 0

}
,

N∗,h =
{
ϕh ∈Vh; ∀ψh ∈Hh, m∗,h (ψh, ϕh) = 0

}
.

Note that Nh is not a subspace of N nor N∗,h is included in N∗. As for the continuous problem,

the bilinear form a(·, ·) should satisfy some inf-sup conditions on these subspaces and as for the

continuous case we need the construction of an isomorphism Kh between Nh and N∗,h. To do this,

with any χh in Nh, we associate the solution θh in Hh of the problem

∀ψh ∈ Hh, (d∇θh,∇ψh) + (r∗ θh, ψh) =
(
(r − r∗)χh, ψh

)
. (3.2)

This problem is well-posed, which enables us to set Khχh = θh+χh. The operator Kh is one-to-one

from Nh onto N∗,h and satisfies the following result.

Lemma 3.4 There exist postive constants σ′[ and σ′] independent of h such that the following

inequalities hold

∀χh ∈ Nh, σ′[‖χh‖L2(Ω) ≤ ‖Khχh‖L2(Ω) ≤ σ′]‖χh‖L2(Ω).

Proof. The second inequality follows by taking ψh equal to θh in problem (3.2), noting that

|∇θh|H1(Ω) is nonnegative, and using the inequality

‖Khχh‖L2(Ω) ≤ ‖χh‖L2(Ω) + ‖θh‖L2(Ω).
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The first inequality is derived by the same arguments when noting that problem (3.2) is equivalent

to (with obvious notation)

∀ψh ∈ Hh, (d∇θh,∇ψh) + (r θh, ψh) =
(
(r − r∗)ϕh, ψh

)
.

The proof is complete.

The inf-sup conditions on a(·, ·), restricted to Vh × Hh can be obtained following the same

arguments as for the continuous problem. They require the Assumption (2.8) to be fulfilled.

Lemma 3.5 Assume that (2.8) holds true. The bilinear form a(·, ·) satisfies the two inf-sup con-

ditions, for a positive constant τ ′ independent of h,

∀χh ∈ Nh, sup
ϕh∈N∗,h

a(χh, ϕh)

‖ϕh‖L2(Ω)
≥ τ ′ ‖χh‖L2(Ω),

∀ϕh ∈ N∗,h, sup
χh∈Nh

a(χh, ϕh)

‖χh‖L2(Ω)
≥ τ ′ ‖ϕh‖L2(Ω).

These last inf-sup conditions do not involve the right norm of the functions, which should be

‖ · ‖H1(Ω). However, since all norms are equivalent on the finite-dimensional spaces Nh and N∗,h,

the well-posedness of problem (3.1) is a direct consequence of the previous results, see once more

[6, Corollary 2.1] or [8, Thm 1.3.14].

Theorem 3.6 Assume that (2.8) holds true. For any data (f, g) in H−1(Ω)× L2(Ω), the discrete

problem (3.1) has a unique solution (bh, ch) in Vh ×Hh.

Due to the weak norms in both inf-sup conditions of Lemma 3.5, a stability estimate analogous

to (2.10) would involve constants depending on h. For the same reasons, the a priori error estimates

that can be proved for this problem do not lead to the convergence of the solution for the discrete

problem in all cases.
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4 The stabilized discrete problem and its a priori analysis

A possible remedy to the difficulties encountered in the previous section, is to resort to the stabilized

finite element discretization studied for the symmetric saddle point problems in [3]. The extension

of this procedure to our non-symmetric problems arises some heavy technicalities. From now on

and only for brevity of proofs, we take the coefficient d equal to 1.

4.1 The stabilized discrete problem

Let Eh be the set of all edges (k = 2) or faces (k = 3) of elements of Th which are not contained

in ∂Ω. For each e in Eh, we denote by he the diameter of e and by [·]e the jump through e. The

stabilized discrete problem relies on the same discrete spaces as previously, it now reads: Find

(bh, ch) in Vh ×Hh fulfilling

∀ψh ∈ Hh, mh (ψh, bh) = 〈f, ψh〉H−1,H1
0
, (4.1)

∀ϕh ∈ Vh, m∗,h(ch, ϕh) + aρ,h(bh, ϕh) = `(ϕh),

where the new bilinear form aρ,h(·, ·) is defined by

aρ,h(χh, ϕh) = a(χh, ϕh) + ρ
∑
e∈Eh

he

∫
e
[∂nχh]e(τ)[∂nϕh]e(τ) dτ.

ρ is a positive real number called regularization parameter. We refer to [3] (see also [2]) for

the introduction of this new form for the stream-function and vorticity formulation of the Stokes

problem.

Remark 4.1 Observe that the bilinear form aρ,h(·, ·) is symmetric and positive-definite on Vh. It

is elliptic with respect to the L2-norm. Things are harder when we are involved in the natural

norm of V. This issue is investigated in the subsequent.

Remark 4.2 Handling high variations of the dispersion parameter d = d(x) is made by modifying

the augmented part of the stabilized bilinear form aρ,h(·, ·). It is then transformed into

aρ,h(χh, ϕh) = a(χh, ϕh) + ρ
∑
e∈Eh

he

∫
e
[d∂nχh]e(τ)[d∂nϕh]e(τ) dτ

+ ρ
∑
K∈Th

meas(K)

∫
K

div (d∇χh) div (d∇ϕh) dx.

The overall analysis we undertake here is readily extended to this case, at the cost of more technical

work, especially caused by the last term.

4.2 Well-posedness for the stabilized problem

Proving the existence, uniqueness and stability for the new discrete problem requires some pre-

liminary lemmas which state several important properties of the augmented bilinear form aρ,h(·, ·),
more precisely of the stabilizing form sh(·, ·) defined by

sh(χh, ϕh) =
∑
e∈Eh

he

∫
e
[∂nχh]e(τ)[∂nϕh]e(τ) dτ.
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We begin with a result proven in [3, Proposition 6].

Lemma 4.3 There exists a positive constant µ independent of h such that

∀χh ∈ Vh,
√
sh(χh, χh) ≤ µ ‖∆χh‖H−1(Ω).

The next lemmas provide the “inverse” inequality on the kernel spaces Nh and N∗,h. The proof

is an adaptation of the one made for Proposition 7 in [3].

Lemma 4.4 There exists a positive constant µ′ independent of h such that

∀χh ∈ Nh, ‖∆χh‖H−1(Ω) ≤ µ′
√
a1,h(χh, χh),

∀χh ∈ N∗,h, ‖∆χh‖H−1(Ω) ≤ µ′
√
a1,h(χh, χh).

Proof. We handle the first estimate. The second one can established following the same lines. Let

χh ∈ Nh be given. Then, for all ψ ∈ H1
0 (Ω) and ψh ∈ Hh, we have that

(∇χh,∇ψ) = (∇χh,∇(ψ − ψh))− (χh, ψhr).

Making an integration by part and using the Cauchy-Schwarz inequality provide

(∇χh,∇ψ) =
∑
e∈Eh

∫
e
[∂nχh]e(τ)(ψ − ψh)(τ) dτ − (χh, ψhr)

≤
√
sh(χh, χh)

( ∑
e∈Eh

(he)
−1‖ψ − ψh‖2L2(e)

)1/2
− (χh, ψhr).

A suitable choice of ψh, equal to the Clément interpolant of ψ, the Bramble-Hilbert argument

together with the Poincaré inequality yield that

(∇χh,∇ψ) ≤ κ
(√

sh(χh, χh)|ψ|H1(Ω) + ‖χh‖L2
r(Ω)‖ψ‖L2

r(Ω)

)
≤ µ′

√
a1,h(χh, χh)|ψ|H1(Ω).

By taking into account the identity

‖∆χh‖H−1(Ω) = sup
ψ∈H1

0 (Ω)

1

|ψ|H1(Ω)
(∇χh,∇ψ),

the proof is complete.

Corollary 4.5 The map

χh 7→
√
aρ,h(χh, χh)

is a norm on Nh (resp. N∗,h) that is equivalent to the norm of V, uniformly in h (in the sense that

the equivalence constants are independent of h).

We will need also a third intermediary result, related to a bound of the bilinear form sh(·, ·) by

the H1-norm.
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Lemma 4.6 There exists a positive constant µ′′ independent of h such that

∀χh ∈ Vh, sh(χh, χh) ≤ µ′′ |χh|2H1(Ω).

Proof. Let χh belong to Vh. Denoting by K and K ′ the two elements of Th that share e, we have

straightforwardly

he

∫
e
[∂nχh]2e(τ) dτ ≤ he|(∇χh)|K |2L2(e)k + he|(∇χh)|K′ |2L2(e)k .

Switching backward and forward to the reference element, provides the following bound

he

∫
e
[∂nχh]2e(τ) dτ ≤ κ

(
|(χh)|K |2H1(K) + |(χh)|K′ |2H1(K′)

)
,

where the constant κ depends on the regularity parameter of the family of triangulations. Summing

up over e, we derive that ∑
e∈Eh

he

∫
e
[∂nχh]2e(τ)) dτ ≤ µ′′ |χh|2H1(Ω).

The proof is complete.

A first consequence of Lemma 4.3 is that the bilinear form aρ,h(·, ·) is continuous on Vh × Vh
with respect to the natural norm ‖ · ‖V. The continuity constant is bounded independently of h.

Proposition 4.7 There exists a positive constant Cρ independent of h such that

∀(χh, ϕh) ∈ Vh × Vh, aρ,h(χh, ϕh) ≤ Cρ ‖χh‖V‖ϕh‖V.

Proof. Let χh and ϕh be in Vh. By Cauchy-Schwarz inequality, there holds that

aρ,h(χh, ϕh) = a(χh, ϕh) + ρsh(χh, ϕh)

≤ ‖χh‖L2
r(Ω)‖ϕh‖L2

r(Ω) + ρ
√
sh(χh, χh)

√
sh(ϕh, ϕh).

Invoking the result of Lemma 4.3 gives

aρ,h(χh, ϕh) ≤ ‖χh‖L2
r(Ω)‖ϕh‖L2

r(Ω) + µ2ρ‖∆χh‖H−1(Ω)‖∆ϕh‖H−1(Ω).

This yields that

aρ,h(χh, ϕh) ≤ C max(1, ρ) ‖χh‖V‖ϕh‖V.

The proof is complete with Cρ = C max(1, ρ).

Now, proving the desired inf-sup conditions for the augmented bilinear form aρ,h(·, ·) on the

kernel spaces Nh and N∗,h, with respect to the norm of V requires additional technical work. Let

us first state the following lemma.
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Lemma 4.8 Assume that (2.8) holds true. There exists a positive constant ρ0 such that, for any

ρ ≤ ρ0, the following positivity property holds

∀χh ∈ Nh, aρ,h(χh,Khχh) ≥ λ
√
aρ,h(χh, χh)

√
aρ,h(Khχh,Khχh),

where the constant λ is positive and only depends on the reaction parameters (r, r∗).

Proof. Let χh be given in Nh. Thus, the function ϕh = Khχh belongs to N∗,h, while the function

θh = ϕh − χh is the solution of problem (3.2). Processing as in the proof of Lemma 2.7 we are

allowed to assert that, for some ξ > 0, we have

|∇θh|2H1(Ω) + ‖ϕh‖2L2
r∗ (Ω) + ‖χh‖2L2

r(Ω) = (1 + ξ)a(χh, ϕh) + ((r∗ − ξr)χh, ϕh),

Then, given the identity

−sh(θh, θh) + sh(χh, χh) + sh(ϕh, ϕh) = 2sh(χh, ϕh),

we derive that

|∇θh|2H1(Ω) −
1

2
(1 + ξ)ρ sh(θh, θh) +

1

2
(1 + ξ)ρ sh(χh, χh)

+
1

2
(1 + ξ)ρ sh(ϕh, ϕh) + ‖ϕh‖2L2

r∗ (Ω) + ‖χh‖2L2
r(Ω) = (1 + ξ)a(χh, ϕh)

+ (1 + ξ)ρ sh(χh, ϕh) + ((r∗ − ξr)χh, ϕh).

Using Lemma 4.6 yields that(
1− 1

2
(1 + ξ)ρµ′′

)
|θh|2H1(Ω) +

1

2
(1 + ξ)ρ sh(χh, χh) +

1

2
(1 + ξ)ρ sh(ϕh, ϕh)

+‖ϕh‖2L2
r∗ (Ω) + ‖χh‖2L2

r(Ω) ≤ (1 + ξ) aρ,h(χh, ϕh) + ((r∗ − ξr)χh, ϕh).

Recall that aρ,h(·, ·) = a(·, ·) + ρ sh(·, ·). Due to assumption (2.8), it is possible to select ξ as in

(2.9). This results in

(1 + ξ) aρ,h(χh, ϕh) ≥
(

1− 1

2
(1 + ξ)ρµ′′

)
|θh|2H1(Ω)

+
1

2
(1 + ξ)ρ sh(χh, χh) +

1

2
(1 + ξ)ρ sh(ϕh, ϕh) + ζ‖χh‖2L2

r(Ω)

(note that ζ depends on r and r∗). Applying now Lemma 3.4, we get

(1 + ξ) aρ,h(χh, ϕh) ≥
(

1− 1

2
(1 + ξ)ρµ′′

)
|θh|2H1(Ω)

+
1

2
(1 + ξ)ρ sh(χh, χh) +

1

2
(1 + ξ)ρ sh(ϕh, ϕh) + ς‖χh‖2L2

r(Ω) + ς‖ϕh‖2L2
r∗ (Ω).

The constant ς is positive and does not depend neither on ρ nor on h. It is only sensitive to the

reaction parameters (r, r∗). Next, if ρ is small enough, then the coefficient of |θh|2H1(Ω) is nonnegative

and can be dropped without changing the inequality. Hence, we obtain

(1 + ξ) aρ,h(χh, ϕh) ≥ 1

2
(1 + ξ)ρ sh(χh, χh) + ς‖χh‖2L2

r(Ω)

+
1

2
(1 + ξ)ρ sh(ϕh, ϕh) + ς‖ϕh‖2L2

r∗ (Ω).
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This bound can be put under the following form

aρ,h(χh, ϕh) ≥ λ

2

(
aρ,h(χh, χh) + aρ,h(ϕh, ϕh)

)
,

for a constant λ > 0 that is dependent on (ξ, ς) (which are themselves dependent on (r, r∗)). Next,

thanks to the positive definiteness of aρ,h(·, ·), we finally obtain

aρ,h(χh, ϕh) ≥ λ
√
aρ,h(χh, χh)

√
aρ,h(ϕh, ϕh).

The proof is complete.

Remark 4.9 The following bound holds true

∀ϕh ∈ N∗,h, aρ,h((Kh)−1ϕh, ϕh) ≥ λ
√
aρ,h((Kh)−1ϕh, (Kh)−1ϕh)

√
aρ,h(ϕh, ϕh).

We are now in position to state the inf-sup conditions satisfied by aρ,h(·, ·) on the kernel spaces

Nh and N∗,h.

Proposition 4.10 Assume that the regularization parameter ρ is sufficiently small. Then, when

(2.8) holds true, the following inf-sup conditions on aρ,h(·, ·) are satisfied

∀χh ∈ Nh, sup
ϕh∈N∗,h

aρ,h(χh, ϕh)

‖ϕh‖V
≥ τρ ‖χh‖V,

∀ϕh ∈ N∗,h, sup
χh∈Nh

aρ,h(χh, ϕh)

‖χh‖V
≥ τρ ‖ϕh‖V.

The inf-sup constant τρ is expected to decay to zero when ρ decreases toward zero.

Proof. Let χh be given in Nh and denote ϕh = Khχh ∈ N∗,h. By Lemma 4.8, we derive

aρ,h(χh, ϕh)

‖ϕh‖V
≥ λ

√
aρ,h(χh, χh)

√
aρ,h(ϕh, ϕh)

‖ϕh‖V
.

Now, applying Corollary 4.5 yields that

aρ,h(χh, ϕh)

‖ϕh‖V
≥ λ

√
aρ,h(χh, χh)

√
aρ,h(ϕh, ϕh)√
a1,h(ϕh, ϕh)

≥ λ(min(1,
√
ρ))2

√
a1,h(χh, χh) ≥ c λmin(1, ρ)‖χh‖V.

The constant τρ may be equal to λρ for small values of ρ. The second inf-sup condition can be

established similarly using Remark 4.9 instead of Lemma 4.8. The proof is complete.

The following exisetence and uniqueness theorem is now a direct consequence of Lemma 3.3 and

Propositions 4.7 and 4.10.

Theorem 4.11 Assume that (2.8) holds true and that ρ is small enough. For any data (f, g) in

H−1(Ω) × L2(Ω), the stabilized discrete problem (4.1) has a unique solution (bh, ch) in Vh × Hh.

The following stability holds

‖bh‖V + ‖ch‖H1(Ω) ≤ Cρ(‖f‖H−1(Ω) + ‖g‖L2(Ω)). (4.2)

The constant Cρ is expected to blow up when ρ decays to zero.
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4.3 A priori error estimates

From now on, we always assume that condition (2.8) holds true and that ρ is small enough, in order

that the discrete problem (4.1) is well-posed. We now prove an a priori error estimate between the

solutions (b, c) of problem (2.2) and (bh, ch) of problem (4.1). As usual, we introduce the affine

subspace

Nh(f) =
{
ϕh ∈Vh; ∀ψh ∈Hh, mh (ψh, ϕh) = 〈f, ψh〉H−1,H1

0

}
.

The following lemma relies on standard arguments, but takes into account the stabilization of the

form a(·, ·). It involves the norm ‖ · ‖∗ defined by

‖v‖∗ =
( ∑
K∈Th

hK ‖v‖2
H

3
2 (K)

) 1
2 .

Lemma 4.12 Assume that the part b of the solution (b, c) of problem (2.2) belongs to H3/2(Ω).

The following a priori error estimate holds

‖b− bh‖V ≤ (1 +
C

τρ
) inf
βh∈Nh(f)

(
‖b− βh‖V + ‖b− βh‖∗

)
+
C

τρ
inf

γh∈Hh

‖c− γh‖H1(Ω).

Proof. Let βh be any approximation of b in Nh(f). Thus, it follows from the first line in (4.1)

that the function bh − βh belongs to Nh. Applying the first inf-sup condition in Proposition 4.10

yields

‖bh − βh‖V ≤ τ−1
ρ sup

ϕh∈N∗,h

aρ,h(bh − βh, ϕh)

‖ϕh‖V
. (4.3)

To evaluate the quantity aρ,h(bh − βh, ϕh), we observe by using problem (4.1) that

aρ,h(bh − βh, ϕh) = `(ϕh)−m∗,h(ch, ϕh)− aρ,h(βh, ϕh).

Due to (2.2) together with the coincidence of the forms m∗(·, ·) and m∗,h on the discrete spaces,

we derive that

aρ,h(bh − βh, ϕh) = a(b− βh, ϕh) +m∗(c− ch, ϕh)− ρ sh(βh, ϕh).

Since ϕh belongs to N∗,h we have for all γh in Hh

m∗(c− ch, ϕh) = m∗(c− γh, ϕh).

On the other hand, because of the regularity of the solution b inside Ω, we derive

−sh(βh, ϕh) = sh(b− βh, ϕh).

The fact that grad b belongs to L2(Ω)k and that its divergence belongs to L2(Ω) implies that

each [∂nb]e belongs to H−1/2(e). Moreover, by an interpolation argument and since b belongs to

H3/2(Ω), then the flux jump [∂nb]e turns to be in L2(e). Combining this with a standard inequality

on ϕh give

−sh(βh, ϕh) ≤
∑
e∈Eh

he ‖[∂n(b− βh)]‖L2(e)‖[∂nϕh]‖L2(e) ≤ C ‖b− βh‖∗‖ϕh‖V.
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Inserting all this into (4.3) gives

‖bh − βh‖V ≤
C

τρ

(
‖b− βh‖V + ‖c− γh‖H1(Ω) + ‖b− βh‖∗

)
.

We conclude the proof by using a triangle inequality.

The next lemma is now just an extension of [13, Chap. II, eq. (1.16)].

Lemma 4.13 If the assumptions of Lemma 4.12 are satisfied, the following bound holds

inf
βh∈Nh(f)

(
‖b− βh‖V + ‖b− βh‖∗

)
≤ C inf

βh∈Vh

(
‖b− βh‖V + ‖b− βh‖∗

)
.

Proof. For any function βh in Vh, we deduce from the continuity and ellipticity of the form mh(·, ·)
on Hh that there exists a function ηh in Hh which satisfies

∀ψh ∈Hh, mh (ψh, ηh) = 〈f, ψh〉H−1,H1
0
−mh(ψh, βh) = m(ψh, b)−mh(ψh, βh).

Thus the function β̃h = βh + ηh belongs to Nh(f) and estimating the norm of b− β̃h follows from

a triangle inequality, the previous equation and a local inverse inequality appied to ηh.

Finally, we evaluate the error on the part ch of the solution.

Lemma 4.14 If the assumptions of Lemma 4.12 are satisfied, the following a priori error estimate

holds

‖c− ch‖H1(Ω) ≤ C
(
‖b− bh‖V + inf

γh∈Hh

‖c− γh‖H1(Ω) + inf
βh∈Vh

(
‖b− βh‖V + ‖b− βh‖∗

))
.

Proof. From the second inf-sup condition in Lemma 3.3, it suffices to evaluate the quantity, for

any ϕh in Vh,

m∗,h(ch − γh, ϕh) = m∗(c− γh, ϕh) + a(b− bh, ϕh)− ρ sh(bh, ϕh).

Bounding the first two terms simply follows from Cauchy-Schwarz inequalities. To estimate the

last one, we note that

−sh(bh, ϕh) = sh(b− bh, ϕh) = sh(b− βh, ϕh) + sh(βh − bh, ϕh),

use the same arguments as in the proof of Lemma 4.12 for the first quantity, Lemma 4.3 and a

triangle inequality for the last one. This gives the desired result.

We are now in a position to state explicit error estimates. The proof follows from Lemmas

4.12, 4.13 and 4.14, together with the approximation properties of the spaces Vh and Hh and an

interpolation argument for handling nonsmooth solutions (b, c).

Theorem 4.15 Assume that the solution (b, c) of problem (2.2) belongs to the space Hr+1(Ω) ×
Hs+1(Ω), 0 ≤ r, s ≤ 1. The following a priori error estimates hold

‖b− bh‖V + ‖c− ch‖H1(Ω) ≤ Cρ
(
hr ‖b‖Hr+1(Ω) + hs ‖c‖Hs+1(Ω)

)
.

The constant Cρ is expected to blow up when ρ decays to zero.
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Remark 4.16 These estimates are fully optimal with respect to h. Furthermore, when combined

with the stability property (4.2), they yield the convergence of (bh, ch) towards (b, c) when h tends

to zero, for any fixed parameter ρ.
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5 Numerical experiments

Computations are realized by means of the code FreeFem++ developed by F. Hecht (see [16]), where

a script specifically dedicated to the pollution system is made.

We wish to compare the two discrete problems, which we call in the following NS (for non

stabilized) and S (for stabilized), in a basic case. The domain is the square

Ω =]− 1

2π
,− 1

2π
+ 1[2.

Both Neumann and Dirichlet conditions are enforced on c, and b is free of any boundary condition.

The exact solution, represented in Figure 5.1, is given by

b(x1, x2) = cos(
3π

2
x1) cos(

3π

2
x2), c(x1, x2) = sin(

3π

2
x1) sin(

3π

2
x2).

The dispersion and reaction parameters are constant and fixed to d = 0.151 and (r, r∗) = (0.2, 0.4).

According to some specialized literature, they are close to real-life values. For reasons explained

later on, we also consider this same solution in the disk with centre (0, 0) and radius 1/2, computed

with the same coefficients.

Figure 5.1 represents, from top to bottom, the exact solution and the solution issued from NS.

For the non stabilized problem, we can see in this figure that the error on b is stronger than the

error on c; this error is concentrated on the corners of the domain. To check that this is due to

the discretization and not to the geometry of the domain, we now work with the domain Ω equal

to the ball. Figure 5.2 represents the solution (bh, ch) of the NS problem. The degradation of the

accuracy at the vicinity of the boundary is obvious. Thus, the NS problem does not lead to the

convergence of the solution, as appears in the next figure.

In all the numerical simulations, the meshes are triangular and structured. Varying the mesh

size on the square, we evaluate the errors on the BOD density b and the DO concentration c, with

respect to the H1(Ω) and L2(Ω) norms, for both non-stabilized and stabilized approximations. The

related convergence curves are plotted in Figure 5.3 in logarithmic scales.

• For the NS problem, there is no convergence of bh in the H1(Ω)-norm, and the slope in the L2(Ω)-

norm is evaluated to 1.09. This is an indication of the necessity to resort to stabilization. On the

other hand, the slopes of the convergence curves for c in the (H1(Ω), L2(Ω)) norms are close to

(0.99, 1.99).

• For the S problem, the slopes for c are close to the previous ones, equal to (0.99, 1.88). However,

the slopes for b are now equal to (1.28, 1.67), so that the convergence for b is highly improved.

Finally, in order to illustrate the good convergence properties of the stabilized problem, Figure

5.4 represent the solutions bh and ch issued from S, first for a standard mesh (h = 1
48), second for

a refined mesh (h = 1
96).
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Figure 5.1: Exact and NS computed solutions, b and bh in the left panels, c and ch in the right panels.

Figure 5.2: NS Computed solutions in the disk, bh in the left panel, ch in the right panel.
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Figure 5.3: Convergence curves for the H1(Ω) and L2(Ω) norms, for both NS (left) and S (right) problems.

Figure 5.4: S computed solutions, bh in the left panels, ch in the right panels, on different meshes.
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6 Conclusion

The steady pollution model studied here may be considered as a generalization of the well known

saddle-point stream-function/vorticity ψ − ω problem used in the simulation of two-dimensional

steady Stokes fluid flows (see [3, 8]). The difference between the two models resides in facts that

first the pollution system is valid in three dimensions and second that it is non-symmetric with an

additional reaction term with space dependent kinetics. This, unexpectedly, brings tedious com-

plications in the analysis of the exact and discretized versions of it. From the applied mathematics

view, this stirs a renewed interest (we may even speak of a rehabilitation) in the technical and

numerical work realized so-far on the mixed stream-function/vorticity formulation of the Stokes

model. Somehow the road is pathed for studying the pollution model, the questions to solve, the

methodology to follow so as the ideas already developed may be reinvested or recast for the pol-

lution model with however substantially increased mathematical difficulties to handle. They are

successfully solved in this work. The short-term continuation is to deal with the a posteriori issues.

We are currently investigating residual based error estimations and the stated results together with

a deeper numerical experimentation will be exposed in the second part of this paper. A more distant

goal is to consider the full unsteady pollution model which differs tremendously of the unsteady

ψ − ω system. They are opposite in nature, the time-dependent pollution model turns out to be

ill-posed (see [5]). Its space time discretization is expected to arise higher difficulties and requires

some specific mathematical tools to pick up in the community inverse and ill-posed problems. We

refer to the Ph.-D. thesis [18] to have some clues on these issues and on close ones but also to

discover several applications of the unsteady pollution modes, especially in the inverse problem of

(polluting) source detection and identification.
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