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CANONICAL POLYADIC DECOMPOSITION WITH A

COLUMNWISE ORTHONORMAL FACTOR MATRIX

MIKAEL SØRENSEN ∗‡ , LIEVEN DE LATHAUWER ∗ ‡ , PIERRE COMON ¶, SYLVIE

ICART † , AND LUC DENEIRE †

Abstract. Canonical Polyadic Decomposition (CPD) of a higher-order tensor is an impor-
tant tool in mathematical engineering. In many applications at least one of the matrix factors is
constrained to be column-wise orthonormal. We first derive a relaxed condition that guarantees
uniqueness of the CPD under this constraint. Second, we give a simple proof of the existence of
the optimal low-rank approximation of a tensor in the case that a factor matrix is column-wise or-
thonormal. Third, we derive numerical algorithms for the computation of the constrained CPD. In
particular, orthogonality-constrained versions of the CPD methods based on simultaneous matrix
diagonalization and alternating least squares are presented. Numerical experiments are reported.

Key words. higher-order tensor, polyadic decomposition, canonical decomposition (CANDE-
COMP), parallel factor (PARAFAC), simultaneous matrix diagonalization, alternating least squares,
orthogonality.

AMS subject classifications. 15Axx, 15A21, 15A29, 15A69, 15A72

1. Introduction. A Nth-order rank-1 tensor X ∈ CI1×···×IN is defined as the
tensor product of non-zero vectors a(n) ∈ CIn , 1 ≤ n ≤ N , such that Xi1...iN =∏N

n=1 a
(n)
in

. We write X = a(1) ◦ a(2) ◦ · · · ◦ a(N). The rank of a tensor X is equal to
the minimal number of rank-1 tensors that yield X in a linear combination. Assume
that the rank of X is R, then it can be written as

X =
R∑

r=1

a(1)r ◦ · · · ◦ a
(N)
r , (1.1)

where a
(n)
r ∈ CIn . This decomposition is sometimes called the PARAllel FACtor

(PARAFAC) [17] or the CANonical DECOMPosition (CANDECOMP) [5] of X . In
this paper we will use the term Canonical Polyadic Decomposition (CPD). Let us

stack the vectors {a
(n)
r } into the matrices

A(n) =
[
a
(n)
1 , · · · , a

(n)
R

]
∈ C

In×R, 1 ≤ n ≤ N. (1.2)

The matrices A(n) in (1.2) will be denoted as factor matrices. In this paper we are
interested in the case where one of the factor matrices is column-wise orthonormal.
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For convenience, we say that this matrix is semi-unitary (in the complex case) or
semi-orthogonal (in the real case).

The CPD of a higher-order tensor is called unique if alternative representations
involve the same rank-1 terms up to permutation. CPD is unique under mild con-
ditions, see for instance [29, 12]. The first contribution of this paper is a relaxed
condition under which a semi-unitary constrained CPD is unique. Under this con-
dition, the CPD may be computed by algebraic means. We also extend Kruskal’s
well-known sufficiency condition for uniqueness to the case where a factor matrix is
semi-unitary.

In applications, a CPD is rarely exact. Most often, a low-rank tensor is fitted to
the given tensor in some approximate sense, e.g., in least-squares sense. However, the
optimal solution does not necessarily exist, i.e., the cost function in the approximation
problemmay only have an infimum and not a minimum [15, 26]. One of the advantages
of semi-unitary constrained CPD is that the approximation problem does always have
an optimal solution, as was demonstrated in [26]. We give a very short proof of this
basic fact.

For the computation of CPD with a semi-unitary factor matrix we derive new
semi-unitary constrained versions of the Simultaneous matrix Diagonalization (SD-
CP) [12] and Alternating Least Squares (ALS-CP) [17, 35] algorithms.

Besides being used for avoiding problems with the non-existence of the optimal
low-rank approximation [18, 16], CPD with a semi-unitary factor matrix is used in
signal processing in applications where the orthogonality constraints are due to zero-
mean signals being uncorrelated. We mention applications in polarization sensitive
array processing [31] and in multiple access wireless communication systems such as
DS-CDMA [34]. The decomposition has further been used in the context of blind
signal separation and Independent Component Analysis (ICA), e.g. for the blind
identification of underdetermined mixtures [1, 13] and for structured ICA [2]. Further,
CPD of fully or partially symmetric tensors with all or several factor matrices unitary
has found application in ICA methods that involve a prewhitening [3, 7, 8, 11, 14]. The
latter variants are commonly computed by means of Jacobi-type iterations. In image
processing, unsymmetric CPD with unitary factor matrices has found use in data
representation via a joint Singular Value Decomposition (SVD) [32]. Here the CPD is
unsymmetric and two of the factor matrices are unitary. For the computation a Jacobi-
type algorithm was proposed. Further, two iterative methods for the computation of
an unsymmetric CPD involving only semi-orthogonal or semi-unitary factor matrices
have been proposed in [30] and [6].

The paper is organized as follows. The rest of the introduction will present our
notation. Next, in section 2 and 3 we discuss the uniqueness and low-rank approxi-
mation properties of a CPD with a semi-unitary matrix factor, respectively. Section 4
and 5 propose semi-unitary constrained versions of the SD-CP and ALS-CP methods,
respectively. Parts of this work appeared in the conference papers [34, 8]. Section 6
briefly explains how the results can be extended to tensors of order higher than three.
In section 7 numerical experiments are reported. We end the paper with a conclusion
in section 8.

Notation Vectors, matrices and tensors are denoted by lower case boldface, upper
case boldface and upper case calligraphic letters, respectively. The symbols ⊗ and ⊙
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denote the Kronecker and Khatri-Rao products, defined as

A⊗B ,




a11B a12B . . .
a21B a22B . . .
...

...
. . .


 , A⊙B ,

[
a1 ⊗ b1 a2 ⊗ b2 . . .

]
,

in which (A)mn = amn and ar and br denote the rth column vector of A and B,
respectively. The Hadamard product is denoted by ∗ and is given by

A ∗B ,




a11b11 a12b12 . . .
a21b21 a22b22 . . .

...
...

. . .


 .

Further, Tr (·), (·)T , (·)∗, (·)H , (·)†, |·|, ‖ · ‖F , Col (·), Re {·} and Im{·} denote
the trace, transpose, conjugate, conjugate-transpose, Moore-Penrose pseudo-inverse,
determinant, Frobenius norm, column space, real part and imaginary part of a matrix,
respectively. The identity matrix and the all-ones vector are denoted by IR ∈ C

R×R

and 1R = [1, . . . , 1]
T ∈ CR, respectively. Matlab index notation will be used to denote

submatrices of a given matrix. For example, A(1 : k, :) denotes the submatrix of A
consisting of the rows from 1 to k. The notation diag (·) is used to denote the operator
that sets the off-diagonal elements of a matrix equal to zero. Let A ∈ CI×J , then
Vec (A) ∈ CIJ denotes the column vector defined by (Vec (A))i+(j−1)I = (A)ij . Let

a ∈ CIJ , then the reverse operation is Unvec (a) = A ∈ CI×J such that (a)i+(j−1)I =

(A)ij . Let A ∈ CI×I , then Vecd (A) ∈ CI denotes the column vector defined by

(Vecd (A))i = (A)ii. Let A ∈ CI×J , then Dk (A) ∈ CJ×J denotes the diagonal
matrix holding row k of A on its diagonal.

The k-rank of a matrix A is denoted by k (A). It is equal to the largest integer
k (A) such that every subset of k (A) columns of A is linearly independent.

The following three matrix representations of a CPD of a third-order tensor X ∈
CI1×I2×I3 will be used throughout the paper. Let X(i1··) ∈ CI2×I3 denote the matrix

such that X
(i1··)
i2i3

= Xi1i2i3 , then

X(i1··) = A(2)Di1

(
A(1)

)
A(3)T

and

C
I1I2×I3 ∋ X(1) ,




X(1··)

...

X(I1··)


 =




A(2)D1

(
A(1)

)

...

A(2)DI1

(
A(1)

)


A(3)T =

(
A(1) ⊙A(2)

)
A(3)T .

Similarly, let the matrices X(·i2·) ∈ C
I3×I1 be constructed such that X

(·i2·)
i3i1

= Xi1i2i3 ,
then

X(·i2·) = A(3)Di2

(
A(2)

)
A(1)T

and

C
I2I3×I1 ∋ X(2) ,




X(·1·)

...

X(·I2·)


 =




A(3)D1

(
A(2)

)

...

A(3)DI2

(
A(2)

)


A(1)T =

(
A(2) ⊙A(3)

)
A(1)T .
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Finally, let X(··i3) ∈ CI1×I2 satisfy X
(··i3)
i1i2

= Xi1i2i3 , then

X(··i3) = A(1)Di3

(
A(3)

)
A(2)T

and

C
I1I3×I2 ∋ X(3) ,




X(··1)

...

X(··I3)


 =




A(1)D1

(
A(3)

)

...

A(1)DI3

(
A(3)

)


A(2)T =

(
A(3) ⊙A(1)

)
A(2)T .

2. Uniqueness of CPD with a Semi-unitary Matrix Factor. The CPD of

a higher-order tensor is unique if all the N -tuplets
(
A

(1)
, . . . ,A

(N)
)
satisfying (1.1)

are related via

A
(n)

= A(n)P∆
A(n) , ∀n ∈ {1, . . . , N} ,

where {∆
A(n)} are diagonal matrices satisfying

∏N
n=1 ∆A(n) = IR and P is a permu-

tation matrix.

2.1. Deterministic Conditions. We first review two existing uniqueness con-
ditions for CPD (Theorems 2.1 and 2.2). Next, we provide new uniqueness conditions
for a complex CPD with a semi-unitary matrix factor (Theorems 2.3 and 2.5) and a
slight relaxation of this constraint (Corollaries 2.4 and 2.6). We consider the third-
order case for simplicity. The results can however be extended to Nth-order tensors,
as will be briefly discussed in section 6.

The following theorem presents the sufficient condition for CPD uniqueness that
is known as Kruskal’s condition.

Theorem 2.1. Consider a tensor X ∈ CI1×I2×I3 with rank R and matrix repre-

sentation X(1) =
(
A(1) ⊙A(2)

)
A(3)T . If

k
(
A(1)

)
+ k

(
A(2)

)
+ k

(
A(3)

)
≥ 2(R+ 1) , (2.1)

then the CPD of X is unique [29, 36].

Condition (2.1) is sufficient for uniqueness but not necessary [39]. The following
uniqueness condition covers cases that are not covered by Kruskal’s and vice-versa.

Theorem 2.2. Consider the tensor X ∈ C
I1×I2×I3 with rank R and matrix

representation X(1) =
(
A(1) ⊙A(2)

)
A(3)T . Define C ∈ CI2

1I
2
2×R(R−1)/2 by

c
(i1−1)(I1I2

2 )+(j1−1)I2
2+(i2−1)I2+j2,

(r2−2)(r2−1)

2 +r1
=

∣∣∣∣∣
a
(1)
i1,r1

a
(1)
i1,r2

a
(1)
j1,r1

a
(1)
j1,r2

∣∣∣∣∣ ·
∣∣∣∣∣
a
(2)
i2,r1

a
(2)
i2,r2

a
(2)
j2,r1

a
(2)
j2,r2

∣∣∣∣∣ ,

where 1 ≤ i1, j1 ≤ I1, 1 ≤ i2, j2 ≤ I2 and 1 ≤ r1 < r2 ≤ R. If A(3) and C have full
column rank, then the CPD of X is unique [12, 23].

When the matrix factor A(3) is semi-unitary, it a forteriori has full column rank
(R ≤ I3). Hence, the uniqueness condition stated in Theorem 2.2 also applies in the
case of a CPD with a semi-unitary matrix factor.
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We will now provide a new uniqueness condition for a complex CPD with a semi-
unitary matrix factor.

Theorem 2.3. Consider a tensor X ∈ CI1×I2×I3 with rank R and matrix repre-

sentation X(1) =
(
A(1) ⊙A(2)

)
A(3)T in which A(3) is semi-unitary. Let

Nmax =

{
2 if I2 ≥ I1

1 if I1 > I2
, Nmin =

{
2 if I2 < I1

1 if I1 ≤ I2
(2.2)

Imax = max (I1, I2) , Imin = min (I1, I2) . (2.3)

Define C ∈ CI4
max×R(R−1)/2 by

c
(i1−1)I3

max+(j1−1)I2
max+(i2−1)Imax+j2,

(r2−2)(r2−1)
2 +r1

=

∣∣∣∣∣
a
(Nmax∗)
i1,r1

a
(Nmax∗)
i1,r2

a
(Nmax∗)
j1,r1

a
(Nmax∗)
j1,r2

∣∣∣∣∣ ·
∣∣∣∣∣
a
(Nmax)
i2,r1

a
(Nmax)
i2,r2

a
(Nmax)
j2,r1

a
(Nmax)
j2,r2

∣∣∣∣∣ , (2.4)

where 1 ≤ i1, j1, i2, j2 ≤ Imax and 1 ≤ r1 < r2 ≤ R. If A(Nmin)∗ ⊙A(Nmin) ∈ CI2
min×R

and C have full column rank, then the semi-unitary constrained CPD of X is unique.
Proof. Since A(3) is semi-unitary we can construct the fourth-order tensor Y ∈

C
I2×I2×I1×I1 with matrix slices

C
I2×I2 ∋ Y(··i3,i4) = X(i3··)X(i4··)H

= A(2)Di3

(
A(1)

)
Di4

(
A(1)∗

)
A(2)H , ∀i3, i4 ∈ {1, . . . , I1},

and Y (:, :, i3, i4) = Y(··i3,i4), ∀i3, i4 ∈ {1, . . . , I1}. We have

Vec
(
Y(··i3,i4)

)
=
(
A(2)∗ ⊙A(2)

)
Vecd

(
Di3

(
A(1)

)
Di4

(
A(1)∗

))

and

Y =
[
Vec

(
Y(··1,1)

)
,Vec

(
Y(··1,2)

)
, · · · ,Vec

(
Y(··I1,I1)

)]

=
(
A(2)∗ ⊙A(2)

)(
A(1)∗ ⊙A(1)

)T
. (2.5)

Hence, if the fourth-order CPD with matrix representation Y in (2.5) is unique, then
the semi-unitary constrained CPD of X is also unique. Due to Theorem 2.2 we know
that the CPD (2.5) is unique ifA(Nmin)∗⊙A(Nmin) ∈ CI2

min×R and C ∈ CI4
max×R(R−1)/2

have full column rank, where the entries of C are determined by the relation (2.4).
In cases where Theorem 2.3 applies, the CPD of X may be computed as follows.

First A(2) may be obtained from the column space of Y in (2.5) by means of the

unconstrained SD-CP method, which will be reviewed in section 4. Next, A(1) may
be obtained from (2.5) via a set of R decoupled best rank-1 matrix approximation

problems, analogous to subsection 4.3. Finally, the semi-unitary matrix factor A(3)

may be computed by solving a unitary Procrustes-type problem, as will also be ex-
plained in subsection 4.3. In the rest of the paper we will find the matrix factors
directly from X , instead of working with Y.

A slight generalization of Theorem 2.3 is possible, as stated next.
Corollary 2.4. Consider a tensor T ∈ CI1×I2×I3 with rank R and matrix repre-

sentation T(1) =
(
A(1) ⊙A(2)

)
A(3)T in which A(3)has full column rank. Let Nmax,
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Nmin, Imax and Imin be defined as in (2.2) and (2.3) and let C ∈ CI4
max×R(R−1)/2 be

constructed according to (2.4). Let the triplet

(
Â

(1)
, Â

(2)
, Â

(3)
)

yield an alternative

CPD of T with constraint

Â
(3)
∈
{
Z ∈ C

I3×R |Z = A(3)Q for some Q ∈ C
R×R with QHQ = IR

}
.

If C and A(Nmin)∗ ⊙A(Nmin) ∈ CI2
min×R have full column rank, then the constrained

CPD of T is unique.

Proof. Because of the structure of Â
(3)

we have

X(1) = T(1)

(
Â

(3)T
)†

=
(
A(1) ⊙A(2)

)
Q . (2.6)

As in the proof of Theorem 2.3 we obtain a matrix Y that can be decomposed as

Y =
(
A(2)∗ ⊙A(2)

)(
A(1)∗ ⊙A(1)

)T
. (2.7)

Hence, if the fourth-order CPD with matrix representation Y in (2.7) is unique, then
the CPD represented by the decomposition of X(1) in (2.6) is also unique. Due

to Theorem 2.3 we known that this is true if A(Nmin)∗ ⊙ A(Nmin) ∈ CI2
min×R and

C ∈ CI4
max×R(R−1)/2 have full column rank. Finally, since X(1) = T(1)

(
Â

(3)T
)†

with

Â
(3)

full column rank, the CPD of T is unique.
By a similar reasoning we can extend Theorem 2.1 to the case where one of the

matrix factors is semi-unitary.
Theorem 2.5. Consider a tensor T ∈ CI1×I2×I3 with rank R and matrix repre-

sentation T(1) =
(
A(1) ⊙A(2)

)
A(3)T in which A(3) is semi-unitary. Let Nmax and

Nmin be defined as in (2.2). If

2k
(
A(Nmax)

)
+ k

(
A(Nmin)∗ ⊙A(Nmin)

)
≥ 2(R+ 1) , (2.8)

then the semi-unitary constrained CPD of T is unique.
Proof. Since A(3) is semi-unitary, then as in the proof of Theorem 2.3 we can

construct the matrix

Y =
(
A(2)∗ ⊙A(2)

)(
A(1)∗ ⊙A(1)

)T
. (2.9)

The matrixY (2.9) can be seen as a representation of the third-order CPD with matrix

factors A(Nmax), A(Nmax)∗ and A(Nmin)∗ ⊙ A(Nmin). Hence, if the CPD with matrix
representation Y in (2.9) is unique, then the CPD represented by the decomposition

of T(1) is also unique. Since k
(
A(Nmax)

)
= k

(
A(Nmax)∗

)
, then due to Theorem 2.1

we known that this is true if condition (2.8) is satisfied.
Again, a slight generalization of Theorem 2.5 is possible and stated next.
Corollary 2.6. Consider a tensor T ∈ CI1×I2×I3 with rank R and matrix

representation T(1) =
(
A(1) ⊙A(2)

)
A(3)T in which A(3)has full column rank. Let

the triplet

(
Â

(1)
, Â

(2)
, Â

(3)
)

yield an alternative CPD of T with constraint

Â
(3)
∈
{
Z ∈ C

I3×R |Z = A(3)Q for some Q ∈ C
R×R with QHQ = IR

}
.
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If 2(R + 1) ≤ 2k
(
A(Nmax)

)
+ k

(
A(Nmin)∗ ⊙A(Nmin)

)
, where Nmax and Nmin are

defined as in (2.2), then the constrained CPD of T is unique.

Proof. Because of the structure of Â
(3)

we have

X(1) = T(1)

(
Â

(3)T
)†

=
(
A(1) ⊙A(2)

)
Q . (2.10)

As in the proof of Theorem 2.3 we obtain a matrix Y that can be decomposed as

Y =
(
A(2)∗ ⊙A(2)

)(
A(1)∗ ⊙A(1)

)T
. (2.11)

Hence, if the fourth-order CPD with matrix representation Y in (2.11) is unique,
then the CPD represented by the decomposition of X(1) in (2.10) is also unique.

Due to Theorem 2.5 we known that this is true if 2(R + 1) ≤ 2k
(
A(Nmax)

)
+

k
(
A(Nmin)∗ ⊙A(Nmin)

)
. Finally, since X(1) = T(1)

(
Â

(3)T
)†

with Â
(3)

full column

rank, the CPD of T is unique.

2.2. Generic Conditions. A CPD property is called generic if it holds with
probability one when the entries of the factor matrices are drawn from absolutely
continuous probability density functions. Generically, Theorem 2.2 amounts to the
following.

Theorem 2.7. Consider a tensor X ∈ CI1×I2×I3 with rank R. If

2R(R− 1) ≤ I1(I1 − 1)I2(I2 − 1) and R ≤ I3 , (2.12)

then the CPD of X is unique in the generic case [12]. Condition (2.12) is also suf-

ficient for generic uniqueness when A(1) = A(2)∗, with A(1) ∈ CI1×R. The condition
R ≤ I3 is meant to make sure that A(3) has full column rank.

Again, since the semi-unitary matrix factor A(3) has full column rank, the generic
uniqueness condition (2.12) also applies in the case of a CPD with a semi-unitary
matrix factor.

We will now derive generic versions of Theorem 2.3 and Theorem 2.5. The deriva-
tions will make use of proposition 2.9, which in turn is based on the following lemma.

Lemma 2.8. Given an analytic function f : Cn → C. If there exists an element
x ∈ Cn such that f (x) 6= 0, then the set { x | f (x) = 0 } is of Lebesgue measure zero.

Proof. For a proof, see for instance [22].

Proposition 2.9. Let P ∈ CL×R, then the matrix P⊙P∗ ∈ CL2×R has generi-
cally rank min(L2, R).

Proof. Consider the transposed Vandermonde matrix

P =




1 d1 d21 · · · dR−1
1

1 d2 d22 · · · dR−1
2

...
...

...
. . .

...

1 dL d2L · · · dR−1
L




=
[
1L,D1L,D

21L . . . ,DR−11L

]
∈ C

L×R,
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where d = [d1, . . . , dL]
T ∈ C1×L and D = D1

(
dT
)
, then we get

P⊙P∗ =




1 d1d
∗
1 · · · (d1d

∗
1)

R−1

1 d1d
∗
2 · · · (d1d

∗
2)

R−1

...
...

. . .
...

1 dLd
∗
L · · · (dLd

∗
L)

R−1




=
[
1L2 , (d⊗ d

∗) , . . . , (d⊗ d
∗)

R−1
]
. (2.13)

Matrix (2.13) is a transposed Vandermonde matrix. If its generators {dmd∗n} are
non-zero and distinct, then this matrix has full rank. Now that we have found one
instance where P ⊙P∗ has rank min(R,L2), lemma 2.8 further implies that P⊙P∗

has rank min(R,L2) generically.
Theorem 2.10. Consider a third-order tensor X ∈ CI1×I2×I3 with matrix repre-

sentation

C
I2×I3 ∋ X(i1··) = A(2)Di1

(
A(1)

)
A(3)T , ∀i1 ∈ {1, . . . , I1} ,

where A(3) is semi-unitary. Let Imax and Imin be defined as (2.3). If

R ≤ I2min and 2R(R− 1) ≤ I2max(Imax − 1)2 , (2.14)

then the semi-unitary constrained CPD of X is unique in the generic case.
Proof. Since A(3) is semi-unitary we can construct the fourth-order tensor Y ∈

CI2×I2×I1×I1 with matrix representation

Y =
(
A(2)∗ ⊙A(2)

)(
A(1)∗ ⊙A(1)

)T
. (2.15)

Due to Proposition 2.9 we know that the matrix A(n)∗ ⊙ A(n) generically has full
column rank when I2n ≥ R. Let Y = UΣVH denote the compact SVD of Y and
assume that I21 , I

2
2 ≥ R, then there generically exists a nonsingular matrix F ∈ CR×R

such that
(
A(2)∗ ⊙A(2)

)
FT = U . (2.16)

The proof is completed by observing the comments following Theorem 2.7.
Under the conditions in Theorem 2.10 the CPD may also be computed by means

of the SD-CP method, as explained in subsection 2.1. From table 2.1 it is clear
that the constraint A(3)HA(3) = IR (Theorems 2.7 or 2.10) allows us to algebraically
compute the semi-unitary constrained CPD of X under more mild conditions than
the constraint A(3)†A(3) = IR (Theorem 2.7) does.

Let us also present a generic version of Theorem 2.5.
Theorem 2.11. Consider a tensor T ∈ CI1×I2×I3 with rank R and matrix

representation T(1) =
(
A(1) ⊙A(2)

)
A(3)T in which A(3) is semi-unitary. Let Imax

and Imin be defined as (2.3). If

2min (Imax, R) + min
(
I2min, R

)
≥ 2(R+ 1) , (2.17)

then the semi-unitary constrained CPD of T is unique in the generic case.



9

Imin 2 3 4 5 6
Imax 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

A(3)†A(3) = IR 2 3 4 5 6 4 6 8 10 9 11 13 14 17 21

A(3)HA(3) = IR 2 4 4 5 6 4 9 9 10 9 14 16 14 21 21
Table 2.1

Maximum value for R for which the SD-CP approach provides an algebraic solution of a generic
complex CPD with a full column rank or semi-unitary matrix factor (I3 ≥ R). We denote Imin =
min (I1, I2) and Imax = max (I1, I2).

Proof. LetNmax andNmin be defined as in (2.2). For a genericA(Nmax) ∈ CImax×R

it is known that generically k
(
A(Nmax)

)
= k

(
A(Nmax)∗

)
= min (Imax, R). Lemma

2.8 together with the generic example presented in the proof of Proposition 2.9 tell us

that generically k
(
A(Nmin) ⊙A(Nmin)∗

)
= min

(
I2min, R

)
. The condition (2.17) now

follows directly from Theorem 2.5.
Conditions (2.14) and (2.17) may guarantee uniqueness for larger values of R

than condition (2.12) in cases where I1 6= I2 and is A(3) semi-unitary. As an example,

let R = 7, I1 = 3 and A(3) is semi-unitary (I3 ≥ R), then condition (2.12) requires
that I2 ≥ 5 while condition (2.14) only requires that I2 ≥ 4. In table 2.2 we give,
for various values of I1, the minimum value of I2 for which uniqueness is established
by Theorems 2.1, 2.7, 2.10 and 2.11 assuming that I21 = R and A(3) is semi-unitary
(I3 ≥ R).

I1 2 3 4 5 6 7 8 9 10
Thm. 2.1 4 8 14 22 32 44 58 74 92
Thm. 2.7 4 6 7 9 10 12 13 14 16

Thm. 2.10 3 4 6 7 8 9 10 12 13
Thm. 2.11 3 6 9 14 19 26 33 42 51

Table 2.2

Minimum value for I2 as required for Theorems 2.1, 2.7, 2.10 and 2.11 in order guarantee
uniqueness of a complex CPD with I21 = R and a semi-unitary matrix factor (I3 ≥ R) in the
generic case.

It is clear that in this case Theorem 2.10 provides the most relaxed condition.
Table 2.3 shows, for varying I1 and I2, the maximal value of R for which Theorems
2.1, 2.7, 2.10 and 2.11 guarantee uniqueness of a generic complex CPD with a semi-
unitary matrix factor (I3 ≥ R). It is clear that the semi-unitary constraint allows us
to establish uniqueness for higher rank values.

3. Low-rank Approximation of a Tensor by a CPD with a Semi-unitary

Matrix Factor. In applications it is the optimal approximation of a given tensor
X ∈ C

I1×I2×I3 by a tensor that admits a CPD with semi-unitary factor that is of
interest. The unknown matrices A(1) ∈ CI1×R, A(2) ∈ CI2×R and semi-unitary
A(3) ∈ CI3×R are typically found by minimizing the least-squares cost function

f
(
A(1),A(2),A(3)

)
=
∥∥∥X(3) −

(
A(3) ⊙A(1)

)
A(2)T

∥∥∥
2

F
. (3.1)

In [26] it was shown using level sets that the optimal solution to (3.1) always exists,
i.e., the cost function has a global minimum and not only an infimum. (In the uncon-
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Imin 2 3 4 5 6
Imax 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6

Thm. 2.1 2 3 4 5 6 4 5 6 7 6 7 8 8 9 10
Thm. 2.7 2 3 4 5 6 4 6 8 10 9 11 13 14 17 21

Thm. 2.10 2 4 4 4 4 4 9 9 9 9 14 16 14 21 21

Thm. 2.11 2 4 5 6 7 4 6 8 9 6 8 10 8 10 10
Table 2.3

Maximum value for R for which, under Theorems 2.1, 2.7, 2.10 and 2.11 a generic complex
CPD with a semi-unitary matrix factor (I3 ≥ R) is unique. We denote Imin = min (I1, I2) and
Imax = max (I1, I2).

strained problem there is in general only an infimum [15, 26].) We give a very short
proof of this fact.

Proposition 3.1. Consider a tensor X ∈ CI1×I2×I3 and let A(1) ∈ CI1×R,
A(2) ∈ CI2×R and A(3) ∈ CI3×R in which A(3) is semi-unitary. Then (3.1) has a
global minimum.

Proof. Without loss of generality we can assume that the column vectors of A(1)

have unit norm. Since A(3) is semi-unitary, A(3)⊙A(1) is semi-unitary. Hence, given
A(1) and A(3), the optimal A(2) is given by

A(2)T =
(
A(3) ⊙A(1)

)H
X(3) . (3.2)

Substitution of (3.2) in (3.1) yields

g
(
A(1),A(3)

)
=

∥∥∥∥X(3) −
(
A(3) ⊙A(1)

)(
A(3) ⊙A(1)

)H
X(3)

∥∥∥∥
2

F

. (3.3)

Due to the continuity of g and the compactness of its domain, its global minimum
exists. Consequently, (3.1) has a global minimum.

4. SD-CPO: SD-CP with a semi-unitary matrix factor. In this section
we explain how a semi-unitary constraint can be incorporated in the SD-CP method
presented in [12]. The approach will be referred to as SD-CPO.

4.1. Problem formulation. The SD-CP method was developed to compute
CPD under the condition in Theorem 2.2. We briefly explain how it works.

Let X ∈ CI1×I2×I3 be a rank-R tensor with matrix representation

C
I1I2×I3 ∋ X(1) =

(
A(1) ⊙A(2)

)
A(3)T . (4.1)

The conditions in Theorem 2.2 imply that A(1) ⊙ A(2) and A(3) have full column
rank. Let X(1) = UΣVH denote the compact SVD of X(1), where U ∈ CI1I2×R,
V ∈ CI3×R are semi-unitary matrices and Σ ∈ CR×R is a positive diagonal matrix.

Since Col (UΣ) = Col
((

A(1) ⊙A(2)
)
A(3)T

)
= Col

(
A(1) ⊙A(2)

)
, there exists a

nonsingular matrix F ∈ CR×R such that

A(1) ⊙A(2) = UΣF. (4.2)

Together with the relation X(1) =
(
A(1) ⊙A(2)

)
A(3)T = UΣVH , this implies that

A(3)T = F−1VH . (4.3)
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It turns out that, under the conditions in Theorem 2.2, there exist R complex sym-
metric matrices M(r) ∈ CR×R and R diagonal matrices Λr ∈ CR×R satisfying

M(1) = FΛ1F
T

... (4.4)

M(R) = FΛRF
T .

For the procedure to compute the matrices {M(r)} we refer to [12]. The unknown
matrix F may now be explicitly obtained from the generalized eigenvalue decomposi-
tion of a pencil consisting of two of the matrices {M(r)} (or two linear combinations
of these matrices). If X does not admit an exact CPD, i.e., if (4.1) holds only ap-

proximately, then it is recommended to use all matrices {M(r)} in the estimation of
an approximate matrix F. Note that in this Simultaneous Matrix Diagonalization
(SMD) problem (4.4) the unknowns (F, {Λr}) have the same dimensions as the given

matrices ({M(r)}), whereas in the original CPD (4.1) possibly I1, I2 < R.

When A(3) is semi-unitary the reasoning above remains valid. However, we have
VHV = FA(3)TA(3)∗FH = IR ⇔ FFH = IR and hence F is a unitary matrix. This
means that, in the case of semi-unitary A(3), the estimation of the CPD of X has been
converted into a unitary SMD problem. Subsection 4.2 will discuss how the unitary
matrix F can be computed from the matrices {M(r)}. Subsection 4.3 will explain

how subsequently the CPD factors A(1), A(2) and A(3) may be found.

4.2. Computation of F. Equation (4.4) can be interpreted as a simultaneous
Takagi factorization [19]. The algorithm that will be derived in this section has
applications besides the computation of a CPD with semi-unitary factor. For instance,
the simultaneous Takagi factorization problem also pops up in the blind separation
of non-circular sources [8, 11].

Define the tensor M ∈ CR×R×R by (Mr1r2r3) = (M(r3))r1r2 , where r1, r2, r3 ∈
{1, 2, . . . , R}, the vectors dr ∈ CR by (dr)r1 = (Λr1)rr, in which r, r1 ∈ {1, 2, . . . , R}
and let F = [f1 f2 . . . fR]. Solving (4.4) in least-squares sense amounts to minimizing

g(F, {Λr}) =

∥∥∥∥∥M−
R∑

r=1

fr ◦ fr ◦ dr

∥∥∥∥∥

2

F

.

This is a CPD problem with two unitary factors. According to Proposition 3.1, g has
a global minimum.

It is easy to show that the minimization of g is equivalent with the maximization
of

f (F) =
R∑

r=1

∥∥∥diag
(
FHM(r)F∗

)∥∥∥
2

F
. (4.5)

Objective function f may be maximized by means of a Jacobi-type algorithm. We
work in analogy with the JADE algorithm for simultaneous diagonalization under a
unitary congruence transformation [3, 4]. The idea behind the Jacobi approach is that
any unitary matrix F ∈ CR×R with determinant equal to one can be parameterized
as

F =

R−1∏

p=1

R∏

q=p+1

F[p, q],
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where F [p, q] is a Givens rotation matrix, defined by

F [p, q]kl =





1 if k = l and k /∈ {p, q}
cos(θ) if k = l = p
cos(θ) if k = l = q
sin(θ)eiφ if k = p and l = q
− sin(θ)e−iφ if k = q and l = p
0 otherwise

with θ, φ ∈ R. An outline of the sweeping procedure for the simultaneous Takagi
factorization is presented as Algorithm 1.

Algorithm 1 Outline of sweeping procedure for simultaneous Takagi factorization.

Initialize: F
Repeat until convergence
for p = 1 to R− 1 do

for q = p+ 1 to R do

calculate optimal F[p, q] (subsection 4.2)
F← FF[p, q]

M(r) ← F [p, q]
H
M(r)F [p, q]

∗

end for

end for

Let F = F [p, q], then a technical derivation yields:

f (F [p, q]) =

R∑

r=1

∥∥∥diag
(
F [p, q]

H
M(r)F [p, q]

∗
)∥∥∥

2

F

= xT




α1 β1/2 β2/2
β1/2 α1/2 + α4/2 + Re {α5} Im{α5}
β2/2 Im{α5} α1/2 + α4/2− Re {α5}


x

= xTBx,

where

x = [cos (2θ) , sin (2θ) cos (φ) , sin (2θ) sin (φ)]T

and

α1 =

R∑

r=1

∣∣∣M(r)
pp

∣∣∣
2

+
∣∣∣M(r)

qq

∣∣∣
2

α2 =

R∑

r=1

M(r)∗
qq

(
M(r)

pq +M(r)
qp

)

α3 =

R∑

r=1

M(r)
pp

(
M(r)

pq +M(r)
qp

)∗
α4 =

R∑

r=1

∣∣∣M(r)
pq +M(r)

qp

∣∣∣
2

α5 =
R∑

r=1

M(r)∗
qq M(r)

pp

β1 = Re {α2}+Re {α3} β2 = Im{α2} − Im{α3}.

Note that the unknown x that characterizes the Givens rotation has unit norm. The
function f (F [p, q]) can be maximized by taking x equal to the dominant eigenvector
of B. Hence, the problem reduces to finding the eigenvector that corresponds to the
largest eigenvalue of the above matrix B.
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4.3. Computation of A(1), A(2) and A(3). Assume that the unitary matrix
F has been found, then due to relation (4.2) the matrices A(1) and A(2) can be
found from a set of decoupled best rank-1 matrix approximation problems. Indeed,
let G = UΣF, then
∥∥∥Unvec (gr)−Unvec

(
a(1)
r ⊗ a(2)

r

)∥∥∥
2

F
=
∥∥∥Unvec (gr)− a(2)

r a(1)Tr

∥∥∥
2

F
, r ∈ {1, . . . , R},

where gr and a
(n)
r denote the rth column of G and A(n), respectively. Consequently,

we can take a
(1)
r = t∗1 and a

(2)
r = σ1s1, where σ1 denotes the largest singular value of

Unvec (gr) and s1 and t1 denote its dominant left and right singular vectors, respec-
tively.

The matrix A(3) can be found as the semi-unitary minimizer of the cost function

f
(
A(3)

)
=
∥∥∥X(1) −

(
A(1) ⊙A(2)

)
A(3)T

∥∥∥
2

F

=
∥∥X(1)

∥∥2
F
+
∥∥∥A(1) ⊙A(2)

∥∥∥
2

F
− 2Re

{
Tr

(
A(3)∗

(
A(1) ⊙A(2)

)H
X(1)

)}
.

(4.6)

The minimizer of (4.6) is equal to the minimizer of

g
(
A(3)

)
=

∥∥∥∥
(
A(1) ⊙A(2)

)H
X(1) −A(3)T

∥∥∥∥
2

F

=

∥∥∥∥
(
A(1) ⊙A(2)

)H
X(1)

∥∥∥∥
2

F

+
∥∥∥A(3)T

∥∥∥
2

F

− 2Re

{
Tr

(
A(3)∗

(
A(1) ⊙A(2)

)H
X(1)

)}

=

∥∥∥∥
(
A(1) ⊙A(2)

)H
X(1)

∥∥∥∥
2

F

+R− 2Re

{
Tr

(
A(3)∗

(
A(1) ⊙A(2)

)H
X(1)

)}
.

(4.7)

Let
(
A(1) ⊙A(2)

)H
X(1) = PΛQH denote the SVD of

(
A(1) ⊙A(2)

)H
X(1), then

the optimal matrix is A(3) = Q(:, 1 : R)∗P(:, 1 : R)T . This can be understood as a
variant of the unitary Procrustes problem [19] for the semi-unitary case.

In the unconstrained CPD case it turned out that SD-CP finds the solution for
rank values where optimization-based algorithms fail [12]. However, it also turned
out that a few iterations of an optimization-based algorithm are sometimes useful to
refine the estimate found by SD-CP. In the case with semi-unitary constraint one may
use the constrained ALS algorithms discussed in section 5 for this purpose.

5. ALS-CPO: ALS-CP with semi-unitary matrix factor. This section ex-
plains how a semi-unitary constraint can be incorporated in the ALS method, which
is the most popular algorithm for the computation of a CPD. Various unitary con-
strained ALS-type methods have been proposed in the literature. The first result
seems to have been presented [27], where the unitary constraint was taken into ac-
count via the technique of Lagrange multipliers. In [38] an algorithm was given that
makes use of a SVD. We will present variants of this algorithm. We first present an
efficient implementation of the algorithm which we call ALS1-CPO. Next we recall
the approach taken in [24], which we call ALS2-CPO.
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5.1. ALS1-CPO. The ALS method attempts to minimize the cost function

f
(
A(1),A(2),A(3)

)
=
∥∥∥X(1) −

(
A(1) ⊙A(2)

)
A(3)T

∥∥∥
2

F
(5.1)

by updating, in an alternating fashion, one of the matrices {A(1),A(2),A(3)} while
keeping the other two fixed.

Assume that the matrix A(3) is semi-unitary. Let us first consider an update of

A(3), i.e., the matrices A(1) and A(2) are fixed. Let
(
A(1) ⊙A(2)

)H
X(1) = UΣVH

denote the SVD of
(
A(1) ⊙A(2)

)H
X(1), then as explained in subsection 4.3 the

optimal matrix is A(3) = V(:, 1 : R)∗U(:, 1 : R)T .

Now let us consider the updates of A(1) and A(2), for which we present an effi-
cient implementation. Updating A(1), given A(2) and A(3), is a classical linear Least
Squares (LS) problem. The solution is:

A(1)T =
(
A(2) ⊙A(3)

)†
X(2).

The pseudo-inverse may be computed efficiently as [25]
(
A(2) ⊙A(3)

)†
=
(
A(2)HA(2) ∗A(3)HA(3)

)−1 (
A(2) ⊙A(3)

)H
. (5.2)

By taking the semi-unitary constraint on A(3) into account, we obtain
(
A(2) ⊙A(3)

)†
= D(2)

(
A(2) ⊙A(3)

)H

in which

D(2) =




1

‖a
(2)
1 ‖2

F

0 · · · 0

0 1

‖a
(2)
2 ‖2

F

. . .
...

...
. . .

. . . 0
0 · · · 0 1

‖a
(2)
R

‖2
F



∈ C

R×R, (5.3)

where a
(2)
r denotes the rth column vector of A(2). Hence, the update reduces to

A(1)T = D(2)
(
A(2) ⊙A(3)

)H
X(2) . (5.4)

Note that (5.4) just involves row-wise scaling by D(2), instead of computation of the

inverse and matrix multiplication by
(
A(2)HA(2) ∗A(3)HA(3)

)−1

in (5.2).

Updating A(2) is similar. As a matter of fact, because of the scaling ambiguity
we may normalize the column vectors of A(1),

a(1)r ←
a
(1)
r

‖a
(1)
r ‖F

, ∀r ∈ {1, . . . , R} ,

so that the update of A(2) reduces to

A(2)T =
(
A(3) ⊙A(1)

)H
X(3) .

This ALS1-CPO method is summarized as Algorithm 2.
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Algorithm 2 Outline of ALS1-CPO method.

Initialize: A(1), A(2) and A(3)

Repeat until convergence

Compute SVD
(
A(1) ⊙A(2)

)H
X (1) = UΣVH

Update A(3)T = U(:, 1 : R)V(:, 1 : R)H

Compute A(1)T = D(2)
(
A(2) ⊙A(3)

)H
X(2)

Update a
(1)
r ← a

(1)
r

‖a
(1)
r ‖F

, ∀r ∈ {1, . . . , R}

Update A(2)T =
(
A(3) ⊙A(1)

)H
X(3)

Remark. For large tensors, the computation commonly starts with a dimension-
ality reduction. The original tensor is compressed by means of multilinear orthogonal
projection to a tensor of which the dimension is equal to or slightly larger than the
original tensor’s multilinear rank. The CPD of the smaller tensor is computed and
the results are expanded again. One may then perform a few refinement iterations in
the original dimensions. For a discussion of dimensionality reduction and algorithms
we refer to [40, 9, 10, 28, 33, 20, 21].

5.2. ALS2-CPO. Due to the semi-unitary constraint on A(3) it is possible to
simultaneously update A(1) and A(2) in the ALS method. This can be understood as
an extension of the method presented in [24] for the unitary case to the semi-unitary
case.

The conditional update of A(3) while A(1) and A(2) are fixed is the same as in
the ALS1-CPO method described in subsection 5.2.

Consider now the conditional update of A(1) and A(2) while A(3) is fixed. Let
the column vectors of A(3)⊥ ∈ CI3×(I3−R) constitute an orthogonal basis for the
complementary subspace spanned by the column vectors of A(3) ∈ CI3×R. Then

f
(
A(1),A(2)

)
=
∥∥∥X(1) −

(
A(1) ⊙A(2)

)
A(3)T

∥∥∥
2

F

=

∥∥∥∥X(1) −
[
A(1) ⊙A(2),0I1I2,I3−R

] [
A(3),A(3)⊥

]T ∥∥∥∥
2

F

=
∥∥∥X(1)

[
A(3),A(3)⊥

]∗
−
[
A(1) ⊙A(2),0I1I2,I3−R

]∥∥∥
2

F
. (5.5)

Let Y = X(1)A
(3)∗, then from (5.5) it is clear that A(1) and A(2) follow from the best

rank-1 approximation problems

Unvec (yr) = Unvec
(
a(1)
r ⊗ a(2)

r

)
= a(2)r a(1)Tr ,

where yr and a
(n)
r denote the rth column vector of Y and A(n), respectively. Hence,

we can set a
(1)
r = v∗

1 and a
(2)
r = σ1u1, where σ1 denotes the largest singular value of

Unvec (yr) and u1 and v1 denote its dominant left and right singular vector, respec-
tively. Again, an initial dimension reduction step may be used.

6. Extension to Nth-order tensors. The discussion so far has been limited
to tensors of order three. The results can however be extended to tensors of arbitrary
order, say N .
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6.1. Existence and Uniqueness of Nth-Order CPD. Let X ∈ CI1×···×IN

be a tensor of rank R constructed from the matrices A(n) ∈ CIn×R, n ∈ {1, . . . , N},
such that

X =

R∑

r=1

a(1)r ◦ · · · ◦ a
(N)
r , (6.1)

where a
(n)
r denotes the rth column vector of A(n) and A(N) is assumed to be a

semi-unitary matrix. We generalize the construction of matrix Y in section 2. Let

X(i1,...,iN−2) ∈ CIN−1×IN be constructed such that X
(i1,...,iN−2)
iN−1,iN

= Xi1,...,iN , then

X(i1,...,iN−2) =

R∑

r=1

N−2∏

n=1

A
(n)
inr

a(N−1)
r a(N)T

r = A(N−1)
N−2∏

n=1

Din

(
A(n)

)
A(N)T ,

Denoting D(i1,...,iN−2) =
∏N−2

n=1 Din

(
A(n)

)
∈ CR×R, we have

X(i1,...,iN−2) = A(N−1)D(i1,...,iN−2)A(N)T . (6.2)

and

XD =
[
Vec

(
X(1,...,1)

)
,Vec

(
X(1,...,2)

)
, . . . ,Vec

(
X(I1,...,IN−2)

)]

=
(
D⊙A(N−1)

)
A(N)T (6.3)

with

C

∏
N−2
n=1 In×R ∋ D =




Vecd
(
D(1,...,1)

)T

Vecd
(
D(1,...,2)

)T

...

Vecd
(
D(I1,...,IN−2)

)T




= A(1) ⊙A(2) ⊙ · · · ⊙A(N−2).

Since A(N) is semi-unitary, then as in section 2 one may construct the tensor of order
2(N − 1) that has matrix representation

Y = (D⊙D∗)
(
A(N−1) ⊙A(N−1)∗

)T

=
(
A(1) ⊙ · · · ⊙A(N−2) ⊙A(1)∗ ⊙ · · · ⊙A(N−2)∗

)(
A(N−1 ⊙A(N−1)∗

)T
.(6.4)

Assuming that A(N−1)⊙A(N−1)∗ has full column rank, one may now deduce unique-
ness from the results obtained in section 2 for a third-order CPD with a full column
rank matrix factor or from the results presented in [12, 37] that take the higher-order

CPD structure of Y in (6.4) into account. If A(N−1) ⊙ A(N−1)∗ does not have full
column rank, then it may still be possible to build a tensor of order less than 2(N−1)
by combining different modes such that it has a full column rank matrix factor.

The discussion in section 3 may directly be generalized, i.e., under the semi-
unitary constraint on A(N) existence of the optimal solution is guaranteed for arbi-
trary N .
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6.2. Computation of Nth-Order CPD. The algorithms discussed in sections
4 and 5 may be generalized to Nth-order tensors. We add that it is sometimes useful
to reduce the computation of the CPD of a Nth-order tensor to the computation
of the CPD of a tensor of lower order. In applications, (6.1) is often a very highly
overdetermined set of equations. Combining modes of the tensor, and ignoring the
rank-1 structure in the combined mode, often still results in a highly overdetermined
problem. In this way the computational load may be reduced with limited loss of
accuracy.

SD-CPO for N th-Order CPD. The procedure in section 4 remains valid with the
exceptions that the matrices {M(r)} are computed as in [12] and that subsection 4.2
involves the best rank-1 approximation of (N−1)th-order tensors instead of matrices,
see further below.

In the SD-CP method the most expensive step is the computation of the sym-
metric matrices {M(r)}. We present a SD-CP variant that does not fully exploit the
structure of the problem, but is must faster than the original SD-CP method. If we
ignore the structure of D in (6.3), then we can interpret it as a third-order CPD with

a semi-unitary matrix factor A(N). Hence, we first compute D, A(N−1)and A(N) via
the procedures described in subsection 4.2 and 4.3. Next, we compute the remaining
matrix factors from

D = A(1) ⊙ · · · ⊙A(N−2). (6.5)

The Khatri-Rao product in the expression (6.5) indicates that every column of this
matrix is the vector representation of a rank-1 term. Hence, the matrix factors follow
from decoupled best rank-1 tensor approximation problems. In the case N = 4, the
solution to (6.5) follows from R decoupled rank-1 matrix approximation problems.

ALS1-CPO for N th-Order CPD. The extension of the ALS1-CPO method to
Nth-order tensors is straightforward. Simply notice that the conditional updates of
the non-unitary matrix factors are given by

A(n)T =
(
A(1) ⊙ · · · ⊙A(n−1) ⊙A(n+1) ⊙ · · · ⊙A(N−1) ⊙A(N)

)†
X[n]

=




N−1∏

m=1
m 6=n

D(m)



(
A(1) ⊙ · · · ⊙A(n−1) ⊙A(n+1) ⊙ · · · ⊙A(N−1) ⊙A(N)

)H
X[n] ,

where X[n] is a matrix representation of (6.1) and D(m) ∈ CR×R are of the form (5.3).

ALS2-CPO for N th-Order CPD. In ALS2-CPO the simultaneous update of A(1),
A(2), . . . , A(N−1) involves the best rank-1 approximation of (N − 1)th order tensors.
To reduce the computational cost of ALS2-CPO the ORBIT method was proposed in
[24]. It ignores the Khatri-Rao product structure of D in (6.3) and computes A(N−1),

A(N) and D from (6.3) using the ALS2-CPO method as described in subsection 5.2.
In ALS2-CPO the reduction to order three yields an update based on the best rank-1
approximation of a matrix, while the best rank-1 approximation of a higher-order
tensor is a problem that sometimes has local minima.

7. Numerical Experiments. For the numerical tests we consider real-valued
third order tensors. Let T ∈ RI1×I2×I3 with rank R denote the structured tensor
of which we observe a noisy version X = T + βN , where N is an unstructured
perturbation tensor and β ∈ R controls the noise level. The entries of the matrix



18

factors of T and the perturbation tensor N are randomly drawn from a uniform
distribution with support [− 1

2 ,
1
2 ]. The following Signal-to-Noise Ratio (SNR) measure

will be used:

SNR [dB] = 10 log

( ∥∥T(1)

∥∥2
F∥∥βN(1)

∥∥2
F

)
.

For A(n) ∈ R
In×R with In ≥ R, the estimation accuracy will be measured by

P
(
A(n)

)
= min

ΠΛ

∥∥∥∥A
(n) − Â

(n)
ΠΛ

∥∥∥∥
F∥∥∥A(n)

∥∥∥
F

,

where Â
(n)

denotes the estimated matrix factor, Π denotes a permutation matrix and
Λ denotes a diagonal matrix. For A(n) ∈ RIn×R with In < R ≤ I2n, the estimation
accuracy will be measured by

Q
(
A(n)

)
= min

ΠΛ

∥∥∥∥A
(n) ⊙A(n) −

(
Â

(n)
⊙ Â

(n)
)
ΠΛ

∥∥∥∥
F∥∥∥A(n) ⊙A(n)

∥∥∥
F

.

In order to find Π and Λ the greedy LS column matching algorithm between A(n) and

Â
(n)

proposed in [35] will be applied.
To measure the time in seconds needed to execute the algorithms in MATLAB,

the built-in functions tic(·) and toc(·) are used.
The ALS methods are randomly initialized and we decide that they have con-

verged when in an iteration step the cost function has changed less than ǫALS = 10−8.
We impose a maximum of 10000 iterations. We decide that the Jacobi iteration
method has converged when in an iteration step the cost function has changed less
than ǫ = 10−6. Here we impose a maximum of 1200 iterations.

If we let the SD-CP method be followed by at most 100 ALS refinement iterations,
then it will be referred to as SD-ALS-CP. Similarly, if we let SD-CPO method be
followed by at most 100 ALS1-CPO refinement iterations, then it will be referred to
as SD-ALS-CPO.

In the following four experiments the matrix factor A(3) is semi-orthogonal. In
case 1 and 2 we consider a relatively simple problem (I1 = I2 = I3 ≥ R). In case 3
and 4 we consider a difficult problem (I3 ≥ R and I1, I2 < R).

Case 1: CPD with I1 = I2 = I3 ≥ R. We first set I1 = I2 = I3 = R = 5 and
compare the performance of the semi-unitary constrained ALS1-CPO, ALS2-CPO,
SD-CPO and SD-ALS-CPO methods with the unconstrained ALS-CP, SD-CP and
SD-ALS-CP methods. This also corresponds to the case I1 = I2 = I3 ≥ R after

dimensionality reduction. The mean P
(
A(n)

)
and time values over 100 trials as a

function of SNR can be seen in figure 8.1.

In particular the plot for P
(
A(3)

)
shows that the unconstrained methods do not

obtain the same precision as their semi-unitary counterparts. We also notice that
above 20 dB SNR the SD-CPO, ALS1-CPO and ALS2-CPO method perform about
the same while below 20 dB SNR SD-CPO performs worse. The reason for this is that
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in the noise-free case SD-CPO yields the exact solution while at low SNR values the
noise-free assumption is violated. In that case fine-tuning steps are necessary. Indeed,
we notice that the SD-ALS-CPO method performs about the same as the ALS1-CPO
and ALS2-CPO methods.

We further notice that the ALS2-CPO method is more costly than the new semi-
unitary constrained ALS1-CPO method. There is no substantial difference in compu-
tational complexity between SD-CPO and the unconstrained SD-CP. The refinement
steps only mildly increase the computational cost in SD-ALS-CPO.

We conclude that imposing orthogonality when it applies is worthwhile, both in
terms of accuracy and computational cost. In this simple case the ALS1-CPO seems
to be best method.

Case 2: CPD with I1 = I2 ≥ R and I3 >> R. As mentioned in the introduction,
in signal separation applications, the orthogonality constraints often come from source
signals being uncorrelated. In such applications A(3) is often (very) tall. Therefore,
we also compare the performance of the methods when I1 = I2 = R = 5 and I3 = 100.

The mean P
(
A(n)

)
and time values over 100 trials as a function of SNR can be seen

in figure 8.2. In this case the SD-CPO and SD-ALS-CPO method performs as as well
as the ALS1-CPO and ALS2-CPO methods.

In this case, the CPD structure is stronger than in Case 1, regardless of the or-
thogonality constraint. We indeed observe that there is a less interest in imposing the
orthogonality constraints than in Case 1, although there is still an improvement at low

SNR. Due to the fact that I3 >> R, a good estimate of Col
(
A(1) ⊙A(2)

)
is obtained,

such that the matrices {M(r)} in the SD-CP and SD-CPO are reliable. This makes
the SD-CP, SD-CPO, SD-ALS-CP and SD-ALS-CPO yield a good accuracy at low
cost for sufficiently high SNR. It is noteworthy that the popular ALS-CP method does
not obtain the same accuracy as the other methods for the same computational effort.
The reasons are that ALS-CP does not start from a good initial value unlike SD-CP,
SD-CPO, SD-ALS-CP and SD-ALS-CPO, and that it does not impose orthogonality.

Case 3: CPD with I3 = R and I1, I2 < R. We set I1 = 4, I2 = 4, I3 = 8,
R = 8 and compare the performance of the semi-unitary constrained ALS1-CPO,
ALS2-CPO, SD-CPO and SD-ALS-CPO methods with the unconstrained ALS-CP,

SD-CP and SD-ALS-CP methods. The mean Q
(
A(1)

)
, Q
(
A(2)

)
, P
(
A(3)

)
and time

values over 100 trials as a function of SNR can be seen in figure 8.3.

We notice that the unconstrained methods perform significantly worse than their
semi-orthogonal counterparts. There is a significant benefit in imposing the semi-
unitary constraint in difficult cases. We also notice that at high SNR SD-CPO pro-
vides at low cost a very good estimate, which may then be refined. Starting from a
random value, the ALS methods are more expensive at high SNR. At low SNR there
is less interest in using SD-CPO.

Case 4: CPD with I3 >> R and I1, I2 < R. Again, we consider the variant with

tall A(3). We set I1 = 4, I2 = 4, I3 = 100 and R = 8. The mean Q
(
A(1)

)
, Q
(
A(2)

)
,

P
(
A(3)

)
and time values over 100 trials as a function of SNR can be seen in figure

8.4. Since a good estimate of Col
(
A(1) ⊙A(2)

)
is obtained, we now observe that

the SD-ALS-CPO method yields a higher accuracy than the ALS methods, even at a
lower cost.
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8. Conclusion. In many applications one of the factor matrices of the CPD is
constrained to be semi-unitary. We first used a semi-unitary constraint to derive a new
relaxed condition under which uniqueness of the decomposition is guaranteed. We also
gave a simple explanation for the existence of the optimal low-rank approximation of
a tensor when a matrix factor is semi-unitary.

To numerically solve the semi-unitary constrained CPD problem we first presented
a semi-unitary constrained version of the SD-CP method, which we called SD-CPO.
This led to a simultaneous Takagi factorization problem which was solved by a Jacobi
iteration scheme. Next, we discussed semi-unitary constrained ALS-CP methods. In
particular, the efficient ALS1-CPO method was derived. We briefly explained how
the results can be generalized to Nth-order tensors.

One generally expects that, when one of the factor matrices of the CPD is semi-
unitary, taking this constraint into account will lead to more accurate results and a
higher computational efficiency. This was confirmed by numerical experiments.

We considered a simple problem, in which the rank did not exceed the tensor
dimensions, and a difficult problem, in which the rank was high. The gain obtained
by imposing orthogonality was very high for the difficult problem. Overall we noticed
that the new ALS1-CPO method is an efficient algorithm in its class. We saw that,
when the given tensor can be well approximated by a low-rank tensor, the SD-CPO
method is inexpensive and yields a higher accuracy than the ALS methods. When
only a rough approximation can be obtained, the ALS methods yield better results
than SD-CPO. The reason for this is that at high SNR the SD-CPO method starts
close to the exact solution while at low SNR the working assumptions are violated. At
low SNR, initializing ALS methods by SD-CPO may reduce the number of iterations.

We also considered variants of the experiments in which the semi-unitary ma-
trix is tall, which is relevant for practice. Since one of the factor matrices is tall,
the CPD structural constraint is already strong, such that a priori there is less of a
need to impose orthogonality. However, orthogonality-constrained algorithms quickly
yield a higher accuracy than unconstrained algorithms as soon as the problem is
for some reason difficult. We saw this for a well-conditioned CPD at low SNR and
for ill-conditioned CPD overall. Moreover, the orthogonality-constrained algorithms
are less computationally expensive. The SD-CPO and SD-ALS-CPO methods per-
formed remarkably well, due to the fact that in the case of tall A(3) a good estimate

of Col
(
A(1) ⊙A(2)

)
was obtained. The popular unconstrained ALS-CP algorithm

turned out not to be a good choice here.
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Fig. 8.1. Mean P
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)
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, P
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and time values over 100 trials while SNR is

varying from 10 to 40 dB for the real third order tensor simulation, case 1.
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varying from 10 to 40 dB for the real third order tensor simulation, case 2.
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(d) Mean time.

Fig. 8.3. Mean and median Q
(

A(1)
)

, Q
(

A(2)
)

, P
(

A(3)
)

and time values over 100 trials

while SNR is varying from 10 to 40 dB for the real third order tensor simulation, case 3.
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(d) Mean time.

Fig. 8.4. Mean and median Q
(

A(1)
)

, Q
(

A(2)
)

, P
(

A(3)
)

and time values over 100 trials

while SNR is varying from 10 to 40 dB for the real third order tensor simulation, case 4.


