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ABSTRACT

This work transforms sequence diagrams to Finite and
Deterministic DEVS (FD-DEVS) in Model-Driven En-
gineering field. The main goal is the formalisation of
behaviours, described with UML sequence diagram, to
make verification activity by space state exploration and
to make validation activity of a set of traces by simu-
lation. In this context, we have chosen to elaborate a
model transformation. This paper shows how, after the
construction of meta-model for sequence diagrams and
for Finite and Deterministic DEVS, it is possible to au-
tomate the transformation from one instance of source
meta-model to one instance of destination meta-model.
The source model is a sequence diagram and the tar-
get model is a FD-DEVS component. The destination
model is converted into DEVSJava code to simulate its
execution.

INTRODUCTION

Model-Driven Engineering offers tools, languages and
standard notions to establish and transform models. To-
day, employment of models lies at the bottom of systems
engineering. One of the main purposes in this field is the
ability to reuse these models. For that we will have to
expand the knowledge about model handling.

Context

System Engineering defines a series of approaches to the
development of complex system through the definition of
a process from management of requirements to the sys-
tem release. In every step of the development it is pos-
sible to make the simulation predict system behaviour.
Verification and Validation (V&V) is a key step towards
the development of complex systems and we need for-
mal languages and simulations to do this. The Unified

Modeling Language (UML) is a very expressive language
which designs the system behaviour but it is not enough
formal to provide that this comportment be truly fol-
low after the modelling. The more the language is ex-
pressive the less formal it is. The Object Management
Group (OMG) introduces important novelties in the 2.0
version of UML. Several of these changes concern the
Interaction Diagrams and, in particular, the expressive-
ness of sequence diagrams. (Micskei and Waeselynck
2011) give an overview about the proposed formal se-
mantics in the several papers. In this context we will
concentrate our regard on the concept of trace which
is the main construct of the sequence diagrams seman-
tics. In UML specification the trace is defined like “a
sequence of event occurrences, each of which is described
by an OccurrenceSpecification in a model”. In particular
in order to make a V&V process, we need to make the
distinction between valid and invalid traces. We want to
consider the valid trace and to ignore the invalid trace.
The DEVS formalism has a well defined semantic to the
simulation. FD-DEVS is a subset of DEVS and it has a
finite state space, so we use this formalism because we
can make the verification process through an exploration
of its state space. Then, the transformation to sequence
diagrams into FD-DEVS (SD2FDDEVS) allows us to
verify, with model checking techniques or validate by
simulation, the composition of the trace issue from the
scenario described by sequence diagrams. Moreover, we
consider specification of invalid trace that we transform
into linear temporal logic (LTL) constraints. Today it
does not exist a tool to check the LTL constraints in
DEVS although it is a current research topic (Hwang
and Zeigler|2009).

Approach

We try to develop a platform to formal verification and
validation of a simulation models. A model is a hypo-
thetical description of a complex entity that is used to
describe a particular behaviour of a real entity. UML
allows to modelling a behaviour by three diagrams: Ac-
tivity, Interaction and StateMachine. A transforma-



tion which comes toward the formalisation of UML be-
haviour is (Foures et al.|2012), where the authors trans-
form SysML activity diagrams into Petri Nets. With
the same approach, we propose the formalisation of se-
quence diagrams, which are a kind of interaction dia-
grams. In order to realize it we also develop a transfor-
mation based on Atlas Transformation Language (At-
las group and INRIA|[2006)) to put in practice the spec-
ified rules established between two meta-models. This
paper is structured as follow: in the next section we dis-
cuss about associated work, after this, we present the
models and the meta-models in section named prelimi-
naries; in the section named transformation we explain
the transformation rules and our method; in the second
last section we present the transformation with an ex-
ample and, finally, in the last section we conclude the
paper with some proposal to future works.

RELATED WORKS

In view of their importance in describing the scenarios,
several transformations concerning sequence diagrams
have been developed. In (Ouardani et al.[2006), the
authors transform sequence diagrams into Petri Nets
without considering the time explicitly. The sequence
diagrams meta-models are reduced to take into account
only messages and lifelines (objects in their notation).
Another work that transforms sequence diagrams into
Petri Nets is (Ameedeen and Bordbar|[2008]|), where the
authors focus on the flow of events described with se-
quence diagrams and they do not consider the con-
straints which can appear in the scenario. Here the
decomposition of sequence diagrams into fragments and
mapping them into ”Petri Nets blocks” is interesting.
We used the same approach. Sequence diagrams have
not only been transformed into Petri Nets, but also into
State Machines by graph transformation (Gronmo and
Moller-Pedersen|2011)) and into Communicating Sequen-
tial Processes (Dan|2010) to enable a formal verification
and analysis. We can not forget (Sqali and Trojet||2009)
that translates scenario (described by Message Sequence
Charts) in state machine (represented by DEVS). In this
work, the authors show the advantages of the use of cou-
pled DEVS, which enables the behaviour simulation of
every objects of the system.

PRELIMINARIES
Models

Sequence Diagrams

Sequence diagrams are the most used diagrams to dis-
play interactions in UML. The sequence diagrams show
the interactions between objects and how they are tem-
porally ordered. An interaction describes how the in-
stances interact dynamically among themselves and it
describes the messages exchanged. An interaction can

represent a scenario or a use case. Figure [I] shows
an Interaction composed by two Lifelines, one Message
and four OccurrenceSpecification. There are two kinds
of OccurrenceSpecification : message and execution.
Above all that, they are the CombinedFragment. It can
be composed of one or most operators and UML offer
a few operation kind (see meta-model class Interaction-
OperandKind in figure |§[) We focus our attention on al-
ternative (ALT), negative (NEG) and iterative (LOOP)
fragments: ALT allows to modelling a conditional con-
struct, NEG is used to show a forbidden behaviour and
LOOP represents the recursive part of the diagrams. In
this work we consider only the negative fragments.

Sequence Diagram ) ———— Interaction

message 1 } /
Message Occurrence! \

Specification Recy !

Execution Occurrence
Specification Start

Message Occurrence
Spectication Send | Execution Occurrence

Specification Finish

Figure 1: Graphic formalism of sequence diagrams

Finite and Deterministic DEVS
The FD-DEVS formalism is defined in (Hwang and Zei-
gler||2009)). We use two definitions as follows:

Definition 1. An atomic FD-DEVS is a 7-tuple:

A= <X7Y,S,80,T,6J;75y> (1)

where: X is a finite set of input events; Y is a finite set
of output events; S is a non-empty and finite states set;
so € S is the initial state; 7 : S — Q7" is the maximum
sojourning time of a state where Q"™ denotes a set of
non-negative rational numbers plus infinity; 6, : S X
X — § is the external transition function; d, : S —
S x Y is the internal transition function where Y? =
Y U {0} and @ denotes the silent event.

Definition 2. A coupled FD-DEVS is a 5-tuple:

where: X is a finite set of input events; Y is a finite
set of output events; {My|d € D} is an index set of
FD-DEVS models. {My} can be either an atomic or
an coupled model; D is a finite set of names of sub-
components; FIC' is a set of external input connectors;
10C is a set of internal output connectors; IC' is a set
of internal connectors.

Semantic Figure[2]shows the graphic semantic chosen
to represent a FD-DEVS model. phasel is a transitive
state since t, = 0. Then J, is immediately triggered



after entering in phase 1. An output event is triggered
on Y and next state is the passive state phase2. When
an input event occurs on X, ¢, is triggered updating the
state to phase 3.

Atomic FD-DEVS

Coupled FD-DEVS

EIC| rp-pevs PP Fp-pevs| 10C

X [ bV g—= 2w Y

Figure 2: Graphic semantic of FD-DEVS

Meta-Models

The metamodeling process is used in accordance with
the OMG standard Meta-Object Facility (MOF). For
this, we use Eclipse Modeling Framework (EMF) that
uses Ecore as metamodeling language.

Sequence Diagrams

OMG defined the sequence diagrams in (Omgl 2011)).
In accordance with this specification, the sequence di-
agrams meta-model is shown in Figure [f] We fix our
attention on the main classes considered in the trans-
formation : Interaction, Lifeline, OccurrenceSpecifica-
tion, Message and CombinedFragment. In particular,
we focus our interest in GeneralOrdering which allows
us to give a temporal order of the specification oc-
currences present in the interaction. All instances of
GeneralOrdering contain the valid trace. To explicitly
consider the time in sequence diagram, we use Dura-
tionConstraint.

Finite and Deterministic DEVS

The meta-model shown in Figure[7]is a rigorous descrip-
tion of FD-DEVS definition. An FD-DEVS instance can
be an Atom or a Coupled and it is composed of Events.
In the case of an Atom, it is also composed of States
and Transitions. A State is composed of one Time and
a set of Variable. A Transition is defined between two
States. In the case of a Coupled, it is composed of FD-
DEVSs and Connectors. Every instance of these classes

can have a name so we have introduced the Ecore class
ENamedElement with inheritance relationships.

TRANSFORMATIONS

They are founded on ATL. The first transformation is
a Model-to-Model transformation realized with an ATL
module while, the second one, is a Model-to-Text trans-
formation realized with ATL query.

SD2FDDEVS

The transformation rules, defined at the Meta-Model
level, allow us to transform an input model (compli-
ant with sequence diagrams meta-model) represented in
the XMI (Extensible Mark-up Language Metadata In-
terchange) format into another model compliant with
FDDEVS meta-model represented in the same format.
The input model can be created with a graphic editor
that support the UML 2.x specification.

The main rules of correspondence established between
sequence diagrams and FDDEVS are illustrated as fol-
lows:

e one interaction that contains at least two lifelines
generates a coupled;

e every lifeline that is present in the interaction, gen-
erates an atom included in the associated coupled;

e every message generates an input and an out-
put event (we consider complete MessageKind and
synchCall, asynchCall MessageSort) in the atom.
These events will be used to create internal connec-
tors.

e every specification occurrence that is not contained
in a combined fragment generates a state in the
atom.

To generate the transitions we use the class Gener-
alOrdering of the sequence diagram meta-model. All
instances of this class give a temporal order to the events
associated with the specification occurrences. Two con-
secutive specification occurrences, that belong in the
same lifeline, generate an output internal transition. If
two consecutive specification occurrences do not belong
in the same lifeline it generates an ”artificial” state and
one or two transitions, that can be internal or external,
depending on the type of specification occurrences. At
the same time the states are created, we create the Time
and the set of Variables associated. This variables are
the atomic propositions that we use to check LTL prop-
erties on the model. For the combined fragments we
consider the case of negative fragments with one mes-
sage inside. For each of these fragments we generate
two text files that contain a LTL constraint to verify
the model construction.



EXAMPLE

In this example we illustrate our transformation by
studying a use case of an automatic coffee machine that
allows the possibility of understanding the key concepts
of this work. The user can choose one product to display
the price. The controller cannot accept a second choice.
This is specified by the negative fragment in Figure
After this, when the interface sends a message to com-
municate that the money in input is enough, the con-
troller starts the engine to make a coffee. At the end of
the process (process of production), the controller sends
a last message to the interface.

Source model

st coffee. machine

C:controller
I

second_choice

first_choice

P p—

price

j_ price_ok

B start

4
stop ¢

remove_cup

Figure 3: Sequence diagrams of use case

We use Table [I] to show the temporal order of specifi-
cation occurrences. An instance of GeneralOrdering is
defined for example like this:

before : MessOccSpecRecvd

GOIT— {after : ExecOccSpecFinish

t; represents duration constraints into two following
messages.

Target model

After transformation we have a coupled FD-DEVS com-
posed by three atoms (Interface, Controller and En-
gine) and seven internal connectors (one for each mes-
sage). Figureshows the graphical representation of the
atom Controller. We point out that ”artificial” states
and transitions depend on instances of GeneralOrder-
ing. With this model, we can make a LTL verification
and/or a validation by simulation. Table[2]shows binary
variables associated to first six states of Controller. To
generate these variables we use the events attached on

Table 1: List that represents GeneralOrdering

OccurrenceSpecification Lifeline
ExecOccSpecStart Interface
MessOccSpecSend Interface
MessOccSpecRecv Controller

ExecOccSpecOStart Controller
MessOccSpecSend0 Controller
MessOccSpecRecv0 Interface
MessOccSpecSend1 Interface
MessOccSpecRecvl Controller
MessOccSpecSend?2 Controlleur
MessOccSpecRecv2 Engine
ExecOccSpeclStart Engine
MessOccSpecSend3 Engine
ExecOccSpeclFinish Engine
MessOccSpecRecv3 Controller
MessOccSpecSend4 Controller
ExecOccSpecOFinish Controller
MessOccSpecRecv4 Interface
ExecOccSpecFinish Interface

Figure 4: FD-DEVS model of Controller

every specification occurrences: R is for received event
and S is for send event. The LTL constraint generated
by transformation for the atom Controller is the follow:

first_choice_.R = 1 — (second_choice_R = 0Uprice_S = 1)

To simulate the FD-DEVS model we have devellopped
the FDDEVS2DEVSJava transformation with ATL
query and we use DEVS-Suite (DEVS-SuiteSim|2010)
to execute the code. We give in Appendix the code gen-
erated by this transformation for the Controller. Figure
shows the execution trace of the simulation up to 10
time unit.

CONCLUSION

We have shown how is possible the formalisation of se-
quence diagrams by means of model transformation. We



Table 2: Variables associated to state

ARTIFICIALGO?2 MR

first_choice_R =0 first_choice_.R =1
second_choice_R =0 second_choice_R =0

price.S =0 price.S =0
price_.ok_R =10 price_.ok_R =10
start.S =0 start.S =0
stop_-R =10 stop_-R =10
remove_cup-S =0 remove_cup-S =0
AESO0S MS0

first_choice_.R =1
second_choice_R = 0

first_choice_.R =1
second_choice_R = 0

price_S =0 price_S =0
price_ok_R =0 price_ok_R =0
start.S =0 start.S =0

stop_.R =10 stop_.R =10
remove_cup_S =0 remove_cup_S =0
ARTIFICIALGOT MR1

first_choice_.R =1
second_choice_R =0

first_choice_.R =1
second_choice_R = 0

price.S =1 price.S =1
price.ok-R =0 price.ok R =1
start.S =0 start_S =0
stop_.R=0 stop_.R =10

remove_cup_S = 0 remove_cup_S = 0

0.0 0.0 10.0
coffee_machine
Phase: wait)_GO2

Phase: wait0_GO2 Phase: MessageRecv

Sigma: Infinity Sigma: Infinity Sigma: 10.0
Input Ports: Input Ports: Input Ports:
price_ok: price_ok: price_ok:
second_choice: second_choice: second_choice:
stop: stop: stop:

Controller e choice: i choice {seqMessage} e choice:
Output Ports: Output Ports: Output Ports:
price: price: price:
start: start: start:
remove_cup: remove_cup: remove_cup:
Phase: wait3_G0O9 Phase: wait3_GO9 Phase: wait3_G0O9
Sigma: Infinity Sigma: Infinity Sigma: Infinity

Engine Output Ports: Output Ports: Output Ports:
stop: stop: stop:

Phase: ActionExecSpecStart Phase: MessageSend Phase: waitl_GO5
Sigma: 0.0 Sigma: 0.0 Sigma: Infinity
Interface Input Ports: Input Ports: Input Ports:

remove_cup: remove_cup: remove_cup:

Figure 5: Output log file of simulation

have used the FD-DEVS as destination formalism, en-
riched with a set of state variables, so we can make a
verification activity through space state exploration of
the system source model represented by the sequence
diagram. Moreover, it is possible to make a valida-
tion activity by simulation, to analyse the execution of
a valid set of traces. Our method allows to consider
the time explicitly in the sequence diagram construc-

tion to translate this in clock device offered by FD-
DEVS. The work in this purpose is not complete and we
point out the following topics for future work: improve-
ment of explicitly time consideration; transformation of
a source model that contains others combined fragments
like ALT, LOOP, etc.; possibility to generate different
LTL constraints; merge of many use cases (many inter-
actions) to generate a set of FD-DEVS components.
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APPENDIX
Code Java

Controller.java

package DEVS_seq;

import GenCol.x*;

import model.modeling.*;

import model.simulation.*;

import view.modeling.ViewableAtomic;
import view.simView.*;

public class Controller extends
ViewableAtomic{

protected entity seqMessage;
public Controller (){}

public Controller (String name){
super (name) ;

addInport ("first_choice");
addInport ("second_choice");
addInport ("price_ok");
addInport ("stop");

addOutport ("price");

addOutport ("start");

addOutport ("remove_cup");}

public void initialize (){
seqMessage = new entity
("seqMessage") ;
holdIn("wait0_GO2", INFINITY);}

public void deltint (){
if (phaseIs("MessageSend0"))
holdIn ("wait2_GO7",INFINITY);
else if (phaseIs("MessageSend2"))
holdIn("wait4_G013",INFINITY);
else if (phaselIs("MessageRecvl"))
holdIn ("MessageSend2",0);
else if (phasels

("ActionExecSpecOStart"))

holdIn("MessageSend0",0);
else if (phaselIs("MessageRecv3"))
holdIn("MessageSend4",0);
else if (phaseIs("MessageSend4"))
holdIn("ActionExecSpecOFinish",
INFINITY);
else if (phaselIs("MessageRecv"))

holdIn("ActionExecSpecOStart",0);}

public message out (){
message m = new message ();

if (phaselIs("MessageSend0"))
m.add (makeContent
("price",seqMessage));
else if (phaseIs("MessageSend2"))
m.add (makeContent
("start",seqMessage));
else if (phaselIs("MessageSend4"))
m.add (makeContent
("remove_cup",seqMessage)) ;

return m;}

public void deltext
(double e, message m){
if (phaseIs("wait2_GO7")){
for (int i=0; i< m.size();i++)
if (messageOnPort(m,"price_ok",i))
holdIn("MessageRecv1i" ,1);}
else if (phaseIs("wait4_G013")){
for (int j=0; j< m.size();j++)
if (messageOnPort(m,"stop",j))
holdIn("MessageRecv3" ,1);}
else if (phaselIs("wait0_G02")){
for (int k=0; k< m.size();k++)
if (messageOnPort
(m,"first_choice",k))
holdIn("MessageRecv" ,10);}

3
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