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Abstract—In biology, recent techniques in confocal mi-
croscopy have produced experimental data which highlights
the importance of cellular dynamics in the evolution of biolog-
ical shapes. Thus, to understand the mechanisms underlying
the morphogenesis of multi-cellular organisms, we study this
cellular dynamic system in terms of its properties: cell multi-
plication, cell migration, and apoptosis. Besides, understanding
the convergence of the system toward a stable form, involves
local interactions between cells. Indeed, the way that cells self-
organize through these interactions determines the resulting
form. Along with the mechanisms of convergence highlighted
above, the dynamic system also undergoes controls established
by the nature on the organisms growth. Hence, to let the system
viable, the global behavior of cells has to be assessed at every
state of their developement and must satisfy the constraints.
Otherwise, the whole system self-adapts in regard to its global
behavior. Thus, we must be able to formalize in a proper metric
space a metaphor of cell dynamics in order to find conditions
(decisions, states) that would make cells to self-organize and
in which cells self-adapt so as to always satisfy operational
constraints (such as those induced by the tissue or the use of
resources). Therefore, the main point remains to find conditions
in which the system is viable and maintains its shape while
renewing. The aim of this paper is to explain the mathematical
foundations of this work and describe a simulation tool to study
the morphogenesis of a virtual organism.

Keywords-morphological analysis; virtual reality; biological
multi-agent system; mathematical programming;

I. INTRODUCTION

Biomedical science has undergone a remarkable evolu-

tion during this last decade. Advances and innovations in

biotechnology, more particularly in microscopy and imaging,

have provided a large amount of data. In 2007, Melani and

al. achieved a tracking of cell nuclei and the identification

of cell divisions in live zebrafish embryos using 3D+time

images acquired by confocal laser scanning microscopy [1].

These data allowed new description in details of many

components and structures of living organisms. So, we have

looked forward to learn more about the emergent properties

of cells organization and especially the importance of cellu-

lar dynamics in the evolution of shapes, both in mathematical

and numerical point of view.

Complex systems can be defined as a composition of a

significant number of elements interacting locally to produce

a global behavior. Considering this definition, we can first

consider the correspondences between the principles of

artificial systems and of complex models seen in nature.

These models (ripples in sand dunes, spots on animal

coats, geometric figures in plants) present fascinating aspects

which are the result of a process. All the laws, conditions and

states of this process define the morphogenesis. According

to Doursat [2], whether considering inanimate structures or

living organisms, the process of morphogenesis shows how

a collective self-organization aims to reach a determined

shape. In this regard, Hogeweg and Marée proposed an

extension of the Glazier and Graner model formalism to

show how individual amoebaes aggregate to form a stalk

using a sticking power mechanism [3].

Another level of analysis opens the huge possibilities created

by new properties of computer systems. Indeed, biological

and multi-agents system share certain characteristics such

as robustness, emergence, self-organization and adaptability

[4]. Used in the field of living matter, these properties lead to

an increasing need of understanding, prediction and control

of their functioning.

However, there is no theory proving that the behavior

of these systems can be deducted from the behavior of its

components, all the more so as they are characterized by a

high degree of decentralization and self-organization. And

most of the complex systems have a capacity of adaptation,

evolving and learning through feedbacks between their exter-

nal environment and their internal architecture. When cells

evolve, they modify their organism which in its turn impacts

its environment; in return, this latter modifies back the

cells. Epigenetics considers this coupling between organism

and environment and can not be ignored in understanding

the development of living [5]. The cells’ mechanisms of

self-adaptation (top-down) and self-organization (bottom-up)

through these three levels must be studied and formalized

properly to understand the convergence of the system to a

stable form.

Where most of the studies are only interested in global

behavior of systems converging to a form, in our model

every cell has its own rules controled by a set of parameters,

controls and by its neighborhood. Thanks to this way, the

integration of the behaviors of each component of the system

allows to determine its global state.



In mathematics, the viability theory [6] offers concepts

and methods to control a dynamical system in a given fixed

environment, in order to maintain it in a set of constraints of

viability. But this theory is not suitable to study a cell system

that grows and multiplies. Thus, a new approach stemming

from viability theory, extended to multivalued analysis, gives

new avenues: the mutational analysis [7].

So, the concept of differential equations has been extended

to the concept of mutational equations in a metric space.

In fact, morphological equations, special type of mutational

equation, have similar properties to differential equations

(Peano theorem, Cauchy-Lipschitz, Nagumo) [8]. They gov-

ern the evolution of sets in the same way that differential

equations govern the evolution vectors.

When the system evolves the environment changes. And

these changes raise some self-organization mechanisms

within cells to adapt to the new environment. This is what

biologists mean by co-evolution. Mathematically, it is the

joint evolution of states and sets in which self-adaptations

of cells have to be led. In this case, the environments are

changing under the action of a morphological equation,

evolutionary systems are governing the evolution of the

states and of the environment, and they depend on both

the state and the environment. This is called a differential-

morphological system. For such a differential-morphological

system to have solutions we have to adapt the viability the-

orem to the differential-morphological systems. This means

that there is at least one co-viable evolution of the state

and the environment based on each state-environment pair.

The set of conditions for which at least one solution is

viable is called viability kernel. Regards to this definition,

the viability kernel implies a question of determining the

time when the state of the cells reaches its limits of viability.

Thinking of morphogenesis in this way brings new

requirements, particularly in mathematics and computer

science to implement efficient mutational algorithms able

to inform us about self-organization and self-adaptation

mechanisms involved in multi-cellular organisms survival.

Besides, the definition of the viability kernel remains diffi-

cult: specific algorithms have been developed however their

application requires an exponential memory space with the

dimension of space, and the outcome is difficult to handle.

In this paper, we are going to formalize mathematically

a model of cell dynamic on the principles of morphological

analysis and to describe a simulation tool for studying

morphogenesis of virtual multi-cellular organisms. Morpho-

logical analysis and viability theory are the mathematical

foundations of this work and the tool presented will test

whether a system generated by morphological equations can

self-organize to maintain its shape and self-adapt to remain

“viable” in a given environment constraints.

II. MORPHOLOGICAL DYNAMIC OF CELLULAR TISSUE

EVOLUTION

The purpose of this paragraph is to formalize in the context

of mutational and morphological analysis [7], [8], the evolu-

tion of cellular tissues during embryogenesis. It provides an

extension of differential equations in a metric space instead

of the classical Euclidean space RN . This question motivates

the study of a discrete morphological dynamical system

governing the evolution of tissues.

At the tissue level, we have a large group of connected

cells of the same type performing a specific function [9].

Therefore, the functionning and evolution of cellular tissue

can be seen as a result of a bottom-up mechanism of cellular

dynamic. An infinitesimal change of tissue implies a self-

organization of that dynamic where each element of the form

is not only “move” to another point of the form that follows

it, but eventually moved and “multiplied” when multiple

daughter cells succeed to this element, multivalent character

which leads to the concept of speed form [7].

Figure 1. Univalued analysis to formalize a cell that moves

Figure 2. Multivalued analysis to formalize a cell that multiplies and
moves

During embryonic development, the confinement is imposed

by the cohesion of tissues and the presence of an envelope,

such as the epithelial layer covering the embryo. There is

a co-evolution of the cellular membrane and the dynamics

of each cell, confinement shapes that can evolve only by

respecting the constraints that we want to study using

morphological analysis. This co-evolution is only possible

through top-down mechanisms by which cells self-adapt

their dynamic with respect to the constraints.

In biological morphogenesis, the vitellus is the energy re-

serves used by the embryos during embryonic development.

M denotes the set of containment cells, contained in the

complement of vitellius.

K ⊂ R
3 representing tissue cells, the cells are designated

by x ∈ K ⊂ R
3.

If we restrict morphogenesis in the plan,

D := {(1, 0), (−1.0)(0, 1), (0,−1)}

or shortly

D := {1,−1, 2,−2}

denotes the set of 4 planes directions and

D := D ∪ {(0, 0)} ∪ ∅



means the 6 “extended ” directions

For morphogenesis in the space R3,

D := {(1, 0, 0), (−1, 0, 0),(0, 1, 0), (0,−1, 0), (0, 0, 1),

(0, 0,−1)}

or shortly

D := {1,−1, 2,−2, 3,−3}

denotes the set of six directions and D := D∪{(0, 0, 0)}∪∅
means the eight “extended” directions.

We denote by A + ∅ = ∅ in the max-plus algebra for the

operations ∪ and +.

We will note

ΞM (K,x) := {u ∈ D such that x+ u ∈ {x} ∪ (M \K)}

and

RM (K,x) := ΞM (K,x) × ΞM (K,x).

Then we introduce the correspondence

Ψ(x, u, v) := {x+ u} ∪ {x+ v}(u,v)∈RM (K,x).

The morphological dynamic ΦM is then defined by

ΦM (K) :=
⋃

x∈K

⋃

(u,v)∈RM (K,x)

Ψ(x, u, v) (1)

And the discrete morphological dynamic Kn+1 = ΦM (Kn).
This gives the different cases of cell behavior:

1) apoptosis, obtained by taking (∅, ∅) ∈ RM (K,x)
since Ψ(x, ∅, ∅) := ∅ ∪ ∅ = ∅

2) migration by taking u ∈ D et v = ∅ or u = ∅ and

v ∈ D or further u = v
3) stationarity, which is a migration obtained by taking

u and v equal to (0, 0, 0)
4) cell division by taking u := (0, 0, 0) et v ∈ ΞM (K,x)

(or otherwise)

5) division and migration by taking u ∈ ΞM (K,x) and

v ∈ ΞM (K,x)

We can now introduce the equivalence relation on the

directions

u ≡x v if and only if x+ u = x+ v

which we denote by µ and ν the representatives, noting that

by construction, for every pair (µ, ν) the equivalence class,

for all u ∈ µ and v ∈ ν, Ψ(x, µ, ν) = Ψ(x, u, v) does not

depend on the choice of directions belonging to equivalence

classes.

Because two cells can not occupy the same position, we

select at most one extensive direction in each class.

The correspondence of regulation is defined by the quotient

set :

ΘM (K,x) := RM (K,x)/ ≡x (2)

The morphological dynamic ΦM is always defined by

ΦM (K) :=
⋃

x∈K

⋃

(µ,ν))∈ΘM (K,x)

Ψ(x, µ, ν)

=
⋃

x∈K

⋃

(u,v)∈∈RM (K,x)

Ψ(x, u, v)

(3)

In the case of a discrete dynamic, it is defined by control

sequences (un, vn) associated to Kn to define K(n+1).

Implementation of the algorithm is equivalent to setting the

viable directions.

III. SEGMENTATION IN MORPHOGENESIS

Here is an example of how we code the first segmentations

in this exemple

∀x ∈ K1 = {(0, 0, 0)}, the first route choice is U(1, x) =
U(1) = [1,−1, 2,−2, 3,−3, 0] will be used for the first step

(see figure 3):

Figure 3. U(1, x) = U(1) = [1,−1, 2,−2, 3,−3, 0] means that the first
axis of segmentation is x − axis and the direction is +1

∀x ∈ K2 = {(0, 0, 0), (1, 0, 0)}, the second route choice is

U(2, x) = U(2) = [2,−2, 1,−1, 3,−3, 0]

will be used for the second step (see figure 4) :

Figure 4. U(2, x) = U(2) = [2,−2, 1,−1, 3,−3, 0] means that the
second axis of segmentation is y − axis and the direction is +2

∀x ∈ K3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0)}, the sec-

ond route choice is

U(3, x) = U(3) = U(1) = [1,−1, 2,−2, 3,−3, 0]

will be used for the third step (see figure 5) :

∀x ∈ K4 = {(0, 0, 0),(1, 0, 0), (0, 1, 0), (1, 1, 0), (0,−1, 0),

(0, 2, 0), (1,−1, 0), (1, 2, 0)},



Figure 5. U(3, x) = [1,−1, 2,−2, 3,−3, 0] means that the third axis of
segmentation is x − axis and the direction is +1 or -1 in second choice

the fourth route choice is

U(4, x) = U(4) = U(2) = [2,−2, 1,−1, 3,−3, 0]

will be used for the fourth step.

For the following step, the route choice can be choose in

the list of all possibles route choice.

In a second step, for this direction choice, we have arbitrary

choose the first free place in the sequence of empty space.

v ∈ ΞM (Kn, x) = {v|x+ v ∈M \Kn}

The list of directions in V (n, x) for which, the place is

empty in (M \Kn) is R(n, x)

Then for each x ∈ Kn, we have a direction v ∈ R(n, x).

And ψ(x, 0, v) = {x} ∪ {x+ v}

Kn+1 = ΦM (Kn) =
⋃

x∈Kn

v∈R(n,x)

Ψ(x, v)

=
⋃

x∈Kn

Ψ(x,R(n, x))

IV. FIRST STEPS FOR A DICTIONARY OF SHAPES

Using this formalisation, we are starting a dictionary of

reachable shapes. This dictionary will help to understand

how organisms maintain their shape and which controls are

used by life. The specific form of some organisms could

give some ideas about life controls.

For example, in 2d proliferation, the sequence is arbi-

trary choosen and the choice of direction is encode like

{V (1), V (2), V (2), V (2), V (2)}, for different code, we get

the shapes represented in figure 6.

We have to complete now this dictionary (in 2d, 3d,

changing the order of browsing in a list of cells or changing

the choice of mitosis direction with time ... ), it will be a

help to find the encodage of shapes and to understand the

link between shapes formation and cells proliferation. The

mutational analysis will permit to find, for a given shape,

the possible encodages.

Figure 6. Dictionary of shapes

V. TOOL FOR MODELLING MORPHOGENETIC BEHAVIOUR

This section presents a tool developed for modelling mor-

phogenetic phenomena by using the theorical formalism we

have seen previously.

We set as a basic principle that cells are autonomous agents.

A cell perceives changes in the environment and can change

and adapt its dynamic accordingly.

In addition, the cells are autonomous by ignorance of the

whole system because the reductionist method does not

predict the evolution of the whole system. The principle that

cells must be autonomous is set as a basic rule.

The platform was created to understand morphogenesis

as the theoretical basis for morphological analysis. The

program is implemented (applied) in C++ using a toolkit of

Virtual Reality AREVI [10], [11], it is a simulation library

of autonomous entities and 3D rendering.

The order of scheduling has a significant impact on the

results of the simulation [12], [13]. It determines how local

interactions (self-organization) have been held, consequently

how and when to get the global state of the system. Different

behaviours can be observed in virtual models depending

on the order of the scheduler. In nature, morphogenesis

show us robust forms despite autonomous cells. To better

appreciate and understand the mechanisms that are implied

in morphogenesis, we wanted to retain flexibility in the

scheduling of cells. The program has two different modes

of simulation, a stochastic mode and a controlled mode.

The cells represented on screen by spheres can proliferate



in a discrete environment (cellular automaton) or in a

”continuous” one. In the latter case the movement of cells

is more precisely described and we can have more complex

interactions.

Cell’s behavior is not the same in each type of simula-

tion. A simple graphical interface has been implemented

in order to select the features of the simulation. It allows

dynamic change of parameters and selecting mechanisms

(e.g. apoptosis, differentiation) that are active/inactive during

the simulation. A number of parameters were taken into

account to evaluate their relative influence on the shapes

generated by populations of cells.

Options are available to allow choice between 2D/3D,

discrete or continuous simulations. The size and shape of

both the environment and the cells can also be defined

and adjusted, as can cell behaviour such as apoptosis, the

direction of mitosis etc.

In the case of continuous simulation, each cell can perceive

its neighbors within a radius of attraction and evaluate the

stresses:

• by the neighbors.

• by the membrane containment.

Constraints are crucial for evolution of the cell; if they are

too strong, the cell is not viable as it can no longer divide.

A maximal constraint parameter sets up a threshold below

which the cell remains viable.

The notion of coercion has no place when cells are

represented in a grid. For taking into account the influence

of the environment, a parameter is defined as the maximum

number of cells that a cell is able to displace when it divides

itself. When the number of cells is greater than the maximum

stress threshold, the cell can no longer divide. To stay alive,

cell can undertake two modes of mitosis which can be

seen as its adaptation mechanism to face spatial constraints.

Firstly, the cell chooses to divide in the direction where

the stress is less intense; secondly where the direction of

cell division is predetermined. However in both cases, if the

spatial constraints of the current cell exceed the maximum

stress threshold, it cannot divide.

It is also possible to assign an amount of energy to each cell.

The basic idea is: consider that a cell has a store of energy

assimilate from its environment. A percentage of the store is

used to maintain structure and growth. The remaining its re-

serve is used for maturation (e.g. maintenance of the immune

system) and reproduction. In very simple terms initially we

want to apply this principle. A level of energy is mapped

and associated with virtual cell application. A small amount

of energy representing cell maintainance of its structure is

logged at each step of the simulation. We consider that a

cell uses a lot of energy in reproduction - during mitosis

this energy level is divided by two. The cell dies when the

energy level becomes too low. The behaviour of a cell is

directly related to the quantity of energy contained and it is

possible to obtain forms of very different population of cells

by modulating certain thresholds, as detailed below. A cell

can recover energy if it is in contact with a relevant part of

the environment.

An option of the application allows cells to differentiate. In

this case, cells that are not the same type (represented by

different colors) have different dynamics. A specific cell can

differentiate when under stress. We wanted to demonstrate

this in connection with the spatial constraints of the cells.

Stress corresponds to a large differential spatial constraint

between two consecutive measurements. A threshold defines

the minimum value of the interval for which the cell differ-

entiates. It is also possible to define a numerical value for

stress necessary to induce differentiation.

Another control is the direction of cell division. It is possible

to define the direction that mitotic cells take in advance and

the order of selection. This parameter can also be chosen as

a random option. The morphogenesis changes when varying

the choice of these directions. Real time morphogenesis

film has produced data that demonstrates the features of the

direction of cell division.

Parameter values modulate cells activity and the way they

self-organize. The steps of the algorithm define cell be-

haviour and are the same for both discrete and continuous

cases, as we have seen, the stress calculations are different.

VI. EVALUATION

As described in the preceding paragraph, by varying the

parameters the application offers the possibility to make

different types of simulation.

In collaboration with Nadine Peyrieras [1], we compared

the behaviour of our model with the first segmentation of

zebrafish cells. (See Figure 7).

The model shows the first segmentation of the small fish

up to 1,000 cells, then the model cannot be used further

because the dynamic of certain cells has changed. To enable

biologists to continue to advance understanding on the

establishment of the dorsoventral axis of the zebrafish, it

is important to elucidate the cellular dynamics.

This question leads us to examine the outcome of differenti-

ated cells. This motivated the development of morphological

analysis to control cell dynamics and the creation of a

simulation platform to visualize and compare with biological

data.

Figure 7. First simulated segmentation of the zebrafish

We also tried to observe spacial constraints when Vitellius

is half covered (see Figure 8) to understand the resulting

mechanisms (self-adaptation) implemented by cells. And



those (self-organization mechanisms) leading to form the

backbone of the fish.

Figure 8. Spaces constraints for the Zebrafish

To better understand morphogenesis, and to overcome obsta-

cles in understanding the influence that the dynamics have

on the shape of the organism, we voluntarily limit to discrete

simulation by controlling the order of division and ordering

executions. Here we have choosen to present a number of

simulations by permuting the sequences of mitosis axis, and

we observe the impact of these parameters on the shapes.

The study is still in its infancy but it is fundamental for

understanding the mechanisms controlling morphogenesis.

VII. CONCLUSION

The main contribution of the paper is the mathematical

formalisation of cells behavior leading to a dynamic which

create the form (self-organization) and cellular mechanisms

ensuring that this dynamic is viable in a set of constraints

(self-adaptation). The formalisation relies on the principles

of morphological analysis to control cells dynamic and

experiment it on a platform of virtual reality. These studies

allow us to better understand controls set up by the nature

in shapes development.

Among the important issues that have emerged, two issues

have attracted particular attention: the robustness of bio-

logical forms and the equilibrium of the shape. How cells

whose dynamics is simple (mitosis, apoptosis, migration)

can maintain their rm while continually renewing itself

(homeostasis), and how despite environmental disruption

during embryonic development, the shape stay stable.

‘
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