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Abstract

We construct hybrid loops that augment continuous-time control systems. We consider a continuous-time nonlinear plant
in feedback with a (possibly non stabilizing) given nonlinear dynamic continuous-time state feedback controller. The arising
hybrid closed loops are guaranteed to follow the underlying continuous-time closed-loop dynamics when flowing and to jump
in suitable regions of the closed-loop state space to guarantee that a positive definite function V of the closed-loop state and/or
a positive definite function Vp of the plant-only state is non-increasing along the hybrid trajectories. Sufficient conditions for
the construction of these hybrid loops are given for the nonlinear case and then specialized for the linear case with the use of
quadratic functions. For the linear case we illustrate specific choices of the functions V and Vp which allow for the reduction
of the overshoot of a scalar output. The proposed approaches are illustrated on linear and nonlinear examples.
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1 Introduction

For a large class of nonlinear control systems which
follow a purely continuous dynamics, it may be use-
ful to consider dynamic controllers having a mixed dis-
crete/continuous dynamics. This leads to the class of hy-
brid control laws which has been proven to relax certain
limitations of continuous-time controllers. Among other
things, hybrid controllers are also instrumental to im-
prove the performance for nonlinear systems in the pres-
ence of disturbances. See Prieur and Astolfi (2003) for
the non-holonomic integrator, and Sanfelice et al. (2006)
for the inverted pendulum to focus on applications only.
Also for linear plants, hybrid controllers can be fruitful.
See Beker et al. (2001) for an example of a reset con-
troller overcoming intrinsic limitations of linear control
schemes. See also Beker et al. (2004); Nes̆ić et al. (2008)
where reset controllers are used to decrease the L2 gain
between perturbations and the output. Consider also
Aangenent et al. (2010) where it is shown that reset con-
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trollers may be useful to improve the L2 or H2 stability
of linear systems. Finally, see Lazar and Heemels (2009)
for the design of predictive controllers for the input-to-
state stability of hybrid systems.

In this paper we consider a nonlinear plant:

ẋp = f̄p(xp, u), (1)

with xp in R
np , in feedback interconnection with a (not

necessarily stabilizing) dynamic controller:

ẋc = f̄c(xc, xp), u = h̄c(xc, xp), (2)

with xc in R
nc . Then defining the closed-loop func-

tions fp(xp, xc) = f̄p(xp, h̄c(xc, xp)) and fc(xp, xc) =
f̄c(xc, xp), the interconnection between (1) and (2) can
be described in a compact way as:

d

dt
(xp, xc) = (fp(xp, xc), fc(xc, xp)) , (3)

where fp : R
np ×R

nc → R
np and fc : R

nc ×R
np → R

nc .
We will assume that f̄p, f̄c and h̄c are such that fp and
fc are continuous functions satisfying fp(0, 0) = 0 and
fc(0, 0) = 0.
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The contribution of this paper is to design a suitable re-
set rule, or jump law, for controller (2), and to design
a partition of the state space R

n (where n = np + nc)
in two subsets, called flow and jump sets. The state xc

of controller (2) endowed with such additional logic, is
then instantaneously reset according to the jump law
whenever the state belongs to the jump set. This ex-
tended scheme, which is allowed to flow according to
(3) only if the state belongs to the flow set, defines a
hybrid system. More specifically, the proposed hybrid
augmentation is designed to guarantee the decrease of
one or both of two scalar Lyapunov-like functions, one
of them V : R

np × R
nc → R≥0, defined on the whole

state space, and the other one Vp : R
np → R≥0 defined

only in the plant state subspace. The functions V and
Vp can be selected to capture some closed-loop stability
and performance property (see the developments in Sec-
tion 3.2 where output overshoot reduction is tackled).
Functions V and Vp are linked to each other by a func-
tion φ : R

np → R
nc such that for all (xp, xc) in R

np×R
nc

V (xp, φ(xp)) ≤ V (xp, xc) , (4)

and, in particular, by the relation

Vp(xp) = V (xp, φ(xp)),∀xp ∈ R
np . (5)

Within the above scenario, we will design flow and jump
sets and jump rules such that the arising hybrid systems
guarantee non-increase of V or Vp, or both of them in
two relevant cases:

(V ) (addressed in Section 2.1) where the function V (·, ·)
is given and satisfies suitable conditions guarantee-
ing the existence 2 of φ(·) from which Vp(·) can be
derived according to (5);

(Vp) (addressed in Section 2.2) where Vp(·) and φ(·) are
given (their existence resembles an asymptotic con-
trollability assumption), from which V (·, ·) satisfy-
ing (4) and (5) will be constructed.

Section 3 deals with the special case where system (3)
is linear. In this case, quadratic versions of V and Vp

can be constructed under reasonably weak properties re-
quired for the closed-loop dynamics. The extension to
the linear case allows to strengthen the nonlinear results
by exploiting the homogeneity property of hybrid sys-
tems acting on cones and obeying linear flow and jump
rules. Finally, as a last contribution of this paper, we will
show how to design Vp in item (Vp) to augment linear
continuous-time control systems with hybrid loops that
reduce the overshoot of a scalar plant output. In com-
parison to previous work, the aim of this paper is to de-
sign hybrid strategies to guarantee some asymptotic sta-
bility property by enforcing that suitable Lyapunov-like
functions are not increasing along the hybrid solutions.

2 Here, to keep the discussion simple, it is assumed that V
is continuously differentiable and that there exists φ(xp) ∈
argmin
xc∈Rnc

V (xp, xc), which implies (4).

The arising hybrid closed loop resembles the so-called
impulsive systems, considered e.g. in Haddad et al.
(2001). However the objectives of Haddad et al. (2001)
and of the present paper are different. Indeed an in-
verse optimal control involving a hybrid nonlinear-
non-quadratic performance functional is developed in
Haddad et al. (2001), whereas here we provide a design
method of a hybrid loop (namely the jump map and
the jump/flow sets) to ensure asymptotic stability and
non-increase of suitable scalar functions. Our results
are also linked to the event-triggered control literature
(see Anta and Tabuada (2010)) for stability analysis of
networked control systems, where it is necessary to re-
duce the number of times when the state is measured by
the controller and the actuators are updated. The most
important difference between the results mentioned
above and our contribution is that in those works the
resetting value for the state is uniquely associated to
the transmission of a measurement sample, whereas in
our results it depends on the Lyapunov-like functions
that should not increase along solutions. Preliminary
results in the direction of the work of this paper have
been presented, without proofs, in Prieur et al. (2010,
2011). Our preliminary work also contains additional
examples, not reported here due to space constraints.
The present paper provides an improved discussion of
the preliminary results, together with their proofs.

2 Main results: nonlinear case

2.1 Constructing Vp from V

In this section we consider the closed-loop nonlinear sys-
tem (3) and a function V of the closed-loop state to ad-
dress item (V ) of Section 1. To this aim, we make the
following assumption on the function V .

Assumption 1 The function V : R
n → R≥0 is contin-

uously differentiable and such that there exists a contin-
uous differentiable function φ : R

np → R
nc such that

φ(xp) ∈ argminxc∈Rnc V (xp, xc) . (6)

Moreover, there exists a class K function α such that, for
all xp in R

np , xp 6= 0,

〈∇pV (xp, φ(xp)), fp(xp, φ(xp))〉<−α(V (xp, φ(xp)) (7)

where ∇pV denotes the gradient of V with respect to its
first argument.

Remark 1 In Assumption 1 we do not impose that (3)
is globally asymptotically stable, because (7) requires
the function V to be decreasing only in the subset of
the state space defined by (xp, xc) = (xp, φ(xp)). Never-
theless, if system (3) is globally asymptotically stable,
then there exist a function V : R

n → R≥0 and a class

2



K function α such that 〈∇V (x), f(x)〉 < −α(V (x)) for
all x 6= 0, which implies (7). Moreover note that in As-
sumption 1, it is not required that argminxc∈R V (xp, xc)
is a single valued map, but only that a continuous
differentiable selection of this map does exist. For ex-
ample, with V (xp, xc) = x4

p + x4
c − x2

px
2
c , we have

argminxc∈R V (xp, xc) = {xp,−xp} which is not a sin-
gleton even though Assumption 1 can be satisfied, e.g.,
with φ(xp) = xp. ◦

A natural way to stabilize the closed-loop system (3)
is to flow when one (or both) of V and Vp is strictly
decreasing and to reset the xc-component of the state to
the value φ(xp) (where strict decrease is guaranteed by
(7)) when the function is not decreasing. This leads to
the following hybrid system 3

ẋ = f(x) if x ∈ F̂ ,

(x+
p , x+

c ) = (xp, φ(xp)) if x ∈ Ĵ ,
(8)

where F̂ ⊂ R
n and Ĵ ⊂ R

n are suitable closed subsets
of the state space such that F̂

⋃
Ĵ = R

n. In particular,

F̂ and Ĵ are defined by suitably combining the following
two pairs of sets arising, respectively, from the knowledge
of V and Vp:

F = {x ∈ R
n, 〈∇V (x), f(x)〉 ≤ −ᾱ(V (x))}

J = {x ∈ R
n, 〈∇V (x), f(x)〉 ≥ −ᾱ(V (x))}

(9)

F̄ = {x ∈ R
n, 〈∇Vp(xp), fp(xp, xc)〉≤−ᾱ(Vp(xp))}

J̄ = {x ∈ R
n, 〈∇Vp(xp), fp(xp, xc)〉≥−ᾱ(Vp(xp))}

(10)

where ᾱ is any class K function such that ᾱ(s) ≤ α(s)
for all s ≥ 0 (this will be denoted next by the shortcut
notation ᾱ ≤ α). We state next our first main result
whose proof is reported in Section 4.

Theorem 1 Consider the closed-loop system (3) and a
function V ∈ C1. Assume that there exist functions φ
and α satisfying Assumption 1. Then for any class K
function ᾱ satisfying ᾱ ≤ α the following holds.

1. If V is positive definite and radially unbounded, then
the hybrid system (8), (9) with F̂ = F and Ĵ =
J is globally asymptotically stable and V is non-
increasing along solutions.

2. If Vp, defined in (5), is positive definite and radially
unbounded, then the hybrid system (8), (10) with

F̂ = F̄ and Ĵ = J̄ is such that the plant state xp

converges to zero, and Vp is non-increasing along
solutions.

3 For an introduction of the hybrid systems framework used
in this paper, see, e.g., the survey Goebel et al. (2009) or the
brief overview in (Nešić et al., 2011, §2).

3. If V is positive definite and radially unbounded, then
the hybrid system (8), (9), (10) with F̂ = F

⋂
F̄

and Ĵ = J
⋃

J̄ is globally asymptotically stable and
both V and Vp are non-increasing along solutions.

Remark 2 The three items of Theorem 1 address, re-
spectively, the three goals of guaranteeing suitable sta-
bility properties together with non-increase of V , Vp and
both of them. In particular, the flow and jump sets of
the hybrid system (8) are defined in Theorem 1 from the
knowledge of the Lyapunov-like function V . Note also
that the hybrid system (8), (10) with F̂ = F̄ and Ĵ = J̄
characterized at item 2 may be unstable. In other words,
with this selection of the flow and jump sets, the plant
state converges to the origin, although the state of the
controller may diverge (which may complicate the im-
plementation of the associate controller). In the linear
case, this item will be strengthened under a detectabil-
ity assumption. ◦

2.2 Constructing V from Vp

In this section we consider the closed-loop nonlinear sys-
tem (3) and a function Vp of the plant state to address
item (Vp) of Section 1. To this aim, we make the follow-
ing assumption on the function Vp.

Assumption 2 The function Vp : R
np → R≥0 is con-

tinuously differentiable and radially unbounded and there
exist a continuously differentiable function φ : R

np →
R

nc , and a class K function α such that, for all xp in
R

np , xp 6= 0,

〈∇Vp(xp), fp(xp, φ(xp))〉 < −α(Vp(xp)) . (11)

Note that, when the xp-equation of the closed-loop sys-
tem (3) is affine with respect to xc, this condition is
related to the asymptotic controllability to the origin
(Artstein (1983)). In this case, a control law φ can be
computed from a Control Lyapunov Function Vp and
from the so-called universal formulas (see Freeman and
Kokotović (1996); Lin and Sontag (1991)).

Assumption 2 is sufficient to construct a function V sat-
isfying Assumption 1 so that the design strategy of the
previous section can be employed. In particular, let M
be any positive semidefinite matrix 4 in R

nc × R
nc and

define V : R
np ×R

nc → R≥0 for all (xp, xc) in R
np ×R

nc ,

V (x) = Vp(xp) + (xc − φ(xp))
′M(xc − φ(xp)) . (12)

Note that V is continuously differentiable, and radially
unbounded. Moreover, if φ(0) = 0 and M > 0, then

4 Note that the matrix M may be a function of x. This
extra degree of freedom could be used to perform convenient
selections of V .
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it is a positive definite function because, for each xp,
it is the sum of two positive definite terms, the first
one strictly positive when xp 6= 0 and the second one
strictly positive when xp = 0. The following theorem is
a straightforward application of Theorem 1 in light of
the Vp and φ given in Assumption 2 and of the V in (12).
Its proof is reported in Section 4. An nonlinear example
illustrating the potential behind the nonlinear design of
Theorem 1 has been reported in Prieur et al. (2010) and
is not reported here due to space constraints.

Theorem 2 Consider the closed-loop system (3) and a
function Vp ∈ C1. Assume that there exist functions
φ and α satisfying Assumption 2. Given any positive
semidefinite matrix M ∈ R

nc × R
nc , the corresponding

function V in (12), and any class K function ᾱ satisfying
ᾱ ≤ α, the three items of Theorem 1 hold.

3 Main results: linear case

3.1 Corollaries and extension of Theorems 1 and 2

When focusing on linear dynamics, the two items (V )
and (Vp) in Section 1 are addressed here. Consider the
following linear plant:

ẋp = Āpxp + B̄pu, (13)

with xp ∈ R
np , in feedback interconnection with a (not

necessarily stabilizing) linear dynamic controller:

ẋc = Ācxc + B̄cxp, u = C̄cxc + D̄cxp, (14)

with xc ∈ R
nc . The closed loop is described by the fol-

lowing linear system

ẋ = Ax :=
[

Ap Bp

Bc Ac

]
x , (15)

where x = (x′
p, x

′
c)

′ and Ap, Bp, Ac, and Bc are ma-
trices of appropriate dimensions uniquely based on the
matrices in (13) and (14). In the linear case, it is rea-
sonable to restrict V and Vp to the class of quadratic
functions, φ to the class of linear stabilizers and α and
ᾱ to the class of linear gains. Based on this, the closed-
loop function V can be selected as V (x) = x′Px where

P =
[

Pp Ppc

P ′

pc Pc

]
is a symmetric positive definite matrix.

Then, since ∇cV (xp, xc) = 2(P ′
pcxp + Pcxc), from the

positive definiteness of P , the critical points of V are the
points where V is minimal. Thus the unique function
φ : R

np → R
nc satisfying (4) is given by, for all xp ∈ R

np ,

φ(xp) = −P−1
c P ′

pcxp = Kpxp . (16)

Moreover, the function Vp : R
np → R≥0 defined by (5)

becomes, for all xp ∈ R
np ,

Vp(xp) =
[

xp

−P−1

c P ′

pcxp

]′ [
Pp Ppc

⋆ Pc

] [
xp

−P−1

c P ′

pcxp

]

= x′
p(Pp − PpcP

−1
c P ′

pc)xp = x′
pP̄pxp . (17)

Based on (16) and (17), we get that (7) holds as long as
there exists α̃ > 0 such that

He(P̄p(Ap + BpKp)) < −α̃P̄p . (18)

Thus, given V , if such a α̃ > 0 exists, then Assumption 1
is guaranteed. Consider now the sets in (9) and (10).
Given any 0 < ¯̃α ≤ α̃ and with the definitions above,
after some calculations they become

F = {x ∈ R
n, x′Nx ≤ −¯̃αx′Px} ,

J = {x ∈ R
n, x′Nx ≥ −¯̃αx′Px} ,

(19a)

F̄ = {x ∈ R
n, x′Npx ≤ −¯̃αx′

pP̄pxp} ,

J̄ = {x ∈ R
n, x′Npx ≥ −¯̃αx′

pP̄pxp} ,
(19b)

where N = He
[

PpAp+PpcBc PpcAc+PpBp

P ′

pcAp+PcBc PcAc+P ′

pcBp

]
and Np =

He
[

P̄pAp P̄pBp

0 0

]
. With the above definitions, the follow-

ing corollary particularizes the results of Theorem 1 to
the linear case.

Corollary 1 Consider the closed-loop system (15) and

a function V (x) = x′Px = x′
[

Pp Ppc

P ′

pc Pc

]
x such that P̄p =

Pp − PpcP
−1
c P ′

pc satisfies (18) for some α̃ > 0 and for

Kp = −P−1
c P ′

pc. Then the hybrid system

ẋ = Ax if x ∈ F̂ ,

(xp, xc)
+ = (xp, Kpxp) if x ∈ Ĵ ,

(20)

satisfies all the items of Theorem 1 with Vp(xp) = x′
pP̄pxp

and using the sets in (19) with any 0 < ¯̃α ≤ α̃.

Remark 3 Let us apply Corollary 1 to linear plants in
closed loop with reset controllers (see e.g. Beker et al.
(2004); Nes̆ić et al. (2008)). Consider the linear plant
(13) with Āp Hurwitz, C̄c = Inc

and D̄c = 0. Recalling
the notation in (15), when closing the loop with (14),
we get Ap = Āp and Bp = B̄p, and thus Ap is Hurwitz.
To represent reset controllers, let us consider Kp = 0.
Then there exist a symmetric positive definite matrix
P̄p in R

np×np and α̃ > 0 such that (18) holds. Apply-
ing Corollary 1 gives that for each symmetric positive
definite matrix Pc in R

nc×nc , the hybrid system

ẋ = Ax if x ∈ Fl ,

(xp, xc)
+ = (xp, 0) if x ∈ Jl ,

(21)

where the flow and the jump sets are defined with Nl =

He
[

PpAp PpBp

PcBc PcAc

]
, and for any ¯̃α ≤ α̃, by

Fl = {x ∈ R
n, x′Nlx ≤ −¯̃αx′Px}

Jl = {x ∈ R
n, x′Nlx ≥ −¯̃αx′Px} ,

is globally asymptotically stable and the function Vl

defined by Vl(x) = x′Px, for any x in R
n, and for

P = diag(Pp, Pc), is non-increasing. ◦
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Let us now specialize Theorem 2 to the linear case.
With (15), Assumption 2 is satisfied whenever the pair
(Ap, Bp) is stabilizable and Vp(xp) = x′

pP̄pxp, with P̄p >

0, is a control Lyapunov function for (Ap, Bp). As a
matter of fact in that case there exist a static state
feedback matrix Kp and a constant α̃ > 0 such that
equation (18) holds, and then equation (11) will hold
with φ(xp) = Kpxp. In particular, given P̄p, Kp and
α̃ can be computed using a Linear Matrix Inequality
(LMI) solver. Alternatively, under a stabilizability as-
sumption, one can always solve a generalized eigenvalue
problem (GEVP) and find an optimal pair (P̄p, Kp) max-
imizing α̃. Based on Vp and Kp, consider any symmet-
ric positive definite matrix Pc in R

nc×nc . The function
V : R

np × R
nc → R≥0 in (12) can be defined as

V (x) = Vp(xp) + (xc − Kpxp)
′Pc(xc − Kpxp)

= x′
[

P̄p+K′

pPcKp −K′

pPc

−PcKp Pc

]
x = x′Px.

(22)

Since Pc > 0, this function is continuously differentiable,
radially unbounded and positive definite. Then the fol-
lowing corollary of Theorem 2 can be stated.

Corollary 2 Assume that the pair (Ap, Bp) is stabiliz-
able and that Vp(x) = x′

pP̄pxp is a control Lyapunov
function for this pair. Then there exist α̃ > 0 and Kp

satisfying (18). Moreover, given any symmetric positive
definite matrix Pc in R

nc×nc and the corresponding func-
tion V defined in (22), for any selection of 0 < ¯̃α ≤ α̃,
the reset system (20) with the sets in (19) satisfies all the
items of Theorem 1.

Remark 4 The global asymptotic stability (GAS) re-
sults established at items 1 and 3 of Theorem 1 can be
strengthened to global exponential stability (GES) in
the case of Corollaries 1 and 2. Indeed, the reset system
(19), (20) corresponds to a linear dynamics acting on
conic flow and jump sets and, (Nešić et al., 2011, The-
orem 7) can be applied to conclude that GAS implies
GES. See also the proof of Theorem 3 in Section 4 for a
similar reasoning. ◦

As already pointed out in Remark 2, when selecting
F̂ = F̄ and Ĵ = J̄ , as in item 2 of Theorem 1, there is no
guarantee that the state of the controller will converge
to zero. This property is instead guaranteed when using
F̂ = F̄

⋂
F and Ĵ = J̄

⋃
J , as in item 3 of Theorem 1.

However, in light of Corollary 2, it would be desirable to
provide conditions under which using the sets at item 2
of Theorem 1 is already sufficient to guarantee that the
controller states converge to zero too. The advantage of
this is that one would not need to bother with the se-
lection of the matrix Pc of Corollary 2, because the sets
F̄ and J̄ only depend on Vp and Kp. In the linear case,
it turns out to be sufficient that the controller dynam-
ics is detectable from the output matrix Bp. Intuitively,
this requirement corresponds to asking that any nonzero

controller evolution will be detected by the plant states
so that a LaSalle result can be applied to show con-
vergence. The result is formalized in the next theorem
whose proof is reported in Section 4.

Theorem 3 Consider any gain Kp such that Ap+BpKp

is Hurwitz and a pair P̄p, α̃ satisfying (18). Consider any
¯̃α ≤ α̃ and the flow and jump sets in (19b). If the pair
(Bp, Ac) is detectable, then the hybrid system at item 2
of Theorem 1 is globally exponentially stable.

3.2 Performance-based designs

In this section, we rely on the results of Theorem 3 to
propose a suitable jump rule to be incorporated in a lin-
ear continuous-time control system to reduce the plant
output overshoot. See also the design of a jump rule to
maximize the decay rate in Prieur et al. (2011).

In Beker et al. (2001) a reset controller was shown to
improve upon linear control in terms of overshoot reduc-
tion. If the plant (13) is strictly proper from a certain
output y, namely y = C̄pxp, a possible way to mathe-
matically formalize the requirement of overshoot reduc-
tion in terms of the Lyapunov functions introduced here
is to construct a quadratic function Vp(xp) := x′

pP̄pxp

and the stabilizing gain Kp in such a way that, to a cer-
tain extent, Vp(xp) ≈ |y|2,where y is a given scalar out-
put. Then achieving non-increase of Vp via the hybrid
loops of this paper will induce (almost) no overshoot,
namely |y(t)| is (almost) non-increasing along trajecto-
ries. Finding the above discussed pair (Vp, Kp) can be
done, for example, by writing the dynamics (13) in ob-
servability canonical form, so that xp = [ x1

y ] and solving
the following LMI eigenvalue problem:

min
Q̄p=Q̄′

p,ρx,ρy,X
ρy, s.t. Q̄p =

[
Q1 q1y

q′

1y qy

]
> I

0 <

[
κMI X

X ′ κMI

]
, 0 > He(ApQ̄p + BpX)

0 ≤
[

ρx 1

1 ρy

]
, ρx < Q1, qy < 1 + ρy,

(23)

where κM > 0 is given. The optimal solution to (23) will
lead to the gain Kp = XQ̄−1

p and to P̄p = Q̄−1
p satis-

fying (18) with a small enough α̃ and such that |Kp| ≤
|X||Q̄−1

p | ≤ κM . Moreover, the bounds given by the last
three constraints can be shown to imply that smaller
values of ρy will lead to a function Vp(xp) = x′

pQ̄
−1
p xp

closer to |y|2. This fact, together with desirable stability
properties of the hybrid closed loop, is established in the
following proposition whose proof is given in Section 4.

Proposition 1 Consider a sequence of solutions (Q̄k
p,

ρk
y , ρk

x, Xk)k∈N to the optimization (23) such that ρk
y → 0

5



as k → ∞. Then, defining V k
p (xp) = x′

p

(
Q̄k

p

)−1
xp, we

have for each xp, limk→∞ V k
p (xp) = |y|2, namely as ρk

y

approaches zero, V k
p (xp) approaches |y|2.

Moreover, given any pair (Q̄p, X) satisfying (23), let
Kp = XQ̄−1

p and P̄p = Q̄−1
p . Then for a small enough

selection of α̃, equation (18) is satisfied. Then, given any
selection of 0 < ¯̃α ≤ α̃, the reset system (20) with the
flow and jump sets in (19b), is such that:

1. the plant state xp converges to zero, and the function
Vp(xp) is non-increasing along solutions;

2. if the pair (Bp, Ac) is detectable, then the hybrid
closed loop is globally exponentially stable.

From the point of view of the overshoot reduction, the
meaning of the first statement of Proposition 1 is that
smaller values of ρy (which are expected to be achievable
as the bound κM on |Kp| is increased) will guarantee that
the function Vp(xp) becomes closer to the squared value
|y|2 of the output. One way to address overshoot elimi-
nation is to guarantee that the function |y|2 itself is not
increasing along solutions (indeed, as soon as y(t) = 0 for
some t, then y will remain zero). Since our hybrid scheme
ensures that Vp does not increase along solutions, then
the design in (23) leads to an “almost” non overshooting
closed loop as long as ρy is small enough. On the other
hand, note that ρy = 0 (namely, total overshoot elimi-
nation) cannot be achieved because we require that Vp

be positive definite in our theory.

Example 1 We consider an example originally dis-
cussed in Beker et al. (2004), involving a First Order
Reset Element (FORE), whose flow dynamics follow the
continuous-time transfer function 1

s+1 and whose jump
rule is to reset the state to zero whenever the input
and the output of the FORE have opposite signs. This
FORE is interconnected in negative unit feedback with
a SISO plant whose transfer function is P = s+1

s(s+0.2) .

For this example, the control system involving the
FORE is shown in Beker et al. (2004) to behave more
desirably than the linear control system because it has
only about 40% overshoot as compared to the linear
closed-loop system, while retaining the rise time of the
linear design (this example was also discussed later in
Nes̆ić et al. (2005); Zaccarian et al. (2011) where the
L2 gain properties of the reset closed loop were char-
acterized). Here we show that when allowing for more
general resets than just the ones induced by the FORE,
arbitrary small overshoot can be achieved, while retain-
ing the same rise time. To this aim, we use the following
state-space representation of the linear closed-loop sys-

tem:
[

Ap |Bp

Bc |Ac

]
=

[
−0.6 0.6 |−1
−0.4 0.4 | 1

0 1 |−1

]
. Table 1 reports the

values of P̄p, Kp and ρ−1
y for some selections of κM .

Using the values in Table 1, we run several simulations

κM P̄p K′

p ρ−1

y

0.1
ˆ

0.31315 −0.38064
−0.38064 0.78906

˜ ˆ

0.046750
−0.087302

˜

0.48451

0.5
ˆ

0.10170 −0.088509
−0.088509 0.99128

˜ ˆ

0.055896
−0.49023

˜

10.662

1
ˆ

0.049336 −0.045986
−0.045986 0.99778

˜ ˆ

0.057423
−0.97424

˜

21.179

5
ˆ

0.0097785 −0.0096376
−0.0096376 0.99991

˜ ˆ

0.059499
−4.8307

˜

103.25

Table 1
Matrices P̄p, Kp and ρ−1

y for some selections of κM .

of the closed loop starting from the initial conditions
xp(0, 0) = [−1 − 1]′, resembling the step responses
reported in Beker et al. (2004); Nes̆ić et al. (2005); Za-
ccarian et al. (2011). In particular, we implement the
hybrid loops arising when using the values in the table
within the scheme proposed in Theorem 1. Note that
since in this case the pair (Bp, Ac) is observable, then
according to the results of Theorem 3, the trajectories
are all convergent to zero. The resulting plant input and
output responses are shown in Figure 1, where we also
show the linear response (thin solid) and the response
obtained with the FORE used in Beker et al. (2004);
Nes̆ić et al. (2005); Zaccarian et al. (2011) (thin dashed).
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Fig. 1. Example 1: simulation results.

The results in Figure 1 are indicative of the potential
of the proposed approach. It should be pointed out that
although we manage to improve the overshoot reduc-
tion as compared to the FORE resetting strategy pro-
posed in Beker et al. (2004) (thin dashed curve), this
last strategy is more appealing from an implementation
viewpoint because it only requires a measurement of the
plant output. Conversely, the resetting strategy of the
improved bold curves of the figure are obtained using a
full measurement of the plant state. ⋆
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4 Proofs of the technical results

In Assumption 1 we introduce a continuously differen-
tiable function φ : R

np → R
nc satisfying (6). However,

for the results of this paper to hold, it is sufficient that
φ is a Hölder continuous function of order strictly larger
than 1

2 satisfying (4). This regularity assumption on φ
is weaker than the one required in Assumption 1. The
following lemma (see also (Pan et al., 2001, Lemma 1))
provides the essential technical properties of the func-
tion Vp (introduced in (5)) and the connection between
the gradient 5 of Vp and that one of the function V (in-
troduced in (4)) required to carry out the proofs in the
rest of the section.

Lemma 1 Assume that there exists a function φ :
R

np → argminz V (x, z) ⊂ R
nc which is locally

Hölder continuous of order strictly larger than 1
2

satisfying Assumption 1. Then, there exists M :
R

np × R
nc → R

nc × R
nc such that, for all x = (xp, xc)

in R
np × R

nc ,

∇Vp(xp) =∇pV (x, φ(x)) , (24)

V (xp, xc) = Vp(xp) (25)

+(xc − φ(xp))
′ M(xp, xc) (xc − φ(xp)),

〈∇V (g(x)), f(g(x))〉= 〈∇Vp(xp), fp(xp, φ(xp))〉 . (26)

Proof. Let us prove the equations of Lemma 1 succes-
sively. First note that (6) implies

∇cV (xp, φ(xp)) = 0 . (27)

Proof of (24). To simplify notation, we will use next,
Vph(xp, yp) := Vp(xp + hyp) − Vp(xp) and φh(xp, yp) :=
φ(xp+hyp)−φ(xp). Since φ is Hölder continuous of order
strictly larger than 1

2 , there exists a positive real number
ε such that, for each xp in R

np , we can find positive val-

ues c and h0 satisfying
|φh(xp,yp)|√

|h|
=

|φ(xp+hyp)−φ(xp)|√
|h|

≤
c|h|ε, for all |h| ≤ h0, and for all yp ∈ R

np such that
|yp| = 1. By using (27), we get, for each yp in R

np and
h > 0,

Vph(xp, yp)

h
=

Vp(xp + hyp) − Vp(xp)

h

=

∫ 1

0

∇pV (xp + shyp, φ(xp + hyp))ds yp

+

∫ 1

0

∇cV
(
xp, φ(xp) + sφh(xp, yp)

)
ds

(
φh(xp, yp)

h

)
.

But, with (27), we get:

∇cV (xp, φ(xp) + sφh(xp, yp))

= sφh(xp, yp)
′

(∫ 1

0

∂2V

∂x2
c

(xp, φ(xp) + stφh(xp, yp)) dt

)
.

5 In this section, ∇cV denotes the gradient of V along the
xc-direction.

This yields:

Vph(xp, yp)

h
=

(∫ 1

0

∇pV (xp + shyp, φ(xp + hyp))ds

)
yp

+
φh(xp, yp)

′

√
h

∫ 1

0

s

∫ 1

0

∂2V

∂x2
c

(xp, φ(xp) + stφh(xp, yp))dtds

(
φh(xp, yp)√

h

)
, (28)

which, taking the limit as h goes to 0, yields (24).

Proof of (25). Moreover, with (27), we get (25), with

the notation M(xp, xc) =
∫ 1

0

∫ 1

0
∂2V
∂x2

c
(xp, φ(xp) + ts[xc −

φ(xp)]) s dt ds.

Proof of (26). Using (27), we get that for all x in R
n,

〈∇V (g(x)), f(g(x))〉
= 〈∇pV (g(x)), fp(g(x))〉 + 〈∇cV (g(x)), fc(g(x))〉
= 〈∇pV (g(x)), fp(g(x))〉
= 〈∇pV (xp, φ(xp)), fp(xp, φ(xp))〉 (29)

Moreover, equation (24) gives, for all xp in R
np ,

〈∇Vp(xp), fp(xp, φ(xp))〉
= 〈∇pV (xp, φ(xp)), fp(xp, φ(xp))〉 . (30)

Combining (29) and (30), we get (26). 2

The following lemma follows directly from (25) and (26)
of Lemma 1 and from Assumption 1. Its proof is omitted.

Lemma 2 Given a solution of (8), (9) with F̂ = F and

Ĵ = J (respectively of (8), (10) with F̂ = F̄ and Ĵ = J̄)
which jumps at some time, after the jump the solution is
either equal to zero (i.e. g(x)=0) or it has to flow.

Proof of Theorem 1. Item 1. Due to (9), when flowing,
the function V does not increase, and due to Lemma 2,
after each jump, a solution of (8), (9) with F̂ = F and

Ĵ = J is equal to zero (i.e. g(x)=0), or has to flow, and
thus, by definition of F , the function V does not increase.
This implies that the hybrid system (8), (9) with F̂ = F

and Ĵ = J is globally stable, and the function V does
not increase. To prove the attractivity of the system (8),

(9) with F̂ = F and Ĵ = J , let us apply the LaSalle
invariance property for hybrid systems. Let us consider
a solution of (8), (9) with F̂ = F and Ĵ = J , which is
included in a level set of the function V . Let us show
that this solution should be equal to 0. Due to Lemma
2, the solution either cannot jump (since after a jump,
the solution has to flow, and thus the value of V has to
decrease), or has to be at the origin. Given a solution
flowing for all time, it is a solution of the system (3) in a
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level set of the function V . Since ᾱ is a function of class
K, then, due to (9), the solution can not flow for all time
and stay in a level set of V . Then the solution has to be
constant and equal to the origin. Therefore, by (Goebel
et al., 2009, Theorem 23, page 64), the system (8), (9)

with F̂ = F and Ĵ = J is globally asymptotically stable.

Item 2. Due to (10), when flowing, the function Vp does

not increase along the solutions of (8), (10) with F̂ = F̄

and Ĵ = J̄ . Moreover, due to Lemma 2, after each jump,
the solution is equal to zero (i.e. g(x)=0), or has to flow,
and thus, with (7), the function Vp does not increase.
This implies that the variable xp converges to zero. Since

after a jump, the solutions of (8), (10) with F̂ = F̄

and Ĵ = J̄ has to flow, it implies that, for each solu-
tion x, for all (t, j) in domx, we have d

dt
Vp(x(t, j)) <

−ᾱ(Vp(xp(t, j))) except when a jump occurs. Since dur-
ing the jumps, the Vp remains unchanged, and since the
number of jumps is at most countable, we get that Vp

converges to 0 when t → ∞, and thus xp converges to 0
when t → ∞.

Item 3. This item follows from the previous two items. 2

Proof of Theorem 2. From (12), the gradient of V is
given for all (xp, xc) ∈ R

np × R
nc by

∇pV (xp, xc)=
∂Vp

∂xp

(xp)−2(xc−φ(xp))
′M

∂φ

∂xp

(xp)

∇cV (xp, xc)=2(xc − φ(xp))
′M.

Therefore, ∇cV (xc) = 0 whenever xc = φ(xp), which,
by the positive semi-definiteness of M implies that equa-
tion (6) holds. Moreover, by (26) of Lemma 1, it follows
that (11) coincides with (7) and Assumption 1 holds.
Thus Theorem 1 applies and this concludes the proof of
Theorem 2. 2

Proof of Theorem 3. Consider any gain Kp such
that Ap + BpKp is Hurwitz and a pair P̄p, α satis-
fying (18). Consider any symmetric positive definite
matrix Pc in R

nc×nc , and let Ppc = −K ′
pPc, and

Pp = P̄p + PpcP
−1
c P ′

pc. Since P̄p is symmetric def-
inite positive and Pc is symmetric, we get that Pp

is a symmetric definite matrix. Moreover, by Schur

complement, the matrix P =
[

Pp Ppc

P ′

pc Pc

]
is symmetric

definite positive, condition (18) holds, and we may ap-
ply Corollary 1. From item 2 of Theorem 1 we know
that the xp component of the solution converges to
zero. As a first step of the proof, we will use the de-
tectability assumption and the LaSalle invariance prin-
ciple of Sanfelice et al. (2007) to prove next that also
the xc component of the state converges to zero. To
analyze the convergence properties of the solutions
x(·, ·) = (xp(·, ·), xc(·, ·)) : domx → R

np×nc from any
initial condition, we consider two cases:

i) assume that for some jump time (t, j) (namely a hy-
brid time such that (t, j) ∈ dom x and (t, j + 1) ∈
dom x) we have xp(t, j) = 0. Then x(t, j + 1) =
(xp(t, j), Kpxp(t, j)) = 0 namely the solution x(·, ·)
converges to zero in finite time.

ii) instead, if for all jump times (t, j), we have xp(t, j) 6=
0, then after each jump, the state necessarily belongs
to the interior of the flow set F̄ . To see this, denote
x(t, j + 1) by x∗+ and x(t, j) by x∗ (possibly using
the subscripts “p” and “c”) and note that from the
assumption that ¯̃α ≤ α̃, x∗

p 6= 0 and from (18) and
(19b), we get

(x∗+)′Npx
∗+ =

[
x∗

p

Kpx∗

p

]′
He

([
P̄pAp 0

B′

pP̄p 0

]) [
x∗

p

Kpx∗

p

]

= (x∗
p)

′ He
([

I
Kp

]′ [ P̄pAp 0

B′

pP̄p 0

] [
I

Kp

])
x∗

p

= (x∗
p)

′ He
(
P̄pAp + P̄pBpKp

)
x∗

p

<−α̃(x∗
p)

′P̄px
∗
p ≤ −¯̃α(x∗+

p )′P̄px
∗+
p ,

which, by the strict inequality at the last line, implies
that x∗+ is in the interior of F̄ . Therefore, from con-
tinuity of the solutions satisfying the flow equation,
after each jump the solution flows for some time τ̄(x∗

p)
before it reaches the boundary of the flow set (pos-
sibly jumping again). Define now τm = min

|xp|=1
τ̄(xp),

which is a finite strictly positive scalar because the
minimum is carried out over a compact set. Then, af-
ter each jump, the solution flows for at least τm times.
Indeed, consider a generic jump to x∗+ = (x∗

p, Kpx
∗
p)

and note that, by homogeneity of the dynamics (20),
we can write x(τ, j +1) = |x∗

p|z(τ, j +1) for all τ such
that (τ, j + 1) ∈ dom x, where z(·, j + 1) is a suitable
solution defined for all such values of τ and starting
at z(t, j + 1) = 1

|x∗

p|
(x∗

p, Kpx
∗
p). Then, by definition

of τm and since x∗
p 6= 0 by assumption, the solution

z(·, j + 1) flows for at least τm times after (t, j + 1)
and, consequently, so does the solution x.

Consider now the LaSalle theorem (Sanfelice et al.,
2007, Corollary 4.4(b)) (see also (Goebel et al., 2009,
Thm S13)) and apply it using the smooth function
VLS(x) = Vp(xp). By construction (see (19b)), the
function VLS(·) is non-increasing along flows for all x
in the flow set F̄ . Moreover, since xp remains constant
along jumps, the function is also non-increasing along
jumps for all x in the jump set J̄ . Since we proved that
there is a uniform lower bound τm on the elapsed time
between any two jumps of the solutions under consid-
eration, from (Sanfelice et al., 2007, Corollary 4.4(b)),
all such solutions converge to the largest weakly in-
variant subset of the set where VLS(x) = Vp(xp) = 0.
Since Vp(xp) = 0 implies xp = 0, from the detectabil-
ity condition on (Bp, Ac) the largest weakly invariant
subset reduces to the origin and this completes the
proof that the xc component of the state converges to
zero.

8



By the above reasoning, we concluded that the state x
converges to zero. Then, since the dynamics is linear and
the flow and jump sets are cones, we can apply (Goebel
and Teel, 2010, Proposition 4.3) using ω(x) = |x|, the
standard dilation M(λ) = λ and d = 1. From this propo-
sition the global convergence property implies global
pre-asymptotic stability of the hybrid system which, in
turns, implies global asymptotic stability by the com-
pleteness of all the trajectories. Finally, using once again
the homogeneity property, the approach in (Nešić et al.,
2011, Theorem 7) can be applied to conclude that global
asymptotic stability implies global exponential stability.

2

Proof of Proposition 1. We start by proving the
first part of the proposition. Consider any solution
(Q̄p, ρy, ρx, X) to the optimization problem (23). From

the matrix inversion formula, denoting P̄p =
[

P11 P12

P ′

12
P22

]

and recalling the notation for Q̄p in the first inequality
of (23), we have

P11 =
(
Q1 −

q1yq′

1y

qy

)−1

, P22 = 1
qy−q1y

′Q−1

1
q1y

,

P12 = −P22Q
−1
1 q1y .

Let us inspect these terms separately. From the first con-

straint in (23), we have
[

Q1 q1y

q′

1y qy−1

]
> [ I 0

0 0 ] ≥ 0, which,

by Schur complements, implies Q1 − q1yq′

1y

qy−1 > 0 and

qy − 1− q′1yQ−1
1 q1y > 0. These last two inequalities, to-

gether with qy > 1 and the last constraint of (23) imply
respectively

q1yq′1y < (qy − 1)Q1 < ρyQ1 , (31)

0 < q′1yQ−1
1 q1y < qy − 1 < ρy , (32)

From (31) we get

Q1 −
q1yq′1y

qy

> Q1 −
ρy

qy

Q1 = (1 − ρy

qy

)Q1 (33)

where we have used qy > 1 (from the first constraint
of (23)) in the last step. By Schur complement applied
to the fourth constraint of (23) and also using the fifth
constraint of (23) we have

Q1 > ρx ≥ 1
ρy

. (34)

Now consider a sequence of solutions (Q̄k
p, ρk

y , ρk
x, Xk)k∈N

to (23) such that ρk
y → 0, as given by the assumption of

Theorem 1, and consider the computations of this proof
for this sequence. With (32) we have 1 ≤ qk

y < ρk
y + 1

and thus qk
y → 1 and

ρk
y

qk
y

→ 0 as k → ∞. Combining

(33) and (34) implies P k
11 → 0, as k → ∞. Consider

now (32) and note that, by definition of P k
22, we have

limk→∞
1

P k
22

= limk→∞ qk
y = 1 because from the first

and the last constraints of (23), 1 < qy < 1 + ρy. There-
fore limk→∞ P k

22 = 1. Finally, since P̄p > 0, P k
11 → 0 and

P k
22 → 1, we have P k

12 → 0 as k → ∞. As a consequence,
P̄ k

p → [ 0 0
0 I ], and, due to the observability canonical form

of (13), V k
p (xp) → |y|2 as k → ∞, for each xp in R

np .
This completes the proof of the first part of the propo-
sition. As a next step, we prove that using Kp = XQ̄−1

p

and P̄p = Q̄−1
p where X and Q̄−1

p satisfy (23), equation
(18) is satisfied for a small enough α̃. This trivially fol-
lows from the strict inequality in the third constraint of
(23).

Finally, items 1 and 2 in the last part of the proposition
follow from applying, respectively, item 2 of Theorem 1
and Theorem 3. 2

5 Conclusions

The design problem of a hybrid stabilizing loop on a
continuous-time control system has been considered.
The arising closed-loop system mixes discrete and con-
tinuous dynamics depending on the value of a nonlinear
function. This allows to guarantee the stability and/or
a decreasing property of some positive definite function.
Adding a hybrid loop can be also instrumental when
reducing the overshoot of a scalar output of a linear
control system. Some simulations highlighted the inter-
est of the results. This work lets some questions open.
It might be of interest to better quantify the overshoot
improvement achieved by the algorithm of Section 3.2
and possibly relate it to the rise time, as done in Beker
et al. (2001) for a specific example. Moreover, the case
of output feedback laws may be interesting to address.
In this direction, recent work Fichera et al. (2012a,b)
investigates output feedback extensions of the state
feedback approach presented here, by using a Luen-
berger observer and implementing the hybrid loops in
feedback from the observed state.
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