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Abstract: We show that, by properly adjusting the relative state of polarization of the 

pump and of a weak modulation, with a frequency such that at least one of its even harmonics 

falls within the band of modulation instability, one obtains a fully modulated wave at the 

second or higher even harmonic of the initial modulation. An application of this principle to 

the generation of a 80-GHz optical pulse train with high extinction ratio from a 40-GHz 

weakly modulated pump is experimentally demonstrated using a nonzero dispersion shifted 

fiber in the telecom C band. 

OCIS codes:.(5530) Pulse propagation and temporal solitons; (4370) Nonlinear optics, fibers; 

(4380) Nonlinear optics, four wave mixing; (190) Nonlinear optics 
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1. Introduction 

Modulation instability (MI) of a CW solution of the scalar nonlinear Schrödinger equation 

(NLSE) that describes pulse propagation in a weakly dispersive and nonlinear medium (e.g., an 

optical fiber) was first discovered by Bespalov and Talanov [1] for light waves in nonlinear 

liquids and by Benjamin and Feir for deep water waves [2], and extended to coupled wave 

models by Berkhoer and Zakharov [3] (for a recent review see also Ref. [4]). For scalar wave 

propagation, the MI-induced break-up of the CW in the anomalous group-velocity dispersion 

(GVD) leads to the formation of a train of pulses at the repetition rate set by the frequency of an 

initial modulation. Exact time-periodic solutions of the NLSE provide a full analytical 

description of the MI process past the initial stage of growth of the sidebands [5-7]. In a simpler 

approach most of the noteworthy features of the nonlinear stage of MI (e.g., the homoclinic 

structure) are also correctly captured by truncations to few Fourier modes [8-9]. A remarkable 

feature of the nonlinear dynamics of the MI process is that the wave evolution is generally 

periodic both in the time as well as in the propagation coordinate (the spatial periodicity is also 

referred to as Fermi-Pasta-Ulam recurrence), as also confirmed experimentally [10]. In the case 

of noise-activated MI, the modulation frequency which is selected corresponds to the peak of the 

gain curve corresponding to the nonlinear phase-matching. In the intermediate situation when 

multiple unstable modulations are present at the input, a nonlinear superposition of the periodic 

evolutions is obtained, which may lead to the generation of different pulse trains with harmonic 

frequencies at different points along the propagation coordinate [5, 7]. Indeed, it was numerically 

pointed out [11] and experimentally observed recently [12], that harmonic pulse trains may be 

generated at different distances even when a single sufficiently slow modulation is present at the 
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input. Seeding of these trains is produced by the generation of all of the harmonics at the point of 

maximum temporal compression of the pulse train at the fundamental frequency.  

The most direct extension of the NLSE is provided by its vector counterpart or VNLSE 

where two polarization components are incoherently coupled via nonlinear cross-phase 

modulation. Such situation holds for instance in a birefringent fiber whenever the coherent terms 

can be averaged to zero by fast-rotating terms. In particular, in this case, the efficient conversion 

of a modulated wave into a nearly sinusoidally modulated wave at harmonic frequencies has 

been previously demonstrated by means of MI induced by multiple four-wave mixing in the case 

of a normally dispersive, highly birefringent fiber at visible wavelengths [13]. In this paper we 

rather focus on the VNLSE in the anomalous GVD regime, and in particular we are interested in 

the situation where the self- and cross-induced nonlinear terms have the same weight (Manakov 

system [14]), which applies to the relevant practical case of telecommunication fiber optic links 

with random birefringence [15]. MI for the VNLSE has been known for a long time [16], and its 

multiply periodic solutions representing the homoclinic extension of the unstable CW solutions 

have been obtained by methods based on the inverse scattering transform method [17-22]. These 

methods have also recently applied to obtaining deterministic rogue wave (or time and space 

localized) solutions of the VNLSEs, which may also be coupled with bright and dark soliton 

solutions [23-24]. 

In this work we point out and experimentally demonstrate an interesting and, to the best of 

our knowledge, yet unreported, property of the MI associated with polarized waves. Namely, 

whenever the CW and its modulation are orthogonally polarized at the input of an optical fiber, 

the projection of the initial modulation on the spatially unstable sidebands is initially zero so that 

no MI is activated at the fiber input. Nevertheless, MI is progressively induced upon propagation 
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on the CW through cross-polarization modulation (XPolM): as a result, the break-up of the CW 

into a pulse train is still observed. However with two important differences with respect to the 

scalar case, namely: (i) only even harmonics of the initial modulation are present in the pulse 

train; (ii) the CW pedestal that accompanies MI-induced pulse trains in the scalar case is fully 

suppressed in the vector case, thus permitting in principle to achieve very large extinction ratios. 

The application of this effect to the all-optical generation of a 80-GHz high-contrast pulse train 

from a cross-polarized 40-GHz electro-optical weak modulation is experimentally demonstrated. 

 

2. Theory 

The propagation of a polarized optical field in randomly birefringent optical fibers with 

relatively low polarization mode-dispersion (PMD) may be described in dimensionless units in 

terms of the VNLSE [9] 
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Here z and t denote the distance and retarded time (in the frame travelling at the common group-

velocity) coordinates, respectively; whereas u and v indicate the two orthogonal polarization 

components of the field. Although we explicitly deal with the VNLSE in the integrable Manakov 

case, we point out that the phenomenon described below occurs for a generic ratio of the cross-to 

self-phase modulation coefficients as well. Let us consider the nonlinear evolution of a weakly 

modulated CW pump, which reads at z=0 as 
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where we take real carrier amplitudes u0, v0, with u0
2
+v0

2
=1; u,v, u,v and  are the initial 

modulation amplitudes, phases and frequency, respectively.  

As it is well known, in the anomalous GVD regime MI of the CW solution of Eqs. (1) 

occurs for perturbations (2) with the same state of polarization of the pump (i.e., whenever 

u=v) and modulation frequency  in the range , where c=2. The nonlinear 

evolution of the initial condition (2) leads to the development of a pulse train at the fundamental 

frequency , that is with temporal period T=2/Such pulse train exhibits a spatial recurrent 

behavior in z, i.e., it periodically forms and then returns back to the initial CW along the 

propagation distance. 

Moreover, whenever the harmonics of the initial modulation frequency (with, say, amplitude 

um for the m-th harmonic at frequency m) are also unstable (i.e., if with m>1), the 

nonlinear evolution of the weakly modulated pump (2) may also lead to the development of 

harmonic pulse trains, i.e. with periods Tm=2/(m. It is remarkable that these harmonic pulse 

trains typically appear at intermediate distances among the points of formation of the pulse trains 

at fundamental frequency . In this way, by simply adjusting the input pump power one may 

select at the fiber output a particular repetition rate among the fundamental and its harmonics. 

c0



mc
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Fig.1 : Surface and contour plots of the evolution with distance of the field amplitude |u|. Initial in-phase amplitude 

modulation with =1=0.8718, u=v=10
-2

u0, u=v=. 

 

The behavior of the solutions of the VNLSE reproduces the scalar situation in the case of 

input modulations with the same state of polarization of the pump. This is shown in Fig. 1 which 

displays the spatio-temporal evolution of the amplitude |u|, when the linearly polarized CW 

pump oriented at 45 degrees from the two degenerate axes of birefringence of the fiber (i.e., with 

u0
2
=v0

2
=1/2) is perturbed by an initial in-phase and parallel amplitude modulation with 

frequency =0.8718 (so that 21<c) and u=v=10
-2

u0, u=v=. As it can be seen from Fig.1, 

a primary pulse train with period T forms at approximately z=5 and z=20. At these distances, all 

harmonics of the fundamental frequency  are generated. Figure 1 also shows that near z=12 a 

harmonic secondary pulse train with period T2 =T/2 is formed. Clearly, though the second 

harmonic 2 is absent in the input perturbation (2), such component is generated along the fiber 

whenever the fundamental pulse train is formed, as shown by Fig. 2a, which provides the 

evolution of the amplitude of the first four (positive) harmonics m m=1,2,3,4.  
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Fig. 2 : Evolution with distance z of the amplitudes of the pump and its harmonics ui: (a) initial in-phase and 

parallel modulation, CW pump (blue solid curve), the sideband at frequency shift =+1 from the pump (red 

dashed curve), its second harmonic at =+21 (green dot-dashed curve), third harmonic =+31 (violet dot-

dashed curve), and fourth harmonic =+41 (pink dotted curve) corresponding to the case in Fig.1; (b) initial 

modulation orthogonal to the pump. 

 

Note also from Fig. 2a that the secondary train is composed of even harmonics only. 

Because of the symmetry of the field spectrum about the pump carrier frequency, sidebands with 

opposite frequency detuning from the pump have equal amplitudes. The evolution of the 

orthogonal polarization component amplitude |v| is not reported here, since it is identical to |u|. 

The generation of the harmonic pulse train may be controlled by varying the relative phase 

between the CW pump and the input modulation: as it was shown in Ref. [11], with  and 

in the case of quadrature modulation, that is whenever u=v=only the pulse train at the 

fundamental frequency is formed 
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Fig. 3 : Same as Fig.1, with a quadrature modulation that is orthogonal to the pump, i.e., with u =-v=. 

 

The situation may be radically different in the case of input modulations with a different 

state of polarization from the pump. As it is shown in Fig. 2b and Fig. 3, for orthogonally 

polarized pump and sidebands (u=-v=the pulse train at the fundamental frequency  is 

no longer generated: only a pulse train at the second harmonic frequency 2 is observed. Again 

the evolution of the orthogonal amplitude |v| is the same as the evolution of |u| and is not 

reported here. Unlike the case of modulations with the same state of polarization as the pump, 

whenever the pump and the sidebands are orthogonally polarized the evolutions of the two 

polarization amplitudes are unaffected by their relative phase. In fact, the contour plot of the 

pulse amplitude |u| which is obtained with u=0, v=is the same as that of Fig. 3 where u=-

v=. 

In order to better characterize the amplification process of the modulation in the crossed-

polarized mode of the seed and its nonlinear evolution, we have numerically integrated Eqs. (1) 

with fixed modulation amplitude and phase u =0, v= by varying the value of the sideband 

frequency detuning . The surface plot in Fig. 4a refers to a modulation frequency = , 2
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which corresponds to peak MI gain for parallel modulations: as it can be seen, the MI gain 

vanishes for orthogonal modulations. Indeed, Fig. 4a shows that there is no exponential growth 

of the initial modulation. Conversely, only periodic small oscillations are observed. On the other 

hand, as shown in Figs. 4b-c, harmonic pulse trains at frequency 2 are always observed as soon 

as , owing to the MI of the second harmonic of the initial modulation. Moreover, the 

modulation depth and the amplitude of the generated pulse train at the second-harmonic 

repetition rate grows larger as the sideband detuning is progressively reduced below =1.  

 

Fig. 4: Surface plot of the amplitude |u| with orthogonal input pump and sidebands u =0, v= and the different 

sideband modulation frequencies: (a) = (b) =0.5 and (c) =0.4. 

 

As it can be seen from Fig. 5a, whenever =0.5 the amplitude of the CW pump vanishes at 

the point of maximum pulse compression, which means that an ideal infinite extinction ratio is 

achieved. This can be explained as follows. In the theory of scalar nonlinear MI the normalized 

modulation frequency =1 is the frequency which allows complete depletion of the pump 

towards the modulation and its harmonics. In fact, while a normalized modulation frequency 

1

2,
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2  gives the maximum rate of conversion in the initial stage since it corresponds to 

nonlinear phase-matching, such rate is rapidly saturated by pump depletion which tends to drive 

the mixing interaction out of phase-matching (the new phase-matching frequency shifts towards 

lower frequencies). Conversely, a modulation with lower frequency, though being initially 

amplified at a lower rate, is progressively tuned towards nonlinear phase-matching by the pump 

depletion, the optimal condition corresponding indeed to a frequency =1 [8, 9]. In the cross-

polarization case examined here, this condition is realized when the second harmonic of the input 

modulation frequency is equal to =1, which results indeed into an optimal input frequency 

=0.5. In addition, Fig. 4c, 5b and 6b reveal that, whenever <0.5, in addition to the second 

harmonic pulse train, a secondary pulse train is formed at the fourth harmonic frequency 4, due 

to the parametric amplification owing to MI of the fourth harmonic. In particular, Fig. 6b shows 

that, for =0.4, the second harmonic pulse train that is formed at around z=14 only contains 

even harmonics of the initial modulation, whereas the fourth harmonic pulse train that forms at 

z=23 only contains the fourth harmonic and its multiples. 

 

Fig. 5 : Same as in fig.2, with reference to the cases in fig.4 with (a) =0.5 and (b) =0.4. 
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Fig. 6: Contour plots as in fig.5, with (a) =0.5 and (b) =0.4. 

 

The physical mechanism that leads to the generation of pulse trains at repetition rates equal 

to even harmonics of the initial modulation is that orthogonal perturbations affect the CW pump 

propagation through cross-phase modulation, which implies that the perturbation acts on the 

pump through its squared modulus. Therefore nothing is expected to change with respect to 

previous cases if we rotate both the sidebands and the input pump linear polarization by /4, so 

that we set in Eqs. (2) u0
2
=1, v0

2
=0, and u=0, v=0.01, u=v=. The corresponding nonlinear 

evolution of the MI is shown in Fig. 7, where we display the surface plots of the amplitudes |u| 

and |v| of both polarization components of the field, with 1 2 0.707  . As expected, even 

though the initial modulation in Eq. (2) only involves sidebands at frequency , also in this case 

even harmonics of the input modulation are created along the fiber by XPolM in the same 

polarization state of the pump wave. 
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Fig. 7 : Surface plots of the temporal evolution with distance of the field amplitudes |u| and |v|, exhibiting recursive 

behavior. Input pump in the u mode (u0=1, v0=0) and modulation at frequency 1 2 0.707  in the v mode, 

u=0, v=10
-2

, u=v=. Note also the different vertical scale. 

 

This case allows us to get a deeper insight into the XPolM activated MI process. In fact, it 

might be surprising that new frequencies are generated onto mode u through a modulation 

impressed onto an orthogonal mode (v), which interacts only through the cross-phase 

modulation. In order to gain a better understanding of the underlying mechanisms, it is 

convenient to consider a finite-number mode truncation [9] by inserting in Eqs. (1) the 

expressions u=u0(z) + u2(z) exp(i 2 t) + u-2(z) exp(-i2 t) and v= v1(z) exp(i  t) + v-1(z) exp(-

i t). By grouping terms of same frequency, one obtains a closed set of ODEs for the five 

Fourier modal amplitudes, which permits to isolate the mixing terms that are responsible for the 

generation of even harmonic frequency (0 ± 2u [henceforth the subscript indicates the mode 

to which the frequency belongs, while the frequency  within parenthesis is intended to be in 

real world units for dimensional consistency with the pump carrier frequency 0]. We find that 
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the latter are indeed generated as (0+2u = (0+v - (0-v + (0u and (0-2u = (0-v 

- (0+v + (0u, which entails two independent photon processes: (i) a pair at (0+2u and 

(0-v is generated by annihilating a pair at (0+v and  (0u ; (ii) a pair at (0-2u and 

(0+v is generated by annihilating a pair at (0-v and (0u. Overall, the simultaneous 

occurrence of these two processes creates two photons in the even sidebands (0 ± 2u at the 

expense of two photons of the sole input pump at (0u, while leaving unchanged the number of 

photons in the orthogonal signal [i.e., (0 ± v]. This description turns out to be consistent with 

the pure phase interaction between the pump mode u and the signal mode v. However, once the 

even modulation sidebands at (0 ± 2u are created through this double process, they are 

primarily amplified through the standard (scalar) mixing interaction which is behind seeded 

scalar MI, i.e., the direct generation of a photon pair at (0+2u and (0-2u at the expense of 

two photons at pump frequency (0u. This explains why the XPolM mechanism is only efficient 

when the normalized modulation frequency 2 falls within the bandwidth of scalar MI ( <  

in normalized units. At this point, we may also emphasize that such complicated multi-photon 

process could remarkably lead to the spatially periodic evolution of the amplification of even 

harmonic modulations, as it is shown in Fig. 7. In this sense, because of the competition between 

the XPolM and the scalar MI effects, the occurrence of XPolM-MI could also be viewed as a 

stabilization of the input pump against its decay into sideband pairs with the same polarization 

owing to spontaneous MI (i.e., due to amplification of noise). However, over long propagation 

distances (i.e. several spatial periods of the amplification of cross-polarized even harmonics, well 

beyond the length used in the experiment), the spontaneous MI of the pump is expected to 

hamper the recurrence of the seeded process, a problem which remains far beyond the scope of 

this paper and that will be addressed in details in a future study.  



 14 

From the practical point of view, the interest of using cross-polarized sidebands in optical 

fibers is twofold. First of all, orthogonal modulations may be exploited whenever one wants to 

avoid the MI altogether. In fact, pump MI is fully suppressed as long as  (as opposed to 

for the case of parallel sidebands). In addition, Fig.1 shows that even when  the 

harmonic pulse train only develops after a distance which is more than twice the distance for the 

development of the fundamental pulse train. Thus if one wants to avoid MI, the limitation to the 

maximum fiber length (or pump power) is substantially mitigated. On the other hand, using 

cross-polarized sidebands leads to the possibility to impress a full modulation onto a CW laser at 

even multiples (2-4) of the initial frequency detuning of the seed. By full modulation we 

mean that a large extinction ratio is obtained, thanks to the absence of the residual CW pedestal 

which always accompanies the fundamental pulse train generated by scalar MI, clearly visible in 

Fig. 2a. Note also from Fig.4c, 5b and 6b, that the quadrupling of the initial modulation 

frequency is observed at the relatively large distance z=23. This distance can be reduced 

substantially by increasing the relative strength of the initial modulation. See for example Fig. 8, 

where, as in Fig. 7, we have set in Eqs. (2) u0
2
= 1, v0

2
=0, and u=0, u=v=, but we increased 

the orthogonal input modulation amplitude by ten times to have v=0.1: as it can be seen in Fig. 

8, in this case frequency doubling is observed at z=8 (down from z=14 with v=0.01) and 

frequency quadrupling at z=14 (down from z=23 with v=0.01). 

1

2 1
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Fig. 8 : CW and sideband (a) amplitudes and (b) contour plot in the u mode with =, u=0, v=10
-1

, u=v=. 

 

By turning from dimensionless to real units, the input pump power P reads as P=(Zc)
-1

, 

where  = n2/(cAeff) is the fiber nonlinear coefficient,  is the pump carrier frequency, n2 is the 

nonlinear refractive index, and Aeff is the effective core area of the fiber. Moreover in Eqs.(1) 

z=Z/Zc and t=T/Tc, where Z and T are distance and time in real-world units, the dispersion length 

Zc=Tc
2
/|2|, Tc=/(2), 2 is the fiber chromatic dispersion at the pump frequency, and  is 

the real-world frequency of the input modulation. For instance, taking the nonlinear coefficient 

of a highly nonlinear fiber =12 W
-1

km
-1

 and P=400 mW, one obtains Zc=208 m, so that the 

distance z=14 as in Figs. (5-6) corresponds to an effective fiber length Z=2.9 km. With 2=-12 

ps
2
/km one obtains Tc=1.6 ps, so that =0.4 corresponds to  GHz. In the following section 

we show that the observation of the phenomenon can also be carried out in dispersion-shifted 

low-PMD fiber with standard nonlinear coefficient. 

 

 

(a) 

(b) 
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3. Experiments  

In this section we will confirm the theoretical predictions of the previous section, and 

experimentally show that one can produce a fully modulated periodic pulse train at the repetition 

rate of 80 GHz, that is well beyond the capabilities of electrically-driven modulators. The 

experimental setup is sketched in Figure 9. A continuous pump wave is generated by a laser 

diode emitting polarized light at 1555 nm. A first intensity modulator driven by a 40-GHz RF 

clock is then used to generate sidebands on either side of the pump frequency. Two of these 

sidebands will be used in the second part of this set-up to generate the sinusoidal signal wave. 

 

 

Fig. 9 : Experimental set up. EDFA: Erbium-Doped Fiber Amplifier. POL : polarizer. OSO: Optical Sampling 

Oscilloscope. OSA: Optical Spectrum Analyzer. 
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In order to inhibit the stimulated Brillouin scattering (SBS) effect that may occur in the 

optical fiber, a phase modulator is inserted into the setup so as to increase the spectral linewidth 

of the pump wave. The phase modulator is driven by a 28-dBm 85-MHz RF signal, thus enabling 

to work at relatively high pump powers, still being far below the SBS threshold. Moreover, in 

order to increase significantly the peak power involved in our experiment while keeping an 

average power below the SBS threshold, we have temporally carved the emitting light beam 

thanks to a second intensity modulator. More precisely, a 250-ps square pulse train at a repetition 

rate of 4 GHz (1/10 of the RF clock frequency of the first intensity modulator) is carved into the 

light beam thanks to a RF sequence of 4 bits (0010) so as to create a block of 10 initial signal 

periods with a duty cycle of 1:4. We would like to emphasize that such pulses provide a quasi-

CW condition since the expected temporal modulation period will be around 12.5 ps. The light 

beam is then amplified and split owing to an EDFA and a 50:50 coupler, respectively. At this 

stage, pump and signal waves are spectrally separated by means of two programmable optical 

filters (Finisar Waveshaper) while their polarizations are independently adjusted by means of 

polarization controllers (PC) so as to emerge orthogonally (or parallel) polarized. Finally, pump 

and signal waves are re-combined before their amplification and injection into the optical fiber. 

The optical fiber used in our experiment was provided by Prysmian Group and has a length of 

5100 m, a chromatic dispersion of D= 4.7 ps/nm/km, a dispersion slope S = 0.05 ps/nm
2
/km and 

a nonlinear coefficient  = 1.7 W
-1

.km
-1

. This fiber has a very low PMD equal to 0.02 ps/km
1/2

. 

After propagation, the resulting signal was analyzed both in spectral and temporal domains by 

means of an Optical Spectrum Analyzer and a high bandwidth Optical Sampling Oscilloscope 

(EXFO PICOSOLVE), respectively. 
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In a first step, in order to experimentally determine the frequency at which the peak 

amplification of noise due the scalar MI (corresponding to peak gain of scalar MI or nonlinear 

phase-matching condition) is observed, only the pump wave is injected into the fiber. For a pump 

average power of 22 dBm (corresponding to 28 dBm peak power owing to the 1:4 duty cycle), 

our measurements show that the spontaneous scalar MI peaks at a frequency MI = 82 GHz, 

consistently with the theoretical predictions obtained from the fiber parameters provided by the 

manufacturer.  

In the second part of the experiment, pump and signal waves are injected into the fiber with 

parallel polarizations. The initial frequency modulation was fixed to about half of the scalar MI 

frequency MI / 2 = 40 GHz, determined in the first part of the experiment. The output 

spectral and temporal profiles are illustrated in Fig. 10 for a pump power of 19.7 dBm. As can be 

seen, and as predicted by the numerical calculations, one obtains a nearly triangular spectrum 

[see Fig. 10(b)], containing several harmonics of the initial modulation [25]. In the temporal 

domain [see Fig. 10(a)], one observes a compression of the initial sinusoidal beating, leading to 

the generation of pulses at a bit rate equal to the initial frequency modulation (40 GHz).  

 
 

Fig. 10 : (a) Temporal profiles at the input (dashed line) and output (solid line) of the fiber when pump and signal 

waves have parallel polarization states (b) Experimental spectrum at the output of the fiber for input parallel 

polarized pump and signal and for a pump power of 19.7 dBm. Note that the output polarizer was oriented parallel 

to the pump polarization. 
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Finally, the pump and signal waves were injected into the fiber with orthogonal linear 

polarization statesThe pump average power was fixed to 20.5 dBm whereas the signal power on 

the orthogonal axis was set to 10.5 dBm. The residual part of the signal wave on the pump axis 

was measured to be less than -6 dBm.  

 
 

Fig. 11 : (a) Experimental temporal profiles at the input (dashed line) and output (solid line) of the fiber for 

orthogonal polarized pump and signal waves. (b) Corresponding output experimental spectrum. The output 

polarizer was oriented parallel to the pump polarization. 

 

Figure 11(a) and (b) show the temporal and spectral profiles of the light wave at the output of the 

fiber when the analyzer was oriented parallel to the polarization of the emerging pump beam. As 

it can be seen, and contrary to the previous results shown in Figs. 10 obtained in the parallel 

polarizations case, the spectrum is now dominated by even harmonics at frequency k*80 GHz 

(k=1,2,…), whereas no exponential growth of the initial modulation is observed at 40 GHz. 

Indeed, in good agreement with the theoretical predictions of XPolM-MI in Section 2, the 

generation and amplification of the second harmonic of the modulation is obtained by using an 

initial frequency modulation fixed at about half of the peak gain frequency of scalar MI: MI / 2 

= 40 GHz. As illustrated in Fig. 11(a), in the temporal domain, this spectral feature is associated 

with the generation of a pulse train at twofold the initial signal frequency, corresponding to the 
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second-harmonic repetition rate of 80 GHz, in good qualitative agreement with the numerical 

predictions of Fig. 12, obtained from the numerical resolution of VNLSE. The experimental 

generated pulses have a nearly Gaussian shape with a temporal full width at half maximum of 4 

ps. Note that the residual initial signal harmonics at 40 GHz and -40 GHz around -20 dBm, 

visible in Fig. 11(b), lead to a weak additional intensity modulation of the pulse train at a period 

of 25 ps.  

  

  

Fig. 12 : (a) Temporal and spectral profiles obtained from numerical simulations when the pump and signal waves 

are injected with orthogonal polarizations. 

 

4. Conclusions 

In this work we have theoretically predicted and experimentally demonstrated that, by using 

an orthogonally polarized pump and modulation signal at the input of a low-PMD, randomly 

birefringent optical fiber, only even harmonics of the modulation are amplified at the fiber 

output. Indeed, our experiments have shown the generation of a 80-GHz optical pulse train from 

a 40 GHz modulated signal in the telecom C band by using crossed pump and modulation using 

a nonzero dispersion shifted fiber. 
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Figure Captions 

 

1. Surface and contour plots of the evolution with distance of the field amplitude |u|. Initial in-

phase amplitude modulation with =1=0.8718, u=v=10
-2

u0, u=v=. 

2. Evolution with distance z of the amplitudes of the pump and its harmonics ui: (a) initial in-

phase and parallel modulation, CW pump (blue solid curve), the sideband at frequency shift 

=+1 from the pump (red dashed curve), its second harmonic at =+21 (green dot-dashed 

curve), third harmonic =+31 (violet dot-dashed curve), and fourth harmonic =+41 (pink 

dotted curve) corresponding to the case in Fig.1; (b) initial modulation orthogonal to the pump.  

3. Same as fig.1, with a quadrature modulation that is orthogonal to the pump, i.e., with u =-

v=. 

4. Surface plot of the amplitude |u| with orthogonal input pump and sidebands u =0, v= and 

the different sideband modulation frequencies: (a) = (b) =0.5 and (c) =0.4. 

5. Same as in fig.2, with reference to the cases in fig.4 with (a) =0.5 and (b) =0.4. 

6. Contour plots as in fig.4, with (a) =0.5 and (b) =0.4. 

7. Surface plots of the temporal evolution with distance of the field amplitudes |u| and |v|, 

exhibiting recursive behavior. Input pump in the u mode (u0=1, v0=0) and modulation at frequency 

1 2 0.707  in the v mode, u=0, v=10
-2

, u=v=. Note also the different vertical scale. 

8. CW and sideband (a) amplitudes and (b) contour plot in the u mode with =,  u=0, 

v=10
-1

, u=v=. 

9. Experimental set up. EDFA: Erbium-Doped Fiber Amplifier. POL : polarizer. OSO: Optical 

Sampling Oscilloscope. OSA: Optical Spectrum Analyzer. 

2,
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10. (a) Temporal profiles at the input (dashed line) and output (solid line) of the fiber when pump 

and signal waves have parallel polarization states (b) Experimental spectrum at the output of the 

fiber for parallel polarized pump and signal and for a pump power of 19.7 dBm. Note that the 

output polarizer was oriented parallel to the pump polarization. 

11. : (a) Experimental temporal profiles at the input (dashed line) and output (solid line) of the 

fiber for orthogonal polarized pump and signal waves. (b) Corresponding output experimental 

spectrum. The output polarizer was oriented parallel to the pump polarization. 

12. (a) Temporal and spectral profiles obtained from numerical simulations when the pump and 

signal waves are injected with orthogonal polarizations. 
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Figure 3 
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Figure 5 

 

 

Figure 6 
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Figure 7 

 

Figure 8 

  

(a) 

(b) 



 31 

 

Figure 9 

 

 
 

Figure 10 

 

  

-60 -40 -20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time [ps]

In
te

n
s
it
y
 [

a
rb

. 
u
n
it
.]

-0.5 0 0.5

-50

-40

-30

-20

-10

0

Frequency [THz]

In
te

n
s
it
y
 [

a
rb

. 
u
n
it
.] (b) (a) 



 32 

 
 

Figure 11 

 

  

  

Figure 12 
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