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Abstract

We study the large time behavior of non-negative solutions to the singular diffusion
equation with gradient absorption

∂tu−∆pu+ |∇u|q = 0 in (0,∞)× R
N ,

for pc := 2N/(N+1) < p < 2 and p/2 < q < q∗ := p−N/(N+1). We prove that there
exists a unique very singular solution of the equation, which has self-similar form and
we show the convergence of general solutions with suitable initial data towards this
unique very singular solution.
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1 Introduction and results

The aim of the present paper is to study the large time behavior of non-negative solutions
to the following equation with singular diffusion and gradient absorption:

∂tu−∆pu+ |∇u|q = 0, (t, x) ∈ Q∞ := (0,∞) × R
N , (1.1)

for pc := 2N/(N + 1) < p < 2 and p/2 < q < q∗ := p − N/(N + 1). We consider only
non-negative initial data

u(0, x) = u0(x), x ∈ R
N , (1.2)

under suitable decay and regularity assumptions that will be specified later. Equation (1.1)
presents a competition between the effects of the two terms: one term of singular diffusion
∆pu := div

(

|∇u|p−2∇u
)

, which in our case is supercritical (that is, p > pc = 2N/(N +1))
in order to avoid extinction in finite time, and another term of nonlinear absorption de-
pending on the gradient |∇u|q. Due to this competition, interesting mathematical features
appear in some ranges of exponents p and q.

The qualitative theory of (1.1) for general exponents p and q developed very recently;
indeed, while there are many (even classical ones) papers on nonlinear diffusion equations
with zero order absorption, covering almost all possible cases, the study of the gradient
absorption proved to be much more involved and brought a bunch of very interesting
mathematical phenomena, some of them having been the subject of intensive research
in the last decade. As expected, the first results were obtained in the semilinear case
p = 2, where the asymptotic behavior for q > 1 has been identified in a series of papers
[4, 5, 7, 11, 12, 19, 20]. Finite time extinction was shown to take place for q ∈ (0, 1) [8, 9, 20]
while the critical case q = 1, in spite of its apparent simplicity, is still far from being fully
understood: only some large-time estimates are available [10] but no precise asymptotics.
Passing to the p-Laplacian is a natural step, and for the slow-diffusion case p > 2, the
exponent q = p−1 proved to have a very interesting critical effect, as an interface between
absorption-dominated behavior and diffusion-dominated behavior [3, 28], while itself gives
rise to a critical regularized sandpile-type behavior, as shown recently in [24]. A natural
next step was then to pass to the study of the fast-diffusion case 1 < p < 2, where the
authors made important progress recently in understanding the decay rates and typical
self-similar profiles [22, 23]. In particular, finite time extinction was shown to take place
when (p, q) ranges in (pc, 2) × (0, p/2) and in (1, pc) × (0,∞) while diffusion is likely to
govern the large time dynamics when (p, q) ∈ (pc, 2) × (q∗,∞). The intermediate range
(p, q) ∈ (pc, 2) × (p/2, q∗) features a balance between the diffusion and absorption terms
and is the focus of this paper.

From now on, we restrict ourselves to the following range of exponents:

p ∈ (pc, 2) and q ∈
(p

2
, q∗

)

, (1.3)

and we set

α :=
p− q

2q − p
> 0 , β :=

q − p+ 1

2q − p
> 0 and η :=

1

N(p − 2) + p
> 0 , (1.4)

the positivity of η being a consequence of p > pc. We also observe that, thanks to (1.3),

α−Nβ =
(N + 1)(q∗ − q)

2q − p
> 0 . (1.5)
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In order to state the main result concerning the large-time behavior, we recall a special
category of solutions to (1.1), that are called very singular solutions. These are solutions
to (1.1) with an initial trace at t = 0 more concentrated at the origin than a Dirac mass,
thus justifying the name. The precise definition is given in Definition 4.1 at the beginning
of Section 4.

The name very singular solution has been introduced in [14] for the heat equation with
absorption of order zero. After this first paper, many other very singular solutions for
diffusion equations with absorption terms were constructed, see [15, 27, 29, 31, 33, 35] and
the references therein. For (1.1), we have established in [23, Theorem 1.1] the existence and
uniqueness of such a very singular solution to (1.1), under the more restrictive hypothesis
of radial symmetry and self-similarity. We recall this result for the reader’s convenience
as Theorem 4.2 below. For the moment, let us denote this unique radially symmetric,
self-similar very singular solution by U with

U(t, x) := t−αfU (xt
−β), (t, x) ∈ Q∞. (1.6)

The main result about large time behavior is the following:

Theorem 1.1. Let u0 be a function such that

u0 ∈ L1(RN ) ∩W 1,∞(RN ) , u0 ≥ 0 , u0 6≡ 0 . (1.7)

and
lim

|x|→∞
|x|α/βu0(x) = 0. (1.8)

Then, the following large time behavior holds true:

lim
t→∞

tα‖u(t)− U(t)‖∞ = 0, (1.9)

where U is the unique radially symmetric self-similar very singular solution to (1.1) intro-
duced in (1.6).

In order to prove Theorem 1.1, several steps are needed, some of them being also very
interesting by themselves. A very important element of the proof is identifying the possible
limits as t→ ∞, that we can prove to be very singular solutions in the sense of Definition 4.1
by viscosity techniques. Thus, the circle will be closed by the following general uniqueness
result.

Theorem 1.2. There exists a unique very singular solution to (1.1) in the sense of Defi-
nition 4.1. In particular, this solution is radially symmetric and in self-similar form and
it coincides with U .

This theorem is an important extension of [23, Theorem 1.1], where the uniqueness of
a very singular solution is established under the extra conditions of radial symmetry and
self-similar form. An interesting by-product of Theorem 1.2 is a comparison principle for
the elliptic equation

−∆pv + |∇v|q − αv − βx · ∇v = 0, x ∈ R
N ,

under suitable conditions as |x| → ∞. For a precise form of the statement, we refer the
reader to Theorem 4.15 below.
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On the way to proving Theorem 1.2, we found out that a theory of the Cauchy prob-
lem associated to (1.1) with non-negative and bounded measures as initial data had to
developed. We thus prove an interesting result of well-posedness for (1.1) for such initial
data which extends to p ∈ (pc, 2) the existing one for the semilinear case p = 2 [6, 11] but
holds true only if the singular diffusion equation ∂tv−∆pv = 0 in Q∞ is well-posed in this
setting. However, this issue seems to be still an open question for general non-negative
and bounded measures but the answer is positive for Dirac masses which is exactly what
is needed for the proof of Theorem 1.2.

Theorem 1.3. Consider a non-negative bounded Borel measure u0 ∈ M+
b (R

N ). If the
singular diffusion equation

∂tv −∆pv = 0 in Q∞ ,

v(0) = u0 in R
N ,

has a unique solution v ∈ C([0,∞);M+
b (R

N )) ∩ C(Q∞), then there exists a unique non-
negative function u ∈ C(Q∞) which is a viscosity solution to (1.1) in Q∞ and satisfies

lim
t→0

∫

RN

ψ(x) u(t, x) dx =

∫

RN

ψ(x) du0(x) (1.10)

for any bounded and continuous function ψ ∈ BC(RN). Moreover, u(t) belongs to L1(RN )∩
W 1,∞(RN ) for all t > 0 and satisfies

‖u(t)‖1 ≤M0 :=

∫

RN

du0(x) , (1.11)

as well as the following estimates

‖u(t)‖1 + tNη‖u(t)‖∞ ≤ Cs(M0) , (1.12)

and
‖∇u(t)‖∞ ≤ Cs(M0)

(

1 + t(N+1)(q∗−q)η/(p−q)
)

t−(N+1)η , (1.13)

where Cs ∈ C([0,∞)) is a positive function depending only on N , p, and q.

The proof of this theorem is technical and quite involved, as usual when dealing with mea-
sures, since the lack of regularity does not allow to apply some of the standard techniques.
In particular, Theorem 1.3 also implies the existence and uniqueness of a fundamental
solution with any given mass M > 0 to (1.1), as it is explained at the end of Section 3.

Organisation of the paper. We collect in Section 2 many technical results and estimates
needed in the sequel, in the form of separate lemmas. These include: a rigorous definition
of viscosity solutions, decay estimates, estimates on the tail of the solution at sufficiently
large times, and estimates of the solutions for small times, which are useful tools for
identifying the initial trace. We agree that this section is a bit technical, but this allows us
to state more clearly the main ideas and steps in the proofs of our main results. A reader
who is not so interested in technical details could skip this part and admit the technical
lemmas, or come back to it later.

Section 3 is devoted to the proof of Theorem 1.3. The proof is divided into two steps: we
first construct a solution to (1.1) by classical approximation arguments. We next proceed

4



to show the uniqueness of the solution which is actually the main contribution of this
section. We then pass to the proof of Theorem 1.2, which occupies almost all Section 4
and is divided into several steps: we first construct a maximal and a minimal element in
the class of the very singular solutions to (1.1). Then, we find that these two solutions are
identical, by identifying both of them with the unique radially symmetric and self-similar
very singular solution U , and we end up with the proof of the comparison principle for the
associated elliptic equation. We end the paper with the proof of Theorem 1.1, to which
Section 5 is devoted. It relies on the half-relaxed limits technique and is rather short, since
most of the needed technical facts were already done in previous sections.

2 Well-posedness and decay estimates

In this section, we collect previous results on the well-posedness of (1.1) as well as some
qualitative properties of the solutions. Let us first recall the notion of solutions we use
throughout the paper.

2.1 Viscosity solution

As in our previous works [22, 23], a suitable notion of solution for equation (1.1) is that of
viscosity solution, which is useful in dealing with the gradient term. Due to the singular
character of (1.1) at points where ∇u vanishes, the standard definition of viscosity solution
has to be adapted to deal with this case [25, 26, 30]. In fact, it requires to restrict the class of
comparison functions [25, 30]. More precisely, let F be the set of functions f ∈ C2([0,∞))
satisfying

f(0) = f ′(0) = f ′′(0) = 0, f ′′(r) > 0 for all r > 0, lim
r→0

|f ′(r)|p−2f ′′(r) = 0.

For example, f(r) = rσ with σ > p/(p−1) > 2 belongs to F . We then introduce the class A
of admissible comparison functions ψ defined as follows: a function ψ ∈ C2(Q∞) belongs to
A if, for any (t0, x0) ∈ Q∞ where ∇ψ(t0, x0) = 0, there exist a constant δ > 0, a function
f ∈ F , and a modulus of continuity ω ∈ C([0,∞)), (that is, a non-negative function
satisfying ω(r)/r → 0 as r → 0), such that, for all (t, x) ∈ Q∞ with |x− x0|+ |t− t0| < δ,
we have

|ψ(t, x) − ψ(t0, x0)− ∂tψ(t0, x0)(t− t0)| ≤ f(|x− x0|) + ω(|t− t0|).

With these notations, viscosity solutions to (1.1) are defined as follows [25, 26, 30]:

Definition 2.1. An upper semicontinuous function u : Q∞ → R is a viscosity subsolution
to (1.1) in Q∞ if, whenever ψ ∈ A and (t0, x0) ∈ Q∞ are such that

u(t0, x0) = ψ(t0, x0), u(t, x) < ψ(t, x) for all (t, x) ∈ Q∞ \ {(t0, x0)},

then
{

∂tψ(t0, x0) ≤ ∆pψ(t0, x0)− |∇ψ(t0, x0)|
q if ∇ψ(t0, x0) 6= 0,

∂tψ(t0, x0) ≤ 0 if ∇ψ(t0, x0) = 0.

A lower semicontinuous function u : Q∞ → R is a viscosity supersolution to (1.1) in Q∞

if, whenever ψ ∈ A and (t0, x0) ∈ Q∞ are such that

u(t0, x0) = ψ(t0, x0), u(t, x) > ψ(t, x) for all (t, x) ∈ Q∞ \ {(t0, x0)},
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then
{

∂tψ(t0, x0) ≥ ∆pψ(t0, x0)− |∇ψ(t0, x0)|
q if ∇ψ(t0, x0) 6= 0,

∂tψ(t0, x0) ≥ 0 if ∇ψ(t0, x0) = 0.

A continuous function u : Q∞ → R is a viscosity solution to (1.1) in Q∞ if it is a viscosity
subsolution and supersolution.

A remarkable feature of this modified definition is that basic results about viscosity solu-
tions, such as comparison principle and stability property, are still valid, see [30, Theorem
3.9] (comparison principle) and [30, Theorem 6.1] (stability). The relationship between
viscosity solutions and other notions of solutions is investigated in [26]. From now on, by
a solution to (1.1) we mean a viscosity solution in the sense of Definition 2.1 above.

With this notion of solution to (1.1), we have the following well-posedness result [22,
Theorem 6.2].

Proposition 2.2. Assume that u0 is a function satisfying the conditions (1.7). Then there
exists a unique non-negative function u ∈ C([0,∞) × R

N ) which is a viscosity solution to
(1.1) in Q∞ and satisfies u(0) = u0. In addition, u(t) ∈ L1(RN ) ∩W 1,∞(RN ) for each
t > 0 and u is also a weak solution to (1.1)-(1.2) in the following sense:
∫

RN

(u(t, x) − u(s, x))ψ(x) dx +

∫ t

s

∫

RN

(

|∇u|p−2∇u · ∇ψ + |∇u|qψ
)

dx dτ = 0, (2.1)

for any 0 ≤ s < t <∞ and ψ ∈ C∞
0 (RN ).

As usual for homogeneous parabolic equations, the radial symmetry and monotonicity are
preserved, as the following result states.

Lemma 2.3. If u0 satisfies (1.7) and is radially symmetric and non-increasing with respect
to |x|, then the same properties hold true for u(t), for any t > 0.

Proof. The radial symmetry of u(t) for positive times t > 0 follows readily from the
rotational invariance of (1.1) and the well-posedness of (1.1). Next, we can write u(t, x) =
u(t, |x|) = u(t, r), and it satisfies

∂tu− (p − 1)|∂ru|
p−2∂2ru−

N − 1

r
|∂ru|

p−2∂ru+ |∂ru|
q = 0.

At a formal level, it is clear that the zero function is a solution to the equation satisfied
by ∂ru (which can be derived by differentiating the above equation for u), and the claimed
monotonicity follows from the comparison principle since ∂ru0 ≤ 0. Thanks to the unique-
ness of solutions to (1.1), this argument can be made rigorous by standard approximations,
as in [22].

A classical property of parabolic equations is that a modulus of continuity in space entails
a modulus of continuity in time. In that direction, we have the following result which can
be proved as [18, Lemma 5].

Lemma 2.4. Consider an initial condition u0 satisfying (1.7) and let u be the correspond-
ing solution to (1.1)-(1.2). Assume further that there are τ ≥ 0 and A > 0 such that
‖∇u(t)‖∞ ≤ A for all t ∈ [τ,∞). Then there is C2 > 0 depending only on N , p, and q
such that

|u(t, x) − u(s, x)| ≤ C2

[

(1 +A) |t− s|1/2 +Aq |t− s|
]

, t > s ≥ τ . (2.2)
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2.2 Decay estimates

We next recall temporal decay estimates in L1(RN ) andW 1,∞(RN ) which are consequences
of the analysis performed in [22] and depend on the behavior of the initial data as |x| → ∞.

Proposition 2.5. Assume that u0 satisfies (1.7) and denote the corresponding solution to
(1.1)-(1.2) by u. Then there is a constant C > 0 depending only on N , p, and q such that

|∇u(t, x)| ≤ C
(

‖u(s)‖1/αp∞ + (t− s)−1/p
)

(u(t, x))2/p , 0 ≤ s < t , x ∈ R
N . (2.3)

In addition, if M is such that M ≥ ‖u0‖1, then the estimates (1.12) and (1.13) hold true
with Cs(M) instead of Cs(M0).

Proof. The estimate (2.3) is a straightforward consequence of [22, Theorem 1.3 (i) & (ii)],
while (1.12) follows by comparison with the solution v to the diffusion equation

∂tv −∆pv = 0 in Q∞ , (2.4)

v(0) = u0 in R
N , (2.5)

see [17] for instance. Indeed, we obviously have u ≤ v in Q∞ by the comparison principle
and, since p > pc, we deduce from [17, Lemma III.6.1 & Theorem III.6.2] (with r = 1 and
R = ∞) that

‖v(t)‖1 ≤ C ‖u0‖1 and ‖v(t)‖∞ ≤ C ‖u0‖
pη
1 t−Nη (2.6)

for t > 0. Finally, (1.13) readily follows from (2.3) (with s = t/2) and (1.12).

For initial data decaying sufficiently fast as |x| → ∞, faster temporal decay estimates
were also supplied in [22, Theorem 1.2], which are only valid when p and q satisfy (1.3).

Proposition 2.6. Assume that u0 satisfies (1.7) as well as

0 ≤ u0(x) ≤ κ |x|−α/β , x ∈ R
N , (2.7)

for some κ > 0, and denote the corresponding solution to (1.1)-(1.2) by u. Then there is
a constant Kκ > 0 depending only on N , p, q, and κ such that

tα−Nβ‖u(t)‖1 + tα‖u(t)‖∞ + tα+β‖∇u(t)‖∞ ≤ Kκ, t > 0. (2.8)

The precise dependence of Kκ on the parameters is not stated in [22, Theorem 1.2 (i)]
but can be recovered by inspecting the proofs of [22, Theorem 1.2 (i) & Lemma 5.1].

2.3 Small time estimates

The previous decay estimates allow us to analyze precisely the behavior of solutions to (1.1)
for small times, a fact which will be of utmost importance when considering non-smooth
or even singular initial data.

Proposition 2.7. Assume that u0 satisfies (1.7) and denote the corresponding solution to
(1.1)-(1.2) by u.
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(a) Let ψ ∈ C∞
0 (RN ) and T > 0. If M is such that M ≥ ‖u0‖1, there exists a constant

C(M,T ) > 0 depending only on N , p, q, M , and T such that, for t ∈ (0, T ),

∣

∣

∣

∣

∫

RN

(u(t, x) − u0(x)) ψ(x) dx

∣

∣

∣

∣

≤C(M,T )
[

‖ψ‖∞ t(N+1)(q∗−q)η + ‖∇ψ‖p/(2−p) t
1/p
]

.

(2.9)

(b) Let ψ ∈ C∞
0 (RN ) be a non-negative function such that ψ(x) = 0 for x ∈ Br(0) for

some r > 0. If u0 satisfies (2.7) for some κ > 0, there exists a constant C(κ, r) > 0
depending only on N , p, q, κ, and r such that, for t > 0,

∫

RN

u(t, x) ψ(x) dx ≤

∫

RN

u0(x) ψ(x) dx+ C(κ, r)‖∇ψ‖p/(2−p) t
1/p . (2.10)

Proof. Case (a). Let ψ ∈ C∞
0 (RN ), T > 0, and t ∈ (0, T ). It follows from (2.1) that

∣

∣

∣

∣

∫

RN

(u(t, x)− u0(x)) ψ(x) dx

∣

∣

∣

∣

≤

∫ t

0

∫

RN

(

|∇u(s, x)|p−1 |∇ψ(x)| + |∇u(s, x)|q ψ(x)
)

dx ds.

(2.11)

To estimate the gradient terms in the right-hand side of (2.11), we first notice that (2.3)
and (1.12) give for (s, x) ∈ Q∞

|∇u(s, x)| ≤ C

[

∥

∥

∥
u
(s

2

)
∥

∥

∥

1/αp

∞
+ s−1/p

]

(u(s, x))2/p ,

≤ C(M)
[

s−Nη/αp + s−1/p
]

(u(s, x))2/p . (2.12)

Now, we infer from (1.12) and (2.12) that

∫

RN

|∇u(s, x)|q |ψ(x)| dx ≤C(M) ‖ψ‖∞

[

s−qNη/αp + s−q/p
]

‖u(s)‖(2q−p)/p
∞ ‖u(s)‖1

≤C(M) ‖ψ‖∞

[

s−Nη/α + s−((N+1)q−N)η
]

.

Observing that

1−
Nη

α
=

(N + 1)(q∗ − q)pη

p− q
> 0,

1− ((N + 1)q −N)η = (N + 1)(q∗ − q)η > 0

by (1.3), we integrate the above inequality over (0, t) and obtain

∫ t

0

∫

RN

|∇u(s, x)|q|ψ(x)| dx ds

≤C(M) ‖ψ‖∞

[

t(N+1)(q∗−q)pη/(p−q) + t(N+1)(q∗−q)η
]

≤C(M) ‖ψ‖∞

[

1 + t(N+1)(q∗−q)qη/(p−q)
]

t(N+1)(q∗−q)η. (2.13)

8



Similarly, by (2.12) and Hölder’s inequality,
∫

RN

|∇u(s, x)|p−1 |∇ψ(x)| dx

≤ C(M)
[

s−(p−1)Nη/αp + s−(p−1)/p
]

∫

RN

(u(s, x))2(p−1)/p |∇ψ(x)| dx

≤ C(M)
[

s−(p−1)Nη/αp + s−(p−1)/p
]

‖u(s)‖
2(p−1)/p
1 ‖∇ψ‖p/(2−p)

≤ C(M)
[

1 + s(p−1)(N+1)(q∗−q)η/(p−q)
]

‖∇ψ‖p/(2−p) s
−(p−1)/p,

hence, after integrating over (0, t),

∫ t

0

∫

RN

|∇us, x)|p−1 |∇ψ(x)| dx ds

≤C(M)
[

1 + t(p−1)(N+1)(q∗−q)η/(p−q)
]

‖∇ψ‖p/(2−p) t
1/p.

(2.14)

Combining (2.11), (2.13), and (2.14) gives (2.9).

Case (b). Let t > 0 and a non-negative function ψ ∈ C∞
0 (RN ). Since u0 satisfies (2.7), it

follows from (2.3) and (2.8) that, for (s, x) ∈ Q∞,

|∇u(s, x)| ≤ C

[

∥

∥

∥
u
(s

2

)
∥

∥

∥

1/αp

∞
+ s−1/p

]

(u(s, x))2/p ,

≤ C(κ) s−1/p (u(s, x))2/p . (2.15)

Owing to the non-negativity of ψ, it follows from (2.1) and (2.15) that

∫

RN

(u(t, x)− u0(x)) ψ(x) dx ≤

∫ t

0

∫

RN

|∇u(s, x)|p−1 |∇ψ(x)| dx ds

≤C(κ)

∫ t

0

∫

RN

(u(s, x))2(p−1)/p |∇ψ(x)| s−(p−1)/p dx ds .

We now use again the decay property (2.7) of u0 together with [22, Equation (5.5)] to
conclude that u(s, x) ≤ C(κ) |x|−α/β for (s, x) ∈ Q∞. Since ψ vanishes in Br(0) then so
does ∇ψ and, by Hölder’s inequality,

∫

RN

(u(t, x) − u0(x)) ψ(x) dx ≤C(κ)

∫ t

0

∫

{|x|>r}
|x|−2(p−1)α/pβ |∇ψ(x)| s−(p−1)/p dx ds

≤C(κ) t1/p

(

∫

{|x|>r}
|x|−α/β dx

)2(p−1)/p

‖∇ψ‖p/(2−p) ,

from which (2.10) follows since α/β > N by (1.5).

2.4 Tail behavior

We end this section with a control on the tail of solutions to (1.1)-(1.2). We first establish
a pointwise estimate by showing the existence of a universal upper bound (also refered to
as a friendly giant in literature), an idea also used in previous works, see [5, 7, 27, 34] for
instance. We define

Γp,q(r) := γ r−α/β, r > 0, (2.16)
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where

γ :=
q − p+ 1

p− q

(

p− 1

q − p+ 1

)1/(q−p+1)

, (2.17)

and first state some useful properties of Γp,q.

Lemma 2.8. For all r > 0, Γp,q belongs to L1(RN \Br(0)) and (t, x) 7−→ Γp,q(|x| − r) is
a supersolution to (1.1) in (0,∞) × (RN \Br(0)).

Proof. The stated integrability of Γp,q follows from the property α/β > N , see (1.5), while
a direct computation and the monotonicity of Γp,q give the second assertion.

Lemma 2.9. Consider an initial condition u0 satisfying (1.7) and let u be the correspond-
ing solution to (1.1)-(1.2). Define

R(u0) := inf
{

R > 0 : u0(x)|x|
α/β ≤ γ a. e. in {|x| ≥ R}

}

∈ [0,∞]. (2.18)

If R(u0) <∞, then
0 ≤ u(t, x) ≤ Γp,q(|x| −R(u0)) (2.19)

for any t > 0 and x ∈ R
N with |x| > R(u0).

Proof. Clearly,

u0(x) ≤ γ|x|−α/β = Γp,q(|x| −R(u0)) , x ∈ R
N \BR(u0)(0) .

In addition, for all x ∈ R
N such that |x| = R(u0) and t > 0, we have Γp,q(|x| − R(u0)) =

∞ > u(t, x). Thus, u(t, x) ≤ Γp,q(|x|−R(u0)) on the parabolic boundary of (0,∞)× (RN \
BR(u0)(0)), and the comparison principle guarantees that u(t, x) ≤ Γp,q(|x| − R(u0)) in

[0,∞)× R
N \BR(u0)(0).

We next prove an integral estimate on the tail behaviour of solutions to (1.1)-(1.2).

Lemma 2.10. Let u0 be an initial condition satisfying (1.7) and denote the corresponding
solution to (1.1)-(1.2) by u. There is C0 > 0 depending only on N , p, and q such that, for
R > 0 and t ≥ 0, there holds

∫

{|x|≥R}
u(t, x) dx ≤ C0 R

(βN−α)/β

(

sup
|x|≥R/2

{

u0(x) |x|α/β
}

+ t R−1/β

)

. (2.20)

Proof. We fix ζ ∈ C∞(RN ) such that 0 ≤ ζ ≤ 1 and

ζ(x) = 0 if |x| ≤
1

2
and ζ(x) = 1 if |x| ≥ 1 . (2.21)

For R > 0 and x ∈ R
N , we define ζR(x) := ζ(x/R). It follows from the weak formulation

of (1.1) and Young’s inequality that

d

dt

∫

RN

ζR(x)
q/(q−p+1) u(t, x) dx+

∫

RN

ζR(x)
q/(q−p+1) |∇u(t, x)|q dx

≤
q

q − p+ 1

∫

RN

ζR(x)
(p−1)/(q−p+1) |∇u(t, x)|p−1 |∇ζR(x)| dx

≤
p− 1

q − p+ 1

∫

RN

ζR(x)
q/(q−p+1) |∇u(t, x)|q dx+

∫

RN

|∇ζR(x)|
q/(q−p+1) dx ,
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whence
d

dt

∫

RN

ζR(x)
q/(q−p+1) u(t, x) dx ≤ C(ζ) R(βN−α−1)/β . (2.22)

Owing to the properties (2.21) of ζ, we find, after integrating with respect to time,

∫

{|x|≥R}
u(t, x) dx ≤

∫

RN

ζR(x)
q/(q−p+1) u(t, x) dx

≤

∫

RN

ζR(x)
q/(q−p+1) u0(x) dx+ C(ζ) t R(βN−α−1)/β

≤ sup
|x|≥R/2

{

u0(x) |x|
α/β
}

∫

{|x|≥R/2}
|x|−α/β dx+ C(ζ) t R(βN−α−1)/β ,

from which (2.20) follows.

As a consequence of these integral tail estimates, we obtain some precise pointwise esti-
mates for sufficiently rapidly decaying initial data.

Lemma 2.11. If u0 satisfies (1.7) and (2.7) for some κ > 0 and u denotes the corre-
sponding solution to the Cauchy problem (1.1)-(1.2), then there exists C > 0 depending on
N , p, and q such that

|x|α/βu(t, x) ≤ C

(

sup
|y|≥|x|/4

{u0(y)|y|
α/β}+ t|x|−1/β

)

(2.23)

for any x ∈ R
N \ {0} and t > 0.

Proof. Step 1. Let first u0 be radially symmetric and non-increasing with respect to |x|.
Then, by Lemma 2.3, u(t) has the same properties for any t > 0, and for x ∈ R

N , x 6= 0
we deduce from Lemma 2.10 that

Cu(t, x)|x|N ≤

∫

{|x|/2≤|y|≤|x|}
u(t, y) dy

≤ C0

(

|x|

2

)(Nβ−α)/β
(

sup
|y|≥|x|/4

{u0(y)|y|
α/β}+ t

(

2

|x|

)1/β
)

≤ 2(1+α)/βC0|x|
(Nβ−α)/β

(

sup
|y|≥|x|/4

{u0(y)|y|
α/β}+ t|x|−1/β

)

.

which gives (2.23) for this specific class of initial data.

Step 2. Fix x0 ∈ R
N \ {0}. We define

κ0 := sup
|y|≥|x0|/4

{u0(y)|y|
α/β} ≤ κ

and take R0 ∈ (0, |x0|/4) such that κ0R
−α/β
0 ≥ ‖u0‖∞. We define

ũ0(x) :=

{

2κ0|x|
−α/β , |x| ≥ R0,

2κ0R
−α/β
0 , |x| ≤ R0.

(2.24)
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Then ũ0 is a radially symmetric and non-increasing function of |x| and it satisfies (1.7)
since α/β > N as well as (2.7) with constant 2κ0. Moreover, u0 ≤ ũ0 in R

N , hence the
comparison principle guarantees that u ≤ ũ in Q∞, where ũ is the solution to (1.1) with
initial condition ũ0. Applying Step 1 above to ũ gives

|x0|
α/βu(t, x0) ≤|x0|

α/β ũ(t, x0) ≤ 2(1+α)/βC0

(

sup
|y|≥|x0|/4

{ũ0(y)|y|
α/β}+ t|x0|

−1/β

)

≤2(1+α)/βC0

(

2κ0 + t|x0|
−1/β

)

,

and thus (2.23).

3 Well-posedness with non-negative bounded measures as

initial data

In this section, we prove Theorem 1.3, together with some preparatory results. We be-
gin with the proof of the existence statement which will be done, as usual, through an
approximation process.

Proof of Theorem 1.3. Existence. Let u0 ∈ M+
b (R

N ) and (uk0)k≥1 be a sequence of func-
tions in C∞

0 (RN ) such that

‖uk0‖1 =M0 :=

∫

RN

du0 , (3.1)

and

lim
k→∞

∫

RN

uk0(x)ψ(x) dx =

∫

RN

ψ(x) du0(x) for any ψ ∈ BC(RN). (3.2)

Given k ≥ 1, we denote the unique solution of (1.1) with initial condition uk0 by uk. Owing
to (3.1), it follows from Proposition 2.5 that (uk)k is bounded in L∞(τ,∞;W 1,∞(RN )) for
each τ > 0. Combining this property with Lemma 2.4 implies the time equicontinuity of
the sequence (uk)k in (τ,∞) × R

N for all τ > 0. We then deduce from the Arzelà-Ascoli
theorem that (uk)k is relatively compact in C([τ, T ] × K) for all compact subsets K of
R
N and 0 < τ < T . There are thus a subsequence (uk) (not relabeled) and a continuous

function u ∈ C(Q∞) such that

uk −→ u in C([τ, T ]×K) as k → ∞ (3.3)

for all compact subsets K of R
N and 0 < τ < T . Owing to the stability of viscosity

solutions to (1.1) [30, Theorem 6.1], this convergence guarantees that u is a viscosity
solution to (1.1) in Q∞. In addition, since uk satisfies (1.12) and (1.13) with the constant
Cs(M0), so does u. Consequently, u(t) belongs to L1(RN ) and W 1,∞(RN ) for all t > 0.

In order to complete the proof of the existence part, it remains to identify the initial
condition taken by u. Consider t ∈ (0, 1), ψ ∈ C∞

0 (RN ), and k ≥ 1. Owing to (3.1), we
are in a position to apply Proposition 2.7 (a) and conclude that

∣

∣

∣

∣

∫

RN

uk(t, x)ψ(x) dx −

∫

RN

uk0(x)ψ(x) dx

∣

∣

∣

∣

≤ C(M0, 1)
(

t1/p ‖∇ψ‖p/(2−p) + t(N+1)(q∗−q)η ‖ψ‖∞

)

.

(3.4)
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Owing to (3.2) and (3.3), we may let k → ∞ in (3.4) to get

∣

∣

∣

∣

∫

RN

u(t, x)ψ(x) dx −

∫

RN

ψ(x) du0(x)

∣

∣

∣

∣

≤ C
(

t1/p‖∇ψ‖p/(2−p) + t(N+1)(q∗−q)η‖ψ‖∞

)

,

from which we readily deduce that

lim
t→0

∫

RN

u(t, x)ψ(x) dx =

∫

RN

ψ(x) du0(x) (3.5)

for any ψ ∈ C∞
0 (RN ). In fact, by a classical density argument, (3.5) is valid for any

continuous function ψ ∈ C0(R
N ) which vanishes as |x| → ∞. Let us now show that (3.5)

is satisfied for any function ψ ∈ BC(RN ). To this end, let ζ ∈ C∞(RN ) be such that
0 ≤ ζ ≤ 1 and

ζ(x) = 0 if |x| ≤
1

2
and ζ(x) = 1 if |x| ≥ 1 ,

and ψ ∈ BC(RN). Then, for R > 0,
(

1− ζ
q/(q−p+1)
R

)

ψ belongs to C0(R
N ) and

∣

∣

∣

∣

∫

RN

u(t, x)ψ(x) dx −

∫

RN

ψ(x) du0(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

RN

u(t, x)
(

1− ζR(x)
q/(q−p+1)

)

ψ(x) dx −

∫

RN

(

1− ζR(x)
q/(q−p+1)

)

ψ(x) du0(x)

∣

∣

∣

∣

+

∫

RN

u(t, x)ζR(x)
q/(q−p+1)ψ(x) dx +

∫

RN

ζR(x)
q/(q−p+1)ψ(x) du0(x)

≤

∣

∣

∣

∣

∫

RN

u(t, x)
(

1− ζR(x)
q/(q−p+1)

)

ψ(x) dx −

∫

RN

(

1− ζR(x)
q/(q−p+1)

)

ψ(x) du0(x)

∣

∣

∣

∣

+ ‖ψ‖∞

(
∫

RN

u(t, x)ζR(x)
q/(q−p+1) dx+

∫

RN

ζR(x)
q/(q−p+1) du0(x)

)

. (3.6)

We now recall that it follows from (2.22) that

∫

RN

uk(t, x)ζR(x)
q/(q−p+1) dx ≤

∫

RN

uk0(x)ζR(x)
q/(q−p+1) dx+ C(ζ)tR(βN−α−1)/β

for t ∈ (0, 1) and k ≥ 1. We then infer from (3.2), (3.3), and Fatou’s lemma that

∫

RN

u(t, x)ζR(x)
q/(q−p+1) dx ≤

∫

RN

ζR(x)
q/(q−p+1) du0(x) + C(ζ)tR(βN−α−1)/β (3.7)

for t ∈ (0, 1). We then infer from (3.5), (3.6), and (3.7) that

lim sup
t→0

∣

∣

∣

∣

∫

RN

u(t, x)ψ(x) dx −

∫

RN

ψ(x) du0(x)

∣

∣

∣

∣

≤ 2‖ψ‖∞

∫

RN

ζR(x)
q/(q−p+1) du0(x). (3.8)

Since u0 is a bounded measure, we then let R → ∞ in (3.8) and use the properties of ζ
to conclude that the left-hand side of (3.8) vanishes. This ends the proof of the existence
result.
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We next turn to the proof of the uniqueness part of Theorem 1.3 for which the following
two preliminary results are needed. We will first need the following inequality for vectors
in R

N .

Lemma 3.1. If q ≥ p/2, then there exists ϑ = ϑ(p, q) ∈ (0, 1] such that

(a− b) · (|a|p−2a− |b|p−2b) ≥ ϑ

∣

∣|a|q−1a− |b|q−1b
∣

∣

2

|a|2q−p + |b|2q−p
≥ ϑ

(|a|q − |b|q)2

|a|2q−p + |b|2q−p
, (3.9)

for all (a, b) ∈ R
N × R

N .

When q = 1 and p ∈ (1, 2], this lemma is proved in [13, Lemma A.2].

Proof. Consider (a, b) ∈ R
N × R

N , ϑ ∈ (0, 1], and define

Λ(a, b) := (a− b) · (|a|p−2a− |b|p−2b)
(

|a|2q−p + |b|2q−p
)

− ϑ
∣

∣|a|q−1a− |b|q−1b
∣

∣

2

=
[

|a|p + |b|p − (|a|p−2 + |b|p−2)(a · b)
] (

|a|2q−p + |b|2q−p
)

− ϑ|a|2q − ϑ|b|2q + 2ϑ|a|q−1|b|q−1(a · b)

= (|a|p + |b|p)
(

|a|2q−p + |b|2q−p
)

− ϑ
(

|a|2q + |b|2q
)

−
[

|a|2q−2 + |b|2q−2 + |a|p−2|b|2q−p + |a|2q−p|b|p−2 − 2ϑ|a|q−1|b|q−1
]

(a · b).

Since ϑ ∈ (0, 1], we have

|a|2q−2 + |b|2q−2 + |a|p−2|b|2q−p + |a|2q−p|b|p−2 − 2ϑ|a|q−1|b|q−1

≥ |a|2q−2 + |b|2q−2 − 2|a|q−1|b|q−1 =
(

|a|q−1 − |b|q−1
)2

≥ 0.

As a · b ≤ |a||b|, it follows from the previous inequalities that

Λ(a, b) ≥ (|a|p + |b|p)
(

|a|2q−p + |b|2q−p
)

− ϑ
(

|a|2q + |b|2q
)

−
[

|a|2q−2 + |b|2q−2 + |a|p−2|b|2q−p + |a|2q−p|b|p−2 − 2ϑ|a|q−1|b|q−1
]

|a||b|

≥
(

|a|p + |b|p − |a|p−1|b| − |a||b|p−1
) (

|a|2q−p + |b|2q−p
)

− ϑ (|a|q − |b|q)2

≥ (|a| − |b|)
(

|a|p−1 − |b|p−1
) (

|a|2q−p + |b|2q−p
)

− ϑ (|a|q − |b|q)2 .

Since q ≥ p/2, it follows from [21, Lemma 1] that there is C1 ≥ 1 depending only on p and
q such that

(|a|q − |b|q)2

(|a|p−1 − |b|p−1) (|a| − |b|)
≤ C1 max {|a|, |b|}2q−p ≤ C1

(

|a|2q−p + |b|2q−p
)

.

Consequently, choosing ϑ = 1/C1, we end up with Λ(a, b) ≥ 0, which implies the first
inequality in (3.9). The second inequality then follows easily from the triangular inequality.

We next estimate the small time behavior of solutions to (1.1).

Lemma 3.2. Consider u0 ∈ M+
b (R

N ) and let u be a non-negative solution to (1.1) with
initial condition u0. If there exists a unique non-negative solution v ∈ C([0,∞);M+

b (R
N ))∩
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C(Q∞) to the diffusion equation (2.4)-(2.5) in Q∞ with initial condition u0, then, for t > 0
and r ∈ [1,∞],

‖u(t)‖1 ≤M0 :=

∫

RN

du0(x) , (3.10)

and

‖u(t)− v(t)‖r ≤ C(M0)
(

1 + t(N+1)(q∗−q)qη/r(p−q)
)

t[(N+1)(q∗−q)−N(r−1)]η/r . (3.11)

Proof. For τ > 0, let vτ be the solution to the diffusion equation (2.4) in (τ,∞)×R
N with

initial condition vτ (τ) = u(τ).

We first prove (3.10). By the comparison principle, u ≤ vτ in (τ,∞)× R
N while the L1-

accretivity of the p-Laplacian guarantees that ‖vτ (t)‖1 ≤ ‖vτ (τ)‖1 for t > τ . Consequently,
for t > τ ,

‖u(t)‖1 ≤ ‖vτ (t)‖1 ≤ ‖vτ (τ)‖1 =

∫

RN

u(τ, x) dx−→
τ→0

M0 ,

and thus (3.10).

Next, since u(τ) ∈ L1(RN ) and p > pc, it follows from the L1-accretivity of the p-Laplacian
that, for t > τ ,

‖u(t) − vτ (t)‖1 ≤

∫ t

τ

∫

RN

|∇u(s, x)|q dx ds.

Thanks to (3.10), we may use (1.12) and (2.3) to obtain

‖u(t)− vτ (t)‖1 ≤C

∫ t

τ

∫

RN

[

∥

∥

∥

∥

u

(

s+ τ

2

)
∥

∥

∥

∥

1/αp

∞

+ (s− τ)−1/p

]q

(u(s, x))2q/p ds

≤C(M0)

∫ t

τ

[

(s− τ)−qNη/αp + (s− τ)−q/p
]

‖u(s)‖(2q−p)/p
∞ ‖u(s)‖1 ds

≤C(M0)

∫ t

τ

[

(s− τ)−qNη/αp + (s− τ)−q/p
]

s−(2q−p)Nη/p ds

≤C(M0)

∫ t

τ

[

(s− τ)−Nη/α + (s− τ)−(q(N+1)−N)η
]

ds

≤C(M0)
[

t(N+1)(q∗−q)pη/(p−q) + t(N+1)(q∗−q)η
]

,

hence

‖u(t)− vτ (t)‖1 ≤ C(M0)
[

1 + t(N+1)(q∗−q)qη/(p−q)
]

t(N+1)(q∗−q)η , t > τ .

Now, since vτ (t) converges towards v(t) in L1(RN ) for all t > 0, we conclude that

‖u(t)− v(t)‖1 ≤ C(M0)
[

1 + t(N+1)(q∗−q)qη/(p−q)
]

t(N+1)(q∗−q)η , t > 0 . (3.12)

Also, by (1.12), (2.6), and (3.10),

‖u(t) − v(t)‖∞ ≤ ‖u(t)‖∞ + ‖v(t)‖∞ ≤ C(M0) t
−Nη , t > 0. (3.13)

We then infer from (3.12), (3.13), and Hölder’s inequality that (3.11) is true.
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Proof of Theorem 1.3. Uniqueness. Let u1 and u2 be two non-negative solutions to (1.1)
with initial condition u0 ∈ M+

b (R
N ) and define

M0 :=

∫

RN

du0(x) ,

and w := u1 − u2. Then, w solves

∂tw − (∆pu1 −∆pu2) + |∇u1|
q − |∇u2|

q = 0 in Q∞. (3.14)

Consider r > 0 to be specified later and T > 0. For t ∈ (0, T ), we calculate

1

r + 1

d

dt
‖w‖r+1

r+1 = −

∫

RN

r|w|r−1∇w ·
(

|∇u1|
p−2∇u1 − |∇u2|

p−2∇u2
)

dx

−

∫

RN

|w|r−1w (|∇u1|
q − |∇u2|

q) dx.

Lemma 3.1 then gives, with the help of Young’s inequality,

1

r + 1

d

dt
‖w‖r+1

r+1

≤− rϑ

∫

RN

|w|r−1 (|∇u1|
q − |∇u2|

q)2

1 + |∇u1|2q−p + |∇u2|2q−p
dx

+

∫

RN

|w|(r+1)/2 |w|(r−1)/2(|∇u1|
q − |∇u2|

q)
√

1 + |∇u1|2q−p + |∇u2|2q−p

√

1 + |∇u1|2q−p + |∇u2|2q−p dx

≤C

∫

RN

|w|r+1
(

1 + |∇u1|
2q−p + |∇u2|

2q−p
)

dx

≤C
(

1 + ‖∇u1‖
2q−p
∞ + ‖∇u2‖

2q−p
∞

)

‖w‖r+1
r+1.

Owing to (3.10), we are in a position to use the gradient estimate (1.13) and we further
obtain

1

r + 1

d

dt
‖w(t)‖r+1

r+1 ≤ C(M0, T )
(

1 + t−(N+1)η(2q−p)
)

‖w(t)‖r+1
r+1.

Observing that
1− (N + 1)η(2q − p) = 2(N + 1)(q∗ − q)η > 0,

we may integrate the above differential inequality over (s, t), 0 < s < t < T , to obtain

‖w(t)‖r+1
r+1 ≤ ‖w(s)‖r+1

r+1 exp
{

(r + 1)C(M0, T )
(

t2(N+1)(q∗−q)η + t
)}

. (3.15)

We now choose r ∈ (0, (N +1)(q∗− q)/N) and realize that (3.11) guarantees that (keeping
the notation of Lemma 3.2)

‖w(s)‖r+1
r+1 ≤‖u1(s)− v(s)‖r+1

r+1 + ‖v(s)− u2(s)‖
r+1
r+1

≤C(M0, T ) s
((N+1)(q∗−q)−Nr)η −→

s→0
0.

Consequently, letting s → 0 in (3.15) leads us to ‖w(t)‖r+1
r+1 ≤ 0 for all t ∈ (0, T ), hence

u1 ≡ u2 in (0, T ). As T was arbitrary, the proof is complete.

Since initial data of the form Mδ0, where δ0 denotes the Dirac mass at x = 0, play an
essential role in the sequel, we rephrase Theorem 1.3 in this particular setting.
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Corollary 3.3. For any M > 0, there exists a unique solution uM to (1.1) with initial
condition Mδ0. In the sequel, uM will be refered to as the fundamental solution to (1.1)
of mass M . Moreover, it satisfies the estimates (1.12) and (1.13) with Cs(M) instead of
Cs(M0).

Proof. The existence and uniqueness of a solution for the p-Laplacian equation (2.4) with
initial condition u0 = Mδ0 are proved in [15, Theorem 4.1]. Thus, applying Theorem 1.3
with u0 =Mδ0, we get the claimed result.

4 Very singular solutions

As specified in the Introduction, we will study in detail the very singular solutions of
(1.1). More precisely, in this section we show that there exists in fact a unique very
singular solution to (1.1). This is done by constructing a minimal and a maximal very
singular solution and identifying them afterwards. We begin with the precise definition.

Definition 4.1. A very singular solution to (1.1) is a viscosity solution u to (1.1) in Q∞

in the sense of Definition 2.1 satisfying

u(t) ∈ L1(RN ) ∩W 1,∞(RN ) (4.1)

for all t > 0 as well as

lim
s→0

∫

{|x|≤r}
u(s, x) dx = ∞, r ∈ (0,∞), (4.2)

and

lim
s→0

∫

{|x|≥r}
u(s, x) dx = 0, r ∈ (0,∞). (4.3)

A very singular subsolution (resp. supersolution) to (1.1) is a viscosity subsolution (resp.
supersolution) to (1.1) in Q∞ in the sense of Definition 2.1, which satisfies (4.1), (4.2)
and (4.3).

We already know that the class of very singular solutions to (1.1) for p ∈ (pc, 2) and
q ∈ (p/2, q∗) is non-empty as a consequence of the following result [23].

Theorem 4.2. There exists a unique radially symmetric, self-similar very singular solution
U to (1.1), having the form

U(t, x) = t−αfU(|x|t
−β), (t, x) ∈ Q∞. (4.4)

The profile fU is a solution to the differential equation

(|f ′U |
p−2f ′U )

′(r)+
N − 1

r
(|f ′U |

p−2f ′U )(r)+αfU(r)+βrf ′U(r)− |f ′U(r)|
q = 0 , r > 0, (4.5)

satisfying f ′U(0) = 0 and there is an explicit positive constant ω∗ such that

lim
r→∞

rp/(2−p) fU(r) = ω∗.

This important result is very useful in the sequel in order to identify very singular solutions
when we are able to show that they are radially symmetric and in self-similar form.
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4.1 Some properties of very singular subsolutions and solutions

From Definition 4.1, one expects the initial trace of a very singular solution to (1.1) to
vanish outside the origin. This is made rigorous in the next result.

Proposition 4.3. Let u be a very singular subsolution to (1.1) and K be a compact subset
of RN \ {0}. Then

lim
t→0

sup
x∈K

{u(t, x)} = 0.

Proof. Fix τ > 0 and let vτ be the solution to the diffusion equation (2.4) in (τ,∞)×R
N

with initial condition vτ (τ) = u(τ). According to [17, Theorem III.6.2], vτ satisfies the
following pointwise estimate: there exists a constant C > 0 depending only on N and p
such that, for any x0 ∈ R

N , R > 0, and t > τ ,

sup
x∈BR(x0)

{vτ (t, x)} ≤ C (t− τ)−Nη

(

∫

B2R(x0)
vτ (τ, x) dx

)pη

+ C

(

t− τ

Rp

)1/(2−p)

. (4.6)

Since u is a subsolution to the diffusion equation (2.4) in (τ,∞) × R
N with u(τ) = vτ (τ),

the comparison principle gives u ≤ vτ in (τ,∞)×R
N . Plugging these information in (4.6),

we are led to

sup
x∈BR(x0)

{u(t, x)} ≤ C (t− τ)−Nη

(

∫

B2R(x0)
u(τ, x) dx

)pη

+ C

(

t− τ

Rp

)1/(2−p)

(4.7)

for any t > τ > 0. Now, assume further that x0 6= 0 and |x0| > 2R. Then 0 6∈ B2R(x0)
and we may let τ → 0 in (4.7) and use (4.3) to obtain

sup
x∈BR(x0)

{u(t, x)} ≤ C

(

t

Rp

)1/(2−p)

, t > 0 . (4.8)

Therefore, if x0 6= 0 and |x0| > 2R,

lim
t→0

sup
x∈BR(x0)

{u(t, x)} = 0,

and this property entails Proposition 4.3 by a covering argument.

In particular, Proposition 4.3 implies that u(0, x) = 0, for any very singular subsolution
u and any x 6= 0. This is useful to prove some comparison results.

Proposition 4.4. Let u be a very singular subsolution to (1.1). Then

0 ≤ u(t, x) ≤ Γp,q(|x|), (t, x) ∈ Q∞. (4.9)

Proof. We adapt the proof of [5, Lemma 3.4]. At a formal level, the result follows from
Lemma 2.9 since we can view a very singular solution as having an initial condition sat-
isfiying R(u0) = 0. More precisely, let r > 0 and define Dr := {x ∈ R

N : |x| > r}. By
Lemma 2.8, S : (t, x) 7−→ Γp,q(|x| − r) is a supersolution to (1.1) in (0,∞) × Dr with
u(t, x) < ∞ = S(t, x) if (t, x) ∈ (0,∞) × ∂Dr and u(0, x) = 0 ≤ S(x) for x ∈ Dr by
Proposition 4.3. Since u is a subsolution to (1.1) in Q∞ and thus also in (0,∞)×Dr, the
comparison principle gives u(t, x) ≤ Γp,q(|x| − r) for any (t, x) ∈ (0,∞) × Dr. Fix now
x0 ∈ R

N , x0 6= 0. Then x0 ∈ Dr for any r ∈ (0, |x0|), hence u(t, x0) ≤ Γp,q(|x0| − r),
for any t > 0 and r ∈ (0, |x0|). The conclusion follows by letting r → 0 in the previous
inequality.
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We next prove that very singular subsolutions also enjoy the temporal decay estimates
(2.8).

Proposition 4.5. If u is a very singular subsolution to (1.1) in Q∞, the following esti-
mates hold:

tα−Nβ‖u(t)‖1 + tα‖u(t)‖∞ ≤ Kγ , t > 0, (4.10)

where γ and Kγ are defined in (2.17) and Proposition 2.6, respectively. In addition, if u
is a very singular solution to (1.1) in Q∞,

tα+β‖∇u(t)‖∞ ≤ Kγ , t > 0. (4.11)

Proof. At a formal level, since u is a very singular subsolution, its initial condition is
somehow concentrated at x = 0. It thus “vanishes” outside the origin and the conditions
on the initial data in Proposition 2.6 are fulfilled. As more regularity on the initial condition
is needed to apply this result, we provide a rigorous proof now. Consider τ > 0. According
to (4.1) and (4.9), u(τ) satisfies (1.7) and (2.7) with κ = γ and we infer from Proposition 2.6
that the solution uτ to (1.1) in (τ,∞)× R

N with initial condition uτ (τ) = u(τ) satisfies

(t− τ)α−Nβ‖uτ (t)‖1 + (t− τ)α‖uτ (t)‖∞ ≤Kγ ,

(t− τ)α+β‖∇uτ (t)‖∞ ≤Kγ ,

for t > τ . Now, if u is a very singular subsolution to (1.1), the comparison principle gives
u ≤ uτ in (τ,∞)× R

N and (4.10) follows at once from the previous estimate after letting
τ → 0. Next, if u is a very singular subsolution to (1.1), we obviously have uτ = u and
thus (4.11).

Finally, the last preliminary result concerns some local estimates on small balls for very
singular subsolutions. It is similar to [5, Lemma 3.6] for p = 2, and its proof adapts an
argument from [16, p. 186-187].

Proposition 4.6. For y ∈ R
N and ̺ > 0, let σy,̺ be the solution to

−∆pσy,̺ = 1 in B̺(y), σy,̺ = 0 on ∂B̺(y). (4.12)

For every λ ∈ (0,∞), there exists Aλ,̺ > 0 depending only on N , p, ̺, and λ such that, if
u is a very singular subsolution to (1.1), y ∈ R

N \ {0}, and 0 < ̺ < |y|, we have

u(t, x) ≤ λ eAλ,̺t exp

(

1

σy,̺(x)

)

, (t, x) ∈ (0,∞)×B̺(y). (4.13)

Proof. We fix y ∈ R
N , ̺ ∈ (0, |y|), λ > 0, and define

w(t, x) := λ eAt exp

(

1

σ(x)

)

, (t, x) ∈ (0,∞)×B̺(y),

where σ = σy,̺, the dependence on y and ̺ being omitted for simplicity. We wish to choose
A > 0 such that

∂tw −∆pw + |∇w|q ≥ 0 in (0,∞)×B̺(y). (4.14)

To this end, we calculate:

∂tw(t, x) = A w(t, x), ∇w(t, x) = −
w(t, x)

σ(x)2
∇σ(x),
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hence

|∇w(t, x)|q =
|∇σ(x)|q

σ(x)2q
w(t, x)q

and

|∇w(t, x)|p−2∇w(t, x) = −
|∇σ(x)|p−2

σ(x)2(p−1)
w(t, x)p−1 ∇σ(x).

It follows from (4.12) that

∆pw(t, x) =2(p − 1)
|∇σ(x)|p

σ(x)2p−1
w(t, x)p−1 + (p − 1)

|∇σ(x)|p

σ(x)2p
w(t, x)p−1

−
w(t, x)p−1

σ(x)2(p−1)
∆pσ(x)

=
w(t, x)p−1

σ(x)2p
[

σ(x)2 + (p− 1) (1 + 2σ(x)) |∇σ(x)|p
]

.

Gathering all the previous calculations, we obtain

∂tw −∆pw + |∇w|q =wp−1

{

A w2−p −
σ2 + (p− 1)(1 + 2σ)|∇σ|p

σ2p
+

|∇σ|q

σ2q
wq−p+1

}

≥wp−1

{

λ2−pA exp

{

2− p

σ

}

−

∥

∥σ2 + (1 + 2σ)|∇σ|p
∥

∥

L∞(B̺(y))

σ2p

}

.

Setting µp := infr>0

{

er r−2p
}

> 0, we end up with

∂tw −∆pw + |∇w|q ≥
wp−1

σ2p

{

λ2−p(2− p)2pµpA−
∥

∥σ2 + (1 + 2σ)|∇σ|p
∥

∥

L∞(B̺(y))

}

.

Since σ(x) = ̺p σ0,1((x − y)/̺) for x ∈ B̺(y), we conclude that (4.14) holds true for a
sufficiently large constant Aλ,̺ > 0 which depends only on N , p, λ, and ̺.

With this choice, w is a supersolution to (1.1) in (0,∞)×B̺(y) which satisfies additionally
w(0, x) ≥ 0 = u(0, x) for x ∈ B̺(y) by Proposition 4.3 and w(t, x) = ∞ > u(t, x) for
(t, x) ∈ (0,∞) × ∂B̺(y) by (4.12). The estimate (4.13) then follows by the comparison
principle.

4.2 The minimal very singular solution

In this section we will construct a special very singular solution and prove that it is minimal
among all the very singular solutions and has a self-similar form. As a consequence, it will
coincide with the unique radially symmetric self-similar very singular solution obtained in
[23], see Theorem 4.2. Recalling the notation uM for the fundamental solution to (1.1)
with mass M > 0, we begin with the following preliminary result.

Lemma 4.7. Let u be a very singular supersolution to (1.1) and assume further that

u ∈ C(Q∞) and u(t, x) ≤ Γp,q(|x|), (t, x) ∈ Q∞ .

Then, for any M > 0, we have uM ≤ u in Q∞.
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Proof. Fix M > 0. We borrow ideas from the proofs of [5, Lemma 3.7] and Theorem 1.3
above. As u is a very singular supersolution to (1.1), we have ‖u(t)‖1 −→ ∞ as t→ 0 and,
for each k ≥ 1, there exists a non-negative function u0,k ∈ L1(RN ) ∩W 1,∞(RN ) such that

‖u0,k‖1 =M, 0 ≤ u0,k(x) ≤ u(1/k, x) ≤ Γp,q(|x|), for any x ∈ R
N . (4.15)

Denoting the solution to (1.1) with initial condition u0,k by uk, we argue as in the proof
of the existence part of Theorem 1.3 to find a non-negative function ũ ∈ C(Q∞) and a
subsequence of (uk)k (not relabeled) with the following properties:

ũ is a solution to (1.1) in Q∞ and satisfies the estimates (1.12)-(1.13)
with Cs(M) and (2.8) with κ = γ.

(4.16)

and
uk −→ ũ in C([τ, T ]×K) (4.17)

for all compact subsets K of RN and τ < t < T .

It remains to identify the initial condition taken by ũ. On the one hand, since u is a
supersolution to (1.1), it readily follows from (4.15) that

uk(t, x) ≤ u

(

t+
1

k
, x

)

≤ Γp,q(|x|) , (t, x) ∈ Q∞ ,

whence, owing to (4.17) and the continuity of u in Q∞,

ũ(t, x) ≤ u(t, x) ≤ Γp,q(|x|) , (t, x) ∈ Q∞ . (4.18)

On the other hand, consider ψ ∈ C∞
0 (RN ) and t ∈ (0, 1). Owing to (4.15), we may use

Proposition 2.7 (a) and deduce that, for all k ≥ 1,

∣

∣

∣

∣

∫

RN

(uk(t, x)− u0,k(x))ψ(x) dx

∣

∣

∣

∣

≤ C(M, 1)
[

‖ψ‖∞ t(N+1)(q∗−q)η

+ ‖∇ψ‖p/(2−p) t
1/p
]

.

(4.19)

It also follows from (4.15) that, for r > 0 and k ≥ 1,

∣

∣

∣

∣

∫

RN

u0,k(x)ψ(x) dx −M ψ(0)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

RN

u0,k(x)(ψ(x) − ψ(0)) dx

∣

∣

∣

∣

≤ 2‖ψ‖∞

∫

{|x|≥r}
u(1/k, x) dx +

(

∫

{|x|≤r}
u0,k(x) dx

)

sup
|x|≤r

{|ψ(x) − ψ(0)|}

≤ 2‖ψ‖∞

∫

{|x|≥r}
u(1/k, x) dx +M sup

|x|≤r
{|ψ(x) − ψ(0)|}.
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Combining (4.19) and the above estimate, we obtain, for k ≥ 1 and r > 0,

∣

∣

∣

∣

∫

RN

ũ(t, x) ψ(x) dx−M ψ(0)

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

RN

(ũ(t, x)− uk(t, x))ψ(x) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

RN

(uk(t, x)− u0,k(x))ψ(x) dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

RN

u0,k(x) ψ(x) dx −Mψ(0)

∣

∣

∣

∣

≤

∫

RN

|ũ(t, x)− uk(t, x)| |ψ(x)| dx

+ C(M, 1)
[

‖ψ‖∞ t(N+1)(q∗−q)η + ‖∇ψ‖p/(2−p) t
1/p
]

+ 2‖ψ‖∞

∫

{|x|≥r}
u(1/k, x) dx +M sup

|x|≤r
{|ψ(x) − ψ(0)|}.

Since t > 0, r > 0, and ψ is compactly supported, we first let k → ∞ in the above
inequality and use (4.3) and (4.17) to conclude that

∣

∣

∣

∣

∫

RN

ũ(t, x) ψ(x) dx−M ψ(0)

∣

∣

∣

∣

≤C(M, 1)
[

‖ψ‖∞ t(N+1)(q∗−q)η + ‖∇ψ‖p/(2−p) t
1/p
]

+M sup
|x|≤r

{|ψ(x) − ψ(0)|}.

We then let t→ 0 and r → 0 and end up with

lim
t→0

∫

RN

ũ(t, x) ψ(x) dx =M ψ(0) (4.20)

for any ψ ∈ C∞
0 (RN ). By a standard density argument, we extend (4.20) to test functions

ψ ∈ C0(R
N ). In order to extend (4.20) to test functions in BC(RN), we proceed as in the

proof of the existence part of Theorem 1.3 with the difference that the control for large x
is here provided by Γp,q thanks to the upper bound (4.18) and Lemma 2.8. The uniqueness
statement of Theorem 1.3 then implies that ũ = uM . Recalling (4.18) completes the proof.

The next result shows more properties of the fundamental solutions uM .

Lemma 4.8. (a) For each M > 0 and t > 0, uM (t) is a radially symmetric function,
and uM1(t) ≤ uM2(t) if 0 < M1 ≤M2 <∞.

(b) For each M > 0, the function uM satisfies

0 ≤ uM (t, x) ≤ Γp,q(|x|), (t, x) ∈ Q∞ (4.21)

as well as the estimates (1.12)-(1.13) with Cs(M) and (2.8) with κ = γ.

(c) For each M > 0 and any r > 0, there exist a constant C(r) depending only on r, p,
q, and N such that

∫

{|x|≥r}
uM (t, x) dx ≤ C(r) t1/p , t ∈ (0, 1). (4.22)
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Proof. The proof of part (a) is identical to the proof of [7, Lemma 3.3] to which we refer.
Next, it is easy to see that Proposition 4.3 is also valid for the fundamental solutions
uM and the estimate (4.21) can be proved as Proposition 4.4. We then infer from (3.10)
and (4.21) that Propositions 2.5 and 2.6 can be applied to (t, x) 7−→ uM (t+ τ, x) for any
arbitrary small τ from which the validity of (1.12)-(1.13) with Cs(M) and (2.8) with κ = γ
follows after passing to the limit τ → 0. Finally, let τ > 0, r > 0, and two non-negative
functions ξ ∈ C∞

0 (RN ) and ζ ∈ C∞(RN ) such that

0 ≤ ξ ≤ 1 , ξ(x) = 1 if |x| < 1 and ξ(x) = 0 if |x| > 2

and
0 ≤ ζ ≤ 1 , ζ(x) = 0 if |x| < r/2 and ζ(x) = 1 if |x| > r .

For R > 0 and x ∈ R
N , we set ξR(x) = ξ(x/R). Since u(τ) satisfies (2.7) with κ = γ by

(4.21) and ξRζ ∈ C∞
0 (RN ) vanishes in Br/2(0), it follows from (2.10) that, for t > τ and

R > 0,
∫

{r<|x|<R}
uM (t, x) dx ≤

∫

RN

uM (t, x) (ξRζ)(x) dx

≤

∫

RN

uM (τ) (ξRζ)(x) dx+ C(γ, r/2) ‖∇(ξRζ)‖p/(2−p) (t− τ)1/p .

Letting τ → 0, we find, since ξRζ vanishes in a neighborhood of x = 0,
∫

{r<|x|<R}
uM (t, x) dx ≤ C(γ, r/2) ‖∇(ξRζ)‖p/(2−p) t

1/p .

Combining (4.21) with the previous inequality, we obtain
∫

{|x|>r}
uM (t, x) dx ≤

∫

{r<|x|<R}
uM (t, x) dx+

∫

{|x|>R}
Γp,q(|x|) dx

≤C(γ, r/2) ‖∇(ξRζ)‖p/(2−p) t
1/p +

∫

{|x|>R}
Γp,q(|x|) dx

≤C(r)
(

‖∇(ξRζ)‖p/(2−p) t
1/p +R−(α−Nβ)/β

)

.

Now,

‖∇(ξRζ)‖p/(2−p) ≤‖ζ∇ξR‖p/(2−p) + ‖ξR∇ζ‖p/(2−p)

≤R−(N+1)(p−pc)/p‖∇ξ‖p/(2−p) + ‖∇ζ‖p/(2−p) ,

and thus
∫

{|x|>r}
uM (t, x) dx ≤ C(r)

(

t1/p +R−(N+1)(p−pc)/p t1/p +R−(α−Nβ)/β
)

.

Letting R→ ∞ gives (4.22).

We are now ready to construct the minimal very singular solution. By Lemma 4.8, for
any t > 0, the sequence (uM (t))M>0 is non-decreasing and uniformly bounded by Γp,q.
Thus, we can define

U(t, x) := sup
M>0

{uM (t, x)} = lim
M→∞

uM (t, x) , (t, x) ∈ Q∞ . (4.23)
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Using once more Lemma 4.8, we see that U(t) is radially symmetric for any t > 0. More-
over, a first outcome of Proposition 4.4 and Lemma 4.7 is that

U ≤ u in Q∞ for any very singular solution u to (1.1). (4.24)

It remains to show that U is a very singular solution to (1.1).

Proposition 4.9. The function U constructed in (4.23) is a very singular solution to
(1.1). Moreover, U = U , the latter being defined in Theorem 4.2.

Proof. We first prove that U has the expected behavior as t → 0. Let r > 0. On the one
hand, if M > 0, we have U ≥ uM in Q∞ by (4.23) and thus

lim inf
t→0

∫

{|x|≤r}
U(t, x) dx ≥ lim

t→0

∫

{|x|≤r}
uM (t, x) dx =M ,

from which the expected concentration (4.2) of U at the origin follows. On the other hand,
we infer from the monotone convergence theorem and (4.22) that

∫

{|x|≥r}
U(t, x) dx = lim

M→∞

∫

{|x|≥r}
uM (t, x) dx ≤ C(r) t1/p .

Letting t→ 0 gives the expected vanishing (4.3) outside the origin.

Finally, it follows from Lemma 4.8 (b) that (uM )M is bounded in L∞(τ,∞;W 1,∞(RN ))
for any τ > 0. This property and Lemma 2.4 ensure the time equicontinuity of the family
(uM )M in (τ,∞) × R

N for all τ > 0. We then deduce from the Arzelà-Ascoli theorem
that (uM )M is relatively compact in C([τ, T ] ×K) for all compact subsets K of RN and
0 < τ < T . Recalling (4.23), we conclude that (uM )M converges to U uniformly in compact
subsets of Q∞. Consequently, thanks to the stability of viscosity solutions [30, Theorem
6.1], U is a viscosity solution to (1.1), and thus a very singular solution in the sense of
Definition 4.1.

It remains to prove that U has a self-similar form which follows from the scale invariance
of (1.1) and is now a standard step. Indeed, for λ ∈ (0,∞) and M ∈ (0,∞), define a
rescaled version of uM by

uλM (t, x) := λ(p−q)/(2q−p)uM (λt, λ(q−p+1)/(2q−p)x) , (t, x) ∈ Q∞. (4.25)

By straightforward calculations, we find that uλM is a solution to (1.1). To identify its
initial trace, we consider ψ ∈ BC(RN) and write

∫

RN

uλM (t, x) ψ(x) dx = λ(p−q)/(2q−p)

∫

RN

uM (λt, λ(q−p+1)/(2q−p)x) ψ(x) dx

= λ(N+1)(q∗−q)/(2q−p)

∫

RN

uM (λt, y) ψ(λ−(q−p+1)/(2q−p)y) dy.

Letting t → 0, we find that the initial condition of uλM is λ(N+1)(q∗−q)/(2q−p)Mδ0. By
Theorem 1.3, we obtain uλM = uλ(N+1)(q∗−q)/(2q−p)M . We now pass to the limit as M → ∞
and deduce from (4.23) that

U(t, x) = λ(p−q)/(2q−p) U(λt, λ(q−p+1)/(2q−p)x), (t, x) ∈ Q∞ .

Therefore, U has a self-similar form and since it is obviously radially symmetric due to
Lemma 4.8 (a) and (4.23), we infer from Theorem 4.2 that U = U .
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A further outcome of the above analysis is the following result which is a straightforward
consequence of Lemma 4.7, (4.23), and Proposition 4.9.

Corollary 4.10. If u is a very singular supersolution to (1.1) in Q∞ such that

u ∈ C(Q∞) and u(t, x) ≤ Γp,q(|x|), (t, x) ∈ Q∞ ,

then
U(t, x) ≤ u(t, x), (t, x) ∈ Q∞.

4.3 The maximal very singular solution

We begin with the following general result for very singular subsolutions to (1.1).

Proposition 4.11. Let u be a very singular subsolution to (1.1). Then there exists a very
singular solution u such that u ≤ u in Q∞.

Proof. Fix τ > 0 and let uτ be the solution to (1.1) in (τ,∞)× R
N with initial condition

uτ (τ) = u(τ). The comparison principle and Proposition 4.4 then ensure that

u(t, x) ≤ uτ (t, x) ≤ Γp,q(|x|) , (t, x) ∈ (τ,∞) ×R
N . (4.26)

Moreover, the function u(τ) satisfies (1.7) and (2.7) (with κ = γ) by Proposition 4.4 and
it follows from Proposition 2.6 that, for t > τ ,

(t− τ)α−Nβ‖uτ (t)‖1 + (t− τ)α‖uτ‖∞ ≤ Kγ , (4.27)

and
(t− τ)α+β‖∇uτ (t)‖∞ ≤ Kγ . (4.28)

We also notice that, if 0 < τ1 < τ2, the inequality (4.26) implies that uτ2(τ2) = u(τ2) ≤
uτ1(τ2), whence

uτ1(t, x) ≥ uτ2(t, x) , (t, x) ∈ (τ2,∞)× R
N , (4.29)

by the comparison principle. Owing to (4.26), (4.27), and (4.29), we may define the
pointwise limit

W (t, x) := sup
τ∈(0,t/2)

{uτ (t, x)} = lim
τ→0

uτ (t, x), (t, x) ∈ Q∞. (4.30)

The remainder of the proof is devoted to proving that W is a very singular solution to
(1.1) in Q∞. Consider n ≥ 1. By (4.27) and (4.28), the family {uτ : τ ∈ (0, 1/2n)} is
bounded in L∞(1/n, n;W 1,∞(RN )) which allows us to apply Lemma 2.4 and deduce from
the Arzelà-Ascoli theorem that {uτ : τ ∈ (0, 1/2n)} is relatively compact in C((1/n, n)×
Bn(0)). Consequently, the pointwise convergence (4.30) of (uτ )τ to W can be improved
to convergence in C((1/n, n) × Bn(0)) for all n ≥ 1, from which we deduce that W is a
viscosity solution to (1.1) in Q∞ by the stability of viscosity solutions [30, Theorem 6.1].
We may also use this convergence to pass to the limit as τ → 0 in (4.26) and obtain

u(t, x) ≤W (t, x) ≤ Γp,q(|x|) , (t, x) ∈ Q∞ . (4.31)

It remains to prove that the function W has the expected behavior as t→ 0. Since u is a
very singular subsolution to (1.1), it satisfies (4.2) and so does W by (4.31). The study of
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the behavior of W outside the origin requires more work. Let ζ ∈ C∞(RN ) be such that
0 ≤ ζ ≤ 1,

ζ(x) = 1 if |x| ≥ 1, ζ(x) = 0 if |x| ≤
1

2
.

Fix r > 0 and define ζr(x) = ζ(x/r) for x ∈ R
N . It follows from (2.1) that, for t > 0 and

τ ∈ (0, t/2),

∫

RN

uτ (t, x) ζr(x) dx ≤

∫

RN

uτ (τ, x) ζr(x) dx+

∫ t

τ

∫

RN

|∇uτ (s, x)|p−1 |∇ζr(x)| dx ds

≤

∫

{|x|≥r/2}
u(τ, x) dx

+

∫ t

τ

∫

{r/2<|x|<r}
|∇uτ (s, x)|p−1 |∇ζr(x)| dx ds,

(4.32)

since uτ (τ) = u(τ) by definition. On the one hand, Fatou’s lemma and (4.30) give
∫

RN

W (t, x) ζr(x) dx ≤ lim inf
τ→0

∫

RN

uτ (t, x) ζr(x) dx . (4.33)

On the other hand, since u is a very singular subsolution, we have

lim
τ→0

∫

{|x|≥r/2}
u(τ, x) dx = 0 , (4.34)

while (2.3), (4.26), and (4.27) give, for s > τ ,

|∇uτ (s, x)|p−1 ≤C

(

∥

∥

∥

∥

uτ
(

s+ τ

2

)
∥

∥

∥

∥

1/αp

∞

+ (s − τ)−1/p

)p−1

(uτ (s, x))2(p−1)/p

≤C (s− τ)−(p−1)/p Γp,q(|x|)
2(p−1)/p .

Thus
∫ t

τ

∫

{r/2<|x|<r}
|∇uτ (s, x)|p−1 |∇ζr(x)| dx ds ≤ C(r) t1/p‖∇ζ‖∞. (4.35)

Combining (4.32), (4.33), (4.34), and (4.35) leads us to
∫

RN

W (t, x) ζr(x) dx ≤ C(r) t1/p ‖∇ζ‖∞.

Using the properties of ζ and letting t → 0 in the above inequality, we conclude that W
satisfies (4.3). Summarizing, we have established that W is a very singular solution to
(1.1) in Q∞ which lies above u by (4.31).

We are now ready to construct the maximal very singular solution to (1.1). We denote
the set of very singular solutions to (1.1) in Q∞ by S. Since U ∈ S, S is non-empty and
we may define

V (t, x) := sup
u∈S

{u(t, x)}, (t, x) ∈ Q∞. (4.36)

We prove next that V is itself a very singular solution to (1.1). We begin with the following
bounds.
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Lemma 4.12. For t > 0, we have

tα ‖V (t)‖∞ + tα+β‖∇V (t)‖∞ ≤ Kγ , (4.37)

and
U(t, x) ≤ V (t, x) ≤ Γp,q(|x|), x ∈ R

N . (4.38)

Proof. Since U ∈ S, the inequality (4.38) follows at once from (4.36) and Proposition 4.4.
We next deduce from (4.10) and (4.36) that ‖V (t)‖∞ ≤ Kγ t

−α for t > 0 while (4.11) and
(4.36) entail that, for any x ∈ R

N , y ∈ R
N , u ∈ S, and t > 0,

u(t, x) ≤ u(t, y) +Kγ t
−(α+β) |x− y| ≤ V (t, y) +Kγ t

−(α+β) |x− y|.

Hence, passing to the supremum over u ∈ S

V (t, x) ≤ V (t, y) +Kγ t
−(α+β) |x− y|,

and V (t) is Lipschitz continuous for all t > 0 with Lipschitz constant Kγ t
−(α+β). Conse-

quently, V (t) ∈W 1,∞(RN ) and satisfies (4.37).

We can now establish the main property of V .

Lemma 4.13. V is a very singular subsolution to (1.1).

Proof. Since V is the supremum of a family of viscosity solutions to (1.1) by (4.36), the
fact that V is a viscosity subsolution to (1.1) follows from [1, Proposition V.2.11]. The
regularity V (t) ∈ L1(RN ) ∩W 1,∞(RN ) for t > 0 is a consequence of Lemma 4.12 and the
integrability at infinity of Γp,q (see Lemma 2.8). Also, the concentrating property (4.2) at
the origin as t→ 0 follows at once from (4.36) since U ∈ S. It remains to check that V (t)
vanishes outside the origin as t → 0. For that purpose, let r > 0 and R > r. Since the
annulus K(r,R) := {x ∈ R

N : r/2 ≤ |x| ≤ R} is compact, there is a finite number l of
points (yi)1≤i≤l in R

N such that

K(r,R) ⊂
l
⋃

i=1

Br/8(yi). (4.39)

We infer from (4.13) that, for any 1 ≤ i ≤ l, λ > 0, t > 0, and u ∈ S, we have

u(t, x) ≤ λeAλ,r/4t exp

(

1

σyi,r/4(x)

)

, x ∈ Br/8(yi).

The above estimate being valid for all u ∈ S we conclude that, for any 1 ≤ i ≤ l, λ > 0,
and t > 0,

V (t, x) ≤ λeAλ,r/4t exp

(

1

σyi,r/4(x)

)

, x ∈ Br/8(yi). (4.40)

Recalling (4.39), we infer from (4.38) and (4.40) that, for t > 0 and λ > 0,
∫

{|x|≥r}
V (t, x) dx =

∫

K(r,R)
V (t, x) dx+

∫

{|x|>R}
V (t, x) dx

≤ λ eAλ,r/4t
l
∑

i=1

∫

Br/8(yi)
exp

(

1

σyi,r/4(x)

)

dx+

∫

{|x|>R}
Γp,q(|x|) dx.
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Passing first to the limit t→ 0 and then λ→ 0 gives

lim sup
t→0

∫

{|x|≥r}
V (t, x) dx ≤

∫

{|x|>R}
Γp,q(|x|) dx

for all R > r. Thanks to Lemma 2.8, the right-hand side of the above inequality converges
to zero as R→ ∞, so that V satisfies (4.3) and the proof is complete.

We are now in a position to identify V .

Proposition 4.14. The function V defined in (4.36) is a very singular solution in the
sense of Definition 4.1. Moreover, it is radially symmetric and has self-similar form, thus
coinciding with the unique self-similar very singular solution U given by Theorem 4.2.

A straightforward consequence of Proposition 4.14 is that S = {U}, which proves Theo-
rem 1.2.

Proof. It follows from Proposition 4.11 and Lemma 4.13 that there exists a very singular
solution u to (1.1) such that

V (t, x) ≤ u(t, x) for all (t, x) ∈ (0,∞) × R
N .

The definition (4.36) of V implies that V ≡ u and thus V is the maximal very singular
solution. The radial symmetry and self-similarity of V then follow from the scaling and
rotational invariances of (1.1).

4.4 A comparison principle

An interesting consequence of the uniqueness of the very singular solutions to (1.1) is the
following comparison principle for the related elliptic equation

−∆pv + |∇v|q − αv − βy · ∇v = 0 in R
N . (4.41)

Theorem 4.15. Let v1 be a viscosity subsolution and v2 be a viscosity supersolution to
(4.41) in R

N , such that

vi ∈ L
1(RN ) ∩W 1,∞(RN ) , vi ≥ 0 , vi 6≡ 0 i = 1, 2. (4.42)

Assume that

lim
R→∞

∫

{|y|≥R}
vi(y)|y|

α/β−N dy = 0, i = 1, 2, and v2(y) ≤ Γp,q(|y|), y ∈ R
N . (4.43)

Then v1(y) ≤ fU(y) ≤ v2(y) for all y ∈ R
N , where fU is the profile of the very singular

solution U to (1.1), see Theorem 4.2.

Besides its interest in itself, this comparison principle will also be useful to settle the
asymptotic behavior in Section 5.

Proof. For i = 1, 2, define

ui(t, x) := t−αvi(xt
−β), (t, x) ∈ Q∞ .
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It is then straightforward to check that u1 is a subsolution and u2 is a supersolution to
(1.1) in Q∞. Moreover, we have

ui ∈ C(Q∞) and ui(t) ∈ L1(RN ) ∩W 1,∞(RN ), t > 0 , i = 1, 2.

On the one hand, for i = 1, 2 and any r > 0, we have
∫

{|x|≥r}
ui(t, x) dx = tNβ−α

∫

{|y|≥rt−β}
vi(y)|y|

α/β−N |y|N−α/β dy

≤ rN−α/β

∫

{|y|≥rt−β}
vi(y)|y|

α/β−N dy,

which tends to 0 as t → 0 by (4.43). On the other hand, since vi 6≡ 0, there is r0 > 0
sufficiently large such that

∫

Br0 (0)
vi(y) dy > 0 , i = 1, 2 .

Consequently, for t > 0 sufficiently small (t ∈
(

0, (r/r0)
1/β
)

), we have

∫

{|x|≤r}
ui(t, x) dx = tNβ−α

∫

{|y|≤rt−β}
vi(y) dy > tNβ−α

∫

Br0 (0)
vi(y) dy,

which tends to +∞ as t → 0, since Nβ − α < 0. It follows that u1 is a very singular
subsolution to (1.1) and u2 is a very singular supersolution to (1.1). Furthermore

u2(t, x) = t−αv2(xt
−β) ≤ γ|x|−α/β = Γp,q(|x|),

for any (t, x) ∈ Q∞. By Theorem 1.2, Corollary 4.10, and Proposition 4.11, we obtain

u1 ≤ U ≤ u2 in Q∞.

We reach the conclusion by going back to the original variables.

5 Convergence to self-similarity

With all the preparations done in the previous sections, we are now ready to prove the
main result about asymptotic convergence. The proof will be divided into several steps.

Proof of Theorem 1.1. Let us first notice that the condition (1.8) implies that R(u0) <∞,
where R(u0) is defined in (2.18). Moreover, there exists a sufficiently large constant κ > 0
such that

u0(x) ≤ κ|x|−α/β for any x ∈ R
N .

Step 1. Self-similar variables. In a first step, we pass to self-similar variables and
define the new variables (s, y) and function v by

u(t, x) =: (1 + t)−αv(s, y), s := ln(1 + t), y := x(1 + t)−β. (5.1)

Then v solves the equation

∂sv −∆pv + |∇v|q − αv − βy · ∇v = 0, (s, y) ∈ Q∞, (5.2)
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with initial condition v(0) = u0 in R
N .

Step 2. Estimates for v. Starting from the estimates established for u, we can deduce
estimates for v in similar norms as follows. First, recalling the homogeneity of Γp,q, we
deduce from (2.19) that

v(s, y) = eαsu(es − 1, yeβs) ≤ eαsΓp,q(|y|e
βs −R(u0))

≤ Γp,q(|y| −R(u0)e
−βs)

(5.3)

for any (s, y) ∈ Q∞. Then, the estimates (2.8) can be easily transformed into the following
ones for v:

‖v(s)‖1 + ‖v(s)‖∞ + ‖∇v(s)‖∞ ≤

[

(

es

es − 1

)α−Nβ

+

(

es

es − 1

)α

+

(

es

es − 1

)α+β
]

Kκ

≤ 6Kκ, (5.4)

for any s > ln 2 > 0, where Kκ is the constant in (2.8). Finally, the pointwise upper bound
(2.23) reads

|y|α/βv(s, y) ≤ C

[

sup
|z|≥|y|eβs/4

{

u0(z)|z|
α/β
}

+ |y|−1/β

]

(5.5)

for (s, y) ∈ (0,∞) × (RN \ {0}).

Step 3. Lower bound for v. We infer from [22, Proposition 1.8] that u(t, x) > 0 for
(t, x) ∈ Q∞. In particular, u(1, 0) > 0 and, since u(1, ·) ∈ C(RN ), there is m0 > 0 such
that

u(1, x) ≥ m0 , x ∈ B1(0) . (5.6)

Next, according to the analysis performed in [23] (in particular, Lemma 2.1, Lemma 2.8,
Lemma 2.10, Proposition 2.11, and Proposition 2.16 therein), there exists a∗ > 0 such
that, for a ∈ (0, a∗), the maximal solution ga defined on [0, Rm(a)) to the Cauchy problem











(|g′a|
p−2g′a)

′(r) +
N − 1

r
(|g′a|

p−2g′a)(r) + αga(r) + βrg′a(r)− |g′a(r)|
q = 0,

ga(0) = a, g′a(0) = 0,

(5.7)

has the following properties: there is R(a) ∈ (0, Rm(a)) such that

0 < ga(r) ≤ a for r ∈ [0, R(a)) , ga(R(a)) = 0 , and g′a(R(a)) < 0 . (5.8)

Introducing

Ga,λ(t, x) :=

{

λp/(2−p) t−α ga
(

λ|x|t−β
)

if |x| ∈
[

0, R(a)tβ/λ
]

,
0 if |x| ≥ R(a)tβ/λ ,

for (a, λ) ∈ (0, a∗)× (0, 1), the properties of ga guarantee that Ga,λ ∈ C(Q∞) and is a sub-
solution to (1.1) in Q∞ (it can be interpreted locally as the maximum of two subsolutions
to (1.1) in Q∞, namely the zero function and (t, x) 7−→ λp/(2−p) t−α ga

(

λ|x|t−β
)

).
Now, we set

a0 :=
a∗
2

∈ (0, a∗) , t0 :=
1

R(a0)p

(

m0

a0

)2−p

, λ0 := R(a0) t
β
0 ,
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and observe that, if x ∈ B
R(a0)t

β
0 /λ0

(0) = B1(0), then (5.6) implies that

Ga0,λ0(t0, x) ≤ a0λ
p/(2−p)
0 t−α

0 = a0

(

λ0t
−β
0

)p/(2−p)
t
1/(2−p)
0 = m0 ≤ u(1, x) .

Since u(1, x) > 0 = Ga0,λ0(t0, x) if x 6∈ B
R(a0)t

β
0 /λ0

(0), we have u(1, x) ≥ Ga0,λ0(t0, x) for

all x ∈ R
N and the comparison principle entails that

u(t+ 1, x) ≥ Ga0,λ0(t+ t0, x) , (t, x) ∈ Q∞ .

In particular, for t > 0 and x ∈ BR(a0)(t+t0)β/λ0
(0),

u(t+ 1, x) ≥ λ
p/(2−p)
0 (t+ t0)

−α ga0

(

λ0|x|(t+ t0)
−β
)

.

In terms of v, the previous lower bound reads

v(s, y) ≥ λ
p/(2−p)
0

(

es

es − 2 + t0

)α

ga0

(

λ0|y|

(

es

es − 2 + t0

)β
)

, (5.9)

for s > ln 2 and |y| ≤ (R(a0)/λ0)((e
s − 2 + t0)e

−s)β .

Step 4. Half-relaxed limits. To complete the proof of the convergence, we introduce
the half-relaxed limits [2], in a similar way as it has been previously used in papers on
large-time behavior, see [24, 32] for instance. We thus define

w̃∗(s, y) := lim inf
(σ,z,ε)→(s,y,0)

v
(σ

ε
, z
)

, w̃∗(s, y) := lim sup
(σ,z,ε)→(s,y,0)

v
(σ

ε
, z
)

for (s, y) ∈ Q∞. It is a standard fact that w̃∗ and w̃∗ do not depend on s > 0, so that we
can define

w∗(y) := w̃∗(1, y) = w̃∗(s, y), w∗(y) := w̃∗(1, y) = w̃∗(s, y), s > 0 .

In addition, it follows from [2, Théorème 4.1] that w∗ is a viscosity supersolution and w∗

is a viscosity subsolution to the stationary equation associated to (5.2), that is, the elliptic
equation (4.41). Moreover, the definition of w∗ and w∗ and (5.9) ensure that

w∗ ≤ w∗ in R
N and λ

p/(2−p)
0 ga0(λ0|y|) ≤ w∗(y) for y ∈ BR(a0)/λ0

(0) . (5.10)

An obvious consequence of (5.8) and (5.10) is that w∗ and w∗ are both not identically
equal to zero.

Our aim now is to show that w∗ ≡ w∗ with the help of Theorem 4.15. In order to apply it,
we translate the estimates for v in Step 2 above into estimates for w∗ and w∗. We readily
notice that (5.3) implies

w∗(y) ≤ w∗(y) ≤ Γp,q(|y|), for any y ∈ R
N , (5.11)

and that (5.4) implies that

w∗(y) ≤ w∗(y) ≤ 6Kκ, ‖∇w∗‖ ≤ 6Kκ, ‖∇w
∗‖ ≤ 6Kκ, y ∈ R

N , (5.12)
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whence w∗ and w∗ belong to the space L1(RN ) ∩ W 1,∞(RN ). In addition, taking into
account the condition (1.8) on u0, we deduce from (5.5) that

w∗(y) ≤ w∗(y) ≤ C|y|−(α+1)/β , y ∈ R
N .

Consequently,

∫

{|y|≥r}
(w∗(y) + w∗(y)) |y|α/β−N dy ≤ C

∫ ∞

r
s−1/β−1 ds = Cr−1/β, (5.13)

which converges to 0 as r → ∞. Gathering (5.10), (5.11), (5.12), and (5.13), we are in a
position to apply Theorem 4.15 and conclude that w∗ ≤ fU ≤ w∗ in R

N .

Recalling (5.10), we have established that w∗ ≡ w∗ = fU , which in turn implies that

lim
ε→0

sup
y∈K

{
∣

∣

∣

∣

v

(

1

ε
, y

)

− fU (y)

∣

∣

∣

∣

}

= 0

for any compact subset K of RN by [1, Lemma V.1.9] or [2, Lemme 4.1]. Owing to (5.3)
and the decay of fU as |x| → ∞ (see Theorem 4.2), the above convergence can be improved
to the convergence of v(s) to fU in L∞(RN ) as s→ ∞. Going back to the original variables
gives (1.9) and ends the proof.

Acknowledgements

The research of R. I. is partially supported by the Spanish project MTM2008-03176. Part of
this work was done while Ph. L. enjoyed the hospitality and support of the Departamento
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