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Synopsis 

This work deals with the magnetic field-induced static yield stress of magnetorheological 

(MR) suspensions with concentration near the limit of maximum-packing fraction. With this 

aim, homogeneous suspensions of iron microparticles with 50 vol.% concentration were 

prepared, and their yield stress measured as a function of the applied magnetic field. In view 

of the failure of existing models to predict, on the basis of realistic hypotheses, the values of 

the yield stress of highly concentrated MR suspensions, we developed a new model. Our 

model considers that field application induces body-centered tetragonal (BCT) structures. 

Upon shearing, these structures deform in such a way that interparticle gaps appear between 

neighboring particles of the same chain, whereas the approach of particles of parallel chains 

ensures the mechanical stability of the whole multi-chain structure. Based on this hypothesis, 

and using finite element method simulations of interparticle magnetic interactions, our model 

is able to quantitatively predict the yield stress of highly concentrated MR suspensions. 

Furthermore, estimations show that the main contribution to the field-dependent part of the 
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yield stress comes from the change in the permeability of the structures as interparticle gaps 

are enlarged by the shear. 

I. INTRODUCTION 

The maximum packing fraction of particles in suspension is conventionally defined as 

the volume fraction of particles or particle aggregates in closest-packing at which the 

suspension viscosity approaches infinity [Zhou et al. (1995)]. For monodisperse hard spheres, 

the random loose maximum-packing fraction is approximately 0.63�0.64 [Onoda and Liniger 

(1990)]. However, porosity and shape of the particles, as well as particle-particle interactions, 

among other factors, have strong influence on the maximum packing fraction [Zhou et al. 

(1995)]. For example, flocculated suspensions have a lower maximum-packing fraction due to 

the fact that the particles are assembled into porous aggregates, whereas suspensions of 

charged particles do have because of the strong electrostatic repulsion between the particles 

[Russell et al. (1989)].   

Highly concentrated suspensions are of interest in many technical and industrial fields, 

for example in paints and cosmetics [Clausen et al. (2011)]. However, experimental rheology 

of highly concentrated suspensions is hampered by the poor reproducibility of measurements 

and the sensitivity to shear history. From the theoretical viewpoint, approaches based on the 

interpolation of the dilute-limit theory to a concentrated regime often fail because of the 

neglect of many-body interactions between particles [Larson (1994)], and taking these 

interactions into account makes the analytical work intractable [Clausen et al. (2011)]. Thus, 

realistic theoretical modeling remains an open and difficult issue in many cases.  

In the particular case of suspensions of non-Brownian magnetic microparticles, known 

as magnetorheological (MR) suspensions, maximum packing-fraction is considerably 

diminished (with respect to the mentioned 0.63�0.64) because of the formation of particle 
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aggregates induced by magnetic attraction, due to the remnant magnetization of the particles, 

and van der Waals forces. As a consequence, there are only a few rheological studies for 

particle volume concentrations higher than 45% [Chin et al. (2001); de Vicente et al. (2002); 

Laun et al. (2008a); Laun et al. (2008b)]. Only two of these works [Chin et al. (2001); Laun et 

al. (2008b)] present data of the yield stress, whereas the others [de Vicente et al. (2002); Laun 

et al. (2008a)] deal with the normal force. Besides, to the best of our knowledge, the existing 

theories (critically reviewed in section III.A below) underestimate the mechanical properties 

of MR suspensions for concentrations near the maximum packing-fraction or give unphysical 

results. Because of this, we have aimed to develop an appropriate theoretical model for the 

rheological properties of highly concentrated MR suspensions. In the present paper, we focus 

our attention on one of the most important MR properties: the static yield stress, which is 

commonly defined as the threshold stress required to fracture the suspension structure in its 

weakest point, and thus induce the flow of the suspension [Barnes et al. (1993)]. In order to 

validate our model, we conducted experimental measurements of the yield stress of a 

suspension containing 50 vol.% of iron particles. We will see that results of the theoretical 

model agree quite well with experimental ones within the range of applied magnetic fields, 

0<H0<25 kA/m.  

II. EXPERIMENTAL 

Silica-coated iron particles (Fe-CC, density 7.2 g·cm
-3

), supplied by BASF (Germany) were 

used as solid phase for the preparation of the MR suspension. According to the manufacturer, 

Fe-CC particles have median diameter, d50 = 5 µm. The choice of these particles was 

motivated by their silica coating, which ease the dispersion of the particles without requiring a 

surfactant. Mineral oil (density and viscosity at 25 ºC: 0.85 g·cm
-3

 and 39.58 ± 0.16 mPa·s, 

respectively) purchased from Sigma Aldrich (Germany) was used as carrier liquid. The MR 

suspension was prepared as follows. A small amount (approx. 4 g) of Fe-CC powder was 
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added to a relatively large amount of mineral oil (we took 50 cm
3
) and the resulting mixture 

was mechanically stirred until a homogeneous suspension was obtained. Then, a further small 

amount of Fe-CC powder was added to the suspension and, again, the resulting mixture was 

homogenized by mechanical stirring. This step was repeated as many times as required until 

the concentration of Fe-CC powder was so high that it was impossible to homogenize the 

mixture. At this point, we added approx. 1 cm
3
 of mineral oil and the homogenization of the 

mixture was possible by mechanical stirring. By this protocol, we assured that the 

concentration of particles in the suspension was as close as possible (within reasonable limits) 

to the maximum-packing fraction. At the end of this process, the volume fraction of particles 

in suspension was approximately 0.50, as obtained by density measurements. This 

concentration is relatively far from the 0.63�0.64 maximum-packing fraction reported for 

monodisperse hard spheres, likely due to the formation of aggregates as a consequence of 

attractive forces between particles, as discussed in the introduction. 

 Rheological measurements were performed at 25 ºC using a rheometer MCR 300 

(Physica-Anton Paar). The measuring geometry consisted of a homemade set of non-magnetic 

parallel plates of 20 mm in diameter, with rough surfaces in order to avoid wall slip. 

Visualization experiments on the deformation field of the MR fluid [which will be 

communicated in future] confirm the absence of the wall slip in our experimental system. The 

applied magnetic field was generated with the help of a solenoid, placed in such a way that 

the measuring geometry was at middle height of the coil and with axis coincident with that of 

the coil. The gap thickness between the lower (stationary) plate and the upper (rotational) 

plate of the measuring geometry was fixed at 0.35 mm.  

 As mentioned above, the static yield stress of a suspension is the shear stress required 

to induce its flow. In our experiments, we determined it by subjecting the samples to shear 

rate ramps in the range 0.005 � 0.02 s
-1

 and extrapolating the obtained values of the shear 
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stress to zero shear rate. To be precise, we used the following experimental protocol. The MR 

suspension was placed in the measuring system of the rheometer and, immediately afterwards, 

subjected to a shear rate ramp of 1 min of duration in the range 0�100 s
-1

. This pre-shear stage 

was carried out in the absence of magnetic field. Its aim was to impose identical initial 

conditions in order to ensure reproducibility of the measurements. Then, a uniform magnetic 

field of chosen value, ranging between 0 and 25 kA/m, was applied with the help of the 

solenoid and the suspension was left at rest during 30 s �a sufficient time to induce stable MR 

structures. Finally, the shear rate ramp was applied under the same magnetic field applied in 

the previous step. Note that the shear rate ramp consisted of 5 different values of the applied 

shear rate, each of them maintained during, at least, 30 min. The stress response was 

measured as a function of time during these periods of time. Once the measurement at a given 

applied field was accomplished, we repeated the pre-shear stage at zero magnetic field, and 

remade the same type of measurement at a higher applied field. The whole protocol was 

performed for three different freshly prepared MR samples. Results shown in this manuscript 

correspond to the average of these three different measurements. Note also, that we chose 

such a long duration of each measurement in order to achieve strains as large as γ ∼10
3
 and 

ensure a steady-state flow of the MR suspension. This experimental protocol guarantees 

reproducible results, independent of the previous mechanical history of the suspension. 

III. THEORY 

A. Theoretical background 

Before presenting in details our theoretical model it is worth checking, in an 

approximate manner, the agreement between the predictions of the existing theories and the 

experimental results for the static yield stress of highly concentrated suspensions. One of the 

first models dealing with this property assumed the formation of single chain structures, with 
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affine displacement of each particle along the direction of the shear, as depicted in Fig. 1a 

[Bossis et al. (2002); Ginder et al. (1996); Klingenberg and Zukoski (1990)]. This model will 

be hereinafter referred to as �the affine model�. As the particle chains are tilted by the 

straining motion, the horizontal component of the magnetic attractive force, Fx, acting 

between particles first increases, then reaches a maximum and finally decreases with the 

strain. At the strain for which the force is maximum, the chains are considered to become 

unstable and to break, inducing the flow of the MR suspension. The yield stress is simply 

calculated as the maximal interparticle force Fx multiplied by the number ns of chains per unit 

surface of the upper rheometer plate:  

Y s xn Fσ = ⋅ .      (1) 

A more general model, based on fundamental thermodynamic relations, considers the shear 

stress in a sheared suspension as a result of the change in its internal energy: 

/Uσ γ= ∂ ∂ ,      (2) 

where γ is the strain and U is the suspension internal energy per unit volume (see Fig. 1b) 

[Bossis et al. (1997); Bossis et al. (2002)]. This model will be called here the �thermodynamic 

model.� The static yield stress is also calculated in this case as the shear stress corresponding 

to the maximum in the stress versus strain curve. This model can be used whatever the 

description of the structure and, here, one should distinguish the microscopic description from 

the macroscopic one. The difference between both descriptions stands in the fact that, in the 

former the loss of contact between two neighboring particles is taken into account for the 

estimation of the energy dependency with the strain, contrary to the latter in which only the 

change of the energy due to the inclination of the aggregates is considered. As a result, both 

approaches give similar predictions if the interactions between particles are long ranged, as it 

is the case of dipolar interactions between particles of low magnetic permeability. On the 
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other hand, predictions are very different if strong short range forces exist, as it happens in the 

case of particles with high magnetic permeability [Bossis et al. (1997)]. It is worth nothing 

that the affine model is just a particular case of the microscopic approach of the 

thermodynamic model, for which both force and energy-based calculations of the stress, Eqs. 

(1) and (2) respectively, are completely equivalent. In the affine microscopic model, the 

interparticle forces are directly calculated either analytically [Ginder et al. (1996)] or 

numerically via multipolar approach [Clercx and Bossis (1993); Klingenberg and Zukoski 

(1990)] or finite element method [Bossis et al. (2002); Ginder and Davis (1994)]. In the 

macroscopic approach of the thermodynamic model a mean field theory must be used, usually 

the Maxwell-Garnet one which does not require assumptions of any specific particle 

arrangement at the microscopic scale (one should only define the macroscopic features of the 

structure, i.e. columns, ellipsoids or stripes) and allows obtaining general results [Bossis et al. 

(1997)]. As a consequence, the microscopic approach ensures a much better correspondence 

with experiments for MR suspensions composed of particles with high magnetic permeability, 

while the macroscopic one gives good predictions only for weakly magnetizable particles. 
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FIG. 1. Different model geometries used for stress calculations in MR fluids. The microscopic affine model 

[Ginder et al. (1996)] supposes affine displacement of particles with shear (a). Arrows denote displacement 

vectors of particles. The stress arises from the restoring interparticle force Fx. If a given particle leaves its 

equilibrium position (dashed sphere in (a)), it will be immediately stacked on top of the closest particle, showing 

that the structure is mechanically unstable. The macroscopic thermodynamic model [Bossis et al. (1997)] 

assumes formation of thick columns and ignores arrangement of particles within them (b). The stress comes from 

the restoring magnetic torque denoted by a bold arrow. A more realistic structure combines the features of both 

previous ones. Under strain, some particles experience affine motion, creating gaps between them, and the others 

are drawn into these gaps, maintaining the mechanical contacts with neighboring particles. One of the simplest 

structures corresponding to this picture is the BCT cluster shown in (c), which is found to be the most favorable 

for the energetic point of view [Tao and Sun (1992), Clercx and Bossis (1993), Tao and Jiang (1998)]. The stress 

response of such structure arises from both the longitudinal striction (due to the formation of gaps) and the 

restoring magnetic torque. 

When these two models are applied to the system studied in the present work 

(suspension of strongly magnetizable particles at 0.50 volume fraction), it is found that the 

affine microscopic model gives the correct order of magnitude for the yield stress (360 Pa vs. 

200 Pa �experimental value- for the yield stress upon application of a field of 18.5 kA/m) �

note that we have used the approach of Ginder et al. (1996) to estimate the interparticle 
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forces. On the other hand, the macroscopic approach of the thermodynamic model strongly 

underestimates the yield stress (9 Pa vs. 200 Pa for a magnetic field of 18.5 kA/m). Thus, at a 

first view, we may be tempted to restrict our analysis to the affine model. However, it is clear 

that the rupture of chains by keeping an equal gap between neighboring particles as supposed 

in this model and depicted in Fig. 1a is not realistic �see also comments on the caption of 

Figure 1. Furthermore, it is well known that in concentrated MR suspensions, thick columnar 

aggregates or other more isotropic structures are built upon field application, but single chains 

have never been observed [Cutillas and Bossis (1997)]. Therefore, from a realistic point of 

view, the thermodynamic model, which is based on general thermodynamic principles and 

assumes the formation of thick columns, is much more appropriate since it considers the 

correct size and shape of the aggregates. As already mentioned, the main reason for which the 

macroscopic model does not fit well to experimental results lies in the use of dipolar approach 

for interparticle interactions. This approach strongly underestimates the magnetic forces 

between particles and, as a consequence, gives too low values for the yield stress. In more 

details, the shear stress predicted by this model is given by the following relation: 

2

0 2 2
( )

(1 )
H

γσ µ µ µ γ⊥= − +E ,     (3) 

with µ0=4π·10
-7

 H/m being the magnetic permeability of vacuum, H the magnetic field 

intensity inside the MR suspension, and µE  and µ⊥  the diagonal components of the magnetic 

permeability tensor of the suspension with respect to a frame of reference with main axes in 

the directions parallel and perpendicular to the column aggregates. These last magnitudes will 

be called hereinafter longitudinal and transverse permeabilities for brevity. The yield stress is 

found as the maximum stress of the stress-strain dependency �Eq. (3)-, which is reached at a 

critical strain, 1/ 3critγ = . As seen in Eq. (3), the effects of the interparticle interactions in 
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the suspension stress are taken into account through the values of these magnitudes. The 

inaccuracy of the dipolar approach can be corrected by including higher-order magnetic 

interactions in the suspension permeability. However as will be shown by our theory (see 

section III-B), the main contribution to the yield stress of suspensions of highly magnetizable 

particles does not come from the value of the permeability, but from the change of the energy 

with the formation of gaps and, therefore, from the derivative of the permeability with respect 

to the gap between the particles. Thus, Eq. (3) should include a term containing /µ γ∂ ∂E  and 

/µ γ⊥∂ ∂ . 

The most rigorous way to take into account the interparticle gap effect on the strength 

of a real structure is to conduct numerical simulations of the structure dynamics under slow 

shear flow. Bonnecaze and Brady (1992) simulated the structure of electrorheological fluids 

by the molecular dynamic method using multipolar interactions between particles, and 

calculated the electrostatic stress with the help of Eq. (2). However, they reported rather 

strong irregular oscillations of the stress response, as a result of the structure breakage and 

reformation, and the predicted values of the yield stress were too low.  

In contrast to simulations, the microscopic models of Bossis et al. (1997), assuming 

more realistic multi-chain or zigzag-like clusters, provide a simpler picture of the interparticle 

gap effect on the suspension yield stress. The authors supposed that small interparticle gaps 

were formed under shear and calculated the stress via the derivative of the internal energy 

(Eq. (2)). The theoretical yield stress was found to strongly depend on the strain at which the 

interparticle gaps were formed. If the particles begin to separate from each other at zero strain 

(as it is the case of the affine deformation of multi-chain clusters), then the multipolar 

interactions predict a yield stress 2

06.5Y µ Hσ =  for the 50 vol.% MR suspension of the 

present work, which is an order of magnitude lower than the stress measured in our 
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experiments. If the particles form zigzag-like clusters, they begin to separate at a non-zero 

critical strain that corresponds to the full extension of the clusters. This gives a several times 

increase of the yield stress as compared to affine models. However, at the critical strain, the 

stress experiences a jump of several orders of magnitude, inconsistent with experimental 

observations. Therefore, neither affine nor zigzag-like cluster models can be applied, in the 

form they are reported in literature, to highly concentrated MR suspensions.  

In the next subsection we will develop a new model, which will be based on a realistic 

microscopic structure and will give correct values for the yield stress of MR suspensions in 

the concentrated regime. For this, we will take into account all the requirements for the 

particle structure that are drawn from the analysis performed above for previous models: (i) 

interparticle gaps must appear in the structure in order to obtain realistic values of the yield 

stress; (ii) the structure must be able to sustain a relatively large extension, in such a way that 

the critical strain would be high enough to give appropriate values of the yield stress; (iii) the 

failure of the structure must occur without any considerable jump in the stress. This implies a 

continuous formation of interparticle gaps during the shear strain of the clusters.  

B. Theoretical model 

Let us consider a simple shear deformation of a concentrated MR suspension confined 

between two parallel plates. An external magnetic field of intensity H0 is applied 

perpendicularly to the plates. If the field is strong enough, it will induce percolating structures 

of magnetic particles. We will assume that these consist of body-centered tetragonal (BCT) 

structures, with four peripheral chains shifted vertically by a particle radius with respect to a 

central chain, and with neighboring particles being in contact at zero strain. This structure was 

found to be the most favorable from the energetic point of view [Tao and Sun (1992), Tao and 

Jiang (1998)]. In addition, it was observed by laser diffraction experiments in 
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electrorheological fluids � electric counterparts of magnetorheological suspensions [Chen et 

al. (1992)]. Applied to our case of a highly concentrated suspension, this structure meets all 

the requirements mentioned at the end of the previous subsection, if we assume that the 

central chain deforms in an affine manner with the applied strain and the peripheral chains 

remain always in contact with the central one (see Fig. 1c). Since in our experiments we used 

surfaces with high rugosity, the structure is supposed to be always stuck to both plates, wall 

slip being absent, until its failure at the critical strain. Thus, when the upper plate is displaced 

a certain distance ∆x, the structure is strained by a magnitude γ =∆x/h, where h is the gap 

between the plates. We suppose that the structure deforms homogeneously until its failure and 

this assumption does not contradict to the condition of its mechanical stability: in the 

increasing branch of the stress-vs.-strain curve, any small perturbation of the homogeneous 

strain field should decay with the time. Under the strain, the particle structure turns along the 

vorticity axis and extends along its major axis (Fig. 1c), both effects contributing to the shear 

stress. On the one hand, the extension creates interparticle gaps and, consequently, restoring 

forces along the main axis of the structure. On the other hand, the structure rotation induces a 

restoring magnetic torque that tends to turn back the structure and align it with the magnetic 

field.  

In order to calculate the stress response for a given stationary strain, γ, we must first 

obtain the magnetic permeability tensor of the suspension. Under homogeneous deformation, 

the main axes of magnetization of the suspension coincide with the axes of the BCT 

structures. Thus, in a reference frame linked to the particle structures, the magnetic 

permeability tensor is diagonal and has two dissimilar components: µE  along the major axis 

of the structures and µ⊥  along their minor axis. From these, the magnetic permeability tensor 

with respect to the laboratory (rheometer) reference frame is obtained by rotation of the 
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reference frame along the y-axis. The two components, zzµ  and xzµ , which have importance 

in our calculations, are expressed as follows: 

2

2 2

1

1 1
zz

γµ µ µγ γ⊥= ++ +E ,     (4) 

2
( )

1
xz

γµ µ µ γ⊥= − +E  ,     (5) 

µE  and µ⊥  can be calculated as a function of the interparticle gap δ by solving Maxwell�s 

equations by finite element method simulation. These calculations are reported in details in 

the Appendix, together with interpolation formulas for the dependencies of µE  and µ⊥  with 

the relative gap, δ/a, with a being the particle radius. The relative gap δ/a is related to the 

strain by the following formula: ( )2/ 2 1 1aδ γ= + − . Thus, the magnetic permeability 

components can be expressed in terms of the strain γ.  

Below the yield point, and under static straining conditions, the MR suspension may 

be considered as a magnetic, anisotropic elastic solid. For such continuum, the stress tensor is 

expressed, in its most general form, by the equation given by Landau and Lifshitz (1984): 

 ( )
,

1

2
ik ik i k k i

ik T

F
F H B H Bσ δ γ

⎛ ⎞∂= + + +⎜ ⎟∂⎝ ⎠ H

## ,    (6) 

where H and B are respectively the magnetic field intensity and the magnetic flux density 

inside the suspension, γik are the components of the strain tensor, δik those of the unit tensor, 

and F#  is a thermodynamic function defined through the free energy of the suspension per 

unit volume, F, as follows: 
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   0

0

F F F d≡ − ⋅ = − ⋅∫HH B B H# ,    (7) 

with F0 being the free energy per unit volume of the suspension in the absence of magnetic 

field. Note that Shkel and Klingenberg (1999) used similar expressions for electrorheological 

fluids in the small deformation limit for calculations of the dielectric tensor and the storage 

modulus. We shall exploit these formulas in a broader range of strains, which will allow us to 

calculate the yield stress of the suspension.  

Magnetic particles used as solid phase in MR suspensions, usually show non-linear 

magnetization behavior, i.e. their magnetic permeability depends on the applied magnetic 

field strength. Similarly, the magnetic permeability of MR suspensions also presents a 

dependency with the applied magnetic field. However, in the relatively narrow range of 

magnetic field intensities used in our experiments, we may consider, within a good 

approximation, that the suspension permeability is field-independent. In this case, the 

magnetic flux density of the suspension presents a linear dependency with the magnetic field 

strength: 0i ik kB Hµ µ= . By substitution of this into Eq. (7), the expression for the 

thermodynamic function F#  reduces to: 

2
2 2 2 2

0 0 0 0 0 02 2

1 1 1 1 1

2 2 2 1 2 1
F F H H F H H

γµ µ µ µ µ µ µ µγ γ⊥ ⊥ ⊥= − − = − −+ +E E E
# ,  (8) 

where cosH H θ=E  and sinH H θ⊥ =  are the components of the internal magnetic field in 

the directions parallel and transverse to the BCT structures, respectively; θ is the strain angle 

(see Fig. 1b), which is related to the strain through the formula tanγ θ= . In the experimental 

case studied in this work, the internal magnetic field, H, in the thin layer of suspension 

confined between the two plates of the rheometer is related to the external applied field, H0, 

by the following expression: 
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   20 0

2
(1 )

zz

H H
H γµ µ µ γ⊥

= = ++E

.    (9) 

By substitution of Eqs. (5) and (8) into Eq. (6), we obtain the final expression for the shear 

stress (xz-component of the stress tensor) as a function of the applied strain and the magnetic 

field strength: 

( ) ( )2
2 2 2

0 0 02 2 2 2 2

1 1 1

(1 ) 2 1 1 2 1
H H H

µ µγ γ γσ µ µ µ µ µ µ µγ γ γ γ γ γ⊥⊥ ⊥
∂⎡ ⎤∂= − − ⋅ + ⋅ + −⎢ ⎥+ ∂ + ∂ + +⎣ ⎦

E
E E , 

            (10) 

with the expression for /µ γ∂ ∂E  given in the Appendix. The first term in Eq. (10) is the elastic 

contribution due to the restoring magnetic torque acting on the tilted BCT structures. This 

term is also connected to the variation of the suspension magnetic permeability with the 

rotation of the structures. The second term stands for the elastic contribution due to the 

restoring striction forces that tend to compress the structures extended by the shear. In other 

words, these forces tend to reduce the interparticle gaps induced by the strain. From the 

macroscopic point of view, this term is related to the variation of the magnetic permeability 

with the extension of the aggregates. The last term is the Maxwell stress, which arises from 

the deformation of the structures under the applied magnetic field. On the other hand, the first 

and the second terms come from the effect of deformation on the magnetic properties of the 

structures. Analysis shows that the first and the last terms of Eq. (10) are negligible as 

compared to the second one. This confirms the extreme importance of the interparticle gaps as 

a principle source of the stress of MR suspensions upon applied magnetic field. 
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FIG. 2. Longitudinal, µE , and transverse, µ⊥ , components of the magnetic permeability tensor of a suspension 

consisting of Fe-CC particles dispersed in mineral oil (volume concentration 50 %) as function of the applied 

shear strain. 

 

IV. RESULTS 

The strain dependency of both µE  and µ⊥  is shown in Fig. 2 for the suspension under 

study in the present work. In the range of the strains, 0 < γ < 0.5, the longitudinal 

permeability, µE , shows an important decrease with the strain. This decrease is connected 

with the appearance and enlargement of gaps between the particles of a same chain when the 

BCT structures are extended by the shear (see Fig. 1c). The size of these gaps increases 

proportionally to 2γ , and this provokes a quite strong variation of µE . On the other hand, the 

transverse permeability, µ⊥ , appears to be independent of the strain. This can be easily 

understood since µ⊥  depends mainly on the distance between particles of two opposite 

peripheral chains (dashed circles in the �top view� of Fig. 1c). The initial separation between 

these particles is equal to ( 3 1) (2 ) 1.5a a− ⋅ 0 . When the BCT structure is extended, there is 

an approach of these particles, but at small enough strains it is almost negligible with respect 

to the initial separation and, thus, it does not affect appreciably the value of µ⊥ . 
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FIG. 3. Theoretical stress-strain curve for a suspension consisting of Fe-CC particles dispersed in mineral oil 

(volume concentration 50 %). The applied magnetic field is H0=18.5 kA/m. 

Fig. 3 shows the stress-strain dependency calculated with the help of Eq. (10) for the 

MR suspension under study (50 vol.% of Fe-CC in mineral oil) upon application of a field 

H0=18.5 kA/m. As expected, when the strain increases, the stress first increases, then reaches 

a maximum, and finally decreases gradually towards nearly zero values at γ >0.3. Note that 

the maximum of the stress takes place at a critical strain, γcr≈0.115, much lower than that 

predicted by the macroscopic model of Bossis et al. (1997): 1/ 3 0.58crγ = ≈ . This is not 

surprising because, in our model, the longitudinal component of the suspension permeability 

falls with the strain quite rapidly (see Fig. 2), provoking a rapid increase of the stress at low 

strains. On the other hand, in the macroscopic model of Bossis et al. (1997), the permeability 

µzz decreases slowly with the strain, the structure rotation with respect to the applied field 

being the only cause for the decrease in this model. Nevertheless, the critical strain γcr≈0.115 

predicted for the BCT structure by the present model is two-three times larger than the one 

calculated for single chains �see Fig. 7 in the work by Bossis et al. (2002). Consequently, the 

critical strain obtained in the present work should be large enough to ensure reasonable 

predictions of the yield stress. As stated above, structures become unstable at strains γ >γcr 

and are thus supposed to break at the summit of the stress-strain curve. So, the yield stress 
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corresponds to the maximum of the stress-strain curve and is calculated by replacing the strain 

γ by the critical strain γcr≈0.115 in Eq. (10): ( )Y crσ σ γ= . 

 

FIG. 4. Experimental and theoretical dependencies of the yield stress increment, 0 0( ) ( ) (0)σ σ σ∆ = −H H , on 

the magnetic field intensity, H0, for a suspension containing 50 vol.% of Fe-CC in mineral oil. The inset shows 

the field dependency of the yield stress, 0( )σ H , without subtraction of the value at zero field, (0)σ . Full 

squares stand for the experimental data and the solid curve for the theoretical prediction �Eq.  (10), replacing γ 

by γcr≈0.115. The dashed line represents the best fit of the experimental data to a power law ( 0( ) nH Hσ∆ = ) �

the exponent of this best fit is 1.91 ± 0.07. 

The values of the static yield stress (both experimental and theoretical) for the MR 

suspension under study (50 vol.% of Fe-CC in mineral oil) are plotted as a function of the 

applied field strength in Fig. 4. Since, as observed in the inset of this figure, the MR 

suspension presents a non-zero experimental value of the yield stress at zero field, the net 

effect of the magnetic field is better expressed by the difference of the yield stress at a given 

magnetic field and that in the absence of field: 0 0( ) ( ) (0)H Hσ σ σ∆ = − . We refer to this 

quantity as yield stress increment. The yield stress at zero field is likely due to the remnant 

magnetization of the iron particles, as well as to non-magnetic colloidal interactions between 

them, mainly van der Waals forces, which may induce the formation of particle aggregates in 

the absence of applied field. The importance of these forces in suspensions of magnetic 

particles has been studied by different authors �see for example [Phulé et al. (1999)].  
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As seen in Fig. 4, the yield stress increment increases gradually with the magnetic 

field intensity. The experimental dependence of the yield stress increment is approximately 

quadratic, as proved by the fact that the best fit to a power law gives an exponent of 1.91 ± 

0.07 (dashed line in Fig. 4). The increment of the yield stress with the applied field is 

commonly explained by the fact that, at higher fields, stronger magnetic forces act between 

particles and, thus, stronger forces are required to separate them and to break the structures. 

Concerning the predictions of our theoretical model, as observed in Fig. 4, the theory (without 

adjustable parameters) still underestimates the experimental data by about 50%. One of the 

reasons for such a discrepancy could be a polydispersity of the MR suspension. As stated by 

Kittipoomwong et al. (2005), small magnetic particles may form locally more compact 

aggregates and cause the larger particles to form more robust aggregates. Such aggregates 

resist better to the applied strain and give a higher yield stress compared to that of the 

monodisperse MR fluid at the same volume fraction of particles.  

V. CONCLUSIONS 

We have presented in this work reliable experimental data of the magnetic field-

induced static yield stress of a MR suspension with concentration near the limit of maximum-

packing fraction. Both the preparation of the MR suspension and the experimental protocol 

followed for the measurement of the static yield stress were carefully chosen to guarantee 

reproducibility of the results. In addition, we have developed a model for the static yield stress 

of highly concentrated MR suspensions upon magnetic fields. This model is based on the key 

hypothesis that interparticle gaps inside the field-induced particle structures must appear when 

they are subjected to shear strain, at the same time that their mechanical stability must be 

maintained. This perspective supposes an original contribution with respect to standard 

models based on the affine deformation of single chains, which seems unrealistic for highly 

concentrated MR suspensions. The key hypothesis taken as starting point in our model is 
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easily fulfilled by considering a structural unit consisting of five chains of particles located at 

positions of a BCT structure. When this structure is sheared the particles of the central chain 

are supposed to move in an affine way, whereas the particles of the peripheral chains remain 

in contact with those of the central chain ensuring the mechanical stability of the structure. 

Estimations of our model show that the main contribution to the stress of highly concentrated 

MR suspensions comes from the change in the magnetic permeability of these, as interparticle 

gaps are forced and enlarged by the shear stress. Therefore, the neglect of this particular 

aspect in most of the existing macroscopic models is the likely reason for their failure when 

applied to highly concentrated suspensions of strongly magnetizable particles. This last 

statement is supported by the quite good agreement obtained between predictions of our 

model and experimental results, taking into account that our model does not include any 

adjustable parameter. The theoretical model developed in this work will be, in the near future, 

extended to the steady state shear flow of MR suspensions taking into account eventual flow 

instabilities in highly concentrated regime. Finally, the simple interpolation formulas issued 

from the present model could be useful for engineering calculations.   
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APPENDIX: PERMEABILITY CALCULATIONS 

We calculated the longitudinal and transverse magnetic permeabilities of the MR 

suspension by solving Maxwell�s equations by means of finite element method (FEM) 

simulations. These simulations were performed with the help of the free software FEMM 

[Meeker (2009)]. For this aim, and although the BCT structures of our model are three-

dimensional (3D), we considered a planar problem since 3D-problems cannot be implemented 

with FEMM software. Nevertheless, we expect that the simplification of the real 3D-problem 

to a planar-one will not be a restriction for the validity of the results obtained in this appendix.  

The representative planar cells used for the calculations of both components of the 

magnetic permeability tensor, µE  and µ⊥ , are shown in Figs. A1 and A2, respectively. The 

vertical axis of symmetry of the first cell coincides with the major axis of the BCT aggregate. 

The two closely spaced semi-circles represent particles belonging to the central chain and the 

two lateral circles represent particles of the peripheral chains. The whole BCT structure is 

relatively long (aspect ratio /(2 3) 40h a ≈ ) and can be considered as an infinite stack of the 

unit cells. The horizontal dimension d of the first cell (Fig. A1) is chosen to be equal to the 

mean distance between BCT structures in their hexagonal arrangement: 

2 5 /(3 3 ) 2.46 (2 )d a aπ= Φ ⋅ ≈ ⋅ , where a is the particle radius and Φ=0.5 the volume 

fraction of particles in the suspension. In this figure, the applied magnetic field is oriented 

vertically and the intensity H of the internal magnetic field (averaged over the cell volume) is 

imposed on both lateral borders of the cell. Periodic boundary conditions are used for the 

upper and the lower borders of the cell.  
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FIG. A1. Elementary cell of the MR suspension used for the calculation of the longitudinal magnetic 

permeability, µE . The surface plot of the magnetic flux density and the magnetic field lines are shown. The red 

spots correspond to the regions of high magnetic flux density in the vicinity of the contact points between 

spheres. 

For the calculation of the transverse magnetic permeability, µ⊥ , the external magnetic 

field must be applied perpendicularly to the BCT structure. However, for the convenience of 

definition of the boundary conditions, we can still reduce our problem to longitudinal 

magnetic fields. For this aim, a 90º rotation of the internal structure shown in Fig. A1 is 

enough. By doing it we obtain the unit cell used for the calculations of µ⊥  (Fig. A2). In this 

figure, the two closely spaced circles represent particles of the central chain and the two semi-

circles stand for particles of peripheral chains. In this cell, the external magnetic field is 

vertical and the boundary conditions are similar to those used for the cell of Fig. A1.  

 

FIG. A2. Elementary cell of the MR suspension used for the calculation of the transverse magnetic permeability, µ⊥ . The surface plot of the magnetic flux density and the magnetic field lines are shown. 
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The non-linear magnetic properties of carbonyl iron particles are well described by the 

Fröhlich-Kennelly law [Jiles (1991)]: 

   
( 1)

1
( 1)

i S
p

S i p

M

M H

µµ µ
−= + + − ,     (A.1) 

where µp is the magnetic permeability of the particles, µi = 250 and MS = 1.36·10
6
 A/m are, 

respectively, the initial permeability and the saturation magnetization of the particles, and Hp 

is the magnetic field intensity inside the particles.  

Once the magnetic field distribution is found for both cells (Figs. A1 and A2), the 

corresponding permeability component is calculated by the following formula: 

   , ,

0

1
B dV

H V
µ µ⊥ ⊥= ⋅ ∫E E ,    (A.2) 

where H is the intensity of the mean magnetic field inside the MR suspension, imposed on the 

lateral borders of the cell and related to the external field, H0, via Eq. (9). The integration in 

Eq. (A.2) is performed over the whole cell volume V. Recall that the simulations are 

performed considering planar geometries, and this means that the circles of Figs. A1 and A2 

are taken, from the point of view of the FEM simulation, as infinite cylinders oriented 

perpendicular to the plane of the page. In order to evaluate the numerical error related to this, 

we calculated by FEM simulation the longitudinal magnetic permeability of an infinite chain 

composed of touching spheres, and that of an infinite chain composed of touching cylinders 

with their axes perpendicular to the applied magnetic field. Simulations showed that the 

magnetic permeability of the chain of spheres is 3.43 times smaller than that of the chain of 

cylinders. Consequently, all the results obtained for the multi-chain geometry of Figs. A1 and 

A2, including those of Eq. (A.2), were reduced by the factor 3.43. This is perhaps a rough 

approximation but its validity is supported by the fact that it allows obtaining a good 
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correspondence between theoretical and experimental values of the yield stress, as observed in 

Fig. 4.  

For the calculation of the components of the magnetic permeability tensor of the 

structure subjected to uniaxial extension under the shear forces, we moved apart the initially 

touching circles (which represent particles of the central chain) and approached the non-

touching ones (which represent particles of opposite peripheral chains), in such a way that 

there was no fracture of the structures represented in Figs. A1 and A2. By changing the 

distance between the initially touching circles by steps of 410 a− ⋅ , we obtained the values of 

µE  and µ⊥  as functions of the relative interparticle gap, δ/a. The best nonlinear fits of these 

functions (taking into account the correction factor 3.43, mentioned above) are given by the 

following formulas:  

  1 3 4

2

( / )
exp ( / )

a
a

δµ α α α δα
⎛ ⎞= − + + ⋅⎜ ⎟⎝ ⎠E ,   (A.3) 

5.118constµ⊥ ≈ = ,      (A.4) 

with αi (i=1-4) being numerical constants of values α1=6.4925, α2=0.01164, α3=5.1636 and 

α4=-0.00435. Replacing the relative gap in Eq. (A.3) by the formula ( )2/ 2 1 1aδ γ= + − , we 

obtain the longitudinal magnetic permeability, as a function of the strain γ. Finally, the 

derivative of µE  with respect to the strain, which appears in Eq. (10) for the stress, is given by 

the following expression:  

( )2

1
4

2
2 2

2 1 1( / ) 2
exp

( / ) 1

a
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γµ µ αδ γαγ δ γ α α γ
⎡ ⎤⎛ ⎞+ −∂ ∂ ∂ ⎢ ⎥⎜ ⎟= ⋅ = − − +⎢ ⎥⎜ ⎟∂ ∂ ∂ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

E E
.  (A.5) 
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