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SPIKE DETECTION FROM INACCURATE SAMPLINGS

JEAN-MARC AZAÏS, YOHANN DE CASTRO, AND FABRICE GAMBOA

ABSTRACT. This article investigates the support detection problem using the
LASSO estimator in the space of measures. More precisely, we study the recovery
of a discrete measure (spike train) from few noisy observations (Fourier samples,
moments...) using an ℓ1-regularization procedure. In particular, we provide an

explicit quantitative localization of the spikes.

1. INTRODUCTION

1.1. Super-resolution. Imaging experiments can be subject to device limitations
where one cannot observe enough information in order to recover fine details. For
instance, in optical imaging, the physical limitations are evaluated by the reso-
lution. This latter measures the minimal distance between lines that can be dis-
tinguished. Hence, the details below the resolution limit seem unreachable. The
super-resolution phenomenon is the ability to recover the information beyond the
physical limitations. Surprisingly, if the object of interest is simple, e.g. a dis-
crete measure, then it is possible to override the resolution limit. In particular,
the reader may think of important questions in applied harmonic analysis such
as the problem of source separation. Many companion applications in astronomy,
medical imaging and single molecule imaging in 3D microscopy are at stake, see
[16, 15, 21] and references therein. Hence, theoretical guarantees of source detec-
tion are of crucial importance in practice.

In this paper, we prove quantitative detection guarantees from noisy observa-
tions (Fourier samples, moments samples). Furthermore, these quantitative esti-
mates can be computed using a tractable algorithm, called BLASSO.

1.2. Previous works. The theoretical analysis of the ℓ1-regularization in the space
of measures was initiated by Donoho [8]. Few years after, rates of convergence in
super-resolution have been investigated by P. Doukhan, E. Gassiat and one author
of this present paper [9, 12]. They considered the exact reconstruction of a non-
negative measure and derived results when one only knows the values of a finite
number of linear functionals at the target measure. Moreover, they study stabil-
ity with respect to a metric for weak convergence. Likewise, two authors of this
paper [7] proved that k spikes trains can be faithfully resolved from m = 2k + 1
samples (Fourier samples, Stieltjes transformation, Laplace transform...) by using
an ℓ1-minimization method.

Following recent proposal [3, 4, 17, 19] on inverse problems regularization in
Banach spaces, we consider convergence rates in Bregman divergence. On a more
general note, inverse problems on the space of measures are now well understood,
see [13, 20] for instance. We capitalize on these earlier works to construct our anal-
ysis. In particular, we use them to give quantitative localizations of the recovered
spikes, which is new.
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In the super-resolution frame, the important paper [6] shows that if the spikes
are well “seperated” then there exists a dual certificate, i.e. an ℓ∞-constrained
trigonometric polynomial that interpolates the phase of the weights at the spikes
locations. This construction provides a quadratic isolation condition, see Defini-
tion 2.2, of the spikes which is crucial for ℓ1-minimization in the space of measures.
In a predating paper [7], the authors investigates ℓ1-minimization with different
types of measurements: trigonometric, polynomial, Laplace transform... In view
of application, the recent works [5, 22] derive results in ℓ1 and ℓ2 prediction, i.e.
the estimation of the input frequencies. Moreover, note that noise robustness of
support recovery is proved in [10].

A postdating paper [11] bounds the support detection error for a constrained
formulation of the ℓ1-minimization in the space of measures as in Theorem 2.2. Re-
garding unconstrained formulation, a second postdating paper [22] studies spikes
detection for the Fourier sampling under a Gaussian noise model. The authors
provide an optimal rate for the ℓ2-prediction, namely the ℓ2 distance between the
recovered Fourier coefficients and the original ones.

The aforementioned results suggest that the recovered spike locations should
be close to the input support. This is investigated, for the first time, in this paper
for an unconstrained ℓ1-minimization problem under a general sampling scheme.

1.3. General model and notation. Let (T, d) be a compact metric space homeo-

morphic to either the interval ([0, 1], | . |) or the unit circle S1, which is identified to

the metric space (R mod (1), d(·, ·)) via the mapping z = ei2πt. In this latter case,
the distance d is taken around the circle. Let ∆ be a complex measure on T with
discrete support of size s. In particular, the measure ∆ has polar decomposition,
see [18] for a definition:

(1.1) ∆ =
s

∑
k=1

∆k exp(i θk) δTk
,

where ∆k > 0, θk ∈ R, Tk ∈ T for k = 1, . . . , s and δx denotes the Dirac mea-
sure at point x. Let m be a positive integer and F = {ϕ0, ϕ1, . . . , ϕm} be a family
of complex continuous functions on T. Assume that the family F is a family of
orthonormal functions with respect to a probability measure Π on T.

We recall some basic concepts in the frame of generalized polynomials. Define
the k-th generalized moment of a complex measure µ on T as:

ck(µ) =
∫

T

ϕk dµ ,

for k = 0, 1, . . . , m. Suppose we observe y = (yk)
m
k=0 defined by yk = ck(∆) + εk

for k = 0, 1, . . . , m, where ε = (εk)
m
k=0 is a complex valued white noise. This can be

written as:

y =
∫

T

Φ d∆ + ε ,

where Φ = (ϕ0, . . . , ϕm). In this paper, we investigate the recovery of the complex
measure ∆ from m + 1 measurements given by y.

Remark. Along this article, we shall mention examples in the Fourier case (Fourier
samples) or in the polynomial case (moment samples), notation are described
therein. If not specified, notation are in accordance with the general model.

1.4. Unconstrained minimization. Denote by M the set of all finite complex mea-
sures on T and by ‖ . ‖TV the total variation norm. We recall that for all µ ∈ M,

‖µ‖TV = sup
P

∑
E∈P

|µ(E)| ,
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where the supremum is taken over all partitions P of T into a finite number of
disjoint measurable subsets. For further details, we refer the reader to [18].
By analogy with the LASSO [23], Beurling LASSO (BLASSO) is the process of re-
constructing a discrete measure ∆ from the samples y by finding a solution to:

(BLASSO) ∆̂ ∈ arg min
µ∈M

1

2
‖
∫

T

Φ dµ − y‖2
2+λ‖µ‖TV ,

where λ is a tuning parameter.

Remark. For the case of Fourier coefficients and ε = 0, (BLASSO) is called Gen-
eralized Minimal Extrapolation (GME), see [7] and Eq. (2.1) for a definition. This
procedure finds an extrapolation of a function given on a subset of T with mini-
mal TV-norm of its Fourier transform among all possible extrapolating functions.
Moreover, our procedure is an extension of the LASSO estimator of the high-
dimensional regression theory.

Remark. On the algorithmic side, observe that the Fenchel dual program of
(BLASSO) can be recast into a SDP program when using Fourier samplings or
moment samplings, see [6, 22] for instance.

One knows that the extreme points of the unit ball of the TV-norm are the atoms
δx where x ∈ T. Therefore, ℓ1-minimization compels the solutions to be discrete
measures. Nevertheless, the TV-norm is innappropriated in measuring the dis-
tance between spikes, and it seems difficult to localize BLASSO. Two questions
immediately arise:

• How close is the recovered spike train ∆̂ from the target ∆?
• How accurate is the localization of BLASSO in terms of the noise and the

amplitude of the recovered/original spike?

To the best of our knowledge, this paper is the first to address these questions in a
general frame. In particular, it is the first paper to provide quantitative localization
guarantees from the output amplitudes.

1.5. Contribution. The present paper is concerned with the problem of the local-
ization of the target spikes. In the general frame, we show that the large recovered
spikes are very close to the target spikes, and that the mass of all the recovered
spikes far from the original support is small. In the Fourier case and the moment
case, we specify that under mild assumptions on the support of the target, the
mass of the reconstructed measure is concentrated around large spikes, i.e. spikes
above the noise level. In particular, we derive error bounds in terms of the recov-
ered measure and the original measure.

1.6. Organization of the paper. The next section present the main results in the
general frame. We derive the corresponding results in the Fourier frame and the
moment frame in Section 3. The bound on the noise in the space of continuous
functions is given in Section 4 using the Rice method. Section 5 recalls some useful
optimization tools in order to implement our procedure.

2. QUANTITATIVE LOCALIZATION IN THE GENERAL FRAME

2.1. Zero-noise problem. All solution to ℓ1-regularization satisfies some optimal-
ity condition based on the fact that the sub-gradient of the regularization function
vanishes at the solution point. Then a sufficient condition for exact recovery is that
the target measure satisfies this optimality condition. This analysis has led to the
notion of dual certificate, see [7, 6] for instance, and the notion of source condition,
see [4].
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Definition 2.1 (Dual certificate). We say that a generalized polynomial P = ∑
m
k=0 ak ϕk

is a dual certificate for the measure ∆ defined by (1.1) if and only if it satisfies the following
properties:

• phase interpolation: ∀k ∈ {1, . . . , s} , P(Tk) = exp(−iθk),
• ℓ∞-constraint: ‖P‖∞≤ 1.

Indeed, one can prove that the target measure ∆ is a solution of the following
ℓ1-minimization:

(2.1) ∆GME ∈ arg min
µ∈M

‖µ‖TV s.t.
∫

T

Φ dµ =
∫

T

Φ d∆ .

if and only if ∆ has a dual certificate, a proof can be found in [7]. We understand
that if ∆ has no dual certificate (i.e. no generalized polynomial with infinity norm
less than 1 interpolates the phases at support point locations) there is no hope in
recovering ∆ with an ℓ1-minimization method.

2.2. Quantitative localization guarantees from the output amplitudes. In the
presence of noise, one cannot ask for exact recovery and the notion of dual cer-
tificate is too loose for establishing stability results. Therefore, we strengthen a bit
more this notion so as to derive a quantitative localization of the target spikes from
BLASSO.

Definition 2.2 (Quadratic isolation condition). We say that a finite set S =
{T1, . . . , Ts} ⊂ T satisfies the quadratic isolation condition with parameters Ca > 0
and 0 < Cb < 1, denoted by QIC(Ca, Cb), if and only if for all (θk)

s
k=1 ∈ Rs, there exists

P ∈ Span(F) such that for all k = 1, . . . , s, P(Tk) = exp(−iθk), and

∀x ∈ T , 1 − |P(x)|≥ min
T∈S

{Cam2d(x, T)2, Cb} .

Before stating the theorem, we would like to point out that, under general con-
ditions [14], the solutions of the convex program (BLASSO) always contain an
atomic solution with support of size less than m+ 2. Moreover, this solution can be
computed from the solution of the convex dual problem in the Fourier frame, see
[6] for instance. Therefore, we can always consider an atomic solution of BLASSO:

∆̂ =
n

∑
k=1

∆̂k exp(i θ̂k) δT̂k
.

We begin with a first result showing that, even with a small regularization param-
eter λ, the large spikes of BLASSO detect the original support points. Thereafter,
we will denote

N (c0, S) :=
{

x ∈ T ; min
T∈S

d(x, T) ≤ c0

m

}

,

and F (c0, S) its complement, or N and F for short.

Theorem 2.1. Assume that the support S of ∆ satisfies QIC(Ca, Cb). Let λ be such that
λ ≥ ‖ε‖2. Then, for all x ∈ T such that:

|∆̂({x})|> 2λ

Cb
,

there exists T ∈ S satisfying:

d(x, T) ≤
[ 2λ

Ca|∆̂({x})|
]1/2 1

m
≤ c0

m
,

where c0 =
√

Cb/Ca. Observe that, if min
k 6=l

d(Tk − Tl) >
2c0

m
then the aforementioned

point T is unique. Moreover,
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(1) ∑
T̂k∈N (c0,S)

∆̂k min
Tl∈S

d(T̂k, Tl)
2 ≤ 2λ

Cam2
,

(2) ∑
T̂k∈F (c0,S)

∆̂k ≤
2λ

Cb
.

This result shows that BLASSO puts a small weight far from the original support,
see (2). Moreover, it shows that the reconstructed points, with large weights, are
close to the true support, see (1). Our result quantitatively bounds the support re-
covery error in terms of the amplitude of the solution. In actual practice, the result
(1) provides a confidence set on the localization of the true support. Furthermore,
it shows that this localization is getting better as the recovered amplitude is large.

Remark. Postdating this paper, some important works [11, 22] improve our result,
in the Fourier case, providing bounds that depend only on the amplitude of the
original spike. An attentive reader can see that the bounds (ii) and (iii) in Theorem
1.2 of [11] and the bounds (i) and (ii) in Theorem 2 of [22] are covered by our
predating result. Moreover, Theorem 2.1 deals with a regularizing parameter λ
that can be of the order of ‖ε‖2. In contrast, the regularizing parameter τ in [22]
has to be of the order of λ0 = ‖∑

m
k=0 εk ϕk‖∞ which is roughly of the order of ‖ε‖∞

in the Gaussian noise model, see 4.2.

2.3. Quantitative localization guarantees from the input amplitudes. One
knows [2] that any bounded polynomial on a compact of the real line has its de-
rivative upper bounded by a constant times its degree. Hence, a uniform upper
bound on the derivatives of the dual certificate P can be given.

Definition 2.3 (Bernstein Isolation Property). We say that a set S satisfies the Bern-
stein Isolation Property with parameters c0 > 0 and Cc > 0, denoted by BIP(c0, Cc), if
and only if

∀P ∈ Span(F), ∀x ∈ N (c0, S) , |P′′(x)|≤ Ccm2‖P‖∞ .

Using this property, we can specify the result of Theorem 2.1 in terms of the input
amplitudes.

Theorem 2.2. Assume that the support S of ∆ satisfies BIP(c0, Cc) and QIC(Ca, Cb)
with c0 =

√
Cb/Ca. Let λ be greater than ‖∑

m
k=0 εk ϕk‖∞. Then

(3) |∆j − ∑
{k: d(T̂k,Tj)≤

c0
m }

∆̂k|≤ C′λ ,

where C′ = 2 + max
{

2(1−Cb)
Cb

, Cc
Ca

}

. Moreover for all Tj ∈ S corresponding to a weight

such that:

∆j > C′λ ,

there exists T̂ ∈ Supp(∆̂) satisfying:

d(Tj, T̂) ≤
[ 2λ

Ca(∆j − C′λ)

]1/2 1

m
.

Observe that this phenomenon has been investigated in the Fourier case, see for
instance [11, 22]. Theorem 2.2 shows that it is conducted by the BIP property,
namely a control of the second derivative of the dual certificate on a small vicinity
of each point of the support S. Hence, it may applies to a more general frame.
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2.4. Examples of families satisfying BIP. The BIP property is satisfied for a large
class of family of measurements, see [2] for instance. We present some standard
Bernstein-type inequalities for which the BIP property can be derived.

Fourier samples: Let FF = {exp(−ı2π fcx), . . . , 1, . . . , exp(ı2π fcx)} then

(2.2) ∀P ∈ Span(FF), ∀x ∈ [0, 1] , |P′′(x)|≤ π2(2 fc)
2‖P‖∞ .

Moment samples: Let FM = {1, x, . . . , xm} then

(2.3) ∀P ∈ Span(FM), ∀x ∈ (−1, 1) , |P′′(x)|≤ 4
( m√

1 − x2

)2
‖P‖∞ .

Laplace transform: Let 0 < λ0 < λ1 < λ2 < · · · be any real numbers. Let
FL = {exp(−λ0x), exp(−λ1x), exp(−λ2x), . . . }. From Newman’s inequal-
ity ([2], p.276), we know that:

∀P ∈ Span(FL), ∀x ∈ [0,+∞) , |P′′(x)|≤
(

9
∞

∑
i=0

λi

)2
‖P‖∞ .

Müntz polynomials I: Let 0 < α1 < · · · < αm be any real numbers. Let
FMü = {1, xα1 , . . . , xαm} then for all η > 0, there is a constant cη such that

∀P ∈ Span(FMü), ∀x ∈ (0, 1− η) , |P′′(x)|≤ cη

x2
‖P‖∞ .

Müntz polynomials II: Let 1 < α0 < · · · < αm be any real numbers. Let
FMü = {xα0 , xα1 , . . . , xαm} then, by Newman’s inequality ([2], p.276),

∀P ∈ Span(FMü), ∀x ∈ (0, 1] , |P′′(x)|≤ 34(∑m
i=0 αi)(∑

m
i=0 αi + 1)

x2
‖P‖∞ .

These examples shows that the BIP property is a mild assumption in most practical
cases.

3. SUPPORT DETECTION FROM NOISY FOURIER/MOMENT SAMPLES

3.1. Detection from noisy Fourier samples. In this subsection, we mention the
example of Fourier samples to illustrate our results. Recently, much emphasis
has been put on the recovery of a discrete measure from noisy band-limited data
[5, 11, 22]. In this setting, we observe noisy Fourier samples up until a frequency
cut-off fc ∈ N∗. We specify notation:

• The number of samples is 2 fc + 1 hence m = 2 fc.
• For sake of simplicity, we place ourselves on T = [0, 1].
• For all k ∈ {− fc, . . . , fc}, we set for all x ∈ [0, 1], ϕk(x) = exp(i 2πkx), and

Φ = (ϕ− fc
, . . . , ϕ fc

).
• Assume (εk)

m
k=0 are random complex Gaussian:

εk = ε
(1)
k + i ε

(2)
k ,

where ε
(1)
k , ε

(2)
k , k ∈ {− fc, . . . , fc} are i.i.d. centered Gaussian random vari-

ables with standard deviation σ:

ε
(1)
k ∼ ε

(2)
k ∼ N (0, σ2) .

We mention that ε = (ε− fc
, . . . , ε fc

).

• Finally, we recall that we observe y =
∫

T
Φ d∆ + ε.

Our results show that if the spikes are sufficiently separated, at least 2.5/ fc apart,
then one can detect some point sources with a known precision solving a simple
convex optimization program.
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Definition 3.1 (Minimum separation [6]). For a family of points S ⊂ T, the minimum
separation is defined as the closest distance between any two elements from S:

ℓ(S) = inf
(x,x′)∈S2

x 6=x′

|x − x′| .

We emphasize that the distance is taken around the circle so that, for example |5/6 −
1/6|= 1/3.

0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46

−5

0

5

10

Detection of Spikes with Blasso

 

 

Noiseless low resolution signal
Noisy low resolution signal
Original signal
Estimated signal with Blasso

FIGURE 1. The problem is the following: we aim at recovering
some spikes of the original signal (stars ∗) from the observation
of a corrupted optical device (blue line) which can differ heavily
from the true noiseless observation (black dotted line). Our proce-
dure (red circles) provides a close estimate of the location of some
spikes.

In this framework, we have the following theorem that quantifies the support de-
tection error of BLASSO.

Corollary 1. Assume that fc ≥ 128. Let ∆ be a discrete measure such that:

(3.1) ℓ(S) ≥ 2.5

fc
,

where S denotes the support of ∆. Let ∆̂ be a solution to (BLASSO) with tuning parameter
λ such that:

λ ≥ λF := 2 σ
√

6 fc log( fc) .

then, with probability greater than 1 − 2 exp[−(log fc) λ2/λ2
F], the following holds.

• For all x ∈ [0, 1] such that:

(3.2) |∆̂({x})|≥ 218 λ ,

there exists a unique T ∈ S satisfying:

|x − T|≤
[ λ

0.1678 |∆̂({x})|
]1/2 1

fc
≤ 0.1649

fc
,
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• For all Tj ∈ S corresponding to a weight such that:

∆j > 218 λ ,

there exists T̂ ∈ Supp(∆̂) satisfying:

|Tj − T̂|≤
[ λ

0.1678(∆j − 218λ)

]1/2 1

fc
.

This result provides a quantitative estimate of the location of spikes in terms of the
output amplitudes or the input amplitudes.

Remark. Observe that our procedure do not suppose any knowledge on the total
number of spikes. This property is of great importance in actual practice. Only the
minimal distance between any pair of atoms is relevant to BLASSO.

Remark. The constant 2.5 in the minimal separation assumption (3.1) is not op-
timal. However, it can be lowered to 2 using the result [6] but the constants in
Corollary 1 seems too large in this case. For instance, the constant 218 in (3.2)

would be greater than 103. So, we choose to keep 2.5 in (3.1) so as to get not too
large constants.

3.2. Detection from noisy moment samples. In this section, we investigate the
diffraction limit from moment measurements. In particular, we try to understand
how BLASSO can super-resolve spikes from noisy moment samples.

• The number of samples is m + 1.
• For sake of simplicity, consider that T = [−1, 1].
• Consider FC = {ϕ0, . . . , ϕm} defined by T0 = 1 and for all k ∈ {1, . . . , m},

(3.3) ϕk =
√

2 Tk ,

where Tk(x) = cos(k arccos(x)) is the k-th Chebyshev polynomial of the
first kind. Hence, the family FC is an orthonormal family with respect

to the probability measure Π(dt) = (1/π) (1 − t2)−1/2 L(dt) on [−1, 1]
where L denotes the Lebesgue measure.

• Assume εk are i.i.d. centered Gaussian random variables with standard
deviation σ. We mention that ε = (ε0, ε1, . . . , εm).

• Finally, we recall that we observe y =
∫

T
Φ d∆ + ε.

Corollary 2. Let m ≥ 9. Let ∆ be a discrete measure such that its support S is 2c0 far from
the endpoints of T, namely ±1. Assume that ∆ satisfies QIC(Ca, Cb) with Cb/Ca ≤ c2

0.

Let ∆̂ be a solution to (BLASSO) with tuning parameter λ such that:

λ ≥ λM := σ
√

6m log m .

then, with probability greater than 1 − 8 λ
λM

√

log m exp
[− (2 λ2

λ2
M

− 1) log m
]

, the fol-

lowing holds.

• For all x ∈ [−1, 1] such that:

|∆̂({x})|> 2λ

Cb
,

there exists a unique T ∈ S satisfying:

|x − T|≤
[ 2λ

Ca |∆̂({x})|
]1/2 1

m
≤ c0

m
,
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• Let C′ = 2 + max
{

2(1−Cb)
Cb

, 4
Ca−Cb

}

. Then, for all Tj ∈ S corresponding to a

weight such that:
∆j > C′ λ ,

there exists T̂ ∈ Supp(∆̂) satisfying:

|Tj − T̂|≤
[ 2λ

Ca(∆j − C′λ)

]1/2 1

m
.

4. RICE METHOD

We use the Rice method as a convenient tool to upper bound the supremum of a
random polynomial on a compact set. Proofs can be found in F.

4.1. Polynomial case. Consider the family FC = {ϕ0, . . . , ϕm} defined by 3.3. De-
fine the Gaussian process {Xm(t), t ∈ [−1, 1]} by:

∀t ∈ [−1, 1], Xm(t) = ξ0ϕ0(t) + ξ1ϕ1(t) + ξ2ϕ2(t) + . . . + ξm ϕm(t) ,

where ξ1, . . . , ξm are i.i.d. standard normal. Its covariance function is

r(s, t) = 1 + ϕ1(t)ϕ1(s) + ϕ2(t)ϕ2(s) + . . . + ϕ1(m)ϕm(s) ,

where the dependence in m has been omitted. Observe that its maximal variance

is attained at point 1 and is given by σ2
m = 2m + 1, and its variance function is

σ2
m(t) = 1 + ϕ1(t)

2 + ϕ2(t)
2 + · · ·+ ϕ1(m)2.

Proposition 4.1. Let M = max
t∈[−1,1]

|Xm(t)|. Then, for m ≥ 12 and for u >
√

1 + 2m,

P{M > u} ≤ 4m(1 + u)√
2π

exp
(− u2

1 + 2m

)

.

4.2. Fourier case. We consider the trigonometric functions:

ϕk(t) = exp(i2πkt) , t ∈ [0, 1] and k ∈ K := {− fc , . . . , fc} ,

and random complex Gaussian errors:

εk = ε
(1)
k + i ε

(2)
k ,

where the variables ε
(1)
k , ε

(2)
k , k ∈ K are independent with standard normal distri-

bution.

Proposition 4.2. Let Z(t) = ∑
k∈K

εk ϕk(t). Then, for u >
√

2,

P{ sup
t∈[0,1]

‖Z(t)‖ > u} ≤ 4
(

exp(− u2

2(2 fc + 1)
) +

√

fc( fc + 1)

3
exp

(

− u2

4(2 fc + 1)

))

.

APPENDIX A. PROOF OF THEOREM 2.1

Let P =
m

∑
k=0

ak ϕk given by the QIC condition such that P is a dual certificate of ∆.

Set:

d = ‖∆̂‖TV−‖∆‖TV−ℜ(
∫

T

P d(∆̂ − ∆)) ,

where ℜ( . ) denotes the real part. One can check that d belongs to the Bregman

divergence of the TV-norm between ∆̂ and ∆. Hence, we know that it is non-
negative. Indeed, observe that:

ℜ(
∫

T

P d(∆̂ − ∆)) = ℜ(
∫

T

P d(∆̂))− ‖∆‖TV≤ ‖∆̂‖TV−‖∆‖TV
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since P is sub-gradient of the TV-norm at point ∆. From the definition of BLASSO,
we have:

1

2
‖
∫

T

Φ d∆̂ − y‖2
2+λ‖∆̂‖TV≤

1

2
‖ε‖2

2+λ‖∆‖TV .

Therefore:

(A.1)
1

2
‖
∫

T

Φ d∆̂ − y‖2
2+λ d + λℜ(

∫

T

P d(∆̂ − ∆)) ≤ 1

2
‖ε‖2

2 .

It follows that:

1

2
‖
∫

T

Φ d∆̂ − y + λ a‖2
2+λ d ≤ 1

2
‖λ a‖2

2+
1

2
‖ε‖2

2−λ 〈ε , a〉 .

Eventually, we get:

d ≤ λ

2

∥

∥a − ε

λ

∥

∥

2

2
.

Using the triangular inequality and Parseval’s identity (we recall that F is an or-
thonormal family with respect to a probability measure Π on T), it yields:

∥

∥a − ε

λ

∥

∥

2
≤

∥

∥a‖2+‖ ε

λ

∥

∥

2
,

=
(

∫

T

|P|2(x)Π(dx)
)1/2

+
‖ε‖2

λ
.

Since λ ≥ ‖ε‖2 and ‖P‖∞≤ 1, we have:

(A.2)
∥

∥a − ε

λ

∥

∥

2
≤ 2 .

So we get that d ≤ 2λ. Moreover, observe that:

d = ‖∆̂‖TV−ℜ(
∫

T

P d∆̂) ,

=
n

∑
k=1

∆̂k

[

1 − |P|(t̂k) cos(θ̂k + θP(T̂k))
]

,(A.3)

≥
n

∑
k=1

∆̂k min{Cam2 min
T∈S

d(T̂k, T)2, Cb} .(A.4)

This shows the results (1) and (2). Observe that the localization estimate in the
statement of the theorem is a consequence of the aforementioned inequality.

APPENDIX B. PROOF OF THEOREM 2.2

We begin with a lemma on the optimality conditions of Blasso. For all a ∈ Cm+1

and for all µ ∈ M, we denote

〈a , Φ〉 =
m

∑
k=0

ak ϕk and c(µ) =
∫

T

Φ dµ, .

We recall some standard lemmas. The proofs are given in Appendix C.

Lemma B.1. Any solution ∆̂ to (BLASSO) satisfies the following optimatlity conditions:

(1) ‖〈c(∆̂)− y , Φ〉‖∞≤ λ;

(2) 〈y − c(∆̂) , c(∆̂)〉 = λ‖∆̂‖TV .

Lemma B.2. Set ν = ∆̂ − ∆ then the following inequality holds:

(B.1) ∀P ∈ Span(F), |
∫

T

P dν|≤ (λ + λ0)‖P‖1 ,

where λ0 = ‖〈ε , Φ〉‖∞.
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Using the BIP property and the QIC condition, we prove the following interpola-
tion lemma.

Lemma B.3. Let j ∈ {1, . . . , s} then there exists a generalized polynomial Qj ∈ F satis-
fying the following properties:

• ∀k ∈ {1, . . . , s} , Qj(Tk) = δk,j,

• ∀x 6= Tj , |Qj(x)|< 1,

• ∀x ∈ T such that d(x, Tj) ≤ c0/m, it holds:

|1 − Qj(x)|≤ (Cc/2) m2 d(x, Tj)
2 ,

• ∀k ∈ {1, . . . , s} \ {j}, ∀x ∈ T such that d(x, Tk) ≤ c0/m, it holds:

|Qj(x)|≤ (Cc/2) m2 d(x, Tk)
2 ,

• ∀x ∈ F (c0, S) , |Qj(x)|≤ 1 − Cb.

Using these interpolating polynomials and (A.4) we get that for all j ∈ {1, . . . , s}:

| ∑
{k: d(T̂k,Tj)>

c0
m }

∆̂k exp(i θ̂k) Qj(T̂k) + ∑
{k: d(T̂k,Tj)≤

c0
m }

∆̂k exp(i θ̂k) (Qj(T̂k)− 1)| ,

≤ ∑
{k: d(T̂k,Tj)>

c0
m }

∆̂k |Qj(T̂k)|+ ∑
{k: d(T̂k,Tj)≤

c0
m }

∆̂k |Qj(T̂k)− 1| ,

≤
n

∑
k=1

∆̂k min{(Cc/2)m2 min
T∈S

d(T̂k, T)2, 1 − Cb} ,

≤ max
{1 − Cb

Cb
,

Cc

2Ca

}

×
n

∑
k=1

∆̂k min{Cam2 min
T∈S

d(T̂k, T)2, Cb} ,

≤ λ max
{2(1 − Cb)

Cb
,

Cc

Ca

}

.

Now, invoking (B.1) we get:

|∆j − ∑
{k: d(T̂k,Tj)≤

c0
m }

∆̂k| = |
∫

T

Qj d∆ −
∫

T

Qj d∆̂ + ∑
{k: d(T̂k,Tj)>

c0
m }

∆̂k exp(i θ̂k) Qj(T̂k)

+ ∑
{k: d(T̂k,Tj)≤

c0
m }

∆̂k exp(i θ̂k) (Qj(T̂k)− 1)| ,

≤ (2 + max
{2(1 − Cb)

Cb
,

Cc

Ca

}

)λ .

This proves (3). From (1) and (2) given by Theorem 2.1, we deduce the last part
of the theorem.

APPENDIX C. PROOFS OF THE AUXILIARY LEMMAS

C.1. Proof of Lemma B.1. The convex function f (ν) = 1
2‖

∫

T
Φ dν − y‖2

2+λ‖ν‖TV

is minimized at point ∆̂ then 0 ∈ ∂ f (∆̂) or equivalently, for all ν ∈ M,

(C.1) λ(‖ν‖TV−‖∆̂‖TV) ≥ 〈y − c(∆̂) , c(ν − ∆̂)〉 .

Conversely, we can easily check that if (C.1) holds then ∆̂ is a minimizer. Thus,

(C.1) is necessary and sufficient for ∆̂ to minimize f (ν). Observe that (C.1) leads
to:

(C.2) λ‖∆̂‖TV−〈y − c(∆̂) , c(∆̂)〉 ≤ inf
ν∈M

{λ‖ν‖TV−, 〈y − c(∆̂) , c(ν)〉} .
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Now, observe that, for all z ∈ Cm+1,

sup
ν∈M

{〈z , c(ν)〉 − ‖ν‖TV} = sup
ν∈M

{
∫

T

〈z , Φ〉dν − ‖ν‖TV} =

{

0 if ‖〈z , Φ〉‖∞≤ 1;

∞ otherwise.

Using this in (C.2), we find that ∆̂ is a minimizer if and only if (1) and (2) hold.

C.2. Proof of Lemma B.2. Let a be the coefficients of P. It holds
∫

T

P dν =
∫

T

〈a , Φ〉 dν ,

= 〈a ,
∫

T

Φ dν〉ℓ2(Cm+1) ,

= 〈a , c(∆̂)− c(∆)〉ℓ2(Cm+1) ,

= 〈P , E〉L2
Π
(T) ,

using the Parseval identity where E denotes the trigonometric polynomial of order

n such that E = 〈c(∆̂)− x(∆) , Φ〉. By Hölder’s inequality we have

|
∫

T

P dν|≤ ‖P‖1‖E‖∞ .

Now, we have to upper bound ‖E‖∞. By triangular inequality, we have

‖E‖∞≤ ‖〈c(∆̂)− y , Φ〉‖∞+‖〈ε , Φ〉‖∞ .

By Lemma B.1, we know that the first term in the right hand side is upper bounded
by λ. By hypothesis, we know that the second term in the right hand side is upper
bounded by λ0.

C.3. Proof of Lemma B.3. Without loss of generality, assume that j = 1 and set

θ1 = 0, θ̃1 = 1, θk = 0 and θ̃k = π, for all k ∈ {2, . . . , s}. Invoke QIC to get P and P̃
such that:

• P(T1) = P̃(T1) = 1,
• ∀k ∈ {2, . . . , s} , P(Tk) = −P̃(Tk) = 1,
• ∀x ∈ F (c0, S) , max(|P(x)|, |P̃(x)|) ≤ 1 − Cb.

Set Q1 = (1/2)(P + P̃) then one can check that:

• ∀k ∈ {1, . . . , s} , Q1(Tk) = δk,1,
• ∀t 6= T1 , |Q1(t)|< 1,
• ∀x ∈ F (c0, S) , |Q1(x)|≤ 1 − Cb,

where δk,1 equals 0 if k 6= 1 and 1 if k = 1. Moreover, since P and P̃ reach their
maxima at each point of T, their first derivative vanishes on T. Therefore, Q′

1
vanishes on T. Using a Taylor’s theorem with explicit remainder and BIP, we
conclude the proof.

APPENDIX D. PROOF OF COROLLARY 1

We begin with a key result.

Theorem D.1 (Lemma 2.5 in [6]). Let S = {T1, . . . , Ts} ⊂ [0, 1] be the support of
the target measure ∆. If ℓ(S) ≥ 2.5/ fc then there exists P ∈ Span(F) such that for all
k = 1, . . . , s:

• P(Tk) = exp(−iθk),
• Bound on the Taylor expansion at point Tk:

∀x ∈
[

Tk −
0.3313

m
, Tk +

0.3313

m

]

, |P(x)|≤ 1 − 0.0839 m2 (x − Tk)
2 ,
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• Bound on the complement:

∀x ∈ [0, 1] \
s
⋃

k=1

[

Tk −
0.3313

m
, Tk +

0.3313

m

]

, |P(x)|≤ 1 − 0.0092 .

Hence, the support S enjoys QIC(0.0838, 0.0092) and Theorem 2.1 applies. More-

over, the support S satisfies BIP(1, π2), see (2.2), and Theorem 2.2 can be invoked.
Using the identity, for a > 0 and b > 0,

(D.1) ∀u2 ≥ 2ab , −u2

a
+ b ≤ −u2

2a
,

and Propositon 4.2, we get that λ ≥ ‖∑
fc

k=− fc
εk ϕk‖∞ with a probability described

in the statement of Corollary 1.

APPENDIX E. PROOF OF COROLLARY 2

Observe that S satisfies BIP(c0, 4/(1− c2
0)) thanks to (2.3). Take

u =
√

6m log m λ/λ0 ,

in Propositon 4.1. Hence, we get that λ ≥ ‖∑
m
k=0 εk ϕk‖∞ with a probability de-

scribed as in the statement of Corollary 2. Therefore, Theorems 2.1 and 2.2 give
the result.

APPENDIX F. RICE FORMULA

F.1. Polynomial case. By the change of variables t = cos θ, for all t ∈ [−1, 1]:

Xm(t) = Xm(cos θ) = ξ0 +
√

2 ξ1 cos(θ) +
√

2 ξ2 cos(2θ) + . . . +
√

2 ξm cos(mθ) .

Set Tm(θ) := Xm(t). We recall that its variance function is given by:

σ2
m(θ) = 1 + 2 cos2(θ) + 2 cos2(2θ) + . . . + 2 cos2(mθ) =

1 + 2m + Dm(2θ)

2
,

where Dm denotes the Dirichlet kernel of order m. Observe that:

∀θ ∈ R ,
1 + 2m

3
= σ2

m(3π/(2 + 4m)) ≤ σ2
m(θ) ≤ 1 + 2m ,

so that Tm
(

3π
2(1+2m)

) ∼ N (0, 1+2m
3 ). By the Rice method [1], for u > 0:

P{M > u} ≤ 2P{ max
θ∈[0,π]

Tm(θ) > u} ,

≤ 2P{Tm(0) > u}+ 2 E[Uu([0, π])] ,

= 2[1 − Ψ
( u√

1 + 2m

)

] + 2
∫ π

0
E
(

(T′
m(θ))

+
∣

∣Tm(θ) = u)ψσm(θ)(u)dt ,

where Uu is the number of crossings of the level u, Ψ is the standard normal dis-
tribution, and ψσ is the density of the centered normal distribution with standard

error σ. First, observe that for v > 0, (1 − Ψ(v)) ≤ exp(−v2/2). Hence,

1 − Ψ
( u√

1 + 2m

)

≤ exp
(− u2

1 + 2m

)

.

Moreover, regression formulas implies that:

E
(

T′
m(θ)

∣

∣Tm(θ) = u
)

=
r0,1(θ, θ)

r(θ, θ)
u ,

Var
(

T′
m(θ)

∣

∣Tm(θ) = u
)

≤ Var
(

T′
m(θ)

)

= r1,1(θ, θ) ,
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where, for instance, r1,1(ν, θ) = ∂2r(ν,θ)
∂ν∂θ . We recall that the covariance function is

given by:

r(ν, θ) = 1 + 2 cos(ν) cos(θ) + 2 cos(2ν) cos(2θ) + . . . + 2 cos(mν) cos(mθ) ,

=
1

2

[

Dm(ν − θ) + Dm(ν + θ)
]

.

Observe that:

r0,1(θ, θ) =
1

2
D′

m(2θ) = −
m

∑
k=1

k sin(2kθ) ,

and r1,1(θ, θ) =
(2m + 1)(m + 1)m

6
−

m

∑
k=1

k2 cos(2kθ) .

On the other hand, if Z ∼ N (µ, σ2) then

E(Z+) = µ Ψ
(µ

σ

)

+ σ ψ
(µ

σ

) ≤ µ+ +
σ√
2π

,

where ψ is the standard normal density. We get that:

∫ π

0
E
(

(T′
m(θ))

+
∣

∣Tm(θ) = u)ψσm(θ)(u)dt ≤
∫ π

0

[D′
m(2θ)]+

2 σ2
m(θ)

uψσm(θ)(u)dθ

+
1√
2π

∫ π

0

[ (2m + 1)(m + 1)m

6
−

m

∑
k=1

k2 cos(2kθ)
]1/2

ψσm(θ)(u)dθ ,

= A + B .

We use the following straightforward relations:

• ∀ 0 < σ1 < σ2 < u , ψσ1(u) ≤ ψσ2(u),

• ∀θ , [D′
m(2θ)]+ ≤ m(m+1)

2 ,

• ∀θ , 1+2m
3 ≤ σ2

m(θ),

Eventually, we get, for u >
√

2m + 1:

A ≤ 3π

2
m uψ√

2m+1(u) ,

B ≤
[ π

12
(2m + 1)(m + 1)m

]1/2
ψ√

2m+1(u) ,

and therefore:

P{M > u} ≤ 2 exp
(

− u2

1 + 2m

)

+ 2
[ 3π mu

2
√

2m + 1
+(

π

12
m(m+ 1))1/2

]

ψ
( u√

2m + 1

)

.

Morover, for m ≥ 12, πm(m + 1)/12 ≤ m2 and 3π mu/(2
√

2m + 1) ≤ mu, yield-
ing:

P{M > u} ≤ 4m(1 + u)√
2π

exp
(− u2

1 + 2m

)

.

F.2. Fourier case. We have:

Z(t) = ε
(1)
0 +

fc

∑
k=1

(

ε
(1)
k + ε

(1)
−k

)

cos(2πkt) +
(

ε
(2)
k − ε

(2)
−k

)

sin(2πkt)

+ i
[

ε
(2)
0 +

fc

∑
k=1

(

ε
(2)
k + ε

(2)
−k

)

cos(2πkt) +
(

ε
(1)
k − ε

(1)
−k

)

sin(2πkt)
]

.
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One can see that Z(t) = X(t) + i Y(t) where X(t) and Y(t) are two independent
Gaussian stationary processes with the same auto-covariance function:

Γ(t) = 1 + 2
fc

∑
k=1

cos(2πkt) = D fc
(t) ,

where D fc
(t) denotes the Dirichlet kernel. Set:

σm
2 = Var(X(t)) = D fc

(0) = 2 fc + 1 .

We use the following inequalities:

P{‖Z‖∞ > u} ≤ P{‖X‖∞ > u/
√

2}+ P{‖Y‖∞ > u/
√

2} ,

= 2P{‖X‖∞ > u/
√

2} .

and

(F.1) P{‖X‖∞ > u/
√

2} ≤ 2P{ sup
t∈[0,1]

X(t) > u/
√

2} .

To give bounds to the right hand side of (F.1), we use the Rice method [1] using

the fact that the process X(t) (for example) is periodic with Γ( 1
2 fc+1 ) = 0:

P{ sup
t∈[0,1]

X(t) > u/
√

2} = P{∀t ∈ [0, 1]; X(t) > u/
√

2}+ P{Uu/
√

2 > 0} ,

≤
(

Ψ(u/(
√

2σm))

)2

+ E(Uu/
√

2) ,

where Uv is the number of up-crossings of the level v by the process X(t) on the

interval [0, 1] and Ψ is the tail of the standard normal distribution. By the Rice
formula:

E(Uu/
√

2) =
1

2π

√

Var(X′(t))
1

σm
exp(− u2

4σm
2
) ,

where:

Var(X′(t)) = −Γ′′(0) = 2(2π)2
fc

∑
k=1

k2 =
4π2

3
fc( fc + 1)(2 fc + 1) .

The following inequality is well known : for v > 0, Ψ(v) ≤ exp(−v2/2), it yields:

P{ sup
t∈[0,1]

X(t) >
u√
2
} ≤ exp(− u2

2(2 fc + 1)
) +

√

fc( fc + 1)

3
exp

(

− u2

4(2 fc + 1)

)

.

The result follows.
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