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Abstract—This paper considers a wireless sensor network
(WSN) in which sensors measure spatially correlated data and
transmit these data to some data processing sink. Random Linear
Network Coding (RLNC) is performed at the intermediate nodes
of the network. A Maximum a Posteriori (MAP) estimator is
considered at the sink to exploit the spatial correlation between
data samples and provide a reconstruction of the data, even if not
enough network-coded packets have been received, which usually
makes network decoding very difficult. Experimental results show
that with the proposed MAP estimator, the reconstruction quality
increases gracefully with the number of received packets.

I. INTRODUCTION

The introduction of the concept of Network Coding (NC)
[2] broke with the traditional assumption that intermediate net-
work nodes can only forward incoming information streams.
NC allows them to mix packets by performing basic operations
such as linear combinations over finite fields of the content of
packets [13]. In theory, NC permits to achieve the multicast
capacity of a network. Significant throughput gains, in wired
and wireless networks, are observed in practice [12], [5]. This
is mainly due to the ability of NC to exploit wireless broadcast
and to take advantage of opportunistic reception.

The upsurge of sensor networks in the recent years directed
researchers towards the design and implementation of low-
complexity sensing techniques, along with efficient solutions
for information collection. The transmission of information
between sensors and to a data collection sink is typically
performed in a distributed manner, mainly on ad-hoc or
overlay mesh network topologies. Distributed source coding
(DSC) is one enabling technology for sensor networks, as it
provide insights to perform distributed compression without
coordination between sensors [7]. When sensors provide spa-
tially correlated data, these data may be compressed, e.g., by
channel codes [15], [18] and eventually jointly decoded at the
data collection sink [16], [11].

However, this solution does not allow to fully exploit the
network capacity, moreover, it requires the sensors to be aware
of the correlation level between the data they produce and the
data produced by neighboring sensors. In this context, DSC
based on NC schemes [3], [10], [17] is known to be an efficient
method for building distributed data gathering algorithms in

networks with channel and source diversity. However, wireless
networks are often subject to dynamic changes, and conse-
quently to packet losses. While NC provides some robustness
against packet losses, this property is linked to the reception
of a sufficient number of linearly independent packets at the
sink. In fact, network codes are all or nothing codes, i.e.,
usually, no decoding is possible unless the number of linearly
independent packets at the sink is at least equal to the number
of source packets being network coded.

This drawback is quite annoying, especially for delay-
sensitive applications, where timing constraints lead to the
absence of reception of some of the packets and consequently
to difficulties in decoding the transmitted sources. Compressed
sensing [8], [4] and its distributed variant [14] is an alternative
solution that allows to perform an approximate reconstruction
of the source by exploiting some sparsity properties. However,
this approach requires network codes over real fields [14], and
does not apply to finite field network codes, better suited to
transmission by wireless sensors of quantized data.

This paper provides an approximate estimation of spatially
correlated data collected in a WSN when not enough network-
coded packets are received at the decoder side. It exploits the
spatial correlation between transmitted data. The temporal cor-
relation between successive samples collected by the sensors is
not considered here. If such correlation exists, it can easily be
removed via a decorrelating transform such as a DCT. A MAP
estimator is provided to reconstruct the source samples based
on the correlation between data contained in the network-
coded packets collected at the sink. The MAP estimator is
not straightforward, since it has to cope with measurements
which are linear combinations in a Galois field of the data to be
estimated and for a correlation between these quantities which
is expressed in the real field. The proposed coding scheme
is introduced in Section II. The MAP estimator is derived in
Section III, and simulation results are presented in Section IV.
Some conclusions are drawn in Section V.

II. CODING AND TRANSMISSION SCHEME

Consider a set of k wireless sensors spatially spread over
some two-dimentionnal area. The location of the i-th sensor is



denoted by θi ∈ R
2. It measures some physical quantity xi,

assumed to be the realization of some random variable Xi.
The vector x = (x1, ..., xk) ∈ R

k gathering all measurements
to be the realization of a zero-mean Gaussian vector X with
covariance matrix
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(1)
where σ2 is the variance of each source, λ is some constant,
and di,j =

√
(θi,1 − θj,1)2 + (θi,2 − θj,2)2 is the distance

between Sensors i and j. Prior to transmission, each xi is
quantized with a q-level uniform scalar quantizer Q : R → Fq

with stepsize ∆ to get zi ∈ Fq. Each sensor then performs a
linear combination of the packet containing its own quantized
measurement with the packets it receives from its neighbors
using RLNC. The new coded packet is transmitted to the
neighboring nodes. This process is repeated until the sink
considers that it has received enough packets to be able to
recover the data with the desired quality.

Assume that the data processing sink has received m 6 k
linearly independent network-coded packets. It is very likely
that it has received more packets, but it keeps only linearly
independent informative packets. The content of the received
packets is grouped in a vector p ∈ F

m
q . The effect of network

coding is represented by the network coding matrix A ∈ F
m×k
q

linking p and z as follows

p = Az. (2)

Each network-coded packet contains the result of the linear
combinations of the quantized source samples zi, in addition
to the global coding coefficients which are stored in an extra
header added to each packet [6]. Therefore, the coding matrix
A is known by the sink. The measurement, quantization,
network coding, and estimation scheme is represented in
Figure 1. Note that even if x ∈ R

k is a vector, each of its
entries is spatially spread.

Fig. 1. Block diagram of the proposed system

The receiver has to evaluate an estimate x̂ of x from the
received packets p using the fact that the entries of x are
correlated. For that purpose, Σ is assumed to be known by the
sink.

III. ESTIMATION OF THE SOURCE SAMPLES

Instead of estimating directly x, one aims at performing first
an estimate ẑ of the vector z = (z1, ..., zk)

T of quantization

indexes based on the received network-coded packets p =
(p1, ..., pm)T . Then, an estimate x̂ for x is easily obtained
from ẑ by inverse quantization.

Provided that the scalar quantizer Q is well designed, there
exists two constants α and β such that the reconstructed
sample after inverse quantization may be expressed as αzi+β
and such that

{
xi − (αzi + β) ≤ ∆/2, i = 1 . . . k

−xi + (αzi + β) ≤ ∆/2, i = 1 . . . k
(3)

Moreover, exploiting the network coding matrix, one has

pµ =
k∑

j=1

aµjzj , µ = 1...m. (4)

where aµj are the global encoding coefficients of the received
network-coded packets corresponding to the entries of A.

A. Enough network-coded packets are received

The vector z to estimate contains k unknowns. When
enough network-coded packets is received, i.e., when A is of
full rank k, A can be inverted in order to obtain an estimate
ẑ of z

ẑ = A−1p. (5)

and x̂ is then
x̂ = αẑ+ β. (6)

B. Network-coded packets are missing

When not enough network-coded packets are received, i.e.,
when rank(A) < k, the inversion (5) is not possible. Let z0 =
(z1, ..., zm)T and z1 = (zm+1, ..., zk)

T be a partition of the
entries of z such that the corresponding partition of the coding
matrix

A = [A0 A1] (7)

leads to
p = A0z0 +A1z1, (8)

with A0 of full rank m. Such partition always exist up to a
suitable permutation of the columns of A and the unknown
entries of z, since the rank of A is m.

Our aim is now to provide a MAP estimate of z1 using p

and Σ

ẑ1 = argmax
z1

P (zm+1, . . . , zk|p) (9)

= argmax
z1

∑

z0

P (z1, . . . , zk|p) (10)

= argmax
z1

∑

z0

P (p|z1, . . . , zk)P (z1, . . . , zk). (11)

Assuming that the quantization step ∆ is small, one can
write

P (z1, ..., zk) = f(Q−1(z1), ..., Q
−1(zk))∆

k (12)

where f is the a priori pdf of x

f(x) =
1

(2π)k/2|Σ|1/2
exp

(
−
1

2
xTΣ−1x

)
. (13)



Using (8) and the fact that A0 is of full rank m, one gets

z0 = A−1

0
(p−A1z1) . (14)

Combining (12) and (14) in (11), and since ∆k is constant,
one gets

ẑ1 = argmax
z1

P (p | A−1

0 (p−A1z1), z1)

f(Q−1(z1), ..., Q
−1(zk)). (15)

For the first term in (15), one has

P (p | A−1

0 (p−A1z1), z1) =





1 if p = A

(

A−1

0
(p− A1z1)

z1

)

0 else.

Consequently, using the fact that Q−1(zi) = αzi + β, one
can write

ẑ1 = argmax
z1

f(α(A−1

0 (p−A1z1)) + β, αz1 + β) (16)

Using (13), (16) may be written as

ẑ1 = argmin
z1

[
αz0 + β
αz1 + β

]T
Σ−1

[
αz0 + β
αz1 + β

]
. (17)

Obtaining ẑ1 requires the solution of a quadratic optimization
problem. The main difficulty comes from the fact that the
evaluation of A−1

0 (p − A1z1) involves operations in Fq,
whereas all other operations have to be done in R. To address
this issue, assuming that q is prime, (17) is rewritten by
introducing a vector of slack variables s ∈ Z

m as follows

ẑ1 = argmin
z1

[
αz′0 + β
αz1 + β

]T
Σ−1

[
αz′0 + β
αz1 + β

]
(18)

with
z′0 = A−1

0
(p−A1z1) + qs (19)

and with the constraints

z′0 ∈ {0, ..., q − 1}m. (20)

The inverse A−1

0 of A0 is still computed in Fq . Now all
operations in (19) may be done in Z.

The solution of (18) with the constraints (19) and (20)
requires now the solution of an Integer Quadratic Problem
(IQP). This kind of minimization problem can be modeled
using AMPL [9]. Since the IQP problem involves only convex
quadratic forms, CPLEX [1] may be used to solve it.

IV. SIMULATIONS RESULTS

We consider a WSN consisting of k = 10 sensor nodes. The
nodes are uniformly spread over a square of 1 km width. All
sensors located within a circle of radius d0 = 1 km centered in
the sensor si are neighbors of si and can directly communicate
with si. The set of neighbors of si is N (si). The correlation
between measurements is assumed to be represented by (1),
with σ2 = 0.9 and λ = 0.4 km−2.

A very simple transmission protocol is considered. Time
is slotted, all sensors are synchronized. In the time slots
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Fig. 2. SNR as a function of the number of linearly independent packets
available at the sink for q = 7 and q = 17, with the proposed approach (R)
and with a conventional Gaussian elimination (C)

devoted to the i-th sensor, only si is allowed to transmit,
the other sensors are listening. The i-th sensor performs a
linear combination over Fq of the packet containing its own
quantized measurement and the packets it has already received
from its neighbors. The resulting network-coded packet is
then transmitted and received by all sensors in N (si). Among
packets reaching the sink, only linearly-independent packets
are kept.

Simulations are averaged over 1000 realizations of the
network and of the data samples.
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Fig. 3. SNR as a function of the number of linearly independent packets
available at the sink for q = 7 and q = 17, with the proposed approach (R)
and with a conventional Gaussian elimination (C)

Figures 2 and 3 compares the average Signal-to-Noise Ratio
(SNR) obtained at the sink as a function of the number of
available linearly independent packets, i.e., of the rank of A,
and for q ∈ {7, 17, 31, 61}. The estimation method presented
in Section III-B (denoted R) is compared to a classical
Gaussian elimination performed on the received packets (de-
noted C). This Gaussian elimination may work since uncoded
packets may reach the data processing sink, measurements not



estimated in this case are replaced by their mean. The SNR
gracefully increases with the number of received packets, R
outperforming C, i.e., for the same SNR, less measurements
are required.

The proportion of quantized data samples zi erroneously
estimated as a function of the rank of A for q ∈ {7, 17, 31, 61}
is represented in Figures 4 and (5). Consistently with the
results in Figures 2 and 3, the rank of A required to obtain
a given probability of error is smaller with R than with C.
About 2 to 3 less measurements are necessary in average.
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Fig. 4. Proportion of erroneously reconstructed quantized samples as a
function of the rank of A sink for q = 7 and q = 17, with the proposed
approach (R) and with a conventional Gaussian elimination (C)
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Fig. 5. Proportion of erroneously reconstructed quantized samples as a
function of the rank of A sink for q = 31 and q = 61, with the proposed
approach (R) and with a conventional Gaussian elimination (C)

V. CONCLUSIONS

In this paper, we investigate the problem of transmission of
spatially correlated sources when RLNC is performed through
the transmission network. We provide a MAP estimator in
order to reconstruct the transmitted packets using the spatial
correlation between quantized measurements stored in the
network-coded packets. The reconstruction quality gracefully

increases with the number of received packets. For comparable
probability of reconstruction error or SNR, less packets are
required using the proposed estimator than with a conventional
Gaussian-elimination based estimator.

Further experiments with more network nodes and various
communication range between sensors will be provided in the
final version of the paper.
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