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Automatic knot detection and measurements from X-ray

CT images of wood: A review and validation of an improved algorithm on softwood samples

These data are valuable for further studies related to tree development and tree architecture, and could even contribute to satisfying the current demand for automatic species identification on the basis of CT images.

AreviewoftheliteratureaboutautomaticknotdetectioninX-ray CT images is provided. Relatively few references give quantitativelya c c u r a t er e s u l t so f knot measurements (i.e., not only knot localisation but knots i z ea n di n c l ination as well).

The method was tested on a set of seven beams of Norway spruce and silver

Introduction

Wo o d knots are the prolongation within the tree stem of the branches. By linking the living crown where photosynthesis occurs, to thepithofthemain stem and, finally, to the roots where the mineral nutrients area s s i m i l a t e d , branches and knots play a vital role in tree physiology. However, despite the fact that trees without branches do not exist, wood users would nevertheless like to obtain knot free lumbers. The frequency and size of theapparentknots are probably the first depreciation factors considered by wood suppliers for estimating the price of timber. This is also one of the main criteria considered in the visual grading of lumber.

The occurrence of knots within a piece of wood has several technological drawbacks, principally due to the deviation of the graina n g l ei na n d around the knots. Wood can be considered as an orthotropic material whose properties differ drastically along and across the grain. Forexample,thelon-gitudinal modulus of elasticity (along the grain) is typically ten times higher than the transverse one. From a mechanical point of view, thisme ansthata knot within a wood beam may be assimilated to a hole. In wood machining, the quality of the surface around the knots is often depreciated due to the grain deviation while the life expectancy of tools may be severely shortened by shocks against the knots. Finally, knots usually depreciate the aesthetic quality of the wood as well.

Knowledge of knot geometry and location would be valuable in asa wmill for optimising cutting decisions or improving the grading ofl o g so rl u m b e r .

CT scanners designed expressly for the wood industry are now available and some of the largest sawmills are now equipped with them. Such data are needed for studying tree architecture [START_REF] Colin | Tracking rameal traces in sessile oak trunks with X-ray computer tomography: biological bases, preliminary results and perspectives[END_REF][START_REF] Heuret | Synchronization of growth branching and flowering processesi nt h es o u t h american tropical tree Cecropia obtusa (Cecropiaceae)[END_REF][START_REF] Passo | Trunk and main-branch development in Nothofagus pumilio (Nothofagaceae): a retrospective analysis of tree growth[END_REF][START_REF] Meredieu | Cernes manquants et houppier vivant chez le pin laricio (Pinus nigra Arn. ssp. laricio (Poir.) Maire)[END_REF], pruning [START_REF] Seifert | Analysing the long-term effects of artificial pruning of wild cherry by computer tomography[END_REF][START_REF] Hein | Knot attributes and occlusion of naturally pruned branches of fagus sylvatica[END_REF], branchiness (Colin andHoullier, 1991, 1992;[START_REF] Kershaw | A p p r o a c h e s for modeling vertical distribution of maximum knot size in black spruce: Ac o m p a r i s o no ffi x e d -a n dm i x e d -e ff e c t sn o n l i n e a rm od e l s[END_REF][START_REF] Weiskittel | Modelling primary branch frequency and size for five conifer species in Maine, USA[END_REF][START_REF] Courbet | Predicting the vertical location of branches along Atlas cedar stem (Cedrus atlantica Manetti) in relation to annual shoot length[END_REF]Moberg, 1999;Meredieu et al., 1998) and knot morphology [START_REF] Lemieux | Characterization and modeling of knots in black spruce (Picea mariana) logs[END_REF][START_REF] Björklund | Predicting knot diameter of Pinus sylvestris in Sweden[END_REF][START_REF] Björklund | The interior knot structure of Pinus sylvestris stems[END_REF][START_REF] Lemieux | Shape and distribution of knots in a sample of Picea abies logs[END_REF][START_REF] Samson | Mathematical representation of knots in tree trunks[END_REF][START_REF] Samson | Modelling of knots in logs[END_REF]. Branch and knot models for various species have been included into simulators for assessing wood quality [START_REF] Houllier | Linking growth modeling to timber quality assessment for Norway spruce[END_REF][START_REF] De Coligny | Computer-aided projection for strategies in silviculture:A d v a n t a g e so f as h a r e df o r e s t -m o d e l l i n gp l a t f o r m .I n : A m a r o[END_REF][START_REF] Ikonen | Sawn timberp r o p e r t i e so f Scots pine as affected by initial stand density, thinning and pruning: a simulation based approach[END_REF].

Observation of branch scars may help to assess the quality of alogbutis not sufficient to predict its knottiness. Many knots linked to branches that were artificially or naturally pruned several years earlier may remain deeply hidden within the stem, notably at the lower part of old trees.M o r e o v e r ,t h e knot shape from the outer branch insertion to the stem pith is am a t t e ro f guesswork.

X-ray computer tomography has been recognised as being the most promising method to non-destructively analyse the internal structure of logs [START_REF] Hailey | Application of scanning and imaging techniques to assess decay and wood quality in logs and standing trees[END_REF][START_REF] Chang | External and internal defect detection to optimize cutting of hardwood logs and lumber[END_REF][START_REF] Schad | Nondestructive methods for detecting defects in softwood logs[END_REF]. A review oft h ee x i s t i n g methods for automatically measuring knottiness on the basiso fC Ti m a g e s is presented in the next section.

The objective of this paper was to propose an entirely automated method able to inventory knots from X-ray CT images of a piece of wood (round wood or beam) and to obtain data on knot geometry without any human intervention. Even if execution time was considered in the algorithmic choices, no special effort was devoted to speed optimisation. The first step of the algorithm, image segmentation, was not studied in details since a simple thresholding operation was efficient in the present case. On the contrary, special attention was paid to the validation step. Validation was performed on a large set of 428 knots using two software tools dedicated to (i) manual measurement of the knot shape on the CT images, and (ii) automatic matching of the manually measured and automatically detected knots. The challenges were to maximise the knot detection rate, to minimise the false alarms and to obtain an accurate and complete knot geometric description (including location, diameter, volume, inclination and shape descriptors).

The knot detection software was published under the GPL license and made available to the public (http://www.loria.fr/equipes/adage/3DKnotDM).

Review of existing methods to non-destructively and automatically measure knottiness on the basis of CT images

This section is dedicated to the state of the art with respect to existing algorithms of knot detection based on the analysis of X-ray CT images. This review does not include some studies based on low-resolution images (for example, obtained from only two or three X-ray projections) performed in order to be more compatible with normal sawing speed (e.g., [START_REF] Pietikäinen | Alanguageanden vironmen tfor statistical computing. R Foundation for Statistical Computing[END_REF][START_REF] Flood | On 3D segmentation of knots in 3D-volume data acquired from X-ray linear cone-beams c a n n i n g[END_REF]. Indeed, comparison of accuracies with high-resolution images would have been of limited interest.

The first approaches of knot detection based on X-ray CT imagesf o u n d in the literature were developed in the 1980s. [START_REF] Taylor | Locating knots by industrial tomography -A feasibility study[END_REF] gave some general ideas for the detectiono fk n o t sb u t without describing an algorithm in detail.

The first detailed description of an algorithm was given by [START_REF] Funt | A computer vision system that analyzes CT-scans of sawlogs[END_REF], followed by [START_REF] Funt | Detection of internal log defects by automatic interpretation of computer tomography images[END_REF]. A thresholding of the greyl e v e lh i stogram based on derivative methods was used to classify the pixels into four classes, where knots belong to the class with the highest density. Potential knot components were then represented by convex regions, andtheirsizeand orientation were analysed by the system in order to check whether they corresponded to actual knots or not: (i) components that were toos m a l lw e r e eliminated on the basis of a size criterion; (ii) the orientation of each region was compared with the axis that passed through the pith and thec e n t r eo f gravity of the region. Indeed, branches are connected to the stem pith where they have their biological origin and principal knot axes pass approximately through the pith. The 3D aspect of CT image stacks was not used in this approach and the authors do not give validation results.

In the 1990s an Australian research team proposed several interesting and original approaches for segmenting knots [START_REF] Wells | Automated feature extraction from tomographic images of wood[END_REF][START_REF] Som | Morphology methods for processing tomographic images of wood[END_REF][START_REF] Som | Internal scanning of logs for grade evaluation and defect location[END_REF][START_REF] Davis | The Glass Log Project: grade evaluation and defect location using X-ray computed tomography[END_REF], even if they do not seem to have finalised them.

Validation results are therefore not provided.

Afi r s ta p p r o a c h( W e l l se ta l . ,1 9 9 1 )w a sb a s e do nv e c t o r so fs t atistical criteria computed in 5 × 5n e i g h bo u r h ood sa n do ns t a t i s t i c a lm e t h od sa p p l i e d to these vectors, such as principal component analysis.

As e c o n da p p r o a c h( S o me ta l . ,1 9 9 3 )c o n s i s t e di na p p l y i n ge d ge detection and processing the resulting image with a 3 × 3m a s ka d a p t e dt ot h er a d i a l structure of knots: if the local edge was oriented perpendicularly to a virtual line passing through the pith, then the pixel of interest was removed.

At h i r da p p r o a c h( S o me ta l . ,1 9 9 3 )w a sb a s e do ns u b t r a c t i o n sof pairs of consecutive CT images. This method makes it possible to detect moving components such as knots from one CT image to another. A similar approach was used by [START_REF] Jaeger | 3D stem reconstruction from CT scan exams. From log external shape to internal structures[END_REF]. This method is particularly efficient to remove sapwood when it is present. However, the method is strongly dependent on knot size and inclination and on the distance between two consecutive CT images [START_REF] Longuetaud | Détection et analyse non destructive de caractéristiques internes de billons d'Epicéa commun (Picea abies (L.)K A R S T . ) par tomographie à rayons X[END_REF].

In a fourth approach [START_REF] Som | Internal scanning of logs for grade evaluation and defect location[END_REF], the authors used mathematical morphology to detect breaks in the annual growth ring structure. Zhu et al. provided an interesting algorithm based on a systemo fr u l e s for defect detection in logs. They first applied low-level operations (filtering with a 3D Unser filter to eliminate annual rings and to preservei m p o r t a n t image details, segmentation using a multi-thresholding scheme for 2D com-ponent identification, 3D volume growing) (Zhu et al., 1991b,a), followed by ah i g h -l e v e lm o d u l e( Z h ue ta l . ,1 9 9 1 c , d ) ,w h i c hc o n s i s t e di nar u l e -b a s e d expert system for defect recognition. After selecting some features of interest (e.g., grey level mean value, distance to the centre of thel o g ,v o l u m e ) , the authors computed confidence values for these features, depending on the wood characteristics. In [START_REF] Zhu | A prototype vision system for analyzing CT imagery of hardwood logs.I n[END_REF], this part of the algorithm was refined by using the Dempster-Shafer theory of evidential reasoning. Visual results are provided for CT images of red oak and yellow poplar, but the authors do not give quantified accuracy results. [START_REF] Zhu | Robust spatial autoregressive modeling for hardwood log inspection[END_REF] tested another approach based on the application of spatial autoregressive modelling to wood-grain texture analysis.

Another original approach was developed by [START_REF] Grundberg | Log scanning -extractionofknotgeometry[END_REF] for Scots pine logs. The main objective was to develop knot models 1 in order to reduce the amount of data to be handled in their database (the Swedish Stem Bank) by saving only the model parameters obtained from automatic knot detection rather than pixel values. A low-pass filter was first applied to remove annual growth rings. The originality of themethodw asto work on concentric surfaces centred on the pith (manually detected) within logs (i.e., similar to surfaces obtained by rotary cutting logs). Knots were detected by thresholding (fixed threshold: 875 kg.m -3 )fi v ec o n c e n t r i cs u r f a c e s located in the heartwood and by analysing overlapping between successive surfaces. The location of knots in the sapwood was predicted (not detected) by using models based on the previous detections in the heartwood. Vali-dation results are given based on 177 knots from five trees. Thes i z ea n d location of knots that were predicted on the most external concentric surface in the sapwood were compared with manual measurements. For their best tested model, five knots were missed, and means and standard deviations (SD in brackets) of predicted minus real knot diameters were -2.55 (4.74) mm in the tangential direction and -8.77 (8.76) mm in the longitudinal direction.

Oja validated and adapted the previous algorithm for Norway spruce on two stems (Oja, 1996) and then applied it to 12 logs (Oja, 2000). Ina d d i t i o n , he provided some results about the detection of the sound knot/dead knot border. In this work, 80 to 100% of the knots larger than 7 mm were detected (94% in average). Nine false knots were found in the 12 logs. The detection The segmentation of knots in CT images (first step of the algorithm) was done by using the Artificial Neural Network (ANN) (see detailsbelow). Then, similarly to the previous associated works, concentric surfaces were used to identify knots in 3D and to fit knot models for size and position. The accuracy of the extracted descriptions was evaluated by comparing the size and position of knots measured on ten real boards from three treesw i t hc o r r esponding boards reconstructed on the basis of the descriptions. A total of 84% of 185 real knots was detected. The average and SD differences between simulated and real diameters in tangential and longitudinald i r e c t i o n sw e r e 0.6 (4.0) mm and -0.6 (3.9) mm, respectively.

In these studies, the CT slice thickness was 5 mm and the distance between two consecutive slices was 5 mm for pine logs and 10 mm for spruce logs and young pine logs. The resolution was approximately 1.37 mm.pixel -1 for young pine logs.

In our opinion, [START_REF] Bhandarkar | A system for detection of internal log defects by computer analysis of axial CT images[END_REF]1999) gave the most finalised algorithm that we found in the literature. The first step consisted in the segmentation of CT images in four pixel classes (the knots belonged to the class with the highest density) by using a complex form of an area-based multiple thresholding algorithm. The algorithm then located the pith, grouped the pixels of the segmented images on the basis of their 2D connectivity (region-growing process), deleted regions that were too small, and classified each 2D region as a defect-like or defect-free region by computing shape, orientation and morphological features (considering, for example, like [START_REF] Funt | Detection of internal log defects by automatic interpretation of computer tomography images[END_REF], that knot principal axes pass approximately through the stem pith). 2D regions were then represented by convex hulls,a n dh o l e s were filled. Finally, the 2D regions with adequate 3D support were labelled as true defects. Knot parameters such as knot inclination ands l e n d e r n e s s were then computed from these 3D regions and helped to remove invalid knot regions. White ash, red oak, black walnut and hard maple logs were analysed. Defects were manually identified and delineated in colour images of real cross-sections to enable comparisons with the corresponding automatic detections in CT images. The numbers of knots considered were2 2 5 ,1 6 1 , 330 and 194 for white ash, red oak, black walnut and hard maple,r e s p e ctively. Detection rates were between 80.8% for red oak and 89.3% for white ash, and false alarm rates were between 5.1% for red oak and 12.7% for hard maple. Localisation accuracies were given in terms of centroid displacement, orientation difference and overlap factor.

More recently, [START_REF] Bhandarkar | A novel feature-based tracking approach to the detection, localization, and 3-D reconstruction of internal defects in hardwood logs using computer tomography[END_REF]2008) proposed a novel approach based on Kalman filter-based tracking algorithms. The defects were simultaneously detected, classified, localised and reconstructed in 3D. The results were promising with detection rates of 100% obtained for white ash, hard maple and red oak logs. Andreu and Rinnhofer (2003a;2003b) proposed a method to detect knots in CT images of Norway spruce logs. Like [START_REF] Grundberg | Log scanning -extractionofknotgeometry[END_REF] earlier, they aimed to represent knots by parametric functions. First, the pith was detected in CT images. Then, a multi-modal histogramt h r e s h o l ding method was applied to classify the pixels into four classes, after several image pre-processing steps (e.g., annual ring structure removal by Gaussian filtering). The 2D knot areas that were detected on successive images were then grouped together, based on their distance to the pith and the direction of their principal axis in the CT image plane, in order to obtain For knots larger than 10 mm, the detection and false alarm rates averaged 96% and 10%, respectively. If all knots were considered, these rates were 73% and 13%, respectively. Accuracy results for angular position, elevation position and diameter were 1.9 (2.9)˚, 0.9 (10.4) mm and 0.7 (10.1) mm, respectively2 .I nt h i ss t u d y ,C Ts l i c e sw e r et a k e ne v e r y2 0m ma n dt h ep i x e l resolution was 1.55 mm × 1.55 mm.

More recently, Aguilera et al. (2008b;2008a) proposed a novel approach based on active contours for the detection of wood characteristics (which included knots) in CT images. They defined the system constraints on the basis of ap r i o r iinformation about the characteristics to be detected. They tested their algorithm on Pinus radiata CT images and the results seemed to be promising from the visual point of view. However, they did not provide quantitative validation results. [START_REF] Baumgartner | Knots in CT scanso fS c o t s pine logs[END_REF] proposed an algorithm for 2D knot detection and measurements and validated it on 21 knots from two Scots pine logs. First, they used slightly adapted versions of algorithms developed by Longuetaud et al. for pith detection [START_REF] Longuetaud | Automatic detection of pith on CT images of spruce logs[END_REF] and heartwood/sapwood boundary detection [START_REF] Longuetaud | Automatic detection of the heartwood/sapwood boundary within Norway spruce (Piceaa b i e s( L . ) Karst.) logs by means of CT images[END_REF].T h e n , f o r the knot detection in heartwood, they applied a thresholding, hole filling and some morphological operations and, last, they identifiedc o n n e xc o mponents as being knots. Validation (provided in graphical form) was done for azimuthal positions and maximal diameters of knots by comparison with manual measurements performed on corresponding real cross-sections.

Other approaches based on classification methods focused mainly on the segmentation of knots (and often other wood characteristics) in CT images.

The results were then expressed as percentages of correctly classified pixels. [START_REF] Hagman | Classification of Scots pine (Pinus sylvestris) knots in density images from CT scanned logs[END_REF] tested two classification methods (backpropagation Artificial Neural Network (ANN) and Partial Least Squares modelling) in order to separate knots from clearwood in CT images and to distinguish between four types of knots (sound knots in sapwood, dry knots in sapwood, sound knots in heartwood and rotten knots in sapwood). The accuracies were between 85% and 97% of correctly classified pixels (based on 163 knots). The two methods tested gave equal results. [START_REF] Li | Automated analysis of CT images for the inspection of hardwood logs[END_REF], [START_REF] He | A comparison of artificial neural network classifiers for analysis of CT images for the inspection of hardwood logs[END_REF] and [START_REF] Schmoldt | A new approach to automated labeling of internal features of hardwood logs using CT images[END_REF][START_REF] Schmoldt | Classifying features in CT imagery: accuracy for some single and multispecies classifiers[END_REF]1998a) also used a back-propagation ANN to detect wood characteristics in CT images of two species of oak (Quercus rubra L. and Quercus nigra L.), yellow poplar and black cherry. For each pixel in the image, the network tookt h ev a l u e s of pixels in 5 × 52 Do ri n3× 3 × 33Dneigh bourhoodsasinput,asw ellas the distance of the target pixel to the centre of the log. Species-dependent and species-independent classifiers were tested. As output,t h et a r g e tp i x e l was associated with a wood characteristic (which included knots). All tested classifiers had accuracies above 90% (above 95% for all species-dependent classifiers). Improvements by post-processing based on mathematical morphology were suggested by the authors and one specific approach was proposed by [START_REF] Sarigul | Rule-driven defect detection in CT images of hardwood logs[END_REF].

Nordmark also used feed-forward back-propagation ANN for segmenting knots in CT images of a 30-year-old Scots pine (Nordmark, 2002). Theo b j e c t i v e was to enlarge the Swedish Stem Bank with young trees with a small propor-tion of heartwood because the algorithm previously described by [START_REF] Grundberg | Log scanning -extractionofknotgeometry[END_REF] was not adapted to that case. ANN was used here as the first step of a more complete algorithm including parametrical descriptions of knots (Nordmark, 2003) (see above). The ANN was trained using five images taken at different heights from each of five trees. The ANN inputs were a 9 × 9n e i g h b o u r h o o d ,o r i e n t e di nt h er a d i a ld i r e c t i o n ,a n dt h e distance of the target pixel to the pith (manually located). They obtained 95.9% ± 1.2% of correctly classified pixels (cross-validation method). [START_REF] Rojas | Détection des défauts internes dans les billes d'Erable à sucre à l'aide d'un scanneur à rayons X[END_REF]2006) tested two parametric supervised classification algorithms to detect wood characteristics in sugar maple logs:am i n i m u m distance classifier (MDC) and a maximum likelihood classifier( M L C ) .T h e y used five logs (1.5 m long) from one single freshly cut tree (group 1) and three logs from a sawmill yard (group 2). A total of 125 and 90 CTi m a g e s were analysed for group 1 and 2, respectively. Confusion between coloured heartwood and knots was observed for both groups. It should ben o t e dt h a t the authors were more interested in detecting sapwood (for which accuracies were better) than knots because it is a key factor for determining sugar maple lumber value. The overall accuracies were 83.1% (MDC) and 82.6% (MLC) for group 1 (evaluation of 25 CT images), and 76.4% (MDC)a n d 78.0% (MLC) for group 2. Regarding knots, correctly classified pixels were 64.8% (MDC) and 61% (MLC) for group 1, and 47.4% (MDC) and 44.7% (MLC) for group 2. The slice thickness was 5 mm and the resolution was between 0.6 and 0.9 mm.pixel -1 .

More recently, Wei et al. (2008a;2008b;[START_REF] Pietikäinen | Alanguageanden vironmen tfor statistical computing. R Foundation for Statistical Computing[END_REF] tested both back-propagation ANN and MLC in order to identify internal wood characteristics (which in-cluded knots) in sugar maple and black spruce logs. They tested a faster converging algorithm for the ANN. Nine image features were used as input of both classifiers: grey level values, the distance between the pixel of interest and the pith, and seven textural features (homogeneity, contrast, dissimilarity, mean, SD, entropy and angular second moment). The validation was done by comparison with manually delineated characteristics in 20 CT images [START_REF] Wei | Identification of selected internal wood characteristics in computed tomography images of black spruce: a comparison study[END_REF]. The overall accuracies for the MLC classifier and for the ANN were 80.9% (78.3% for knots) and 97.6% (95.5% for knots), respectively [START_REF] Wei | Identification of selected internal wood characteristics in computed tomography images of black spruce: a comparison study[END_REF].

Materials and methods

Sampling

The knot detection software was applied to a set of seven squared beams (25 cm × 25 cm × 300 cm) of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst.). The beams, courtesy of the sawmill, Ets.

Siat-Braun (Alsace, France), were selected at random in the lumber yard in which the two species are undifferentiated. After macroscopic identification, it was found that there were four beams of fir (#1 to #4) and threeb e a m s of spruce (#5 to #7). The beams were air-dried several weeks before the measurements were taken.

CT scanning

The samples were analysed using an X-ray scanner device (BrightSpeed Excel by GE Healthcare) designed for medical use. The piece ofw o o di s translated at approximately 2 cm/s across a ring (gantry) around which the X-ray tube and the detector rotate. A volumetric reconstruction of the sample is delivered almost instantaneously in the form of a stack of 512 × 512 images. The grey-level images are expressed in Hounsfieldu n i t st h a t may be converted to wood density by simple linear regression [START_REF] Freyburger | Measuring wood density by means of X-ray computer tomography[END_REF]. In the present study, six of the seven beams weres c a n n e d with the X-ray generator set to 120 kV -50 mA, and a slice thickness and interval between slices of 3.75 mm. Beam #1 was previously scanned with the generator set to 120 kV -80 mA, the slice thickness to 1.25 mm, and the interval between slices to 1 mm (which means that there waso v erlapping between slices). For cost reasons, beam #1 was not scanned again with exactly the same settings as the six other beams. The image reconstruction of the beams was performed using a DETAIL filter 3 with a pixel size of 0.74 mm × 0.74 mm. Since the scanner can only process 1.50 m-long pieces, the beams were scanned in two passes.

Manual knot measurements

The knot shape and size were manually recorded using ImageJ software [START_REF] Rasband | ImageJ[END_REF] and a plug-in dedicated to the analysis of internal tree architecture by X-ray CT scanning (Gourmands plug-in described in [START_REF] Colin | Tracking rameal traces in sessile oak trunks with X-ray computer tomography: biological bases, preliminary results and perspectives[END_REF]). The operator reviews the image stack and manually places markers along both sides of each branch, starting from the pith and progressing towards the external end. The distance between the two lines of markers gives the diameter profile of the knot in the plane perpendicular to the main axis of the beam, assuming a circular cross section. The trajectory of the pith 3 One of the seven reconstruction filters available with the scanner software.

is also recorded using specific markers. The software makes itp o s s i b l et o compute and export the geometrical description of each measured knot. The following variables were used in this study to characterise each knot:

• Starting point (SP) and end point (EP): first marker near the pith and mid-point of the last two markers;

• Length: distance from SP to EP;

• Inclination: angle between the horizontal plane and the SP toEPline 4 ;

• Azimuth: horizontal angle between a given axis and the SP to EPline ;

• Maximum diameter;

• Volume: estimated by summing the volumes of truncated cones defined by the marker lines.

These measurements are subjective. The operator has to decide which singularities correspond to a knot and the exact location of the knot boundaries. For the purpose of standardising the measurements, the operator was asked to only consider knots for which pith (the secondary pith of the branch) was visible and to adjust the grey-level contrast to a fixed range (-1000 to +200 Hounsfield units). • Processing of each component:

-Convex hull (2D)
The Graham scan algorithm was used to compute the convex hull of the pixels belonging to the component in each slice. A holefilling algorithm was then applied to fill the polygons.

-Distance transform (3D)

The distance transform applied to a 3D space makes it possibleto compute the minimal distance between any point and the object surface. To perform such a transformation, the algorithm of [START_REF] Saito | New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications[END_REF] was applied to each connected component.

An example of a distance transform is illustrated in Fig. 3 The three inertia axes of the component were computed by applying a principal component analysis to the set of 3D coordinates of the voxels belonging to the component.

Outputs

For each 3D comp onent, the following data were computed (Fig. 4 ) :

• Starting and end points: 3D coordinates of the first and last points of the component projection onto the principal inertia axis. The starting point is the closest to the pith;

• Length: distance from the starting point to the end point;

• Inclination: angle between the horizontal plane and the principal inertia axis 5 .M a t h e m a t i c a l l y ,i tr a n g e sf r o m-9 0 t o9 0 .An u l lv a l u em e a ns that the component is horizontal; inclination is positive orn e g a t i v e when the component goes up or down, respectively;

5 Assuming that the beam longitudinal axis is vertical.

• Elongation: ratio between the second and first eigenvalues oft h e3 D principal component analysis. Mathematically, it ranges from 0 to 1 with values close to 0 for very elongated components;

• Radial deviation angle (RDA): angle between the horizontal projection of the principal inertia axis and the horizontal axis linkingt r e ep i t h to the centre of gravity of the component. Mathematically, itr a n g e s from -90˚to 90˚. A null value means that the component has a radial orientation; values near 90˚or -90˚mean that the component axis is perpendicular to the radial direction;

• Azimuth: angle between the horizontal projection of the principal inertia axis and a given horizontal axis in the beam coordinate system;

• Maximum diameter: maximal value of the distance-transformed component;

• Volume: pro duct of the numb er of voxels b elonging to the component with the volume of a voxel; *****Figure 4 about here***** On the basis of these output variables, some criteria were established in order to identify the 3D components corresponding to actual knots. Details about criteria computation are given in Section 3.5.

Software implementation

The 3DKnotDM software was implemented in C++ language and was tested on different platforms such as Linux and Mac OS X.S e v e r a lc o m m o n 20 libraries were included in the development to perform efficient functionality.

The main architecture is based on the QT (2011) Development Frameworks, which was combined with the use of the LibQGLViewer (2011) library for the 3D display part. The DiCoM image files were read using the Grassroots library [START_REF] Malaterre | GDCM Reference Manual[END_REF]. The Armadillo library [START_REF] Sanderson | Armadillo: An open source C++ linear algebra library for fast prototyping and computationally intensive experiments[END_REF] was used to process the 3D image matrix and to perform the 3D principal component analysis. Finally, the DGtal (2011) library was also included to perform efficient surface extraction from the discrete set of surface elements (surfels).

Calibration and statistical validation

Ac r o s s -v a l i d a t i o na p p r o a c ho ft h e" l e a v e -o n e -o u t "t y p ew a su s e d . T h e 3D components of one single beam were used as the validation data set and the knots of the six other beams as the calibration data set. The procedure was repeated until each beam had been used as a validation datas e t .

Calibration

The calibration procedure mainly consisted in defining criterion bounds for deciding whether an automatically detected 3D componentw a sak n o to r not.

Three criteria were used and were defined on the basis of the biologic knowledge about knots: inclination, elongation and RDA of the 3D components (details about the computation are given in Section 3.4.2). Spruce and fir knots are slightly tilted and preferentially up oriented.K n o t sa r ec h a r a cterised by an elongated shape. Biologically, knots are connected to the pith and their principal axis intersects the pith line.

First, the observations used for calibration were defined as the 3D components belonging to the calibration data set that most likely corresponded to actual knots. This was done by searching the 3D component, when it existed, that was the closest to each manually delineated knot within a window 40˚wide in azimuth (20˚on each side of the actual knot) and 40 mm high in the longitudinal direction (20 mm above and below the actual knot). In addition, among these components, only the ones with diameter and inclination sufficiently close to the manual measurements were retained. This was done by computing the corresponding residuals and by removing the 3D components whose residuals were identified as outliers. Outliers were detected on the basis of the classical criterion used in the boxplot statistical method [START_REF] Zuur | A protocol for data exploration to avoid common statistical problems[END_REF]. The 3D components for which the corresponding pith location was not correctly detected were removed, based on the same criterion. Finally, the number of observations used for calibration are indicated in Table 1 for each single beam when it was used for validation.

The second step was to define upper bounds for each criterion based on the calibration observations. Statistical distributions were fitted from the observed distributions of the criteria. The theoretical distributions were chosen on the basis of their shape and support. Our goal was to approximate the maximal possible value of each criterion. A Weibull distribution (support on [0; +∞[) was fitted to the absolute value of the tangent of the inclination.

The absolute value was used because the signed value would have depended on the beam orientation, which is not always easy to assess (Fig. 1), particularly in the case of an industrial process. A beta distribution (support on [0; 1]) was fitted to the elongation criterion. Once again, a Weibull distri-bution was fitted to the absolute value of the tangent of the RDA. For each criterion, based on the fitted distribution, the quantile corresponding to p = 0.999 was chosen as the upper bound. Table 1 gives the upper bounds that were obtained from the calibration data sets and then used on the respective validation data sets. For an application of the algorithm to other logs or beams, the upper bounds would be the means of the values given in Table 1f o *****Table 1 about here*****

Validation

The observations used for validation were defined as being the3Dcomponents belonging to the validation data set that had been identified as being knots by the algorithm based on the three criteria described above. For validation purposes, it was necessary to establish a correspondence with manual knot measurements. This was done by searching the 3D component, when it existed, that was the closest to each manually delineated knot within a window 40˚wide in azimuth and 40 mm high in the longitudinal direction.

The validation of the algorithm was performed on the basis of several criteria and aimed at both quantitatively and qualitatively assessing the knot detection . We were interested in the percentage of detected knots and in the rate of false alarms, depending on the knot size. We were also interested in the measurement accuracy for the following variables thatw e r ea v a i l a b l e among the manual measurements: inclination, maximum diameter, length and volume. Since the correspondences between automatic andm a n u a ld etections were looked for within windows restricted in azimuth and height, it would not have been relevant to analyse the accuracy for azimuth and height of insertion. For assessing accuracy, the following criteria were computed: r-square (R 2 ), root-mean-square error (RMSE), mean of errors (i.e., automatic minus manual measurements) and standard deviation of errors. Plots of manual measurements vs. automatic measurements were drawn for each variable by tree species [START_REF] Mayer | Statistical validation[END_REF].

Rs t a t i s t i c a ls o f t w a r ew a su s e df o ra l lc o m p u t a t i o n si n c l u d ed in Section 3.5 (R Development Core Team, 2009).

Results

Detection rate

Table 2 shows the detection rates observed for each b eam. Dep ending on the sample, 71 to 100% of the measured knots were detected (85%o v e rt h e whole data set). Figure 5 In the other cases, a component was actually delivered but either (i) not associated with the measured knot (one case only), or (ii) noti d e n t i fi e da sa knot due to the merging of several knots within the same component. Knot merging was observed near the pith for 21 knots, 15 of which belonged to beam #7, probably due to the presence of denser compression wood around the pith (Fig. 6). Merging was also observed for 28 knots of beams #3 and #4 due to wet areas (Fig. 7). In both cases, the merged components 2 gives the number of components that were considered as knots by the automatic algorithm but not associated with a manually measured knot. Careful observation of the CT slicess h o w e dt h a t all of the 149 supplemental components actually corresponded to a knot or ab u dt r a c e . I nm o s tc a s e s ,t h ek n o tw a sn o tm e a s u r e db e c a u s eo fi t ss m a l l size; some other knots were measured but delivered several fragments from which only one was associated with the knot.

Figure 8 shows the distributions of detected knots (manuallym e a s u r e d or not) and missing detections by diameter classes. In particular, it may be observed that the algorithm was able to detect more knots thantheoperator for the smallest diameters. Indeed, the operator was asked not to measure the very small branches for which the pith was not visible. Thep r o p o r t i o n of missing detections was relatively low, regardless of the diameter class. *****Figure 8 about here*****

Detection accuracy

The accuracy of the automatic measurements was analysed on the basis of the 365 detected knots for which manual measurements were available.

The variables that were considered for accuracy were: inclination, maximum diameter, length and volume of knots.

Figure 9 shows plots of manual vs. automatic measurements fore a c ho f these four variables compared to the Y=X line. R 2 ,R M S E ,m e a no fe r r o r s and standard deviation of errors are given for each single beam in Table 3.

Regarding inclination measurements, the mean RMSE was 4.5˚.T h er esults were globally satisfactory with a mean R 2 of 0.86. The least accurate results were obtained for beam #6 with a RMSE of 6.9˚and inclinations underestimated by the algorithm, especially for the two branches that were the most bottom oriented. Like beams #1 and #7, beam #6 had the particularity of having its knots quite horizontal and even bottom oriented (Fig. 1).

Regarding the diameter measurements, the mean RMSE was 3.4 mm.

The results were globally satisfactory with a mean R 2 of 0.87. The least accurate results were obtained for beams #6 and #7 with RMSE of5 . 3a n d 4.4 mm, respectively. This was due to the biggest branches forw h i c ht h e maximum diameter was underestimated by the algorithm. In addition, a slight bias was observed for most of the beams, with automatically measured diameters often smaller than the manually measured ones. Beam #6 had the particularity of having bigger knots than the other beamsa n daq u i t e high variability of knot maximum diameters. The averages of mean errors and standard deviations were -1.8 (2.9) mm.

Regarding the length measurements, the mean RMSE was 3.3 cm. This was the variable that was the least accurately measured by thea l g o r i t h m , with a mean R 2 of 0.59. The least accurate results were obtained for beam #2 with a RMSE of 5.2 cm. A bias was observed for all of the beams since automatically measured lengths were generally shorter thant h em a n u a l l y measured ones. Figure 10 shows that the biggest errors essentially occurred for knots with small diameters that sometimes led to fragmented 3D components due to the thresholding.

Regarding the volume measurements, the RMSE for all the beamst ogether was 12.0 cm 3 .T h er e s u l t sw e r es a t i s f a c t o r yw i t ham e a nR 2 of 0.86, except for beam #7 (RMSE of 20.0 cm 3 ), essentially due to two branches for which the volumes were overestimated by the algorithm.

For knot diameter and length, no difference in accuracy was observed between spruce and fir. For knot inclination and volume, the results were slightly better for fir than for spruce (statistically assessed by t-tests).

The moisture content of the beams (not controlled here) was probably an important factor in relation to the accuracy of the automaticm e a s u r e m e n t s since wood density was similar for knots and wet wood areas, which led to some problems in the automatic detection. 

Discussion

When aiming to analyse the distributions of knot characteristics within trees (e.g., [START_REF] Colin | Branchiness of Norway spruce in northeastern France: predicting the main crown characteristics from usual tree measurements[END_REF][START_REF] Kershaw | A p p r o a c h e s for modeling vertical distribution of maximum knot size in black spruce: Ac o m p a r i s o no ffi x e d -a n dm i x e d -e ff e c t sn o n l i n e a rm od e l s[END_REF][START_REF] Weiskittel | Modelling primary branch frequency and size for five conifer species in Maine, USA[END_REF], it is particularly important to identify and accurately measure each knot individually. Such data are particularly valuable for studying tree development and tree architecture, and for linking tree growthc o n d i t i o n st o wood quality. In addition, there is a demand for the development of automatic methods of species identification on the basis of various markers measurable in stacks of CT images. Possible markers could include knot distribution within the stem, knot size, inclination and density. Since a simple grey level thresholding was effective for segmenting the knots, we decided to focus our efforts in this study on the identification of individual knots and on the validation of knot detection and measurements. On the other hand, many references found in the literature focus on the segmentation of CT images alone (which would be the first step of a more completek n o t detection algorithm) without ultimately providing a methodt od e t e c te a c h knot individually. The accuracy results are therefore presented in the form of percentages of correctly classified pixels, which are not easy to interpret by the end-users.

The percentage of detected knots (detection rate) is a more powerful criterion that is widely used in studies about individual knot detection. It is important to associate this rate with the corresponding percentage of false alarms (i.e., the number of invalid detections divided by thet o t a ln u m b e r of detected knots). Our detection rates (obtained on the basis of a total of 428 manually detected knots) ranged between 71 and 100%, depending on the beam (85% for all beams together), with no false alarms (i.e., all the 3D components identified as being knots by the algorithm were actual knots, even if they were not all manually measured), which wasc o m p a r a b l e to the results found in the literature (see Section 2). Our algorithm was particularly efficient for detecting even small branches while maintaining a zero false alarm level.

Relatively few validation results are available in the literature with respect to the automatic measurement of knots, especially their sizea n di n c l i n a t i o n . This specific point was particularly emphasized in this study. Diameter is the most widely measured and studied knot characteristic. A total of four references provided quantitative results for diameter measurements [START_REF] Grundberg | Log scanning -extractionofknotgeometry[END_REF]Oja, 2000;Nordmark, 2003;Andreu and Rinnhofer, 2003a). However, validation methods were highly variable (see Section 2).

In the present work, we obtained error means and SD of -1.8 (2.9) mm, which could be considered to be very accurate. No quantitative results were found in the literature regarding knot inclination, length or volume measurements. The accuracies obtained by applying our algorithm fortheautomatic measurements of inclination and volume were satisfactory. The knot length measurement was the least accurate. As shown in Section 4, this lack of accuracy generally occurred for small-diameter knots that could lead to fragmented 3D components due to the thresholding. Some improvements such as ar a d i a ld i l a t a t i o no ft h e3 Dc o m p o n e n t st o w a r dt h eo u t s i d eo ft h es t e mo r the connexion of the 3D components on the basis of their azimuth could solve most of the problems. These ideas have not yet been tested in the present version of our algorithm.

As reported above, some authors (Oja, 2000;Nordmark, 2003;Andreu and Rinnhofer, 2003a;[START_REF] Baumgartner | Knots in CT scanso fS c o t s pine logs[END_REF] validated their algorithm by comparison with manual measurements made on real boards or cross-sections.

We chose to validate our results by comparison with manual measurements performed on original CT images. The reason is that we consider that the comparison between knot borders visible on colour images (i.e., based on wood colour variations) and on corresponding CT images (i.e., based on wood density variations) is a distinct problem, totally independent of the algorithm performance, and which should be studied separately.

In our study, the manual measurements of knot diameters were performed on CT images, i.e., in a transversal plane, whereas the automatic measurements were performed by using the 3D distance transform method that gave the minimum diameter at the knot profile location where the diameter was maximum. That implies to hypothesize that the knot section isc i r c u l a r or larger in the longitudinal direction than in the transverse direction. For Norway spruce, a ratio of 1.057 between diameters measured vertically and horizontally was reported by Merkel (1967) in [START_REF] Skovsgaard | Branch thickness in unthinned stands of Sitka spruce (Picea sitchensis (Bong.) Carr.)[END_REF], which represents a very slight ovality.

Finally, regardless of the type of images being dealt with, manual measurements are prone to subjectivity. Although knots are easily visible on images, it is not easy to accurately determine the borders between knots and the surrounding wood (Nordmark, 2005).

It should be observed that the use of the 3D distance map offers other potential geometric feature extractions such as the knot diameter profile. Such af e a t u r ec o u l db ea v a i l a b l ea f t e rd e fi n i n gas u r f a c et r a c k i n ga l g o r i t h m( b y using, for example, the tracking discrete surface algorithmf r o mt h eD G t a l (2011) library) and by focusing on the principal inertia axis.

In the current version of the algorithm, the inclination was defined as the angle between the horizontal plane and the line linking the starting point and the end point of the knot, both for manual and automatic measurements. This definition was totally satisfactory in relation to the way the inclination was used in this study, whereas it is questionable from a biological point of view since it depends on the length of the knot and on the stem diameter.

The definitions that are often used in existing biological studies about the distribution of knot inclinations within trees (e.g., Colinetal.,1993;[START_REF] Makinen | Predicting branch angle and branch diameter of Scots pine from usual tree measurements and stand structural information[END_REF][START_REF] Achim | Predicting the branching properties of Sitka spruce grown in Great Britain[END_REF] are questionable for similar reasons: the branch inclination is measured outside of the stem for practical reasons and therefore depends on the stem diameter. CT image analysis makes it possible to non-destructively investigate the inner part of the stem,a n di tw o u l db e more relevant to measure inclination in the first part of the knot that is not visible outside of the stem. In further versions of the algorithm, additional definitions of the inclination will be added to the outputs. Aq u e s t i o na r o s ea b o u tt h es e n s i t i v i t yo fo u ra l g o r i t h mt ot h el o n g i t u d inal and transversal resolutions of CT images. For example, [START_REF] Schmoldt | Classifying features in CT imagery: accuracy for some single and multispecies classifiers[END_REF] compared the results obtained with an artificial neural network for two transversal resolutions of 1 mm/pixel and 3 mm/pixel. No significant difference was observed. In our case, the results obtained forb e a m# 1a r e better than for the other beams. This could be due to the fact that beam #1 was scanned with a longitudinal resolution about three times better than the other beams. This specific point should be further investigated by scanning some materials with different resolutions and by comparing the results of the knot detection, but it has not yet been done due to cost and time considerations.

The detection failures due to the merging of several knots within the same component at the location of their connexion to the tree pith could be easily solved by using a black circular mask of 10 mm in diameter around the pith. Indeed, among the 21 knots that were not detected because they were connected together at the pith location (Section 4.1), 20 could be detected by using such a mask, leading to a detection rate of 91% on average( c o m p a r e d to 85% without using the circular mask). However, this methodi sq u i t e rough, depending on the mask diameter, and more subtle methods should exist, perhaps based on skeletonisation, in order to find the location where the knots are connected together.

Several authors (e.g., [START_REF] Funt | Detection of internal log defects by automatic interpretation of computer tomography images[END_REF]Andreu and Rinnhofer, 2003a;Nordmark, 2005;[START_REF] Rojas | Identification of internal defect of sugar maple logs from CT images using supervised classification methods[END_REF][START_REF] Wei | Identification of selected internal wood characteristics in computed tomography images of black spruce: a comparison study[END_REF] encountered difficulties in detecting knots in the presence of high moisture content or sapwood (when it was visible) on CT images, especially when knots werec o n n e c t e d to sapwood because of comparable density levels. This major problem is still unresolved in the literature. For example, [START_REF] Rojas | Effect of moisture content variation on CT image classification to identify internal defects of sugar maple logs[END_REF] demonstrated the effect of moisture content on the accuracy of sapwood detection in sugar maple logs. In our study, the material was not fresh, but some remaining areas of high moisture content led to the merging of several knots within the same 3D component. [START_REF] Longuetaud | Détection et analyse non destructive de caractéristiques internes de billons d'Epicéa commun (Picea abies (L.)K A R S T . ) par tomographie à rayons X[END_REF] proposed a method to overcome this problem but without actual implementation. Further developments of our algorithm will be devoted to this specific problem with theo bj e c t i v eo f applying the algorithm to fresh beams or logs.

Since cross-validation was used in this study, the method wasnotapplied to a true independent validation sample. Nevertheless a small log (approximately 15 cm in diameter × 100 cm in length, taken from a 30-year-old spruce tree) for which the manual measurements were available was processed using the overall upper bounds given in the Materials and Methods section. The results were quite satisfactory since 73 of the 74 knots measured in this log were successfully detected without any false alarm. The R 2 between manual and automatic measurements was 0.94, 0.96, 0.34 and 0.91 for knot inclination, maximal diameter, length and volume, respectively. The results were particularly accurate for maximal diameter, with an error mean and SD of 0.0 (0.9) mm.

Conclusion

Af u l l ya u t o m a t e da l g o r i t h mw a sd e v e l o p e df o rt h ed e t e c t i o nof knots within silver fir and Norway spruce beams or logs. The detection was nondestructive since it was based on the analysis of CT images acquired by a medical X-ray CT scanner. The algorithm detected and measured knots directly in 3D, based on a connex component analysis and a 3D distance transform.

The algorithm was able to detect a total of 85% of 428 knots in seven silver fir and Norway spruce beams (91% when applying a special process to disconnect knots when they were connected together at the pith location).

Particular attention was paid to the automatic measurementso fk n o tc h a racteristics: inclination, diameter, length and volume. Thec o m p a r i s o nw i t h manual measurements resulted in an R 2 of 0.86, 0.87, 0.59 and 0.86 for inclination, maximum diameter, length and volume, respectively. This study could be extended in the future to solve the problemoftheconnection of knot components together at the pith location or due tot h ep r e s e n c e 

  of knots was assessed by comparing real CT images and reconstructed CT images on the basis of the automatically estimated knot parameters. The accuracy of diameter measurements (at the dead knot border) was assessed on 27 knots based on comparisons between measurements on realb o a r d s and on reconstructed boards. The mean and SD of predicted (measured on reconstructed boards) minus real (measured on real boards) knot diameters were -2 (3) mm. Nordmark (2003) later extended the Swedish Stem Bank with knot parameters estimated from knot detection in CT images of young Scotsp i n et r e e s .

a3

  Ds u p p o r tf r o mw h i c hk n o tm o d e l sw e r efi t t e d( 3 Dc u r v ea l o n gwhich the 2D cross-section is swept). The validation was done basedo nf o u rl o g s by making comparisons between knots that were visible on realb o a r d sa n d on corresponding virtual boards obtained on the basis of the knot models.

Figure 1

 1 Figure1illustrates the variability encountered in the samples studied for knot size and shape.

  with ar e a lk n o t . T h ep o i n t sa r o u n dt h es u r f a c eo ft h eo b j e c ta r ea t distances close to 0, represented in shades of red, while the farthest points are represented in shades of blue. *****Figure 3 about here***** -Principal component analysis (3D)

  rt h es e v e nb e a m s . H e n c e ,t h eo v e r a l lu p p e rb o u n d sw o u l db e: 53.1˚for the inclination, 0.25 for the elongation criterion and 15.9˚for the RDA.

  shows an example of a correctly detected whorl of knots. *****Table 2 about here***** *****Figure 5 about here***** The observation of the 63 missing knots showed that only five oft h e m were really missing in the set of components delivered by the algorithm.

  were logically rejected with respect to the elongation or orientation criteria, resulting in lower detection rates. *****Figure 6 about here***** *****Figure 7 about here***** The fourth column of Table

  *****Figure 9 about here***** *****Table 3 about here***** *****Figure 10 about here*****

Figure 1 :

 1 Figure 1: General view of the scanned beams with the manual measurements. Each beam was scanned in two 1.5-m length sections that are merged in thev i e w . T h eb e a m sa r e orientated according to their position in the standing tree based on the counting of annual growth rings.
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Figure 2 :

 2 Figure 2: Illustration of the 3D scan algorithm. At each step,o n l yt h et w or e ds l i c e sn e e d to be loaded into the system memory. The current voxel is represented in blue while the 17 neighbour voxels (part of the 26-neighbourhood) processed at each step are given in cyan. The previous processed slices are illustrated in grey,w h e r e a st h ef u t u r eo n e sa r e represented by empty transparent boxes.

Figure 4 :

 4 Figure 4: Schematic view of the horizontal projection of a detected component and computation of starting point (SP), end point (EP), length, azimuth and radial deviation angle (RDA).

Figure 5 :

 5 Figure 5: View of a whorl of beam #2. (a) Initial CT slice with manual measurements; (b) 3D view after knot segmentation; (c) Segmented slice withas p e c i fi cc o l o u rf o re a c h component; (d) Convex hull of the segmented components. Note that a component corresponding to the support table was detected but will be removed later when considering the knot criteria.

Figure 6 :

 6 Figure 6: Knot connexion near the pith of beam #7. (a) Initial CT slice; (b) 3D view after knot segmentation; (c) Segmented slice with a specific colour for each component.

Figure 7 :

 7 Figure 7: Knot connexion due to wet areas in beam #4. (a) Initial CT slice; (b) 3D view after knot segmentation,; (c) Segmented slice with specific colour for each component.

Figure 8 :

 8 Figure 8: Number of knots from the seven beams that were manually measured and detected (grey), manually measured and not detected (red), not manually measured but detected (blue).

  

Table 1 :

 1 Upp er b ounds for the three criteria that were used fore a c hv a l i d a t i o nd a t as e t .They were computed from the corresponding calibration data set of the cross-validation approach Validation data set Sp ecies n calibration Inclination (˚) Elongation RDA (˚)

	Beam #1	fir	298	52.1	0.26	16.3
	Beam #2	fir	273	48.2	0.26	15.3
	Beam #3	fir	290	54.0	0.23	15.0
	Beam #4	fir	268	57.5	0.25	17.0
	Beam #5	spruce	276	53.0	0.26	16.8
	Beam #6	spruce	297	53.5	0.23	15.5
	Beam #7	spruce	305	53.4	0.24	15.4

Models to predict tangential and longitudinal diameters andpo s i t i o n sa sf u n c t i o n so f the radial distance to the pith.

These figures are probably means and SD of differences in "automatic minus manual measurements", but this was not specified by the authors.

of an area of high moisture content, to validate and adapt the algorithm to other species, and to apply the algorithm to whole stems in order to study the distribution of knot characteristics within trees.
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