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Abstract

We aim to reconstruct an inclusion ω immersed in a perfect fluid flowing in a larger
bounded domain Ω via boundary measurements on ∂Ω. The obstacle ω is assumed to
have a thin layer and is then modeled using generalized boundary conditions (precisely
Ventcel boundary conditions). We first obtain an identifiability result (i.e. the unique-
ness of the solution of the inverse problem) for annular configurations through explicit
computations. Then, this inverse problem of reconstructing ω is studied thanks to the
tools of shape optimization by minimizing a least squares type cost functional. We
prove the existence of the shape derivatives with respect to the domain ω and char-
acterize the gradient of this cost functional in order to make a numerical resolution.
We also characterize the shape Hessian and prove that this inverse obstacle problem
is unstable in the following sense: the functional is degenerated for highly oscillating
perturbations. Finally, we present some numerical simulations in order to confirm and
extend our theoretical results.
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1 Introduction

A method to solve the inverse problem of reconstructing an object living in a larger domain
is the shape optimization methods and particularly the geometric shape optimization.
This kind of studies was realized for the impedance electric tomography by Afraites et
al. in [2] or for the Stokes and Navier-Stokes equations by Badra et al. in [6] or Caubet
et al. in [14, 13, 12] using technics of shape differentiation with respect to the domain.
These technics are exposed for example in the books of Henrot et al. and Sokołowski et
al. [21, 27]. In the previous references [2, 6, 14, 13], the authors proved that the studied
inverse problems, treated as a shape optimization problems, are severely ill-posed (i.e.
unstable), for both Dirichlet and Neumann boundary conditions on the object. Thus, they
have to use some regularization methods to solve them numerically.

Here, we focus on the case of generalized impedance boundary conditions (of order two)
on the obstacle, precisely Ventcel boundary conditions which deal with a Laplace-Beltrami
operator. This kind of non classical boundary conditions appear in the modeling of thin
layer or of corrosion effects. The study of this type of boundary conditions is an emerging
research theme and the analysis of the Ventcel boundary conditions was recently made by
Bonnaillie-Noël et al. in [7]. We can here mentioned the work of Haddar et al. in [18]
where they propose a new construction of generalized impedance boundary conditions and
develop a complete mathematical analysis for the approximate problem. The construction
of generalized impedance boundary conditions is also treated for example by Antoine et
al. in [4], by Poignard in [26] or by Haddar et al. in [19]. One topic is then to identify
the coefficients corresponding to these conditions as treated by Bourgeois et al. in [9, 8].
Another is to identify the shape while the coefficients are known. We consider this question
here: our aim is to adapt the classical shape optimization methods used to solve inverse
problems to the case of immersed obstacles modeled by Ventcel boundary conditions. In
the recent work [11], Cakoni et al. address the question of recovering simultaneously the
unknown boundary and the unknown coefficients by an integral equation approach.
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A method to solve this inverse problem of determining the shape of an immersed obsta-
cle is then to make a boundary measurement on the exterior boundary. A first study of this
problem is given by Cakoni et al. in [10] using a boundary integral equation method in the
spirit of the method proposed by Kress et al. in [22]. In particular, in [10], the authors give
an example of non identifiability result. Even if we do not obtain a general identifiability
result (as the one stated for Robin boundary conditions by Bacchelli in [5]), we here prove
it for annular configurations with the same center using two well chosen measurements.
Then, following previous works on electric impedance topography (see [17, 2, 3]) or on
the same topic in the Stokes and Navier-Stokes cases (see [6, 14, 13]), our strategy is to
minimize a least squares functional.

We prove the existence of shape derivatives for this type of boundary value problem
pursuing the studies initiated by Dambrine et al. in [15]. We compute the shape gradient
and characterize the shape Hessian. We then prove, using a local regularity argument,
that the Riesz operator corresponding to this shape Hessian is compact and it follows that
the functional is degenerated for highly oscillating perturbations. Finally, we make some
numerical simulations in order to confirm and complete our theoretical study. These nu-
merical experiments point out that, contrary to the case of classical boundary conditions
treated in [2, 14], we can achieve acceptable reconstruction without regularization meth-
ods. Indeed, the presence of the Laplace-Beltrami operator in the generalized impedance
boundary conditions of order two seems to somehow regularize the problem.

This paper is organized as follows. We first introduce the precise problem under con-
sideration and useful results. Then, we prove an identifiability result in the case of an
annulus in dimension two. In Section 4, we prove the existence of shape derivatives (of
order one and two) when Ventcel boundary conditions are imposed. The differentiation
with respect to the domain of the problem and of the cost functional are detailed in Sec-
tion 5. This section ends with the proof of the instability of the inverse problem. Finally,
we make some numerical experiments which underline the fact that we do not need some
regularization method to obtain efficient results. In order to be complete, we recall some
results concerning the Ventcel boundary conditions in Appendix A and some reminders of
useful shape differential calculus in Appendix B.

2 The problem setting

2.1 General notations and reminders

Let us introduce the notations that we adopt in this paper. We denote by Lp, Wm,p

and Hs the usual Lebesgue and Sobolev spaces. For k ∈ N and an open set Ω ⊂ Rd
(d ≥ 2), we denote by Ckc (Ω) the space of functions with continuous k first derivatives
compactly supported in Ω and by ‖ · ‖k,∞ its natural norm. We note in bold the vectorial
functions and spaces: Lp, Wm,p, Hs, etc. Moreover, n represents the external unit normal
to ∂Ω, and for a smooth enough function u, we note respectively ∂nu and ∂2

nnu the normal
derivative and the second normal derivative of u. We also denote byMd,d the space of the
matrix of size d× d. The tangential differential operators will be noted by the subscript τ .
We recall some definitions and useful results in Appendix B. For more details on tangential
differential operators, we refer for example to Section 5.4.3 in [21]. In particular, we recall
the following integration by parts result which will be used many times in this paper.

Theorem 2.1. Let Ω be a bounded open set of Rd (d ≥ 2) with a C2 boundary. Let
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f ∈W1,1(∂Ω) and W ∈W1,1(∂Ω). Then,∫
∂Ω
W · ∇τf =

∫
∂Ω
−fdivτW + HfW · n,

where H is the mean curvature of ∂Ω.

2.2 The studied problem

Let Ω be a smooth (at least C3) bounded open set of Rd, where d ≥ 2 is an integer
representing the dimension. Let δ > 0 be a fixed (small) real number. We define

Oδ :=
{
ω ⊂⊂ Ω be a smooth (at least C3) open set such that d(x, ∂Ω) > δ ∀x ∈ ω

and such that Ω\ω is connected
}
. (2.1)

Let g ∈ H3/2(∂Ω) be an admissible boundary measurement and let f ∈ H5/2(∂Ω) such
that f 6= 0. We then consider, for ω ∈ Oδ, the following overdetermined boundary values
problem: 

−∆u = 0 in Ω\ω
u = f on ∂Ω

∂nu+ αu+ β∆τu = 0 on ∂ω
∂nu = g on ∂Ω,

(2.2)

where α > 0 and β < 0 are fixed real number.
We assume here that there exists ω∗ ∈ Oδ such that (2.2) has a solution. This means

that the measurement g is perfect, that is to say without error. Thus, we consider the
following geometric inverse problem:

find ω ∈ Oδ and u which satisfy the overdetermined system (2.2). (2.3)

To solve this inverse problem, we consider, for ω ∈ Oδ, the least squares functional

J(ω) :=
1

2

∫
∂Ω
|∂nu(ω)− g|2, (2.4)

where u(ω) ∈ H1(Ω\ω) solves
−∆u = 0 in Ω\ω

u = f on ∂Ω
∂nu+ αu+ β∆τu = 0 on ∂ω,

(2.5)

measuring in the misfit to data in the L2 sense. Notice that, according to Theorem A.2,
the boundary value problem (2.5) admits a unique solution u ∈ H3(Ω\ω).

Then, we try to minimize the least squares criterion J :

ω∗ ∈ argmin
ω∈Oδ

J(ω). (2.6)

Indeed, if ω∗ solves the inverse problem (2.3), then J(ω∗) = 0 and (2.6) holds. Conversely,
if ω∗ solves the optimization problem (2.6) with J(ω∗) = 0, then it is a solution of (2.3).

Remark 2.2. Using the local regularity of the solutions in a neighborhood of ∂ω, notice
that we can only assume that ∂Ω is Lipschitz and that f ∈ H1/2(∂Ω) and g ∈ H−1/2(∂Ω)
(see for example [6, 13, 14]). However, in order to simplify the proof and the notations,
we assume the announced regularity.

Moreover, we could assume that the measurement g is made only on a part O ⊂ ∂Ω
and not on the whole exterior boundary as made for example in [6, 13].
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The needed functional tools. Let us introduce the following notation for k ∈ N:

Hk
∂Ω(Ω\ω) :=

{
u ∈ Hk(Ω\ω), u = 0 on ∂Ω

}
.

Let us define Ωδ an open set with a C∞ boundary such that

{x ∈ Ω ; d(x, ∂Ω) > δ/2} ⊂ Ωδ ⊂ {x ∈ Ω ; d(x, ∂Ω) > δ/3} .

Then, in order to make a shape sensitivity analysis (of order two), we define

U :=
{
θ ∈W3,∞(Rd); supp(θ) ⊂ Ωδ

}
and U :=

{
θ ∈ U ; ‖θ‖3,∞ < min

(
δ

3
, 1

)}
(2.7)

as the space of admissible deformations. These spaces permit to perturb only the object ω
and not the fixed domain Ω. Notice that if θ ∈ U , then (I + θ) is a diffeomorphism. For
such a θ ∈ U and ω ∈ Oδ, we check that Ω = (I + θ)(Ω) and we define the perturbed
domain

ωθ := (I + θ)(ω)

which is so that ωθ ∈ Oδ.
Let T > 0, that we will have to fix small. We use the shape calculus introduced by

Murat and Simon in [25]. Thus, we consider the function

φ : t ∈ [0, T ) 7→ I + tV ∈W3,∞(Rd), (2.8)

where V ∈ U . Note that for small t, φ(t) is a diffeomorphism of Rd and that φ′(0) = V
vanishes on ∂Ω and even on the tubular neighborhood Ω\Ωδ of ∂Ω. For t ∈ [0, T ), we
define

ωt := φ(t)(ω)

where φ is defined by (2.8). For the rest of the paper, we use a subscript "t" to indicate that
the quantity is defined on the time t dependent domain. For instance, nt is the external
unit normal of Ω\ωt.

Finally, we introduce the following notation: for V ∈ U ,

Vn := V · n.

3 On the identifiability result on rings

In this section, we will analyze the question of identifiability of the shape ω. The question
is the following: does a measurement (or several measurements) determine uniquely the
domain ω? This kind of result was recently proved by Bacchelli in [5] for Robin boundary
conditions. In the case of generalized impedance boundary condition, the literature is
reduced to the discussion by Cakoni et al. in [11].

In order to try to answer to this question concerning the non classical Ventcel boundary
conditions, let us focus on particular geometries in the bi-dimensional case. More precisely,
we consider an annulus with two concentric circles: the inner circle Γi := ∂ω = ρS1 has
a radius ρ and we denote by R the radius of the outer circle Γ := ∂Ω = RS1 (where S1

denotes the unit sphere). Hence,

Ω\ω :=
{
x ∈ R2, ρ < |x| < R

}
= BR \Bρ.
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Let u the solution of the following problem
∆u = 0 in Ω\ω= BR \Bρ
u = f on Γ = ∂Ω= RS1

∂nu+ αu+ β∆τu = 0 on Γi = ∂ω= ρS1.
(3.1)

We deal with the inverse problem of reconstructing the inner circle (i.e. find the radius ρ)
from boundary measurements on the outer circle ∂Ω. We give a result for identifying
uniquely the obstacle from two pairs of Cauchy data (f1, ∂nu1= g1 Γ) and (f2, ∂nu2= g2 Γ),
where u1 and u2 are the respective solutions of Problem (3.1) with the Dirichlet data f1

and f2. Precisely, we show the following result:

Theorem 3.1. Given α > 0 and β < 0, one can determine uniquely Γi (i.e. the radius ρ)
with two pairs of measurements (f1, g1) and (f2, g2), provided f1 and f2 are suitably chosen.

The idea of the proof is the following. We consider two inputs of the form f1 =
Rn1 cos(n1θ) and f2 = Rn2 cos(n2θ). We assume that two inner radii ρ and ρ̃ generate
the same Cauchy data for both inputs. We obtain a system of equations in t := ρ/ρ̃ with
respect to n1 and n2 of the kind

h1
ni(t) = h2

ni(t) ∀i = 1, 2,

where the hini are real valued functions of the real variable. We will show that for n1 and n2

suitably chosen, the unique solution of the previous system is t = 1 meaning ρ = ρ̃.

Proof. In the sequel, the couple (r, θ) represents the polar coordinates. Moreover, an(f)
and bn(f) (respectively an(g) and bn(g)) represent the respective Fourier coefficients of f
and g. We subdivide the proof in two parts.

First step: preliminary computations. Assume that (f, g) is a Cauchy pair for
Problem (3.1) set in the annulus BR \Bρ. Its solution is of the following form

u(r, θ) = a−1 ln r + a0 +
∞∑
n=1

(anr
n + a−nr

−n) cos (nθ) +
∞∑
n=1

(bnr
n + b−nr

−n) sin (nθ)

where, for n ≥ 1,

anR
n + a−nR

−n = an(f)

anR
n − a−nR−n =

R

n
an(g)

anρ
n

(
− βn2

ρ2
−
n

ρ
+ α

)
+ a−nρ

−n

(
− βn2

ρ2
+
n

ρ
+ α

)
= 0

(and with the same system replacing an by bn). Since the matrix of the linear system is of
rank two, we get the relation

2an(f)Xn(ρ) =

(
R2n

ρ2n
Yn(ρ)−Xn(ρ)

)(
R

n
an(g)− an(f)

)

where we set

Xn(ρ) :=
− βn2

ρ2
−
n

ρ
+ α and Yn(ρ) :=

− βn2

ρ2
+
n

ρ
+ α.
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Hence,

2an(f)

R

n
an(g)− an(f)

=

R2n

ρ2n
Yn(ρ)−Xn(ρ)

Xn(ρ)
.

Notice that the left hand side does not depend on the inner radius ρ.
Second step: derivation of an equation using two measurements. Assume

now that (f = Rn cos(nθ), g) is a Cauchy pair for the boundary value problem (3.1) in the
annuli BR \Bρ and BR \Bρ̃ (where 0 < ρ̃ < R). The previous remark provides the relation

R2n

ρ2n
Yn(ρ)−Xn(ρ)

Xn(ρ)
=

R2n

ρ̃2n
Yn(ρ̃)−Xn(ρ̃)

Xn(ρ̃)
.

Hence
ρ̃2n

ρ2n
Yn(ρ)Xn(ρ̃) = Yn(ρ̃)Xn(ρ).

Setting t :=
ρ̃

ρ
, we then get

t2n
− βn2 − ntρ+ αt2ρ2

−βn2 − nρ+ αρ2
=
− βn2 + ntρ+ αt2ρ2

−βn2 + nρ+ αρ2
.

Denoting bn :=
nρ+ βn2 − αρ2

nρ− βn2 + αρ2
, we check

1 +
2R

β
≤ bn = 1−

2nρ

nρ− βn2 + αρ2
≤ 1, ∀n ∈ N

and see that t is solution of

t2n
ntρ+ βn2 − αt2ρ2

ntρ− βn2 + αt2ρ2
= bn

or equivalently

t2n
1 + β

n

tρ
− α

tρ

n

1− β
n

tρ
+ α

tρ

n

= bn.

Setting Pn(t) := −β
n

tρ
+ α

tρ

n
, this gives

t2n(1− Pn(t)) = bn(1 + Pn(t))

and then the equation in t at fixed ρ

t2n − bn
t2n + bn

= −β
n

tρ
+ α

tρ

n
. (3.2)

If there are two distinct inner radii ρ and ρ̃ such that the measurements gi are the same
for the annuli BR \Bρ and BR \Bρ̃, then Equation (3.2) has at least two solutions one of
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which is 1. We will prove that when we fix n1 and choose n2 sufficiently large, the only
common solution of

t2ni − bni
t2ni + bni

= −β
ni

tρ
+ α

tρ

ni
i = 1, 2 (3.3)

is t = 1 and then ρ̃ = ρ. This means that only two measurements are necessary for the
identifiability.

Third step: the identifiability proof. We see the solution of Equation (3.2) as the
intersection in R+ of the two curves (C1) and (C2) where

(C1) : t 7→ h1
n(t) :=

t2n − bn
t2n + bn

and (C2) : t 7→ h2
n(t) := −β

n

tρ
+ α

tρ

n
≥ −

β

tR
n.

Fix n1 = 1, then Equation (3.2) is polynomial of degree 4, it has at most four solutions
in R, one of them is 1. Set S the set of positive real solutions of (3.2) distinct of 1. It has
at most three elements.

If S 6= ∅, take t ∈ S and consider the sequences hin(t) for i = 1, 2. The sequence h2
n(t)

clearly goes to infinity. For the sequence h1
n(t), we have to distinguish the case t > 1 and

t < 1. If t > 1, then h1
n(t) tends to 1 since

|h1
n(t)− 1| =

∣∣∣∣∣ 2bn

t2n + bn

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣

2

t2n + 1 +
2R

β

∣∣∣∣∣∣∣∣∣ .
For t < 1, h1

n(t) goes to −1. Hence, from the uniform in ρ bounds in the estimations
for these two sequences, there is a rank nt, such that for n ≥ nt, t is not solution of
Equation (3.2). Taking the maximum N of nt for t ∈ S, we conclude that, for a fixed
n1 = 1 and n2 ≥ N , the unique common root of (3.3) is t = 1 and then that only two
boundary Cauchy measurements are sufficient to identify the inner circle.

4 Existence of shape derivatives

In the previous section, we have proved an identifiability result in annular configurations.
We want now to reconstruct the obstacle by minimizing the least squares functional (2.4)
and solve the optimization problem (2.6) using shape optimization methods. Hence, we
want to use the notion of shape derivatives. Thus, in this section, we prove that the
solution u of Problem (2.5) is twice differentiable with respect to the shape ω ∈ Oδ.

Let θ ∈ U . We recall that Oδ is defined by (2.1), U by (2.7) and that we define
ωθ := (I + θ) (ω). Then, we consider uθ ∈ H1(Ω\ωθ) solution of

−∆uθ = 0 in Ω\ωθ
uθ = f on ∂Ω

∂nθuθ + αuθ + β∆τθuθ = 0 on ∂ωθ.
(4.1)

Notice that uθ belongs to H3(Ω\ω). Let us consider F ∈ H3(Ω\ω) such that

−∆F = 0 in Ω, F = f on ∂Ω and F = 0 in Ωδ.

Then, we define
vθ := (uθ − F ) ◦ (I + θ)

8



and the variational formulation of Problem (4.1) is then given by∫
Ω\ωθ

∇vθ · ∇ϕθ +

∫
∂ωθ

(α vθϕθ − β∇τθvθ · ∇τθϕθ) =

∫
Ω\ωθ

∆F ϕθ ∀ϕθ ∈ H1
∂Ω(Ω\ωθ),

(4.2)

since
∫
∂ωθ

−β∆τθvθϕθ =

∫
∂ωθ

β∇τθvθ · ∇τθϕθ. We will apply the general method exposed

in [21, Chapter 5] using the implicit function theorem on vθ.

4.1 Characterization of vθ

Lemma 4.1 (Characterization of vθ). For θ ∈ U , vθ satisfies for all ϕ ∈ H1
∂Ω(Ω\ω)∫

Ω\ω
∇ (A(θ)vθ) · ∇ϕ+

∫
∂ω
α vθ ϕwθ −

∫
∂ω
β (C(θ)∇τvθ) · ∇τϕ =

∫
Ω\ω

∆F ϕJθ,

where
Jθ := det (I +∇θ) ∈W2,∞ (Ωδ

)
,

wθ := det (I +∇θ)
∥∥∥t(I +∇θ)−1 n

∥∥∥ ∈W2,∞ (Ωδ

)
,

A(θ) := νJθ (I +∇θ)−1(I + t∇θ)−1 ∈W2,∞ (Ωδ,Md,d

)
,

C(θ) := wθ (I +∇θ)−1 t(I +∇θ)−1 ∈W2,∞ (Ωδ,Md,d

)
.

Moreover, vθ belongs to H3
∂Ω(Ω\ω).

Remark 4.2. Hence, we characterize vθ as the solution of
−div (A(θ)∇vθ) = ∆F Jθ in Ω\ω

vθ = 0 on ∂Ω
(A(θ)∇vθ) · n + αvθwθ + βdivτ (C(θ)∇τvθ) = 0 on ∂ω.

Proof. Let ϕ ∈ H1
∂Ω(Ω\ω). We define

ϕθ := ϕ ◦ (I + θ)−1 ∈ H1
∂Ω(Ω\ωθ) and T (θ) :=

(
I + t∇θ

)−1 ∈W2,∞
(
Rd,Md,d

)
.

Thus, using ϕθ as a test function in the variational formulation (4.2), we obtain∫
Ω\ωθ

[
(T (θ)∇vθ) ◦ (I + θ)−1

]
·
[
(T (θ)∇ϕ) ◦ (I + θ)−1

]
+

∫
∂ωθ

α
[
vθ ◦ (I + θ)−1

] [
ϕ ◦ (I + θ)−1

]
−
∫
∂ωθ

{
β
[
(T (θ)∇vθ) ◦ (I + θ)

−1 −
(
n ◦ (I + θ)

−1
)
·
((

(T (θ)∇vθ) ◦ (I + θ)
−1
)
·
(
n ◦ (I + θ)

−1
))]

·
[
(T (θ)∇ϕ) ◦ (I + θ)

−1 −
(
n ◦ (I + θ)

−1
)
·
((

(T (θ)∇ϕ) ◦ (I + θ)
−1
)
·
(
n ◦ (I + θ)

−1
))]}

=

∫
Ω\ωθ

∆F
(
ϕ ◦ (I + θ)−1

)
.

Hence, using the change of variables x = (I + θ)(y), we obtain∫
Ω\ω

(A(θ)∇vθ) · ∇ϕ+

∫
∂ω
α vθ ϕwθ

−
∫
∂ω

β [T (θ)∇vθ − n (T (θ)∇vθ · n)] · [T (θ)∇ϕ− n (T (θ)∇ϕ · n)]wθ =

∫
Ω\ω

∆F ϕJθ.
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Therefore, we obtain the announced result. Notice that Jθ is the volume Jacobian and wθ
is the surface Jacobian.

4.2 Differentiability of θ 7→ vθ

Lemma 4.3 (Differentiability of θ 7→ vθ). The function

θ ∈ U 7→ vθ ∈ H2
∂Ω(Ω\ω)

is differentiable in a neighborhood of 0 (and even C∞).

Proof. Let us consider the application the application F : U × H2
∂Ω(Ω\ω) → L2(Ω\ω)

defined for all ϕ ∈ H1
∂Ω(Ω\ω) by

〈F (θ, v) , ϕ〉 =

∫
Ω\ω

(A(θ)∇v)·∇ϕ+

∫
∂ω
α v ϕwθ−

∫
∂ω
β (C(θ)∇τv)·∇τϕ−

∫
Ω\ω

∆F ϕJθ.

We have, for θ = 0, F(0, v0) = F(0, u− F ) = 0. Moreover, we prove analogously to what
is done in [21, Proof of Theorem 5.3.2] that the application F is C∞. Finally, we compute
for all w, ŵ ∈ H1

∂Ω(Ω\ω),

DuF(0, u− F )(w) · ŵ =

∫
Ω\ω
∇w · ∇ŵ +

∫
∂ω
αw ŵ −

∫
∂ω
β∇τw · ∇τ ŵ.

Thus, DuF(0, u− F ) is an isomorphism.
Hence, the implicit function theorem applies and then there exists a C∞ function

θ ∈ U 7→ v(θ) ∈ H2
∂Ω(Ω\ω) such that F(0, v(θ)) = 0 in a neighborhood of 0. Using the

uniqueness of the solution of such a problem, we obtain that θ ∈ U 7→ vθ ∈ H2
∂Ω(Ω\ω)

is C∞.

4.3 Existence of shape derivatives

Lemma 4.4 (Differentiability of θ 7→ uθ). There exists ũθ an extension in Ω of uθ ∈
H1(Ω\ωθ) such that

θ ∈ U 7→ ũθ ∈ H1(Ω)

is differentiable at 0 (and even C∞ in a neighborhood of 0).

Proof. For θ ∈ U , uθ = vθ ◦ (I + θ)−1 ∈ H2
∂Ω(Ω\ωθ). According to the differentiability of

θ 7→ vθ (see Lemma 4.3) and Stein’s extension theorem (see for example [1, Theorem 5.24]),
there exists ṽθ, an extension of vθ, such that θ ∈ U 7→ ṽθ ∈ H2

∂Ω(Ω) is differentiable at 0.
Moreover,

θ ∈ U 7→ (I + θ)−1 − I ∈W2,∞(Rd)

is differentiable at 0. Thus,

ϕ1 : θ ∈ U 7→
(
vθ, (I + θ)−1 − I

)
∈ H2

∂Ω(Ω)×W2,∞(Rd)

is differentiable at 0. We apply [21, Lemma 5.3.9] to get that

ϕ2 : (g,µ) ∈ H2(Rd)×W2,∞(Ω) 7→ g ◦ (I + µ) ∈ H1(Rd)

is C1 in a neighborhood of 0. By composition, θ ∈ U 7→ ũθ := ϕ2 ◦ ϕ1(θ) ∈ H1
∂Ω(Ω) is

differentiable at 0.
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Using the Fréchet differentiability given by this lemma, we obtain the Gâteaux dif-
ferentiability in the direction V ∈ U : there exist ut, extension in Ω of ut such that the
function t ∈ [0, T ) 7→ ut ∈ H1(Ω) is differentiable at 0 by composition. Hence, we prove
the following result:

Lemma 4.5. The solution u of Problem (2.5) is differentiable with respect to the do-
main ω ∈ Oδ. We denote by u′ its derivative at 0.

Proceeding in the same way (using H3
∂Ω(Ω\ω) instead of H2

∂Ω(Ω\ω) and W3,∞(Rd)
instead of W2,∞(Rd)), we prove the following result:

Proposition 4.6. The solution u of Problem (2.5) is twice differentiable with respect to
the domain ω ∈ Oδ. We denote by u′′ its derivative at 0.

5 Shape calculus

Since we proved in the previous section the differentiability with respect to the domain, we
can now compute the shape derivatives of the state and of the coast functional J that we
want to minimize. Thus, we aim to make a sensitivity (with respect to the shape) analysis.
Then, let us consider the problem on Ω\ωt

−∆ut = 0 in Ω\ωt
ut = f on ∂Ω

∂ntut + αut + β∆τtut = 0 on ∂ωt.
(5.1)

Let us remain the definition of the shape derivative in our situation (see [21] for details).

• If the mapping θ ∈ U 7→ uθ ◦ (I+θ) ∈ H1(Ω\ω) is Fréchet differentiable at 0, we say
that θ 7→ uθ possesses a total first variation (or derivative) at 0. In such a case, this
total first derivative at 0 in the direction θ is denoted by

.
uθ.

• If, for every D ⊂⊂ Ω\ω, the mapping θ ∈ U 7→ uθ D ∈ H1(D) is Fréchet differentiable
at 0, we say that θ 7→ uθ possesses a local first variation (or derivative) at 0. In such
a case, this local first derivative at 0 in the direction θ is denoted by u′θ, is called
shape derivative and is well defined in the whole domain Ω\ω:

u′θ =
d

dt
(utθ D) t=0 in each D ⊂⊂ Ω\ω.

We define similarly the higher order shape derivative. In the following, for V ∈ U , we
denote by u′ the local first variation u′V which is referred as the shape derivative of the
state.

We first characterize the shape derivative of the state differentiating with respect to the
domain the Ventcel boundary conditions. Then, using this characterization, we compute
the shape gradient of the functional J and obtain a formula with an explicit dependance
with respect to the perturbation direction V introducing an adapted adjoint problem. We
also characterize the shape Hessian and finally prove the instability of our shape optimiza-
tion problem (2.6) using a local regularity argument.
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5.1 Shape derivative of the problem

Proposition 5.1 (First order shape derivative of the state). Let V ∈ U . The shape
derivative u′ of u which belongs to H1(Ω\ω) is the only solution of the following boundary
values problem 

−∆u′ = 0 in Ω\ω
u′ = 0 on ∂Ω

∂nu
′ + αu′ + β∆τu

′ = ξ(u, Vn) on ∂ω,
(5.2)

with

ξ(u, Vn) := Vn (−α∂nu− αHu+ ∆τu) +∇τu · ∇τVn

− β∆τ (Vn∂nu)− βdivτ
(
VnH∇τu− 2VnD2b∇τu

)
, (5.3)

where H is the mean curvature of ∂ω and b is the signed distance.

We refer to Appendix B where we state some useful results concerning shape differential
calculus (in particular concerning the signed distance b).

Proof. For t ∈ [0, T ), we consider Problem (5.1). By differentiating with respect to the
shape at t = 0, we classically obtain (see for example [21, Chapter 5])

−∆u′ = 0 in Ω\ω and u′ = 0 on ∂Ω.

Now let us compute the shape derivative of the Ventcel boundary condition ∂ntut +
αut + β∆τtut = 0 on ∂ωt at t = 0. Let ϕ ∈ H2(Ω\ω) compactly supported in Ωδ. Using
Stein’s extension theorem, ϕ admits an extension in H2(Rd) still denoted by ϕ and which is
still compactly supported in Ωδ. This extension belongs in particular to H2(Ω\ωt). Using
ϕ as a test function in the variational formulation of Problem (5.1), we have∫

Ω\ωt
∇ut · ∇ϕ+

∫
∂ωt

(αutϕ− β∇τtut · ∇τtϕ) =

∫
Ω\ωt

∆F ϕ.

Then, by using Hadamard formulas (on the volume and on the surface: see [21, Proposi-
tion 5.4.4 and Proposition 5.4.18]), we obtain∫

Ω\ω
∇u′ · ∇ϕ+

∫
∂ω
∇u · ∇ϕVn

+

∫
∂ω

[
αu′ϕ− β d

dt
(∇τtut)

t=0
· ∇τϕ− β∇τu ·

d

dt
(∇τtϕ)

t=0

+ Vn (∂n (αuϕ− β∇τu · ∇τϕ) + H (αuϕ− β∇τu · ∇τϕ))

]
=

∫
∂ω

(∆F ϕ)Vn.

Moreover,

d

dt
(∇τtut)

t=0
=

d

dt
(∇ut − (∇ut · nt)nt)

t=0

= ∇τu′ + (∇u · ∇τVn)n + ∂nu∇τVn,
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using the fact that n′ = −∇τVn (see Proposition B.1). Hence, using the same result for
d
dt (∇τtϕ)

t=0
, we obtain∫

Ω\ω
∇u′ · ∇ϕ+

∫
∂ω
∇u · ∇ϕVn

+

∫
∂ω

[
αu′ϕ− β

(
∇τu′ + ∂nu∇τVn + (∇u · ∇τVn)n

)
· ∇τϕ

− β∇τu · (∂nϕ∇τVn + (∇ϕ · ∇τVn)n)

+ Vn (∂n (αuϕ− β∇τu · ∇τϕ) + H (αuϕ− β∇τu · ∇τϕ))

]
=

∫
∂ω

(∆F ϕ)Vn.

Since ∇τϕ · n = 0 and ∇τu · n = 0, this equality writes∫
Ω\ω
∇u′ · ∇ϕ+

∫
∂ω
∇u · ∇ϕVn

+

∫
∂ω

[
αu′ϕ− β

(
∇τu′ + ∂nu∇τVn

)
· ∇τϕ− β∇τu · (∂nϕ∇τVn)

+ Vn (∂n (αuϕ− β∇τu · ∇τϕ) + H (αuϕ− β∇τu · ∇τϕ))

]
=

∫
∂ω

(∆F ϕ)Vn. (5.4)

We also have using Problem (5.1)∫
Ω\ωt
∇ut · ∇ϕ−

∫
∂ωt

∂ntut ϕ =

∫
Ω\ωt

∆F ϕ.

Thus, using Hadamard formulas, we obtain∫
Ω\ω
∇u′ · ∇ϕ+

∫
∂ω
∇u · ∇ϕVn

−
∫
∂ω

[
∂nu

′ ϕ− (∇u · ∇τVn)ϕ+ Vn (∂n(∂nuϕ) + ∂nuϕH)
]

=

∫
∂ω

(∆F ϕ)Vn. (5.5)

Subtracting (5.4) and (5.5), we obtain∫
∂ω

(
∂nu

′ + αu′ + β∆τu
′)ϕ =

∫
∂ω

[
− βdivτ (∂nu∇τVn)ϕ+ β∇τu · (∂nϕ∇τVn)

− Vn (∂n (αuϕ− β∇τu · ∇τϕ) + H (αuϕ− β∇τu · ∇τϕ))

]
−
∫
∂ω

[− (∇u · ∇τVn)ϕ+ Vn (∂n(∂nuϕ) + ∂nuϕH)] .

Since ∂n (∂nuϕ) = ∂nu ∂nϕ+ ∂2
nnuϕ, this leads∫

∂ω

(
∂nu

′ + αu′ + β∆τu
′)ϕ =

∫
∂ω

[
− βdivτ (∂nu∇τVn)ϕ+ β∂nϕ∇τu · ∇τVn

− Vn (α∂nuϕ+ αu∂nϕ− β∂n (∇τu · ∇τϕ) + Hαuϕ−Hβ∇τu · ∇τϕ)

]
−
∫
∂ω

[
− (∇u · ∇τVn)ϕ+ Vn

(
∂nu ∂nϕ+ ∂2

nnuϕ+ H ∂nuϕ
)]
.
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Using an integration by part and the decomposition of the Laplace-Beltrami operator (see
for example [21, Proposition 5.4.12]) given by

∆u = ∆τu+ H∂nu+ ∂2
nnu on ∂ω,

we obtain∫
∂ω

(
∂nu

′ + αu′ + β∆τu
′)ϕ =

∫
∂ω

[
− βdivτ (∂nu∇τVn)ϕ− βdivτ (∂nϕ∇τu) Vn

− Vn (α∂nu+ αHu−∆τu)ϕ− Vn (αu∂nϕ− β∂n (∇τu · ∇τϕ) + ∂nu ∂nϕ)

− divτ (VnHβ∇τu) ϕ+ (∇u · ∇τVn)ϕ

]
.

Since (see Theorem B.2)

∂n (∇τu · ∇τϕ) + D2b∇τu · ∇τϕ = ∇τ (∂nu) · ∇τϕ+∇τ (∂nϕ) · ∇τu

and since ∂nu+ αu+ β∆τu = 0 on ∂ω, we have∫
∂ω

[
− βdivτ (∂nϕ∇τu) Vn − Vn (αu∂nϕ− β∂n (∇τu · ∇τϕ) + ∂nu ∂nϕ)

]
= −

∫
∂ω

[
β∆τu ∂nϕ+ β∇τu · ∇τ (∂nϕ) + αu∂nϕ+ ∂nu∂nϕ− β∂n (∇τu · ∇τϕ)

]
Vn

= −
∫
∂ω

[
β∇τu · ∇τ (∂nϕ)− β∂n (∇τu · ∇τϕ)

]
Vn

= −
∫
∂ω
β
[
−∇τ (∂nu) · ∇τϕ+ ∂n (∇τu · ∇τϕ) + 2D2b∇τu · ∇τϕ− ∂n (∇τu · ∇τϕ)

]
Vn

=

∫
∂ω

divτ
(
β Vn

(
−∇τ (∂nu) + 2D2b∇τu

))
ϕ.

Hence, we finally obtain∫
∂ω

(
∂nu

′ + αu′ + β∆τu
′)ϕ =

∫
∂ω

[
− βdivτ (∂nu∇τVn)ϕ− Vn (α∂nu+ αHu−∆τu)ϕ

− divτ (VnHβ∇τu) ϕ+ (∇u · ∇τVn)ϕ+ divτ
(
β Vn

(
−∇τ (∂nu) + 2D2b∇τu

))
ϕ

]
.

Then, using the density in L2(∂ω) of the traces on ∂ω of functions H2(Ω\ω) with compact
support in Ωδ, we obtain

∂nu
′ + αu′ + β∆τu

′ = Vn (−α∂nu− αHu+ ∆τu) +∇u · ∇τVn

− βdivτ
[
∂nu∇τVn + VnH∇τu+ Vn∇τ (∂nu)− 2VnD2b∇τu

]
.

Noticing that this equalities can be rewrite as

∂nu
′ + αu′ + β∆τu

′ = Vn (−α∂nu− αHu+ ∆τu) +∇u · ∇τVn

− β∆τ (Vn∂nu)− βdivτ
[
VnH∇τu− 2VnD2b∇τu

]
,

we obtain the announced result using the fact that ∇u · ∇τVn = ∇τu · ∇τVn on ∂ω.
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5.2 Shape derivatives of the functional

5.2.1 First order shape derivatives of the functional

Using the previous characterization of the state, we now compute the shape gradient of
the functional J in the following statement:

Proposition 5.2 (First order shape derivative of the functional). For V in U , the least
squares functional J is differentiable at ω in the direction V with

∇J(ω) ·V = −
∫
∂ω

[
−αHuw+

(
−I + β(H I− 2 D2b)

)
(∇τu · ∇τw) + ∂nu∂nw

]
Vn (5.6)

where H is the mean curvature of ∂ω, b is the signed distance and where w ∈ H1(Ω\ω) is
the solution of the following boundary values problem:

−∆w = 0 in Ω\ω
w = ∂nu− g on ∂Ω

∂nw + αw + β∆τw = 0 on ∂ω.
(5.7)

Proof. We define, for t ∈ [0, T ),

j(t) = J(ωt) :=
1

2

∫
∂Ω
|∂nut − g|2 ,

where ut ∈ H1(Ω\ωt) solves Problem (5.1). Using Hadamard’s formula, we immediately
obtain

DJ(ω) · V = j′(0) =

∫
∂Ω
∂nu

′(∂nu− g).

In order to obtain an expression of j′(0) as an integral on ∂ω with an explicit dependance
in the perturbation direction V , let us introduce the solution w ∈ H1(Ω\ω) of the adjoint
problem (5.7). Hence, using w as a test function in (5.2) and u′ as a test function in (5.7),
we use the Green’s formula to obtain∫

∂(Ω\ω)
∂nu

′w =

∫
∂(Ω\ω)

∂nw u
′.

Thus, adding
∫
∂ω

(
αu′w + β∆τu

′w
)
in each side of the previous equality and using the fact

that
∫
∂ω
β∆τu

′w =

∫
∂ω
β∆τwu

′,∫
∂Ω
∂nu

′w +

∫
∂ω

(
∂nu

′ + αu′ + β∆τu
′)w =

∫
∂Ω
∂nw u

′ +

∫
∂ω

(∂nw + αw + β∆τw)u′.

Using the boundary conditions satisfied by u′ and w, we obtain the following characteriza-
tion of the shape gradient of the functional

DJ(ω) · V = −
∫
∂ω
ξ(u, Vn)w,

where ξ is given by (5.3). Finally, using integration by parts,

DJ(ω) · V = −
∫
∂ω

[
− α∂nuw − αHuw + ∆τuw − divτ (∇τuw)

− β∂nu∆τw + β
(
H∇τu · ∇τw − 2D2b∇τu · ∇τw

) ]
Vn.

Thus, since −β∆τw = ∂nw + αw on ∂ω, we obtain the announced result.
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5.2.2 Second order shape derivatives of the functional

Let us consider ω∗ ∈ Oδ solution of the inverse problem (2.3). In order to study the
stability of the optimization problem (2.6) at ω∗, we want to compute the second order
shape derivative of J , i.e. the shape Hessian. First of all, notice that we prove in exactly
the same way than we proved the existence of the shape derivative u′ that the adjoint
state w is differentiable with respect to the shape ω ∈ Ωδ and we denote by w′ its shape
derivative. Then, we state the following result:

Proposition 5.3 (Characterization of the shape Hessian at a critical shape). For V ∈ U ,
we have

D2J(ω∗) · V · V = −
∫
∂ω∗

[
−αHuw′ +

(
−I + β

(
HI− 2D2b

)
(∇τu · ∇τw′)

)
+ ∂nu∂nw

′]Vn,

where H is the mean curvature of ∂ω∗, b is the signed distance and where w′ ∈ H1(Ω\ω∗)
is the solution of the following problem:

−∆w′ = 0 in Ω\ω∗
w′ = ∂nu

′ on ∂Ω
∂nw

′ + αw′ + β∆τw
′ = 0 on ∂ω∗.

(5.8)

Proof. Using Hadamard’s formula, we obtain

j′′(0) =

∫
∂Ω
∂nu

′′ (∂nu− g) +
∣∣∂nu

′∣∣2 .
We then characterize the shape derivative of the adjoint state in the same way that we
characterized u′, i.e.

−∆w′ = 0 in Ω\ω
w′ = ∂nu

′ on ∂Ω
∂nw

′ + αw′ + β∆τw
′ = ξ(w, Vn) on ∂ω.

Noticing that for ω = ω∗, ∂nu = g on ∂Ω and then w ≡ 0 in Ω\ω∗, we obtain the
characterization (5.8). Then, using the same trick than in the computation of the first
order shape derivative of the functional J (with u′ and w′ as respective test functions
in (5.8) and (5.2)), we obtain ∫

∂Ω

∣∣∂nu
′∣∣2 =

∫
∂ω
−ξ(u, Vn)w′.

We then conclude using the same manipulations than the ones used for the computations
of the shape gradient (see proof of Proposition 5.2).

5.3 Instability of the problem

Now let us prove the instability of the inverse problem (2.3) using the method already
used in [17, 6, 14, 13]. Thus, we use a local regularity argument in order to prove the
compactness of the Riesz operator corresponding to the shape Hessian at a solution ω∗ ∈ Oδ
of the inverse problem. An alternative proof could be to use the potential layers as what
is done in [2].

Proposition 5.4 (Compactness at a critical point). The Riesz operator corresponding to
the shape Hessian D2J(ω∗) defined from H1/2(∂ω∗) to H−1/2(∂ω∗) is compact.
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Proof. The idea of the proof is to write the shape Hessian as a composition of linear
continuous operators whose one is compact (the compactness being obtained using the
compactness imbedding between two Sobolev spaces).

Let us focus on the term
∫
∂ω∗

αHuw′ Vn of the characterization of the shape Hessian

given in Proposition 5.3. The other terms can be treated in the same way. We decompose
this term as ∫

∂ω∗
αHuw′ Vn = 〈K(V ) , L(V )〉H−1/2(∂ω∗),H1/2(∂ω∗) ,

where

L : V ∈ H1/2(∂ω∗) 7→ αHuVn ∈ H1/2(∂ω∗)

K : V ∈ H1/2(∂ω∗) 7→ w′ ∈ H−1/2(∂ω∗).

Since u is independent of V , the operator L is clearly linear continuous as multiplier
by a smooth function (see [24]). Now, let us prove that the operator K is compact which
will be conclude the proof.

According to the characterization (5.8) of w′, we decompose the operator K as follows:
K = K2 ◦K1 with

K1 : V ∈ H1/2(∂ω∗) 7→ ∂nu
′ ∈ H1/2(∂Ω)

K2 : Ψ ∈ H1/2(∂ω∗) 7→ Φ ∈ H−1/2(∂ω∗),

where u′ is the solution of Problem (5.2) and Φ ∈ H1(Ω\ω∗) solves
−∆Φ = 0 in Ω\ω∗

Φ = Ψ on ∂Ω
∂nΦ + αΦ + β∆τΦ = 0 on ∂ω∗.

(5.9)

The operator K1 is clearly linear continuous. Then, we decompose the operator K2 as
K2 = K2,3 ◦K2,2 ◦K2,1 with

K2,1 : Ψ ∈ H1/2(∂Ω) 7→ Φ ∈ H3(Ωδ\ω∗)
K2,2 : Φ ∈ H3(Ωδ\ω∗) 7→ Φ ∈ H5/2(∂ω∗)

K2,3 : Φ ∈ H5/2(∂ω∗) 7→ Φ ∈ H−1/2(∂ω∗).

Notice that the regularity H3(Ωδ\ω∗) is due to a local regularity argument (as the one
used in [6, 14, 13]): since the object ω∗ has a C3 boundary and since the condition on ∂ω∗

is homogenous (and then smooth), the solution of Problem (5.9) is globally H1(Ω\ω∗)
but locally H3(Ωδ\ω∗). The operators K2,1 and K2,2 are then linear continuous and the
operator K2,3 is the compact imbedding of H5/2(∂ω∗) into H−1/2(∂ω∗). Hence, we obtain
the compactness result.

This result points out the lack of stability of the optimization problem (2.6): it means,
roughly speaking, that, in a neighborhood of ω∗ (i.e. for t small), J behaves as its second
order approximation and one cannot expect an estimate of the kind C t ≤

√
J(ωt) with a

constant C uniform in V . Hence, this proposition emphasizes that the gradient has not a
uniform sensitivity with respect to the deformation directions: J is degenerate for highly
oscillating perturbations.
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6 Numerical experiments

In this section, we want to make some numerical simulations in order to confirm and com-
plete our previous theoretical results. We use a classical shape variation descent algorithm
without any regularization method in order to solve numerically the optimization prob-
lem (2.6) as what is done in the cases of Dirichlet or Neumann boundary conditions (see
for example [2, 14]). Indeed, it seems that, in our case, the degeneracy of the functional
does not lead to apparition of oscillations in the numerical reconstruction. This problem
seems to be less unstable than the cases of classical boundary conditions.

6.1 Framework for the numerical simulations

The numerical simulations presented are made in dimension two using the finite elements
library Freefem++ (see [20]). We use a P2 finite elements discretization to solve Prob-
lem (2.5) and the adjoint problem (5.7). The framework is the following: the exterior
boundary is assumed to be the unit circle, the coefficients α, β are such that α = 1,
β = −0.1 and we consider the exterior Dirichlet boundary condition

f = cos(θ), θ ∈ [0, 2π).

In order to have a suitable pair (measure g, domain ω∗), we use a synthetic data: we fix
a shape ω∗, solve Problem (2.5) in Ω\ω∗ using another finite elements method (here a P3
finite elements discretization) and extract the measurement g by computing ∂nu on ∂Ω.

The optimization method used for the numerical simulations is here the classical gradi-
ent algorithm. We use initially Next := 100 discretization points for the exterior boundary
and Nint := 70 points for the interior boundary. Then, we use the function movemesh
of Freefem++ in order to change the shape of the objects at each step and the func-
tion adaptmesh to refine and avoid degeneracy of the triangles in the meshes. In order to
be completely explicit, we detail this algorithm:

Algorithm 1
1. fix a number of iterations M and an initial shape ω0;
2. solve Problems (2.5) and (5.7) with ω = ωi (where ωi denotes the ith iterate of the

approximate shape);
3. compute the kernel of ∇JKV (ωi) in Formula (5.6);
4. move the shape using the function movemesh;
5. get back to the step 2. while i < M .

Remark 6.1. We can notice that we have to solve only two problems (Problems (2.5)
and (5.7)) to compute the descent direction. Indeed, the directional perturbations V depen-
dance is explicit in Formula (5.6).

The stopping criterion of the algorithm is here the number of iterations. Obviously,
this criterion can be modified and even improved but this simple one permits to obtain
efficient results. Moreover, we precise that we stop the algorithm if the value of the residual
increase between two steps.

Let us be more precise about the step 4 of the algorithm. In order to have a descent
direction, we solve the following problem
−∆Φ + Φ = 0 in Ω\ω

∂nΦ = 0 on ∂Ω
∂nΦ = −

[
−αHuw +

(
−I + β(H I− 2 D2b)

)
(∇τu · ∇τw) + ∂nu∂nw

]
on ∂ω.
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where the Neumann boundary condition on ∂ω is the kernel of the shape gradient ∇J .
Thus, the descent direction is given by ∇Φ. Let us precise that the step size is simply
chosen testing the value of the functional: we decrease it if the value of J increases and we
increase it for the next iteration if the value of J decreases.

6.2 Reconstruction of some obstacles

We first test our algorithm on simple shapes as circle or ellipse, centered or not. The results
are quite efficient as showed in Figure 1. We precise here the color code that we choose

Figure 1: Reconstruction of simple shapes

and that we will use in the sequel. The exterior boundary is represented in red, the initial
shape in purple, the exact shape in cyan and the obtained shape in green.

The reconstruction seems to be efficient to reconstruct "simple obstacles". Now, we
aim to detect shapes with concavity or with corners. More precisely, we want to detect a
square and a kite shape represented by

∂ω1 :=

{(
0.3 (cos θ + 0.65 cos(2θ)− 0.65)

0.45 sin θ

)
, θ ∈ [0, 2π)

}
.

We represent the results in Figure 2 where we see that the reconstruction is again efficient.

Figure 2: Reconstruction of non trivial shapes

Finally, we present in Figure 3 the reconstruction of the kite shape ω1 with respectively
3% and 10% artificial noise. Even if the error of detection increase with the percentage of
noise, we obtain reasonable results.
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Figure 3: Reconstruction with 3% and 10% artificial noise

6.3 Influence of some parameters

Location and shape of the object. We wonder to know if our method is efficient
to detect small obstacles. Thus, in Figure 4, we represent the result when we want to
reconstruct a small square. We see that the detection is not good because of the object is
then far away from the exterior boundary (that is where we make the measurement). It
seems that, in this case, we detect efficiency the position of the obstacle but not its shape.
We also see in Figure 4 that when we want to detect obstacles whose some parts are far

Figure 4: Detection non trivial shapes

away from the exterior boundary, the detection is not efficient. Here, the exact shape is
represented by

∂ω2 :=

{
0.5 (1 + cos(3θ))

(
cos θ
sin θ

)
, θ ∈ [0, 2π)

}
.

It seems that, in this case, we detect only the convex hull of the object.

Measurement. The imposed Dirichlet boundary conditions f on ∂Ω seems to have an
important role in the efficiency of the detection. Indeed, if we impose f = cos(5θ) instead
of f = cos(θ) (θ ∈ [0, 2π)), the result is significantly worse as represented in Figure 5,
where we want to reconstruct the kite shape ω1.
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Figure 5: Detection non trivial shapes

7 Conclusion

We have partially reconstructed an obstacle immersed in a perfect fluid by minimizing a
least squares functional using boundary measurements. The object ω was assumed to have
a thin layer and was then modeled by using generalized boundary conditions (precisely
Ventcel boundary conditions). We have first proved an identifiability result in the case of
two concentric circles which claims that two pairs of measurements (ui ∂Ω, ∂nui ∂Ω), i = 1, 2
ensures the identification of the obstacle ω. It is a first step in the investigations of the
general identifiability result. Then, we have used shape optimization methods to compute
the gradient of the cost functional and the shape Hessian. Thus, we have differentiated with
respect to the domain the non classical Ventcel boundary conditions on ∂ω. We have then
proved that this problem is unstable in the sense that the functional degenerates for the
highly oscillating perturbations of the boundary. However, the numerical simulations made
in the bi-dimensional case were effective even if we do not use some regularization method to
reconstruct the obstacle. It seems that the generalized impedance boundary conditions of
order two lead to a problem less unstable than in the cases of classical boundary conditions.

This work may be followed by some others investigations. First of all, the general
identifiability result for the shape from one or several boundary measurements is still an
open problem. Moreover, a natural extension would be to study the determination of both
the shape and the coefficients α, β of the Ventcel boundary conditions with the use of shape
derivative.

A Some results concerning Ventcel boundary conditions

For reader’s convenience, we here recall some results concerning the Poisson’s equation
with Ventcel boundary conditions. We refer to [29] and [7] for complements (see also [28]).

Let us first state a result concerning the Laplace-Beltrami operator (see for example [29]
or [28] for details).

Theorem A.1. Let s ∈ R and ω a smooth open set. The operator

−∆τ + I : Hs+1(∂ω)→ Hs−1(∂ω)

is an isomorphism.

Now let us prove the following existence and uniqueness result:
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Theorem A.2. Let s ∈ R. Let Ω and ω be two smooth bounded connected open sets of Rd
(d ≥ 2 and integer) such that ω ⊂⊂ Ω and Ω\ω is connected. Let α > 0 and β < 0 two
real numbers and let f ∈ Hs+2(∂Ω) and g ∈ Hs(∂ω). Then there exists a unique solution
u ∈ Hs+ 5

2 (Ω\ω) of the following boundary value problem
−∆u = 0 in Ω

u = f on ∂Ω
∂nu+ αu+ β∆τu = g on ∂ω

(A.1)

and there exists a constant C > 0 such that

‖u‖
Hs+

5
2 (Ω\ω)

≤ C
(
‖f‖Hs+2(∂Ω) + ‖g‖Hs(∂ω)

)
.

Proof. Let F ∈ Hs+ 5
2 (Ω) the unique solution of{

−∆F = 0 in Ω
F = f on ∂Ω

with ‖F‖
Hs+

5
2 (Ω)

≤ C ‖f‖Hs+2(∂Ω) (where C > 0 is a constant). Then, Problem (A.1) can

be rewritten as the problem consisting of finding ũ := u− F ∈ Hs+ 5
2 (Ω) such that

−∆ũ = 0 in Ω
ũ = 0 on ∂Ω

∂nũ+ αũ+ β∆τ ũ = g̃ on ∂ω,
(A.2)

where g̃ := g − ∂nF + αF + β∆τF on ∂ω.
Now, let us introduce the Dirichlet-to-Neumann operator Λω defined by

Λω : U ∈ Hs+2(∂ω) 7→ ∂nũ ∈ Hs+1(∂ω)

where ũ ∈ Hs+ 5
2 (Ω\ω) is the unique solution of

−∆ũ = 0 in Ω
ũ = 0 on ∂Ω
ũ = U on ∂ω.

This operator Λω is classically well-defined (see for example [23] for details). Notice that
there exists a positive constant (still denoted by C) such that

‖ũ‖
Hs+

5
2 (Ω\ω)

≤ C ‖U‖Hs(∂ω) .

Then, Problem (A.2) (and thus Problem (A.1)) can be rewritten as the surface equation

ΛωU + αU + β∆τU = g̃ (A.3)

where U is the trace of ũ on ∂ω. Problems (A.2) and (A.3) are clearly equivalent in
the sense that if ũ solves (A.2), then its trace on ∂ω solves (A.3) and, conversely, if U
solves (A.3), then its harmonic extension defined through Λω solves (A.2).

Hence, we obtain the announced result if this surface equation (A.3) admits a unique
solution in Hs+2(∂ω) and if there exists a constant C > 0 such that

‖U‖Hs+2(∂ω) ≤ C ‖g̃‖Hs(∂ω) ,

which is proved in the following lemma.
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Lemma A.3. The surface equation (A.3) admits a unique solution U ∈ Hs+2(∂ω) and
there exists a constant C > 0 such that

‖U‖Hs+2(∂ω) ≤ C ‖g̃‖Hs(∂ω) .

Proof. Let us begin by considering the simplest situation s = −1. Then, the variational
formulation of problem (A.3) is given by∫

∂ω
ΛωU φ+ α

∫
∂ω
U φ− β

∫
∂ω
∇τU · ∇τφ =

∫
∂ω
g̃ φ ∀φ ∈ H1(∂ω).

Applying Lax-Milgram theorem to the bilinear form

a(U, V ) :=

∫
∂ω

ΛωU V + α

∫
∂ω
U V − β

∫
∂ω
∇τU · ∇τV,

we prove the existence of a unique solution of Problem (A.3) for s = −1 with the corre-
sponding estimate. Indeed, the bilinear symmetric continuous form a is coercive since

a(U,U) =

∫
∂ω

ΛωU U + α ‖U‖2L2(∂ω) − β ‖∇τU‖
2
L2(∂ω)

≥ ‖∇ũ‖2L2(Ω\ω) + α ‖U‖2L2(∂ω) − β ‖∇τU‖
2
L2(∂ω)

≥ c ‖ũ‖2H1(Ω\ω) + α ‖U‖2L2(∂ω) − β ‖∇τU‖
2
L2(∂ω)

≥ c ‖U‖2L2(∂ω) + α ‖U‖2L2(∂ω) − β ‖∇τU‖
2
L2(∂ω)

≥ C ‖u‖2H1(∂ω) ,

where C := min(c + α,−β) > 0, since ‖U‖2L2(∂ω) + ‖∇τU‖2L2(∂ω) is (the square of) an
equivalent norm in H1(∂ω).

Consider now the case s > −1. Problem (A.3) admits a unique solution U ∈ H1(∂ω)
using the previous step. Moreover

−∆τU + U =
1

−β
(g̃ − ΛωU + (−β − α)U) ∈ Hmin{s,0}(∂ω).

Hence, according to Theorem A.1, U ∈ Hmin{s+2,2}. Consequently, by a bootstrap argu-
ment, we obtain U ∈ Hs+2(∂ω). The estimate is obtained using the Closed Graph Theorem
since the operator

V := Λω + αI + β∆τ : Hs+2(∂ω)→ Hs(∂ω)

is bounded and since we just proved that it is bijective.
To conclude, let us treat the case s < −1 by transposition. The operator V continuously

maps Hs+2(∂ω) into Hs(∂ω) for all s ∈ R. Its adjoint is V himself which maps H−s(∂ω) into
H−s−2(∂ω), which is bijective according to above since −s− 2 > −1. Hence, we conclude
as in the previous case.

B Shape differential calculus

In this section, we recall some elements that are useful to compute shape derivatives. For
more details on the shape calculus, the reader can consult the books [16] and [21] of Delfour
et al. and of Henrot et al. In the sequel Ω will denote an open bounded set of Rd (d ≥ 2)
with a C1 boundary.
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B.1 Tangential differentiation

Given h ∈ C1(∂Ω), we define the tangential gradient ∇τh of h by

∇τh :=
(
∇h̃− ∂nh̃n

)
∂Ω

on ∂Ω,

where h̃ ∈ C1(Rd) is an extension of h. It is shown that the definition does not depend
on the extension. Moreover, we extend this definition by density to the functions h ∈
W1,1(∂Ω).

Given a vector field W ∈ C1(∂Ω), we define the tangential divergence divτW of W
by

divτW :=
(

div W̃ −
([
W̃
′]
n
)
· n
)

∂Ω
on ∂Ω,

where W̃ ∈ C1(Rd) is an extension of W and
[
W̃
′]

is the Jacobian matrix of W̃ . It
is shown that the definition does not depend on the extension. Moreover, we extend this
definition by density to the functions W ∈W1,1(∂Ω).

Assume that Ω has a C2 boundary. We define the Laplacian-Beltrami operator ∆τh of
a function h ∈W2,1(∂Ω) by

∆τh := divτ (∇τh) on ∂Ω.

Let u ∈ H3(Ω). It is known (see for example [21, Proposition 5.4.12]) that the relation
between ∆ and ∆τ is given by

∆u = ∆τu+ H∂nu+ ∂2
nnu on ∂Ω,

where

∂2
nnu :=

(
D2un

)
· n =

d∑
i,j=1

∂2u

∂xi∂xj
ninj

and where H is the mean curvature of ∂Ω defined by H := divτn.

B.2 Shape derivative of functionals

We essentially need the result concerning the shape derivative of boundary integral that we
recall here (see [21, Proposition 5.4.18]). Assume that Ω has a C3 boundary. We consider

the functional J(∂Ω) =

∫
∂Ω

Ψ, where Ψ belongs to W2,1(∂Ω). The shape derivative of J

in an admissible perturbation direction V ∈W1,∞(Rd) is given by

dJ(∂Ω,V ) =

∫
∂Ω

Ψ′ +

∫
∂Ω

(∂nΨ + H Ψ) (V · n) ,

where Ψ′ is the shape derivative of Ψ.

B.3 Shape tangential derivation

When ∂Ω is subject to a deformation, we have to define an extension of the exterior unit
normal n to a no variable domain. This can be done with the signed distance to ∂Ω. Then,
we recall an important result that we need to compute shape derivative of the least squares
functional.
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For x ∈ Rd, we define b(x, ∂Ω) the signed distance to ∂Ω by

b(x, ∂Ω) :=


d(x, ∂Ω) if x ∈ Rd\Ω

0 if x ∈ ∂Ω
−d(x, ∂Ω) if x ∈ Ω.

In [21, page 198–199], it is shown that ∇b(x, ∂Ω) is a smooth extension of the exterior unit
normal n. Furthermore, we have

n = ∇b(x, ∂Ω) ∂Ω on ∂Ω

and D2b = ∇n = ∇τn is symmetric in a tubular neighborhood of Rd. We can resume the
needed result on b in the following two results.

Proposition B.1. The shape derivative of n is

n′ = −∇τ (V · n),

where V represents a perturbed direction.

Proof. Since ∇b · ∇b = 1, we have
(
|∇b|2

)′
= 0, i.e. ∇b′ · ∇b = 0. Hence

∇b′ ∂Ω = ∇τ b′ ∂Ω +
(
∇b′ · n

)
n = ∇τ b′ ∂Ω.

Since b′ = −V · n on ∂Ω, we have n′ = ∇τ b′ ∂Ω = −∇τ (V · n) ∂Ω.

Theorem B.2. Given u, ϕ ∈ C2(Ω), we have

∂n(∇τu · ∇τϕ) = ∇τ (∂nu) · ∇τϕ+∇τϕ · ∇τ (∂nu)− 2D2b∇τu · ∇τϕ,

where b is the signed distance to ∂Ω.

Proof. We have, on ∂Ω,

∂n(∇τu · ∇τϕ) = ∇(∇τu · ∇τϕ) · n
= ∇(∇u · ∇ϕ− ∂nu ∂nϕ) · n
= D2u∇ϕ · n + D2ϕ∇u · n− ∂2

nnu∂nϕ− ∂2
nnϕ∂nu

= ∂nϕ
(
D2un

)
· n +

(
D2u∇τϕ

)
· n + ∂nuD2ϕn · n

+D2ϕ∇τu · n− ∂2
nnu∂nϕ− ∂2

nnϕ∂nu

=
(
D2u∇τϕ

)
· n +

(
D2ϕ∇τu

)
· n. (B.1)

Moreover, since ∇n = D2b, we have

∇(∇u · n) · ∇τϕ =
(
D2un

)
· ∇τϕ+

(
D2b∇u

)
· ∇τϕ

and since D2bn = 0, it comes

∇(∇u · n) · ∇τϕ =
(
D2un

)
· ∇τϕ+

(
D2b∇τu

)
· ∇τϕ.

Hence, (
D2u∇τϕ

)
· n = ∇τ (∂nu) · ∇τϕ−D2b∇τu · ∇τϕ. (B.2)

Reporting in (B.1), we get the announced result (since (B.2) is also valid interchanging the
role of u and ϕ).
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