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Abstract. This paper presents an original problem of knot detection
in 3D X-ray Computer Tomography images of wood stems. This image
type is very different from classical medical images and presents specific
geometric structures. These ones are characteristic of wood stems na-
ture. The contribution of this work is to exploit the original geometric
structures in a simple and fast algorithm to automatically detect and
analyze the wood knots. The proposed approach is robust to different
wood qualities, like moisture or noise, and more simple to implement
than classical deformable models approaches.

1 Introduction

Detect and identify automatically dig-

(a) (b)

Fig. 1. Example of wood image and
3D volumic rendering.

ital objects in 3D volumetric images is a
challenge, especially in medical imaging
applications. Various methods are proposed
to extract and measure internal charac-
teristics of the human, like brain or blood
vessel. Currently, the most effective tech-
niques use deformable models [1].

In this work, we focus on a similar problem with 3D digital images of wood.
The images are obtained by medical X-Ray Computer Tomography (CT) scan-
ners and are illustrated on Fig. 1. On Fig. 1(a), a raw image is projected in an
intensity interval which highlight four knots starting from the pith3. The related
volume obtained by thresholding is rendered on Fig. 1(b).

A knot as in Fig. 1 and Fig. 2 is the first part of a branch, included within
the tree stem due to the radial growth of the stem. The frequency and size
of the knots are the first depreciation factors considered by wood suppliers for
estimating the price of timber. Knottiness is also one of the main criteria consid-
ered in the visual grading of lumber. Knowledge of knot geometry and location
would be valuable at sawmills for optimising cutting decisions or improving
the grading of logs. X-ray CT has been recognised as being the most promis-
ing method to non-destructively analyse the internal structure of wood [2]. CT
scanners designed expressly for the wood industry are now available and some of

3 pith : central part of stem.
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the largest sawmills are now equipped with them. Moreover, such detailed data
about knottiness are needed in the field of forest research to study for example
the relationship between tree growth conditions and wood quality.

Several methods were proposed for measuring knottiness on the basis of CT
images (see [3] for a review). But no method is entirely automatic and well
adapted to all species of wood and to wood containing wet areas such as sap-
wood4

(a) Spruce stem (b) Pinus slice (c) Spruce slice

Fig. 2. X-Ray CT images of stem : (a) 3D volumetric rendering , (b) dry and (c) with
sapwood.

We proposed in [3] an entirely automated method to identify knots from
X-ray CT images of a piece of wood (log or beam) and obtain data on knot
geometry without any human intervention. However, the first step of the algo-
rithm, image segmentation, was not studied in details. A simple thresholding
operation was sufficient enough for processing the air-dried wood that were used
in this study. For an application in industrial conditions, there is a need to im-
prove the segmentation algorithm, especially for wet wood containing areas of
sapwood (see Fig. 2(c)).

The main contribution of this paper is to automatically and quickly detect all
knots of a given log based on the analysis of X-ray CT images. Various softwood
species are studied, various moisture contents were considered leading to have
large sapwood areas visible in the CT images (see Fig. 2(c)), and our method
identifies all knots in all cases.

The proposed knot detection is based on a very precise detection of the
localisation of each knot. To do this, we use intensity variation between two
consecutive slices and study a specific intensity histogram. We proceed in two
steps. The first one is to select slice intervals where intensity variations are
important around the pith. In the second step, we keep a set of angular sectors
also centered on the pith in each interval from the same criterion of intensity
variation.

In the next section we list all tools needed by the proposed method. Section
3 introduces the definition of the cumulative z-motion histogram which allows
to identify the meaning slice intervals and to deduce the angular sector of each
knot. The last section shows results and presents perspectives of this work.

4 sapwood : wood area located at the periphery of the stem.
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2 Suitable tools for X-Ray CT images of logs

2.1 Pith detection

Pith detection is an essential first step to wood knot detection. In particular, in
the proposed method it will allow to focus on a restricted area around the pith.
In this area, we are sure that intensity variations observed in images indicate
the presence of knots. Indeed, the knots are connected to the pith where they
have their origin. They are oriented radially in a log, from the pith to the bark,
and generally upward. Some knots are totally included into the log and covered
by the radial growth rings5 but in general, thay are still visible at the outside of
the log in the form of branches.

To detect pith, we use the algorithm proposed by Fleur Longuetaud [4] and
improved by Boukadida et al. [5]. The idea is to detect the pith successively in
each slice. Its location in slice n allows to steer and speed up pith computing on
slice n+ 1.

Fig. 3. Pith detection in two slices, with (below) and without (above) knot.

The first step of the algorithm uses the roundness of growth rings. They
are detected in each slice Ik with a Sobel filter. This one computes Gx and Gy

images, respectively the gradients of Ik along x and y.
A new image I ′k is computed with a thresholding of G norm (see Fig. 3).

I ′k allows to define a set of lines. For that, we are computing Θ, the direction
of gradient in each pixel of I ′k not null. After, we are building the map of the
intersection locations for all lines taken two by two. The intersection locations
are computed with an Hough transform [6]. The pith position is then defined
like the location of the largest number of intersecting lines.

In a second step, the pith position is corrected in slices where pith neighbour-
hood is noisy. It is usually the slices with knots. These ones disturb the roudness

5 growth rings: concentric circles in stem. They are centered on pith.
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of growth rings and this noise hugely affects the gradient direction and therefore
Hough transform. In these slices, the pith is recomputed by linear interpolation
of the previous and the next slice.

2.2 Intervals detection in an histogram

The method that we propose detects intervals centered on maximums. It is a
problem that can be very difficult to solve according to noise level on histogram.
The detection that we are now presenting is suitable for the histograms we have
to deal with.

Let H be an N -class histogram with H = (Hk)k∈[1,N ].

Smoothing The first step consists to smooth H with an averaging filter of
radius rf . The aim is to improve the computing of the discrete derivative during
the following step. We get H l histogram where the k class is :

H l
k =

1

2rf + 1

k+rf
∑

i=k−rf

Hi

with rf : radius of histogram averaging mask.

Maximums computing We defined M as the set of the index of H l maximums
from a neighbourhood of rM radius.

M = {k|H l
k > tM and ∀i ∈ [−rM ,−1] ∪ [1, rM ], H l

k > H l
k+i}

with tM : minimum value for one maximum.
rM : width of neighbourhood on which the maximums are defined.

Value of a maximum must be greater than tM . This allows to avoid the small
maximums coming from the noise. And a maximum must have a value greater
than the ones of its rM

2 left and right neighbours.

Intervals computing Let V be the set of searched intervals. We determine V

from the M set of maximum indexes. An interval of classes is computed from
each maximum, starting from each side of this maximum.

V = { [k − i, k + j] | k ∈ M

and ∃ ti ∈ [k − i, k] such that







∀t ∈ [ti, k], H l
t > tV

∀t ∈]k − i, ti[, H
l
t ≤ tV and (H l

t)
′ > 0

(H l
k−i)

′ ≤ 0

and ∃ tj ∈ [k + 1, k + j] such that







∀t ∈]k, tj ], H l
t > tV

∀t ∈]tj , k + j[, H l
t ≤ tV and (H l

t)
′ < 0

(H l
k+j)

′ ≥ 0

and j − i > wV }
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with (H l
t)

′ = H l
t −H l

t−1

and tV : derivative threshold.
wV : minimum width of an interval.

Derivatives are tested on each side of maximums only, from the nearest neigh-
bour with a value lower than tV . An interval is kept if its magnitude is larger
than wV .

3 Z-motion histogram and knot detection

With detection methods of pith and intervals, presented in previous section, we
can determine knot areas. They take the form of angular sectors of cylinder and
our goal is to get one area by knot. Let us specify that we detect these areas
in image sequences from medical X-Ray scanner. Each image corresponds to a
circular slice of log (see Fig. 2). Pixel values corresponds to density on Hounsfield
scale. This density is linearly correlated to the wood density. We referred either
to wood density or to images intensity.

On X-Ray images of log, pixel intensity is approximately between −3000 and
3000. These bounds changed few from an image to an other. On Hounsfield scale,
wood density is usually greater than −900 and always lesser than 530. All image
values out of this interval will be considered as outlier and ignored.

Our method consists in applying twice the process of interval detection. The
two processed histograms will be constructed from the same notion : the z-
motion.

The z-motion We decided to use the z-motion by observing successively an
image sequence. By scrolling an image sequence of one log, egg-shaped shapes
are observed in motion. These movements occur from pith to bark, orthogonally
to the growth rings, when the images are scrolled from the bottom to the top
of the tree. These are the knot movements that have their origin at the pith
location and have grown radially and upwards.

The z-motion Z of a slice Ik is defined like the intensity variation between
the two successive slices Ik−1 and Ik :

Zk = |Ik − Ik−1|

With help of this notion, we now present the two steps of our method.
Before this two steps, it is necessary to detect pith (see Sec. 2.1) on all slices.

It allows to define a C circle centered on pith in each slice of log. Then for
the first step, the histogram is constructed by cumulating the z-motion of each
slice on the entire circle C. We then obtain the Hslices histogram on which we
apply the process of interval detection (see Sec. 2.2). During the second step,
we subdivided the C circle in a set of angular sectors with same size. For each
interval of Hslices, we combine the z-motion separately on each angular sector.

Hereafter are more details about the construction of these two histograms.
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Fig. 4. Angular sesctors intervals on a given slice interval. The green sections represents
the slice and the angular sector where the z-motion cumulation is maximum. We can
see in initial log section the considered circle C and the localisation of pith.

3.1 The histogram of cumulative z-motion

The slice histogram Let I be a set of images of a log slice. Let C be a circle
of radius rC . We defined the Hslices(k) value of Hslices histogram for the Ik slice
as follows :

Hslices(k) =
∑

(i,j)∈C

Zk(i, j)

where

– C is centered on the pith position in Ik slice.
– ∀(i, j), Ik(i, j) ∈ [imin, imax] et Ik−1(i, j) ∈ [imin, imax]
– ∀(i, j), Zk(i, j) ∈ [zmin, zmax]

with rC : radius of the cumulative z-motion circle.
[imin, imax]: intensity interval.
[zmin, zmax]: interval of intensity variations.

The z-motion is only computed inside the C circle centered on pith. According
to experts, the minimum wood density can be fixed to −900. It is our value for
imin. For imax, we fixed its value to 530, a biological constant for the maximum
wood density. Variations lesser than zmin due to growth rings, sapwood, etc. are
considered as noise. Variations in [zmin, zmax] interval are potential movements
of knots. Variations greater than zmax are considered as outliers.

In this first step, each histogram value corresponds to the z-motion sum in
a slice. Intervals are therefore slice intervals where the cumulative z-motion is
important (see Fig. 5).

One of the most important parameters is the rC radius of C circle. It is de-
termine on each slice. We start from pith in ten directions as long as pixel values
are greater than −900. In fact, values of X-ray scanned images fall drastically
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Fig. 5. Histogram after detection of slice intervals in a spruce log.

below −900 when we leave the log. Then we compute the average radius r and
rC is fixed to 0.8 · r.

The z-motion interval [zmin, zmax] is fixed to [200, 500] to just cumulate im-
portant z-motion. After histogram construction, it is smoothed with an averaging
mask where rf = 2. Each histogram value becomes candidate to the maximum
set if its value is greater than tM = 5% of the maximum value of Hslices.

To compute intervals, we fix the tV threshold to the same value as tM . All
the first neighbors of a maximum greater than tV belong to the interval of this
maximum. From the first neighbor lower than tV , following neighbors are added
to the initial interval until the discrete derivative goes through 0. Finally we just
keep slice intervals with a width greater than wV = 10. We obtain a set of slice
intervals VHslices

with all knots.

The histogram of angular sectors This second step is applied on each slice
interval obtained at previous step. For a given slice interval, we cumulate z-
motion separately in each angular sector. We obtain the histogram of cumulative
intensity by angular sector (see Fig. 6). Angular sectors are a partition of C circle
in N sectors with a same angle. We choose N = 360.

Let [a, b] ∈ Vslices be an interval of slice indexes. Let C be a circle with a rC
radius split in 360 sectors with same angle. We defined the value Hsectors(α) of
Hsectors histogram restricted to angle of α index as follows :

Hsectors(α) =
∑

k∈[a,b]

∑

(i,j)∈Cα

Zk(i, j)

with

– C centered on pith coordinates in Ik
– Cα the C angular sector of α index ∈ [0, 359]
– ∀k, ∀(i, j), Ik(i, j) > imin et Ik−1(i, j) > imin

– ∀k, ∀(i, j), Zk(i, j) ∈ [zmin, zmax]

For an interval Vq of Vslices, we obtain an histogram Hsector of z-motion
distribution according to angular sector. Like in the first step, we use algorithm
of interval detection to obtain a set of angular intervals which contains one knot.
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Fig. 6. Histogram and circular projection after detection of sector interval.

We keep the same parameters as at the first step, tM and tV excepted. In
fact, the majority of parameters was fixed in studying scanned picture properties
and in this second step, images are the same.

However, tM and tV correspond to histogram properties. On histograms of
angular sectors, peaks are usually the same size, unlike the slice histograms. In
fact, the knots of a slice interval have about about same volume. We fix rationally
tM and tV at 50% of the Hsectors maximum value without risking to forget a
maximum and therefore a knot sector.

4 Results

The presented method is able to quickly isolate each log knot in angular sectors.
The idea is to select an efficient segmentation method without introducing a
long and complex processing step. It is important for sawmills that hope to
scan logs at 2 meters per second. For biologists, the most important criterion
is the precision. They want to obtain accurate measurements such as length,
inclination, maximal diameter and volume of knots. The biologists and sawmills
are both very interested by the exact number of knots in a log.

To fulfil this dual purpose, we have chosen to use the extraction of connected
components in each angular sector based on a simple threshold. The connected
components of one slice are first computed and are then merged with the ones
of the previous slice.

The Fig. 7 presents several results of the connected component extraction.
The main connected component of one slice is represented in pink to the left
images and the corresponding 3D reconstruction is given in green on the right
image. On logs without sapwood (see Fig. 7(a)), we obtain all knots with an high
precision. In contrast, when logs contain sapwood (see Fig. 7(b)), the connected
component extraction produces a component where the knot is connected to
sapwood and growth rings. This happens when the density of sapwood and
growth rings is close to the knot. Thresholding before extraction does not allow
to remove them whithout distort the knot.



Lecture Notes in Computer Science 9

(a) Without sapwood (b) With sapwood

Fig. 7. Detected angular sectors and connex components with 3D visualization.

The first parameter that our algorithm allow to compute, even with sapwood,
is the number of knots. It is the number of detected angular sectors. We can
also determine the inclination of all knots by extracting angle corresponding to
the maximum of histogram for each angular sector (see Fig. 6). The length is
determined in logs without sapwood. When there are sapwood and when a knot
is connected to it, experts estimate that node leaves the stem and length can
be estimate by the radius of log. The diameter can be exactly computed at any
position in the 3D reconstruction of knots without sapwood. In the others cases,
we can compute the maximum diameter because it is computed from the middle
of knot and sapwood is not present at this place. Without sapwood, the volume
can also be determined from the 3D reconstruction of knots. The sapwood induce
an overestimation due to the set of parts connected to the knot.

To compare our method with other usual approaches of deformable model,
we experiment one of them able to deal with automated topology changes [7]. For
this purpose, the initial model was created by using a cylindrical mesh defined
from the outer shape contour (see Fig. 8(a)). Note that we use the euclidean
metric model implementation. The model is efficient to extract knots in logs
without sapwood (See Fig. 8(a-c)). However it is not able to isolate the knot
parts from sapwood areas (See Fig. 8(d)).

(a) Initialisation
6700 vertex

(b) 100 iterations
48538 vertex

(c) 300 iterations
16206 vertex

(d) 200 iterations
(with sapwood)
171934 vertex

Fig. 8. Experiments of deformable models [7] on wood with and without sapwood.

If the segmentation results are comparable for the logs without sapwood,
the real advantage of our method is the computation time. We use histogram
computation and extraction of connected components. The knot detection time
is about the second with our approach whereas deformable model takes really
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more time, more than one hour. The proposed method is also able to detect and
analyze the knots for the case of sapwood while the deformable fails to isolate
such a part in this case. The source code of the proposed method is available
online [8].

5 Conclusion

The method proposed in this paper automatically detects and counts all the
knots of a given piece of wood based on the analysis of X-Ray CT images. It
allows to easily deduce several measures such as inclination, length, maximal
diameter and volume of knots. All its steps are based on elementary operations
such as histogram computation and therefore the method is very fast. In future
works, we will improve our method with objective to free ourselves of sapwood.
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