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Abstract. CT perfusion imaging is used for the follow-up of abdominal
tumors. A specificity of our work is that patients are breathing freely
during image acquisition (5 minutes). We propose an automatic 3D im-
age registration to compensate respiratory motion. The registration is
computed in two main steps: global translation in the z-direction and
3D multiresolution blockmatching. Within this algorithm, the choice of
similarity measure largely determines the algorithm robustness in pres-
ence of intensity shifts due to contrast diffusion. We exploit a modified
entropy-based similarity measure to improve the quality of registration.
We also propose two relevant criteria allowing to quantify the registra-
tion quality: one based on the gradients of image volumes of differences
and one based on the smoothness of enhanced-intensity curves.
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1 Introduction

Functional imaging has gained attention for oncology therapy. It is based on the
acquisition of time sequences combined with contrast injection. Long acquisitions
(up to 5 minutes) allow to study the complete dynamics of diffusion, including the
effects of tissue permeability. However, it is possible to get relevant information
only if data are correctly registered. Two main approaches are possible to deal
with respiratory motion, sequential breath hold [1] or free-breathing. In the
present study, free breathing is selected, since a less stressed patient usually
provides sequences with more regular motion. The current study focuses on
tumors in liver or kidney using dynamic enhanced CT.
Methods for registration of images acquired with free-breathing are being devel-
oped essentially for contrast-enhanced MRI. Wollny et al. [7] exploit the quasi
periodicity within myocardial perfusion and Li et al. [2] explicitly estimate the
respiratory cycle within abdominal perfusion. In both cases, an important as-
sumption is a high time resolution.



In CT, it is also possible to have high time resolution, but this is combined with
a short time of acquisition (2 minutes) [4], and this does not allow to extract
permeability. For CT perfusion, with the objective of extracting adequate data
for functional analysis, a longer time of acquisition is required which implies,
mostly for dose considerations, a low time resolution. The second constraint is
a limited imaging field of view in z-direction. To the best of our knowledge,
no previous studies have investigated image registration on free-breathing with
abdominal dynamic contrast-enhanced CT (DCE-CT) for long acquisitions.
In that context, the aim of this paper is, in a first part, to propose the complete
pipeline of the intensity-based methods that we have proposed to compensate
free respiratory motion. The second main contribution of this study is the defini-
tion and evaluation of a dedicated similarity measure adapted from the difference
entropy (DE), which is compared to the classically used DE [3]. Finally, we pro-
pose the definitions of a temporal and a spatial criteria, in order to objectively
evaluate the quality of the registration and to compare the results obtained when
testing the different similarity measures.

2 MATERIALS AND METHODS

2.1 Data acquisition

39 data acquisitions were performed with a 256 slices CT (Brilliance iCT 256,
Philips Healthcare, The Netherlands) on 14 patients. All patients gave informed
consent. The dynamic CT protocol consists in acquiring 48 volumes every 2.5
seconds then 18 volumes every 10 seconds (80 kV, 80 mAS, rotation time of
0.33 seconds, dose of iodine 80 cc). With 8 cm detector coverage in z-direction,
the CT scanner allows for 5.5 cm effective z-coverage in a single rotation with
a 3D axial cone beam correction. This coverage is large enough to keep most
of the lesion in image volume. In the axial plane, data are reconstructed with
a pixel size of 0.68 mm × 0.68 mm [5]. Reconstructed volumes are expressed
in Hounsfield Units (HU). Image intensities can thus range from -1024 (air) to
2000 HU (bone).

2.2 Spatio-Temporal registration

The main challenges for registration in these conditions are:

– Limited volume height: data acquisition covers about 6 cm in z-direction,
while the amplitude of respiratory motion may reach 2 to 3 cm, in the same
z-direction. This means that the whole liver or kidneys are not imaged.
Consequently, full organ tracking is not possible and local approaches have
to be used.

– Contrast agent injection: intensities of a given tissue vary with time (figure
1). The choice of a similarity measure which is robust to contrast-induced
intensity variations is essential in our method.



– Free breathing and low time resolution: since patients breath freely, a first
consequence is that acquisitions correspond to different instants in respi-
ratory cycle and a prediction using a respiratory model is not possible. A
second consequence is the existence of strong intensity variations between
two consecutive volumes due to contrast arrival and low time resolution (2.5
or 10 seconds). In such a context, the problem of intensity differences is
present even between successive pairs of volumes (It onto It−1) and register-
ing these pairs of volumes would lead to unnecessary errors accumulation.
So, it is preferable to align all volumes onto a common reference volume
Ir. Since the majority of image volumes are enhanced, an intuitive solution
would be to choose a reference volume Ir with contrast (t ≈ 30). However,
the assumption that the tumor is well centered can only be done in the first
volume, which is why we selected it as the reference volume Ir.

Fig. 1. Image data at time 0 (left) and 15 seconds after injection (right). On the right
figure: kidney is enhanced (white square) and aorta with hepatic artery are enhanced
(white rectangle, middle).

In order to deal with these challenges, we present an adapted spatio-temporal
registration pipeline. Each reconstruction provides a dynamic sequence DSI =
(It, t ∈ (1, ...T )), where It is a 3D image acquired at time t and T is the number
of acquisition times.
Our registration approach involves two main steps, followed by a step of regu-
larization and warping:

1. Global z-translation : since the main motion is in the z-direction, the
first step consists in a global evaluation of the z-translation. To improve this
initial step, thresholds are applied to exclude air (∼-1024 HU) and intense
contrasts (≥600 HU), such as the contrast of the static aorta in z-direction.
We considerer all pixels which intensity is between -800 HU and 600 HU.
Since we are considering one global translation for the whole masked vol-
ume at this point, we verified that the local contrast diffusion was not an
important disturbance, and that the sum of square of differences (SSD) was
the most appropriate metric (compared to entropy and mutual information,
results not shown).



2. Multi-resolution blockmatching [6]: initialized by the z-translation found
in the first step, this 3D registration method is computed with block sizes of
(11 × 11 × 7mm3). It provides, for each block, motion vectors corresponding
to translations in x, y and z directions.

3. Regularization: a regularization step is necessary to smooth the motion
vector fields. A gaussian filter is computed in 3D (σ = 1.2).

4. Warping: warping consists in reconstructing new image sequences (J1, ...JT )
with respiratory motion compensation. A trilinear interpolation is used.

2.3 Masking

In order to improve the algorithm robustness and its computing efficiency, masked
volumes are computed. For each volume, a mask is defined by excluding spine,
which have a different motion from the rest of the abdomen, and background,
which does not give useful information.
Our mask consists of two 3D zones with z-translation invariance. These two
zones can therefore be represented in an axial plane of arbitrary z-value.
On each axial plane, a threshold of 500 HU is first applied to extract the bones:
the largest connected component is the spine. Similarly, the largest connected
component of pixels of intensity values lower than -500 HU are considered to
belong to the background (figure 2).

Fig. 2. Mask example: white zone is the valid region, excluding spine and background.

2.4 Similarity measures for multi-resolution blockmatching

To locally register the volumes Ir and It, our approach is based on a similarity
measure which is potentially robust to intensity variations, namely DE. The
entropy H of a discrete random variable X with probability mass function p(X)
is defined as:

H(X) = E(−log p(X)) (1)

The difference between Ir and It, noted Ir−t, is used to evaluate DE. The classical
definition is based on the normalized histogram hist(Ir−t) of Ir−t with B bins:

DE = −

B
∑

j=1

hist(Ir−t)j ∗ log(hist(Ir−t)j) (2)



DE is classically used for registration, in particular in contrast enhanced echocar-
diography [3].

However, it is known that the quality of registration is very dependent on the
number of bins B. So, our approach is to approximate DE to have a more
dedicated and robust similarity measure. We can define H directly in the image
domain Ω as:

H =
1

card(Ω)

card(Ω)
∑

i=1

−log pi (3)

with pi the intensity of pixel i and card(Ω) the number of pixels Ω.

In addition, assuming that the pixel intensities in each block are distributed
following an univariate Gaussian distribution with mean µ and variance σ, DEG

is expressed as:

DEG = log(σ) +
1

card(Ω)

card(Ω)
∑

i=1

(pi − µ)2

2σ2
(4)

We can then compare our proposed similarity measure DEG and the classical
one DE. To this end, we define two evaluation criteria.

2.5 Evaluation criteria

In order to evaluate the quality of registration for each similarity measure, we
define two criteria, related to the temporal and spatial dimensions of the method.

Temporal evaluation criterion : We propose a new evaluation criterion based
on curve smoothness. The quality of the registration is assessed by the smooth-
ness of the time curve of mean intensities after registration (figure 3). Indeed,
after registration, time-intensity curves should reflect the contrast intake only,
and not the respiratory motion. Since the presence of kidney in a given axial
slice is highly sensitive to respiratory motion, a region of interest (ROI) is de-
fined within the kidney. Inside this ROI, mean intensities Īt of any image (It)
before registration and J̄t of the same image after registration are calculated,
for each acquisition time t and plotted, see figure 3 for an illustrative example.
The two curves are independently filtered by a median time-filter with a win-
dow span of 3 points, noted M(It, 3) and M(Jt, 3). Therefore, the sum of the
absolute difference between the smoothed curve and the original curve can be
used as indicator of the smoothness of the enhancement curve. Thus, we define
SC as:

SC =

∑T

t=1 |J̄t −M(Jt, 3)| −
∑T

t=1 |Īt −M(It, 3)|
∑T

t=1 |Īt −M(It, 3)|
(5)

The higher SC is, the better quality of registration is.



Spatial evaluation criterion : the usual metric of SSD was not used in our
study since a change in contrast intensity would fool the evaluation. In order
to remove variations due to contrast arrival, we decided to used the gradient of
the volumes of differences. In order to calculate a spatial criterion on the quality
of registrations, we computed two gradient image volumes GIt−Ir and GJt−Ir,
and their associated norm ||GIt−Ir || and ||GJt−Ir ||. Eventually, we compute this
spatial evaluation criterion, named Gradient Criterion (GC), as:

GC =
1

T

T
∑

t=1

||GIt−Ir || − ||GJt−Ir ||

||GIt−Ir ||
(6)

GI is defined as the classical gradient of an image I:

GI =
√

∇X(I)2 +∇Y (I)2

where ∇X(I) is the gradient of I in x direction and ∇Y (I) is the gradient of I
in y direction.

From this gradient image, the L2 norm is derived:

||GI || =

√

∑

(x,y,z)∈Ω

GI(x, y, z)2

This definition is based on the idea that, after registration, the values of difference
volume gradients should be lower than before registration. So, a high GC shows
a better quality of registration.

Fig. 3. Mean intensities inside ROI on an axial slice during time of acquisition before
registration Īt (dash line) and after registration J̄t (solid line).



3 RESULTS

Figure 4 shows the results of registration using a checkerboard. After registration,
frontiers of organs are better aligned.

Fig. 4. On the top: before registration; on the bottom: after registration. At left:
Checkerboards between image of reference (yellow) and current image (gray). At mid-
dle: zoom on kidney, which is better aligned after registration than before, especially
in the red squares. At right, zoom on jejunum

After global z-translation, we apply our algorithm of multiresolution blockmatch-
ing with DE and our modified similarity measure DEG. In figure 5, results show
that our proposed measure DEG is better adapted as similarity measure, ac-
cording to SC and GC criteria. Note that we tested the assumption of gaussian
distribution of pixel intensities in each block. It obviously depends on the size
of blocks and their location (blocks that cover two different regions of the im-
age have less normal distribution than blocks that include only homogeneous
regions). Our algorithm was nevertheless robust even for blocks that did not
verified this assumption.

4 CONCLUSION

We have presented a full setup to provide automatic registration of 4D DCE-CT
sequences, using an algorithm that consists of global z-translation and multires-
olution blockmatching. One main challenge, related to contrast arrival, has been
specifically evaluated in the step of multi-resolution block-matching. In this part,
we presented an adapted similarity measure (DEG), which was found to be more
adapted to registration on free-breathing abdominal 4D contrast enhanced CT
than DE.
Our mid-term objective is to provide a prototype that could be used by clinicians.
Therefore, the computation time was one of our main constraints. Our method
is relatively efficient. To register one image volume (512*512*22), it takes about
3 seconds (Intel(R) Core(TM) i5-2450M CPU, 2,5 GHz). This first result is
encouraging for a future clinical use.



Fig. 5. Values of the two criteria, namely intensity curve smoothness SC (left) and
gradient criterion GC (right) for the two similarity measures DE and DEG. These
plots show that the proposed similarity measure DEG improves the evaluation criteria
on the all 39 data acquisitions.

A possible further refinement of our work could be to consider changing of sim-
ilarity measures with time, according to the diffusion phases of the contrast.
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