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Abstract

In this paper we study modulus of continuity and rate of convergence of series of condition-
ally sub-Gaussian random fields. This framework includes both classical series representations of
Gaussian fields and LePage series representations of stable fields. We enlighten their anisotropic
properties by using an adapted quasi-metric instead of the classical Euclidean norm. We specify our
assumptions in the case of shot noise series where arrival times of a Poisson process are involved.
This allows us to state unified results for harmonizable (multi)operator scaling stable random fields
through their LePage series representation, as well as to study sample path properties of their
multistable analogous.
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1 Introduction

In recent years, lots of new random fields and processes have been defined to propose new models for
rough real data. To cite a few of them let us mention the (multi)fractional Brownian fields (see [6]
for instance) or their stable analogous the linear (multi)fractional stable process [33] and the harmo-
nizable (multi)fractional stable process [12] and some anisotropic generalizations the (multi)fractional
Brownian and stable sheets [3, 4] and the (multi)operator scaling Gaussian and stable fields [9, 8]. In
the Gaussian setting, sample path regularity relies on mean square regularity. Many studies have in-

vestigated finer properties such as modulus of continuity. A powerful technique consists in considering
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a representation of the field as a series of random fields, using for instance Karhunen Loeve decompo-
sition (see [1] Chapter 3), Fourier or wavelet series (as in [16] or [5]). This also allows generalizations
to non-Gaussian framework using for instance LePage series [24, 23] for stable distributions (see [19]
for instance). Actually, following previous works of LePage [23] and Marcus and Pisier [26], Kono and
Maejima proved in [20] that, for a € (0,2), a symmetric complex a-stable random variable may be

represented as a convergent shot noise series of the form
“+oo
> Tex,, (1)
n=1

with (T},)n>1 the sequence of arrival times of a Poisson process of intensity 1, and (X, ),>1 a sequence
of independent identically distributed (i.i.d.) isotropic complex-valued random variables, which is
assumed to be independent of (73,),>1 and such that E(|X|*) < +00. When X,, = V,,g,, with (gn)n>1
a sequence of i.i.d. isotropic complex-valued Gaussian random variables independent of (V;,,Ty,)n>1,
the series may be considered as a conditional Gaussian series. Another classical representation consists
in choosing X,, = V&, with (g5,)n>1 & sequence of i.i.d. Rademacher random variables i.e. such that
P(e, = 1) = P(e, = —1) = 1/2. Both g, and ¢, are sub-Gaussian random variables. Sub-Gaussian
random variables have been introduced in [16] for the study of random Fourier series. Their main
property is that their tail distributions behave like the Gaussian ones so that sample path properties
of sub-Gaussian fields also rely on their mean square regularity.

In this paper we study the sample path regularity of the complex-valued series of conditionally

sub-Gaussian fields defined as
+oo
S(x) = Z W (2)gn, for x € Ky C RY, (2)
n=1

with (gn),,>; a sequence of independent symmetric sub-Gaussian complex random variables and (W),
a sequence of complex random fields defined on K4, a compact d-dimensional interval, independent of
(9n)n>1- In this setting we give sufficient assumptions on the sequence (Wy)n>1 to get an upper bound
of the modulus of continuity of S as well as a uniform rate of convergence, using Lévy inequalities
(see [22] for instance) available for series of independent symmetric variables. Then, we focus on shot
noises series .

S(a,u) =Y TV Vo(a, w)gn, © = (o,u) € Kag1 C (0,2) x RY, (3)

n=1

where (Tn)n21 is as previously the sequence of arrival times of a Poisson process of intensity 1. Assuming
the independence of (13,),>1, (Va),>1 and (gn),>;, We state some more convenient conditions based
on moments of V,, to ensure that the main assumptions of this paper are fulfilled. In particular
when V,(a,u) := X,, is a symmetric random variable, one of our main result gives a uniform rate of
convergence of the shot noise series (1) in « on any compact K1 = [a,b] C (0,2), which improves the
results obtained in [11] on the convergence of such series.

Moreover, we also investigate the case of LePage random series, for which the random fields
(Via, gn)n>1 are chosen to ensure that for all fixed « the series S(c,-) have the same finite dimen-

sional distributions as an isotropic a-stable random field defined through a stochastic integral with



respect to an isotropic a-stable random measure. On the one hand, it allows to include in a general
setting some sample path regularity results already obtained in [7, 8] for harmonizable (multi)-operator
scaling stable random fields. On the other hand, considering a as a function of v € R%, we also in-
vestigate sample path properties of multistable random fields that have been introduced in [14]. To
illustrate our results, we focus on harmonizable random fields.

The paper falls into the following parts. In Section 2 we recall definition and properties of sub-
Gaussian random variables and state our first assumption needed to ensure that the random field S is
well-defined. We also introduce a notion of anisotropic local regularity, which is obtained by replacing
the isotropic Euclidean norm of R? by a quasi-metric that can reveal the anisotropy of the random
fields. Section 3 is devoted to our main results concerning both local modulus of continuity of the
random field S defined by the series (2) and rate of convergence of this series. Section 4 deals with the
particular setting of shot noise series, that is of random fields given by (3). In Section 5 we investigate
the case of LePage series and apply our results to study the sample path regularity of stable or even

multistable random fields. Technical proofs are postponed to Appendix for reader convenience.

2 Preliminaries
2.1 Sub-Gaussian random variables

Real-valued sub-Gaussian random variables have been defined by [16] and [10] has studied the structure
of the class of these random variables and proposed some conditions for continuity of real-valued sub-
Gaussian random fields. In this paper we focus on conditionally complex-valued sub-Gaussian random

fields, where a complex sub-Gaussian random variable is defined as follows.

Definition 2.1. A complex-valued random variable Z is sub-Gaussian if there exists s € [0, +00) such

that

32|z\2

vz e CE(eR) <eTF. (4)

Remark 2.1. For a real-valued random variable Z, this definition coincides with the definition in [16].
The parameter s is not unique. Kahane [16] called the smallest s such that (4) holds the Gaussian
shift of the sub-Gaussian variable Z. In this paper, if (4) is fulfilled, we say that Z is sub-Gaussian

with parameter s.

Remark 2.2. A complex-valued random variable Z is sub-Gaussian if and only if R(Z) and I(Z) are
real sub-Gaussian random variables. Note that if Z is sub-Gaussian with parameter s then E(R(Z)) =
E(3(Z)) = 0 and E(R(Z)?) < 52 as well as E(3(2)?) < s2. Moreover, our definition includes also com-
plex sub-Gaussian random variables as defined in [15] in the more general setting of random variables

with values in a Banach space.

The main property of sub-Gaussian random variables is that their tail distributions decrease expo-
nentially as the Gaussian ones (see Lemma A.1). Moreover, considering convergent series of indepen-

dent symmetric sub-Gaussian random variables, a uniform rate of decrease is available and the limit



remains a sub-Gaussian random variable. This result, stated below, is one of the main tool we use to

study sample path properties of conditionally sub-Gaussian random fields.

Proposition 2.1. Let (gn)n21 be a sequence of independent symmetric sub-Gaussian random variables

with parameter s = 1. Let us consider a complex-valued sequence a = (an)p>1 such that

+0oo
2 2
lal?, = > lanl? < +o0.
n=1

1. Then for any t € (0, +00)

<Nes§1§0} Zangn > t||a|| ) < 8e” ?.
+00
2. Moreover, the series Zangn converges almost surely, and the limit Z angn 1s a sub-Gaussian
random variable with parameter HaHe2 i
Proof. See Appendix, Section A. O

Remark 2.3. In the previous proposition, assuming that the parameter s = 1 is not restrictive since

one can replace ayp, by ansy, and gn, by gn/sn when g, is sub-Gaussian with parameter s, > 0.

2.2 Conditionally sub-Gaussian series

In the whole paper, for d > 1, we note K; = H?Zl

of R%. We consider the sequence (SN) yen defined on Ky C R? by for all N € N and z € Ky,

N
=3 Wal@)gn. (5)
n=1

0
Here and in the sequel we use the convention that Z = 0. Throughout the paper, we assume that

laj,b;j] with a; < bj a compact d-dimensional interval

n=1
the sequence (W,,, gn)n>1 satisfies the following assumption.

Assumption 1. Let (gn),>; and (Wy),~; be independent sequences of random variables.

° (gn)n21 is a sequence of independent symmetric complex-valued sub-Gaussian random variables

with parameter s = 1.

° (I/Vn)n21 s a sequence of complez-valued continuous random fields defined on Ky and such that

400
Vr € Kg, Z [Wa(2)|? < 400 almost surely.

n=1



Under Assumption 1, conditionally to (Wn)nZI’ each Sy is a sub-Gaussian random field defined on
K,4. Moreover, for each x, Proposition 2.1 and Fubini Theorem lead to the almost sure convergence of

the series (5) as N — +o00. The almost sure limit field S defined by
400
S(x) =Y Wn(x)gn, € KqCR?, (6)
n=1

is then a conditionally sub-Gaussian random field. In the sequel, we study almost sure uniform conver-
gence and rate of uniform convergence of (Sy)ycy as well as the sample path properties of the limit
field S.

Assume first that each g, is a Gaussian random variable and that each W, is a deterministic
random field, which implies that S is a Gaussian centered random field. Then, it is well-known that

its sample path properties are given by the behavior of

+oo 1/2
s(z,y) = <Z [Wa(z) - Wn(y)|2> T,y € Kg, (7)
n=1

which is proportional to the square root of the variogram of S. In the following, we see that under
Assumption 1, the behavior of S is still linked with the behavior of the parameter s. In this more
general framework, a key tool is to remark that conditionally to (Wn)n21, S is a sub-Gaussian random
field and the random variable S(z) — S(y) is sub-Gaussian with parameter s(x,y) defined by (7).

In the following, the random field S, and then the parameter s, is a priori anisotropic. Therefore,
next section deals with an anisotropic generalization of the classical Holder regularity. In other words,
it introduces a notion of regularity which takes into account the anisotropy of the random fields under

study.

2.3 Anisotropic local regularity

Let us first recall the notion of quasi-metric (see [29] for instance), which is more adapted to our

framework.

Definition 2.2. A continuous function p : R x RY — [0, +00) is called a quasi-metric on R? if
1. p is faithful i.e. p(xz,y) =0 iff x = y;
2. p is symmetric i.e. p(z,y) = p(y,x);
3. p satisfies a quasi-triangle inequality: there exists a constant k > 1 such that

Va,y,z € RY, p(x,2) < k (p(z,y) + ply, 2)).

Observe that a continuous function p is a metric on R if and only if p is a quasi-metric on R?

which satisfies Assertion . with x = 1. In particular, the Euclidean distance, defined by

J 1/2
p(z,y) = llz -yl = (Z i — yz‘\Q) , for = (2i)1<i<a, y = (Yi)1<i<a € RY,
=1
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is an isotropic quasi-metric and its following anisotropic generalization

d

1/p
(z,y) = plx,y) == (Z |z — yﬂ”“") where p > 0 and ay,...,aq > 0,
=1

is also a quasi-metric. Such quasi-metrics are particular cases of the following general example.

Example 2.1. Let us consider E a real d x d matriz whose eigenvalues have positive real parts and

Ty - RY — Rt g continuous even function such that
i) 1,(x) >0 for all x # 0;
ii) 7, (rPx) = rr (x) for allr >0 and z € R4,

Then let us consider the continuous function p,, defined on R? x R? by

pE(‘ray) - TE(m - y)'

Then, by definition of T, p, is faithful and symmetric. Moreover, by Lemma 2.2 of [9], p, also satisfies
a quasi-triangle inequality. Hence, p, is a quasi-metric on R? and it is adapted to study operator scaling

random fields (see [9, 7] for example).

Let us remark that we may define a quasi-metric p, for any matrix £ whose eigenvalues have
positive real parts. However since pg will define a quasi-metric for £/ whatever 5 > 0 is, we may
restrict our study to matrix £ whose eigenvalues have real parts greater than one. Then, by Proposition
3.5 of [8], there exist 0 < H < H < 1 and two positive finite constants ¢, ,,¢,, > 0 such that for all
z,y € RY,

ey min(fle =yl 2 = y|) < pp(2,y) < e max((lz —y)| 7, [z — y[1F).
In [8, 7], this comparison is one of the main tool in the study of the regularity of some stable anisotropic
random fields. Therefore, throughout the paper, we consider a quasi-metric p such that there exist
0 < H < H <1 and two positive finite constants Cy15Cyy > 0 such that for all z,y € R?, with
eyl <1, -
coalle = ylI™ < pla,y) < clle -yl (8)
Before we introduce the anisotropic regularity used in the following, let us briefly comment this as-

sumption done on p.
Remark 2.4.

1. The upper bound is needed in the sequel to construct a particular 27% net for p, whose cardinality

can be estimated using the lower bound.

2. Let us quote that using the quasi-triangle inequality this implies that for all r > 1 there exist two

nite constants c, (1), ¢, ,(r) > 0 such that for all x,y € R, with ||z —y|| < r,
2,1 2,2

e (M) =yl < pla,y) < cpp () =yl (9)



3. It is not restrictive to assume that H < 1 since for any ¢ > 0, p¢ is also a quasi-metric.

We will consider the following anisotropic local regularity property.

Definition 2.3. Let 3 € (0,1] and n € R. Let xo € Kq with Ky C R%. A real-valued function f defined
on K belongs to H, k,(xo, 8,n) if there exist v € (0,1) and C € (0,400) such that

(@) = f(y)] < C pla,y)°|log(p(x, y))|"

for all z,y € B(xo,v) N Kq := {2z € T; ||z — xo|| < v}. Moreover f belongs to H,(Kq,3,n) if there
exists C € (0,400) such that

Vo,y € Ky, |f(z) — f(y)| < C pl(z,y)’|log(min(p(z,y),1/2))|"
Remark 2.5.

1. A function in H,(Kq, 3,0) may be view as a Lipschitz function on an homogeneous space [25].
Note also that when p is the Euclidean distance, for any f < 1 andn <0, the set H,(Kq, 3,m) (re-
spectively H, i, (o, 3,m)) is included in the set of Holder functions of order 8 on Kq (respectively

around x).

2. Assuming B < 1 is not restrictive since, for any ¢ > 0, p°® is also a quasi-metric, as already

noticed.

3. When f belongs to H,(Kq4,3,n) it follows that f € H, k,(xo,3,n) for all xy € Kq. The converse

is also true since Kg is a compact set, using a finite covering of Ky, Equation (8) and the fact

that there exists ho > 0 such that h — hP|log(h)|" is increasing on [0, ho).

The introduction of the logarithmic term appears naturally when considering Gaussian random
fields. Actually, [6] proves that for all 8 € (0,1], a large class of elliptic Gaussian random fields Xz,
including the famous fractional Brownian fields, belongs a.s. to H, k,(xo, 3,1/2) with p the Euclidean
distance (see Theorem 1.3 in [6]). Moreover, Yimin Xiao also gives some anisotropic examples of
Gaussian fields belonging a.s. to H, x,(%o, 1,1/2) for some anisotropic quasi-distance p = p, associated
with E a diagonal matrix (see Theorem 4.2 of [34]). Finally, in [8], we construct stable and Gaussian

random fields belonging a.s. to H,, x,(zo,1 —¢,0) for some convenient p;, (see Theorem 4.6 in [8]).
3 Main results on conditionally sub-Gaussian series

3.1 Local modulus of continuity

In this section, we first give an upper bound of the local modulus of continuity of S defined by (5)

under the following local assumption on the conditional parameter (7).



Assumption 2. Let xg € Ky with K4 = H?Zl[aj,bj] C R, Let us consider p a quasi-metric on
R¢ satisfying Equation (8). Assume also that almost surely there exist v > 0, 8 € (0,1], n € R and
C € (0,+00) such that

Va,y € B(zo,7) N Ka, s(z,y) < C plz,y)’|log(p(z, )",
where we recall that the conditional parameter s is given by (7).
Let us first comment this assumption.

Remark 3.1. Note that v, 3,n and C' may be random variables. Let us also emphasize that 7, 3,n,C

and the quasi-metric p may depend on xg.

Let us now state the main result of this section on the modulus of continuity. The main difference
with [20, 7, 8] is that we do not only consider the limit random field S but obtain a uniform upper

bound in N for the modulus of continuity of Sy.

Theorem 3.1. Assume that Assumptions 1 and 2 are fulfilled. Then, almost surely, there exist v* €
(0,7) and C € (0,+00) such that for all z,y € B(xo,v*) N K,

]%u% |Sn(z) — Sn(y)| < Cp(x,y)ﬂﬂog p(:c,y)|’7+1/2_
€

Moreover, almost surely (Sy)nen converges uniformly on B(xg,v*) N Kq to S and the limit S belongs
to HMKd(:L'o,ﬁ,?] +1/2).

Proof. See Appendix, Section B.1. O

Remark 3.2. Under Assumptions 1 and 2, according to the previous theorem, S is almost surely

continuous at xg.

Remark 3.3. If Assertion 2 holds for any xoy € Ky (with the same quasi-metric p), then Theorem 3.1
holds replacing B(xg,v*) N K4 by all the set Ky. This is simply deduced by covering the compact set
Kg. Moreover, if in Assertion 2, v is deterministic, then Theorem 8.1 holds with v* =~ and S belongs
to Hy(B(xo,v) N Ky, B,mn+1/2).

3.2 Rate of almost sure uniform convergence

This section is concerned with the rate of uniform convergence of the series (Sy)ycy. Let us first
recall that the partial sum Sy is defined by (5). Under Assumption 1, this series converges to S and,

for any integer N, we may consider the rest

+oo
Ry(z) = S(x) = Sy(z) = > Walz)gn, z€K4CR™
n=N-+1



Then, conditionally to (W),,~;, Rn(z) — Ry(y) is a sub-Gaussian random variable with parameter
+o0

1/2
TN(M/)Z( > IWn(m)—Wn(y)!2> , @,y € K. (10)

n=N-+1

Observe that Ry = S and of course that ro(x,y) = s(z,y). To obtain a rate of uniform convergence
for the sequence (Sn)ycn, the general assumption relies on a rate of convergence for the sequence of

parameters (ry)yen-

Assumption 3. Let g € Kyq with Kg = H?:1[aj>bj] c R? ¢ R? and let p be a quasi-metric on RY
satisfying (8). Assume that almost surely there existy > 0, § € (0,1], n € R and (b(N))nen a positive

sequence such that
rn(@,y) < b(N)p(z,y)°|log(p(z,y))|" (11)

for any N € N and any z,y € B(xg,vy) N Kg.

Note that Assumption 3 implies Assumption 2. Then, according to Theorem 3.1, almost surely,
there exists v* € (0,7v) such that Ry = S — Sy is continuous on B(zg,7*). The following theorem

precises the modulus of continuity of Ry with respect to N and a rate of uniform convergence.

Theorem 3.2. Assume that Assumptions 1 and 3 are fulfilled.
1. Then, almost surely, there exists v* € (0,v) and C € (0,+00) such that
R (@) — Ry (y)] < Cb(N)/log(N + 2)p(z,y) [log plz. )| /2

for all N € N and all z,y € B(xg,v*) N K.

2. Moreover, if almost surely, for all N € N,
R (z0)| < b(N)V/log(N +2), (12)
then, almost surely, there exists v* € (0,7) and C € (0,+00) such that
[By(2)| < Cb(N)+/log(N +2)
for all N € N and all © € B(zg,v*) N Kg.

Proof. See Appendix, Section B.2. O

Remark 3.4. An analoguous of Remark 3.8 holds for strengthening the previous local theorem to get

uniform results on Kq or on B(xg,7v) N Kyq when v is deterministic.



4 Shot noise series
4.1 Preliminary results

In this section, we consider the sequence of shot noise series defined by
N
VN € N, Va € K; = [a,b] C (0,2), Sy(a) = ZTgl/aXn,
n=1

where for all n > 1, the random variable T, is the nth arrival time of a Poisson process with intensity 1
and (X,)n>1 is a sequence of i.i.d. symmetric random variables, which is assumed independent of
(Tn)n>1. Let us first recall that S} (a) converges almost surely to S*(a) an a-stable random variable
as soon as X, € L% (see [32] for instance). Under a strengthened assumption on the integrability of
X, rate of pointwise almost sure convergence and rate of absolute convergence have also been given
in Theorems 2.1 and 2.2 of [11].

Since (Xn)n21 may not be a sequence of sub-Gaussian random variables, we cannot apply the

previous section to the sequence (Sy) However, due to symmetry of (X,),, 1,

NeN-*

(d
(Xn)n21 = (Xngn)nZI

=

with (gn),>; a Rademacher sequence independent of (Xy,T5),~; and we can apply our results to

N
Sn(@) =Y Wala)gn with Wy (a) = T, /X,

n=1
Moreover, looking at the proof of Theorems 3.1 and 3.2, we see that in these theorems Sy (respectively
Ry = S — Sy) can replaced by Sy (respectively Ry = S* — S},), see the proof of next theorem for
details. Then, assuming that X, is sufficiently integrable, we obtain the uniform convergence of S% on
a deterministic compact interval K7 = [a,b] C (0,2) and a rate of uniform convergence. These results,
stated in the following theorem, strengthen Theorem 2.1 of [11] which deals with the pointwise rate of

convergence.

Theorem 4.1. For any integer n > 1, let T, be the nth arrival time of a Poisson process with inten-
sity 1. Let (Xp)n>1 be a sequence of i.i.d. symmetric random variables, which is assumed independent

of (T;)n>1. Furthermore assume that E(|X1|*") < +oco for some p > 0.

1. Then, almost surely, for all b € (0, min(2,2p)) and for all a € (0,b], the sequence of partial sums

(SN) nen converges uniformly on [a, b].

2. Then, almost surely, for all b € (0, min(2,2p))and for all a € (0,b), for all p’ > 0 with 1/p’ €
(0,1/b— 1/ min(2p, 2)),

+00
sup sup NV Z Tn_l/o‘Xn < +o00.
NeN agla,b] n=N+1
Proof. See Appendix, Section C.1. O
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4.2 Modulus of continuity and rate of convergence of shot noise series

In this section, we focus on some general shot noise series, which are particular examples of conditionally
sub-Gaussian series. For this purpose we assume that the following assumption is fulfilled in all this

Section 4.2.

Assumption 4. We consider independent sequences (Ty,),,~1, (Va),>1 and (gn),~, that satisfy the

following conditions.

(1). (gn),>1 is a sequence of independent complez-valued symmetric sub-Gaussian random variables

with parameter s = 1.
(2). T, is the nth arrival time of a Poisson process with intensity 1.
(3). (Vn)n>1 18 a sequence of i.i.d. complez-valued random fields defined on Kqy1 C (0,2) X R,

(4). For any (a,u) € Kqi1 C (0,2) x R, Vi, (o, u) € L2

For any integer n > 1, we consider the complex-valued random field W,, defined by
Walo,u) =T YV, (a,u), (o,u) € Kgpq C (0,2) x RY

Observe that the sequences (W),,~; and (gn),>; are independent. Moreover, since |V;,(a, w)|? e L2
and «/2 € (0,1), according to Theorem 1.4.5 of [32],

400 +00
Z Wi(a,u)|? = ZTn_Q/a“/n(Oé,u)F < +oo almost surely.

n=1
Therefore the sequences (Wy,), 5, and (gn),,»; satisfy Assumption 1 and we can apply Section 3 to the
shot noise series S defined on Ky1 C (0,2) x R € R*! by

ZW (o, u)g ZT‘l/aV (o, u)gn (13)

Keeping the notation of the previous sections, for all N € N,

N
Sy(a,u) = ZTgl/aVn(a,u)gn and Ry(a,u) Z TV, (o, w)gn (14)
n=1 n=N+1

Before we study, the modulus of continuity of S and rate of convergence of (Sn)nen, let us state some

remarks.

Remark 4.1. Assume that Conditions (1)-(3) of Assumption 4 are fulfilled and that (gn),>; is a
sequence of i.i.d. random variables. Then Remark 2.6 of [31] proves that Condition (4) is a necessary
and sufficient condition for the almost sure convergence of (S (o, u)) yey for each (o, u) € Kqi1. Note
that by It6-Nisio Theorem (see for example Theorem 6.1 of [22]), it is also a necessary and sufficient
condition for the convergence in distribution of the sequence (Sny(c,u))yey- Then, Condition (4) is

not a strong assumption and is clearly essential to ensure that S(o,u) is well-defined by (13).

11



Remark 4.2. Assume that Assumption 4 is fulfilled with (gn)n21 a sequence of i.i.d. random variables.
Then, it is well-known that for each o € (0,2), S(«,-) is an a-stable symmetric random field, as field
in variable u. In Section 5, we will focus on a-stable random fields defined through a stochastic integral
and see that, up to a multiplicative constant, such a random field X, has the same finite distributions
as S(a,-) for a suitable choice of (gn, Vp)n>1. The sample path reqularity of S in its variable o is not
needed to obtain an upper bound of the modulus of continuity of X,. Nevertheless, this reqularity is

useful to deal with multistable random fields (see Section 5.3).

The sequel of this section is devoted to simple criteria, based on some moments of V,,, which ensure
that Assumption 3 (and then Assumption 2) is fulfilled. More precisely, the results given below help us
to give simple conditions in order to get Assumption 3 and (12) satisfied with a sequence (b(N))nen
of the form b(N) = (N +1)~/? for some convenient p’ > 0. Then, under Assumption 4, all the results
of Section 3 hold.

Theorem 4.2. Let xo = (o, u0) € Kgy1 with Kqi1 = [a,b] x H;l:l[aj,bj] C (0,2) x R? and let p be
a quasi-metric on RYTY satisfying Equation (8). Assume that Assumption 4 is fulfilled and that there
exist v € (0,400), B € (0,1], n € R and p € (b/2,4+00) such that E<|V1(x0)|2p) < 400 and

2p
Vi(z) - Vi
E sup | 1<:;) 1(y)l 7 < 0. (15)
wyeKa P, )P log p(, y)|
o< lo—yll<r

Let us now set consider the random fields S and Sy given by (13) and (14).

1. Then, almost surely (SN) ey converges uniformly on Kqyy and its limit S belongs almost surely
to Hp(Kd+17 ﬁu max (77’ 0) + 1/2)

2. Moreover, when p' > 0 is such that 1/p’ € (0,1/b—1/min(2p, 2)), almost surely

sup N7 sup |S(z) — Sy ()| < +o0.
N>1 T€EK g1

Proof. See Appendix, Section C.2. O

Example 4.1. One can consider for Vi a fractional Brownian field on R with Hurst parameter H so
that (15) is satisfied for all p > 0 with p(x,y) = ||x — y|| for ||-|| the Euclidean norm on R, 3 = H
andn =1/2 (see Theorem 1.3 of [6] for instance).

Let us now present a method (similar to those used in [19, 7, 8] to bound some conditional variance)

to establish (15).

Proposition 4.3. Let 29 = (ap, uo) € Kg41 with Kq41 = [a,b] X H?zl[aj, bj] C (0,2) x R Let V; be a
complezx-valued random field defined on K4i1. Assume that there exists a random field (g(h))he[07+oo)

with values in [0,00) and such that

12



(i). there exists p a quasi-metric on R satisfying Equation (8) such that almost surely, for x,y €

Kin
Vi(z) = Vi(y)l < G(p(z,y));

(7). there exists ho € (0,1] such that almost surely, the function h — G(h) is monotonic on [0, ho;

(iii). there exists p > b/2 and some constants § € (0,1], n € R and C € (0,00) such that for some
e > 0 and for h > 0 small enough,

I(h) :== E(G(h)%) < Ch?P9|log h|?P(1=1/2r=2)

Then, Equation (15) holds for r > 0 small enough.

Proof. See Appendix, Section C.2. O
Let us conclude this section by the following remark.

Remark 4.3. If (X,),~, s a sequence of independent symmetric random variables, one can replace

in all the results of this section Vg, by Xy, that is Sy (o, u) (respectively S(c,u)) by

N +00
Sy(a,u) = ZTn_l/aXn(oz,u) (respectively by S™ (o, u) = ZTn_l/o‘Xn(a, u)).

n=1 n=1
In particular, following Example 4.1, let us consider (Xn)n21 a sequence of i.i.d. fractional Brownian
fields on R® with Hurst parameter H. This sequence is assumed to be independent from the sequence
(Tn)nZI' Then, Assumptions of Theorem 4.2 are fulfilled with pgi1 the Euclidean distance on R4,
B =H andn = 1/2, on any compact (d + 1)-dimensional interval K4,1. Especially, this leads to an

upper bound of the modulus of continuity of
+o0
S*(a,u) = ZT;l/O‘Xn(u), (o, u) € (0,2) x RY,
n=1

on any compact (d + 1)-dimensional interval Kqi1. Then for any fized ag € (0,2), we also obtain
an upper bound for the modulus of continuity of the ag-stable random field (S*(cw,u)), cra - More
precisely, (S*(ao,w)),cra 15 i Hy,(Kq, H, 1) for pg the Euclidean distance on R? and for any compact
set Kq C R%.

5 Applications to LePage random series
5.1 LePage series representation

Representations in random series of infinitely divisible laws have been studied in [24, 23]. In particular,
symmetric ag-stable laws may be represented using LePage random series. Moreover, such representa-
tions have been successfully used to study sample path properties of some symmetric ag-stable random
processes (d = 1) and fields (see e.g. [19, 7, 8, 12]).

Let us be more precise on the assumptions on the LePage series under study.

13



Assumption 5. Let v be a o-finite measure on (R%, B(R?)).

1. Let (&n),>1 be a sequence of i.i.d. random variables with common law

p(dg) = m(&)v(d§)
equivalent to v (that is such that m(§) > 0 for v-almost every €).

2. (gn)p>1 @5 a sequence of i.i.d. complez-valued symmetric sub-Gaussian random variables with

parameter s = 1.
3. T, is the nth arrival time of a Poisson process with intensity 1.
4. The sequences (§n),51 5 (9n),>1 and (Ty,),, are independent.

5. For any o € K1 C (0,2), f, : Kqg x R* — C is a deterministic function such that
Vu € K4 C RY, / IS, (u, &)|*v(d€) < +o0.
Rd

Then, setting
Vil u) = f, (u, &)m (&) "1,

Assumption 4 is fulfilled so that we can define the sequence of random fields

N
() = STV (u,60)m(6n) Y ga, N €N,
n=1
with (o, u) € Kgp1:= K1 x Kq C (0,2) x R? and its almost sure limit S,,, given by

+oo
Sm(ayu) = > TV f, (u,60)m (€)™ g (16)
n=1

Under appropriate assumptions on f, and m, the previous sections state the uniform convergence of
(Sm,N)NeN, give a rate of convergence and some results on regularity for its almost sure limit S,.
Precise results on regularity of .S,, may be obtained using the following proposition, which states that

the finite distributions of S, does not depend on the choice of the v-density m.

Proposition 5.1. Assume that Assumption 5 is fulfilled and let Sy, be defined by (16). Let <£n> .
be a sequence of i.i.d. random variables with common law -

fi(dg) = m(&)v(dE)

equivalent to v. Assume that the sequences <§n> s (9n)p>1 and (Ty,),~, are independent.

n>1
1. Then,
+0c0 ~ \—-1/a
(Sm(a7u))(a,u)€Kd+1 fid (Z Trjl/afa (uvén)ﬁl(fn) : gn> ;

n=1 (a,u)eK i1

dd . . . . . dd
where I means equality of finite distributions. In other words, Sy, I S
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2. Assume moreover that for v-almost every &€ € R, the map (o, u) — falu, &) is continuous on the
compact set Kgpq1 C (0,2) x R%. Let us consider p a quasi-metric on R, 3 € (0,1] and n € R.
Then, Sy, belongs almost surely in H,(Kqi1,5,n) if and only if Sz, does.

Proof. See Appendix, Section D.1. O

In particular, when studying the sample path properties of 5,,, this result allows us to replace m
by an other function m so that the regularity of S, may be deduced from the regularity of Sy. For
example, replacing m by m, depending on z( this may lead to a more precised bound for the modulus

of continuity of Sy, around x (see e.g. Example 5.3).

5.2 «-stable random fields

In this section, let us fix & = agp € (0,2). Then, under Assumption 4, the random field Sy, (o, ) =
(Sm(a0,u)),e K, 1s an isotropic ag-stable random field. Moreover, the proof of Proposition 5.1 (see Sec-
tion D.1) allows to compute its characteristic function and to give a stochastic integral representation

of Sy,. Actually,
fdd

Sutan) 2zt ([ 1, @oMa(@)

UEKd

with M,, a complex isotropic ap-stable random measure on R? with control measure v and

N 1 21 —1/ag +00 3 2 1/ao
g = () ) (5 [Tleosoyman) ([T Do) (17)

When v is a finite measure (respectively the Lebesgue measure), this stochastic integral representation
of Sy, (ay, ) has been provided in [32, 26] (respectively [19, 7]).

Let us note that assumptions of Theorem 4.2 and Proposition 4.3 can be stated in term of the
deterministic kernel f, = to obtain an upper bound of the modulus of continuity of Sy,. In general,
well-choosing m,,, and applying Proposition 5.1, we obtain a more precise upper bound of the modulus
of continuity of S, (ay, ) around ug, which also holds for the random field

Yo = ([ g wOMafae)) (18)

ueKy

up to consider one of its modifications. To illustrate how the previous sections can be applied to study
the field X, which is defined through a stochastic integral and not a series, let us focus on the case

of harmonizable stable random fields. More precisely, we consider

Fug (0:6) = (€19 = 1) 0 (€),  V(w,€) € RY x RY, (19)

with 94, : R? — C a borelian function such that

/Rd min(L, [[€])[aq (§)|*v(d€) < +o00.

Note that, since this assumption does not depend on u, the random field X,, may be defined on the
whole space R?. For the sake of simplicity, in the sequel, we consider the case where v is the Lebesgue
measure and first focus on a random field X, which behaves as operator scaling random fields studied

in [9].
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Proposition 5.2. Let ag € (0,2) and let X,, be defined by (18) with v the Lebesque measure on
R?. Let E be a real matriz of size d x d whose eigenvalues have positive real parts. Let T, and T, be

functions as introduced in Fxample 2.1. Let
q(E) =trace(E) and a3 = min R(N)

with Sp(E) the spectrum of E, that is the set of the eigenvalues of E. Assume that there exist finite
positive constants c;, and A and 8 € (0,a1) such that

[ (€)] < €517, (€) P71V for almost every ||€]| > A. (20)

Then, there exists a modification X7, = of Xa, such that almost surely, for any € > 0, for any compact
set K; C RY,

| X3 () = X5, (v)]
e+1/2+1/ag

sup < +o00.

uvEKy Ty (u—v)llog 7, (u — v)|

Remark 5.1. Let us note that the quasi-metric (x,y) — 7, (x —y) may not fulfill Equation (8) since
the eigenvalues of E may not be greater than 1. Nevertheless, the quasi-metric (z,y) —

TE/al (1’ - y)
does and the conclusion with 7, in the previous proposition then follows from the comparison

V& ERY, €7, ()" <7, (6) < 675

with c1, co two finite positive constants.
Proof. See Appendix, Section D.2. O

An upper bound for the modulus of continuity of such harmonizable random fields is also obtained
in [35]. This upper bound is given in term of the Euclidean norm and then does not take into account
the anisotropic behavior of X,,. Even when 7, is the Euclidean norm, our result is a little more precise
that the one of [35]. The difference is only in the power of the logarithm term.

Let us now give some examples. We keep the notation of the previous proposition and the eigen-

values of the matrix E have always positive real parts.

Example 5.1. (Operator scaling random fields [9]) Let ¢ : RY — [0,00) be an E*-homogenous

function, which means that

Ve e (0,400), V€ € RY, 1!J<CEt5) = cp(§)

where &' = exp (Et log c). Let us assume that v is a continuous function such that (&) # 0 for

€ #0. Then we consider the function Vg, : R? — [0, +00] defined by

o () = p(§) TN,

The random field X, associated with 1o, by (18) is well-defined and is stochastically continuous if
and only if H € (0,a1).
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Let us fix H € (0,a1) and recall that X, is operator scaling in the sense that

fdd
(Xao (CEU))UE]Rd = CH(XC“O (u))ueRd7 Ve e [07 +OO)

Since 1o, is E'-homogenous, one easily checks that there exists C € (0,+00) such that
W& € RY, 9oy (€) < O, (€)1,

Then, the assumptions of Proposition 5.2 are fulfilled with 8 = H. The corresponding conclusion was
stated in Theorem 5.1 of [7] when H =1 and ay > 1, which is enough to cover the general case using

Remark 2.1 of [7].

Example 5.2. (Anisotropic Riesz-Bessel a-stable random fields) Let us consider

1
Yo (&) = e eRAO
© Tot (5)251/6‘0(1+7—Et(§)2)ﬁ2/ao \{0}

with two real numbers By and By. Assuming that

E E
Q(2 ) <Bi1+ B2 and [ < q(2 ) + 04()2&17

the random field X, is well-defined by (18). When T s the Euclidean norm, this random field has
been introduced in [35]. Note that it generalizes the Gaussian fractional Riesz-Bessel motion [2] to the
stable framework.

We distinguish two cases. If 81 + (B2 < Lf) + 2%, Proposition 5.2 can be applied with =

%O)_Q(E). Otherwise, Proposition 5.2 can be applied for any 3 € (0,a1).

Random fields defined by (18) have stationary increments so that their regularity on K4 does not
depend on the compact set K4. To avoid this feature one can consider non-stationary generalizations
by substituting ., by a function that also depends on u € K. More precisely, we can consider

K= ([, (659 = 1) 0,0 06) ) (21)
R4 ueKy
with M,, a complex isotropic ag-stable random measure with Lebesgue control measure and 1, a

borelian function such that, for all © € Ky,

J.

Under some conditions on 1),,, when considering the local behavior of X, around a point uy one can

. a0
) — 1| g (1, )| dE < +oc.

conveniently choose a Lebesgue density m,,, to obtain an upper bound of the modulus of continuity of

the shot noise series Sy, (co, ) given by (16) with

Fug () = (€ = 1) thaq (1,).

For the sake of conciseness, let us illustrate this with multi-operator random fields, which have already

been studied in [8].
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Example 5.3. (Multi-operator scaling a-stable random fields) In [8/, we consider E a function
defined on R® with values in the set of real matriz of size d x d whose eigenvalues have real parts
greater than 1 and ¢ : R x R? — [0, +00) a continuous function such that for any u € R, ¥(u,-) is

homogeneous with respect to E(u) i.e.
(u, PW'E) = cip(u, €), V€ € RY, Ve > 0.

Under convenient regularity assumptions on ¢ and E, one can define the ag-stable random field X,
by (21) with
Voo (u,€) = ¥(u, &)1 UF/ and g(E(u)) = trace(B(u)).

Let K; = H?Zl[aj, b;] C RY and ug € Kq. Let us set Kgiq = {ag} x K4 and consider the quasi-metric
p defined on R by

p((a,u), (O/a v)) = | — O/| + TE(uO)(u — )

for all (o, u), (o/,v) € R x R, which clearly satisfies Equation (8). Then, under assumptions of [8],
there exists a Lebesgue density my, > 0 a.e. such that Assumption 2 holds for Smuo on Kgy1 with
n =0 and all B € (0,1), adapting similar arguments as in Proposition 5.2 (see Lemma 4.7 of [8]).
Therefore, following a part of the proof of Proposition 5.2, there exists a modification X = of Xa, such

that almost surely,
! [ Xy () = X2, (0)
im sup

1—
710 uweBuo,r)NKa  To(ug) (u—v)l—2
uFv

for any € € (0,1). This is Theorem 4.6 of [8].

< 400

For the sake of conciseness, we do not develop other examples. Nevertheless, let us mention that
our results can also be applied to harmonizable fractional a-stable sheets or even to operator stable
sheets. In particular, this improves the result stated in [27] for fractional a-stable sheets. Note that

we can also deal with real symmetric measure W,,.

5.3 Multistable random fields

Multistable random fields have first been introduced in [14] and then studied in [13]. Each marginal
X (u) of such a random field is a stable random variable but its stability index is allowed to depend on
the position u.

Generalizing the class of multistable random fields introduced in [21], we consider a multistable

random field defined by a LePage series. More precisely, under Assumption 5, we consider
Sm(u) = Z Trjl/a(u)fa(u) (u7 fn)m(gn)_l/a(u)gna uec Ky
n=1

where o : Ky — (0,2) is a function. Therefore, using Section 4, we can bound the modulus of continuity

of the shot noise series S, defined by (16). Since



we then obtain an upper bound for the modulus of continuity of S. In particular, assuming that « is

smooth enough, we obtain the following theorem.

Proposition 5.3. Let K; = H;-lzl[aj, bj] C R, Let us choose ug € Ky. Let p be a quasi-metric on R?
satisfying Equation (8) and let o : Kq — (0,2) belong to H;(Kqg,1,0). Let us set

a=mina, b=maxa and K; = [a,b] C (0,2)
Ky Ky

and consider the quasi-metric p defined on R x R% by

p((a,u), (o, v)) = |a— o] + p(u,v).
Assume that Assumption 5 is fulfilled and that Equation (15) holds on Kgy1 = |a,b] x Ky for some
p>b/2, B€(0,1] and n € R. Assume also that

B(IVita(w) w)) = [

2p

m(§)172p/a(u0)d§ < 400.

oy (0, )|

1. Then, almost surely, (gm,N)NEN converges uniformly on Ky to S'm and the limit Sm belongs to
Hﬁ(Kdv /87 max (777 0) + 1/2)

2. Moreover, for all p’ > 0 such that 1/p’ € (0,1/b— 1/ min(2p,2)),

sup N7 sup [, (u) — Sm.N(u)| < +oo.
N>1 ueky

Proof. See Appendix, Section D.3. O

Remark 5.2. Let us recall that S, € Hz(Kg, 8, max (1,0)+1/2) if and only if S, € Hz(Kga, 3, max (n,0)+
1/2), with m an other v-density equivalent to v, by Proposition 5.1.

Note that other assumptions under which the conclusion still holds may be given to apply the
results of the paper. Moreover, the study of S may also be done by studying directly the conditional

parameter associated with S. To finish, note also that more general quasi-metrics p can be considered.

To illustrate the previous proposition, we only focus on multistable random fields obtained replacing
in a LePage series representation of an harmonizable operator scaling stable random field the index «
by a function. Many other examples can be given, such as multistable anisotropic Riesz-Bessel random

fields or the class of linear multistable random fields defined in [13].

Corollary 5.4 (Multistable versions of harmonizable operator scaling random fields). Let
E be a real matriz of size d x d such that minyespp R(X) > 1. Let us consider p, and 7, as defined in

Ezample 2.1. Let us also consider v : RY — [0,00) a continuous, Et-homogeneous function such that

w(g) 7& 0 f0r§ 75 0. Then we set
folu, &) = <ei<“’5> - 1>¢(5)—1—q(E)/a
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with q(E) = trace(E). Let m be a Lebesque density a.e. positive on R?, (€ns Ty Gn)p>1 be as in
Assumption 5 with v the Lebesque measure and consider a function o : R? — (0,2). Therefore, the

multistable random field

—+00
Sm(w) = 3T £ (u, &0)mi(En) Mg,

n=1

is well-defined on R*. Moreover if o € Hop,, (Rd, 1,0), then for any ug € R? and ¢ > 0, there exists

r € (0,1] such that almost surely

|5 () = Sin(v)
(U - v)‘l/a(u0)+1/2+8

sup < 400.

uweB(ug,r) T, (u — v)|log 7,
uF v
Proof. See Appendix, Section D.3. O

Remark 5.3. In particular, when E =1d, 7, is the Euclidean norm and we obtain an upper bound of

the modulus of continuity of multistable versions of fractional harmonizable stable fields.

A Proof of Proposition 2.1

The proof of Proposition 2.1 is based on the following lemma.

Lemma A.1. If Z is a complex-valued sub-Gaussian random variable with parameter s € (0,+00),

then

2

Vt € (0, +00), P(|Z] > t) < de” 52,

Proof. Let t € (0,400). Then,

P(|2] > t) < ]P’<|8%(Z)| > ;) +IP’<|%(Z)| > ;)

Since Z is sub-Gaussian with parameter s, R(Z) and (Z) are real-valued sub-Gaussian random

variables with parameter s. Then applying [16],

max (IP’(]%(Z)] > ;),]P’O%(Z)] > ;)) < 2exp <—;:2>

which leads to the conclusion. O
Let us now prove Proposition 2.1.

Proof of Proposition 2.1. Let t € (0,400). Proposition 2.1 is straightforward if ||la||,, = 0, that is if
a = 0. Then, in the following we assume that a # 0. Since the sequence (gy),,~; is symmetric, by the

Lévy inequalities (see Proposition 2.3 in [22]), for any M € N\{0},

P M
P| su a > tlla < 2P a > tlla .
(1SPEM 5 g > 1 ||£2> (g ua| > 1] ||£2>
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We now prove that Z%: 1 @ngn is sub-Gaussian. By independence of the random variables gy,
Vs € €, B(eRETH ) H i (o).
Then since each g, is sub-Gaussian with parameter s = 1,

VzeC, E<em(zzn | Gngn ) < He| 2Planl® _ ol2 S0l lanl® (22)

n=1

1/2
Therefore, for any integer M, Eﬁi | Gngn is sub-Gaussian with parameter sy = (ZM |an\2> .
Since a # 0, for M large enough, sp; # 0 and then applying Lemma A.1,

& t2all?
02
vVt >0,P| sup Zangn > t||aH <8exp [ ——— .
1<P<M | 8ss
Then, for M large enough,
P 2
vVt >0,P| sup Zangn > t|]a|| <8 ¥
1<P<M |“—

since 0 < 83, < ||a||j2. Assertion 1. follows letting M — 4oc0.

Let us now prove Assertion 2.. Let us first assume that there exists N € N\{0}, such that
Vn > N, a, = 0.

Then, according to the previous lines, Zn 1 OnGn = Zgzl angn is a sub-Gaussian random variable

N 1/2 oo 1/2
SN = (Z |an|2) = (Z |an|2> = llall2-
n=1 n=1

Therefore to prove Assertion 2., we now assume that

with parameter

VN € N\{0},3n > N, a, # 0,

so that Z N | n[ # 0 for any integer N > 1. Then, applying Assertion 1. replacing a,, by a,1l,>n,
we have
p B
Ve > 0, VN € N\{0}, P sup Z Ungn| > ¢ | <8c STalylenl®
P>N | =%
Since Ha||j2 = 37 |an|* < 400, this implies that (Zgil angn)N is a Cauchy sequence in probability.

Then, by Lemma 3.6 in [17], the series "> ang, converges in probability. By Ité-Nisio Theorem
(see [22] for instance), this series also converges almost surely, since the random variables g,, n > 1,
are independent. Moreover, letting M — 400 in (22) and applying Lebesgue monotone convergence
Theorem, we obtain that Y"1 a,g, is sub-Gaussian with parameter HaHﬂ. We conclude the proof

noting that

+o00 P 9
_t=
vt >0, IP’( nzlangn > tHaHZQ> < p(;g nzlangn > tHa!]ﬂ) <8 F.
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B Main results on conditionally sub-Gaussian series

B.1 Proof of Theorem 3.1

Let us recall that zg € K4 = H?Zl[aj, bj] C R%. We assume, without loss of generality, that
V1<j<d, a; <bj.

Actually, if some a; = bj, studying (Sn)y>; and its limits S on Ky, we identify them as random fields

defined on Ky C R? for d’ < d. Note that if a; = b; for all 1 < j < d, there is nothing to prove.

We also assume that vy(w) € (0, 1), which is not restrictive and allows us to apply Equation (8) as

soon as |z —y|| < y(w) (with ¢,, and c,, which do not depend on 7).

First Step We first introduce a convenient sequence (D,, ).~ of countable sets included on dyadics,
which is linked to the quasi-metric p. It allows to follow some arguments of the proof of the Kol-
mogorov’s Lemma to obtain an upper bound for the modulus of continuity of S.

For any k € N\{0} and j = (j1,...,ja) € Z%, we set
J o
Ty = oF and Dy = {:c,w. 1JEZL }
For any k € N\{0}, we then consider
v, = inf {n € N\{0} : cmdﬁ/ZQ*"ﬂ < 24“}

where the constant c, , is given by Equation (8). Choosing c,, large enough (which is not restrictive)
and following the ideas of Step 1 of the proof of Theorem 5.1 of [7], one easily checks that (vx);>; is

an increasing sequence such that

lim k/v,=H.
k—+o0 / ko
In particular, the sequence (D,,),-, is increasing and D = (2 Dy = U} D,,. Let us note that

since a; < b; for any 1 < j < d, DN Ky is dense in K.
Moreover one also checks that for k large enough, D,, N K, is a 27k net of K, for p, which means that

for any = € K, there exists j € Z? such that p(z,z,, ;) < 27%, with z,, ; = j /2" € K.
Second Step This step is inspired from Step 2 of [7, 8]. The main difference is that we use Proposi-
tion 2.1 to obtain a uniform control in N.

For k € N\{0} and (i, ;) € Z¢, we consider

Ef; = {w tSup [SN(Zyy,i) — SN (Tuy,5)| > 8(@uyis Tuy5) @(ﬂ(wuk,z‘a%k,j))}

N>1
1
@(t) = 1/8Adlog 7 t>0, (23)
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for A > 0 conveniently chosen later. We choose ¢ € (0,1) and set for k£ € N\{0},

2
Gp=2""0% T = {(i,j) S (Zd N 2Vde> £ (Tupis Ty ) < 5k} (24)
and
Ey= |J EI;
(ivj)EIk

Since ¢ is a decreasing function and s > 0, for any (i,7) € I

E”<Efj) < P| sup [Sn(zyy,i) — SN (@uy5)| > (T s Tuy ) 0(0k) |-
N>1

Since (gn)n>1 is a sequence of symmetric independent sub-Gaussian random variables with parameter

s = 1, conditionning to (VVn)n21 and applying Assertion 1. of Proposition 2.1, one has
2
Va,y € Kq, ]P’(sup |Sn(z) — Sn(y)| > ts(x,y)) <8¢ §
N>1

by definition of s and Sy . Then,

2
P<Ezkj) <8e so(ésk) < e~ Ad(1-0)klog2.

Let us note that there exists a finite positive constant ¢; € (0, +00) such that
a
vk € N\{0}, card I, < ¢, 224517
since Kg C R? is a compact set and since p satisfies Equation (9). Moreover, according to the first

step,

lim E:ﬁ_

Hence, there exists a finite positive constant ¢, such that

S < = 2 1-6
> P(E) <Y > P (Efj) <e, Ze7<A(1*5)*E+T>kdlog2.
k=1

k=1 (i,§)el,, k=1
+oo
Therefore, choosing A > % - % and 0 small enough, Z P(E)) < +00, such that by the Borel-Cantelli
B k=1
Lemma,
+00 +00
P(U N E;) =1.
k=1t=k

Then, by definition of Fj and ¢ and by Assumption 2, there exists an event on with IP’(Q;EO) = 1 such
that, for any w € €, there exists k*(w) such that for every k > k*(w) and for all z,y € D,, with
z,y € B(xo,y(w)) N Kq and p(z,y) < 6 = 27170k,

sup |Sn(x) = Sn(y)| < Cpl(a,y)’|log(p(w, y))|"+ /2. (25)
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Third Step: In this step we prove that (25) holds, up to a multiplicative constant, for any x,y € D
closed enough to zy. This step is adapted from Step 4 of the proof of Theorem 5.1 in [7], taking care
that (25) only holds for some z,y € D,, N K; randomly closed enough of xy. Let us mention that
this step has been omitted in the proof of the main result of [8] but is not trivial. We then decide to
provide a proof here for the sake of completeness and clearness.

Let us now fix w € on and denote by x > 1 the constant appearing in the quasi-triangle inequality

satisfied by p. We also consider the function F' defined on (0, 4+00) by
F(h) := hP|log(h)|"1/2.

Observe that F' is a random function since 8 and 7 are random variables. Then, we choose ky =

ko(w) € N such that the three following assertions are fulfilled:
(a) F' is increasing on (0, dy,], where y is given by (24),
(b) for all k > ko(w) Dy, N Ky is a 27 net of K for p
(c) 2M08k, 11 > 3K2.

Up to change k*(w), we can assume that k*(w) > ko and that

1) 2 (55 )UH =), (26)

2
3K=c,,

where H and c,, are defined in Equation (8).

Let us now consider x,y € D N Ky such that x # y and

max ([l — zol|, [y — o) <
Then, by definition of r*(w), =,y € B(zo,7*(w)) N K4 C B(zo,v(w)) N K4 and
3'%202,2”*7; - yHE < 5k*(w)'

Note also that ||z — y|| < 29*(w) = r*(w) < v(w) < 1. Hence, the upper bound of Equation (8) leads
to

3k%p(%,y) < Ok (w)-

Then, there exists a unique k£ > k*(w) such that
Spr1 < 3r%p(x,y) < O (27)

Furthermore, since z, y € DNKy, there exists n > k41 such that x,y € D, ,NKgand for j = k,...,n—1,
there exist z) e Dy, N K4 and y(j) € D,; N Kq such that

p(w,a;(j)> <277 and p(y, y(j)> <277, (28)
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Let us now fix N > 1 and focus on Sy(x) — Sy (y). Then, setting (™ = z and y™ =y,

n—1

Sn(@) = Sn) = (Sw(2®) =55 (u®)) + 3 (Sn(e90) — 5w (=) (29)

J:
n—1
S (5 -5 ).
=k
The following lemma, whose proof is postponed to the end of the section for the sake of clearness,
allows to apply (25) for each term of the right hand side of the last inequality.

Lemma B.1. Choosing k*(w) large enough, the sequences (x(j)) satisfy the three

k<j<n N0 (y(j))ksmz
following assertions.

1. 2U) y9) € B(zg,y(w)) for any j =k,...,n,
2. for any j =k, ...,n — 1, max(p(z+D, s), p(y3+D, 4 ) < 6511,
3. p(z® y*)) < 6.

Therefore, by Assertion 1., up to change k*(w), Equations (25) and (29) lead to

[Sn(z) = Sn(y)| < C (F (p(x(k),y(k))> n nzl [F <p (xmn, xm)) Y F <p <y<j+1>,y<j>)>}> _
j=k

Since F is increasing on (0, 0k, ] and since j > ko, by Assertions 2. and 3. of Lemma B.1,

n—1
|Sn(z) = Sn(y)| < C (F (P(x(k),y(k))) + QZF(5J+1)> ,
j=Fk
which implies, by definition of F' that

Sn(@) = Sx ()] < C(F (p@®,y™)) + 2CF(0r41) ),

where

400
Clw) =23 67 () + 1ymast@+1/20) o yog
Jj=0

since 8 > 0 and J; = 2-(1-9)J with § < 1. Then, since F is increasing on (0, dy), by Assertion 3. of
Lemma B.1 and Equation (27), we get

|Sn(2) = S (y)| < C(1+2C)F(3k%p(x, 1)),

for every N > 1 and z,y € DN B(xp,7*(w)) N Ky.

Therefore, by continuity of p and each Sy and by density of DN Ky in Ky
[Sn(2) = Sn(y)] < C(1+20)F(3k%p(a, ), (30)
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for every N > 1 and z,y € B(zo,7"(w)) N Kg.

Fourth Step: Uniform convergence of Sy. Let us now consider

o = UDD {Nlili1m Sn(u) = S(u)} na,,.
Observe that IP’(Q; 0) = 1. Let us now fix w € € . Hence, by Equation (30), the sequence
(SN(-)(w)) yen» Which converges pointwise on D N B(zg,v*(w)) N Kg is uniformly equicontinuous on
B(xo,7*(w)). Since DN B(xg,7*(w))N Ky is dense in B(xg, v*(w)) N K4, by Theorem 1.26 and adapting
Theorem 1.27 in [30], (Sn(-)(w)) yey converges uniformly on B(zo,v*(w)) N K4. Therefore, its limit S
is continuous on B(xg,v*(w)) N K4. Moreover, letting N — 400 in (30) (which holds since w € on)»
we get

|S(2) = S(y)| < C(1+20)F(36%p(w, y)), (31)

for every x,y € B(xo,7*(w)) N Ky, which concludes the proof. O

To conclude this section, let us now prove Lemma B.1.

Proof of Lemma B.1. Let us first observe that (™ = x € B(zg,v(w))NKg and y™ =y € B(zo, y(w))N
K,4. Let us now fix j € {k,...,n — 1}. The lower bound of Equation (8) leads to

p(z),z) 1/H

o o] < ot = o] + 12 0l < =
Caq

+ [z = ol

Since xg € B(xg,r*(w)/2) with r* satisfying Equation (26) and since p(a:(j),x) <277 with j > k >

k*(w), we have o
Hx(j) B DCOH < 2—;22/H N ’Y(QM)'

Then, choosing k*(w) large enough, zU) € B(xzg,v(w)) for j = k,...,n — 1. The same holds for 3.
Assertion 1. is then proved.

Let us now observe that since 7 > kg and since kK > 1,
295541 > 208 11 > 3k% > 3k (32)

by definition of ko (see the third step of the proof of Theorem 3.1). Then, using the quasi-triangle
inequality fulfilled by p and (28), we obtain that

p(a:(j+1),x(j)) < 3k2-UFD < % < 0jt1-

Since the same holds for p(y(j+1),y(j)), Assertion 2. is fulfilled. Moreover, applying twice the quasi-
triangle inequality fulfilled by p and Equations (27), (28) and (32) (with j = k), we obtain

p(a® y ")y < K221 + p(x,y)) < 32p(x,y) < O,

which is Assertion 3. O
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B.2 Proof of Theorem 3.2

Let us first observe that Theorem 3.1 holds. Then, for almost w, up to choose v smaller, the sequence
of continuous functions (Sx(-)(w))yey converges uniformly on B(zg,y(w)) N Kg, which implies that
each Ry(-)(w) is continuous on B(zg,v(w)) N K4. As in the proof of Theorem 3.2, we assume without

loss of generality that K; = H;l:l[aj, b;] with a; < b;.

The proof of Assertion 1. is quite similar to the proof of Equation (30), see Theorem 3.1. Therefore,
we only sketch it.

Let (vk)p>; be the sequence introduced in Step 1 of the proof of Theorem 3.1. For k € N\{0},
N € N and (4, ) € Z¢, we consider

B = {w RN (200) = B (@u)| > V108N + 28 (265 T) 9005 7)) |
with ry defined by (10) and ¢ by (23). Then, we replace in Step 1 of the proof of Theorem 3.1 the set
FEi by
“+o0o
k,N

= U B
with I and 0y defined by (24). To bound P(Ef’JN) we proceed as in the proof of Theorem 3.1 except
that we apply Assertion 2. of Proposition 2.1 instead of Assertion 1. Then, choosing the constant A,
which appears in the definition of ¢, and ¢ € (0,1) such that

A(1—5)—§I+1];(5>0 and  A(l1—9)log2>1
and following Step 1 of the proof of Theorem 3.1, we obtain that
+00 +oo +oo
ZP(EIQ-) < Z 9~ A(1-0)logN _ ., Z N-AQ-8)log2 _ | o
k=1 N=2 N=2

with ¢, a finite positive constant. Then, by Borel-Cantelli Lemma, the definition of ¢ and Assumption
3, almost surely there exists an integer k*(w) such that for every k > k*(w), for all N € N, and for all
z,y € Dy, with 2,y € B(xo,v(w)) N Kg and p(z,y) < 6 = 2710

|Ry(x) — Rn(y)| < Cb(N)+/log(N + 2)p(z, y)ﬂ’ log(p(z, y))’n—f—l/?'

In addition, replacing in Step 2 of the proof of Theorem 3.1, Sy by Ry (which still be, for almost w,
continuous on B(zg,v(w)) N K4), we obtain that for almost w, there exists v* € (0,7), such that

|Ry () — Rn(y)| < Cb(N)/log(N +2)p(x,y)”|log(p(z, y))|"/2. (33)

for every N € N and z,y € B(z,7*(w)) N K4. This establishes Assertion 1.

Let us now assume that Equation (12) holds. Since
[By(z)] <[Rn(z) — Ry (o)l + |Bn(20)],

Assertion 2. of Theorem 3.2 follows from Equations (33) and (12) and the continuity of p on the
compact set B(xg,v(w)) N Kq. The proof of Theorem 3.2 is then complete. O
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C Shot noise series

C.1 Proof of Theorem 4.1

Let (gn)n21 be a Rademacher sequence, that is a sequence of i.i.d. random variables with symmetric
Bernoulli distribution. This Rademacher sequence is assumed to be independent of (T},, X,,) n>1- Lhen,
by independence and also by symmetry of the sequence (X5),,>1, (Xngn)n>1 has the same distribution
as (Xn),>; and is independent of the sequence (7},),,51-

Let us now set

N
Wo(a)=T7Y2X, and Sy(a)= ZWn(a)gn,

n=1

so that {S}(a), N > 1} has the same finite distribution as {Sn(c), N > 1}. Moreover, since

N N
S Wa(a)? = T2 X2,
n=1 n=1

with X,, € L? (with p > 0), Assumption 1 is fulfilled on any K = [a,b] C (0,min(2,2p)) (see [32] for
instance).

Let us now fix a,b € (0, min(2,2p)) such that a < b and remark that, for any «, o’ € [a,b], by the
Mean Value Theorem, almost surely, there exists ¢, € (a,b) such that

-1/« —1/a/ | c
(T = 1) = ST (nTy) (= o).

n

Let us fix o’ € (0,a) and b/ € (b, min(2,2p)). Then, there exists a finite positive constant ¢; such that

almost surely, for all ¢ € [a,b] and n > 1,
1 / ’
ST T, < o max (T,;l/b TV ) (34)

It follows that, almost surely, for all o, o' € [a, b],
+o0 1/2
s(a, ) := (Z W (a) — Wn(o/)]2> < Cola — o], (35)
n=1

_ / _ / 1/2
with Oy = ¢; (Z;g T2 X, 2+ S Ty e |Xn]2> < +oo since | X, |2 € LP with 2p > V' >
and d’, b € (0,2).

Let us now remark that for all o,/ € [a, b],

{(Si(@) = Siv(@), sl a)); N 2 13 = {(Sn (@) = Sx(a), s(a, )i N = 1},
This allows us to replace Sy by S% in the Second Step of the proof of Theorem 3.1. Then, the third
and the fourth step of this proof still hold replacing Sy by S% and the limit S by the limit S* since
each S} is continuous (as Sy is) and since S}, converges pointwise to S*. It follows that, for any
zo = ap € [a,b], almost surely, there exists v* € (0,1) such that (S (-)(w))yey converges uniformly

on B(ag,7*(w)) N [a,b] to S*(-)(w). Then, by covering the compact set [a,b], we deduce that almost
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surely, (Sy)yey converges uniformly on [a,b] to S*. Since this holds for any 0 < a < b < min(2, 2p),
Assertion 1. of Theorem 4.1 is established.

Let us now focus on the rate of convergence (Sy)ycy- Since almost surely the sequence of con-
tinuous random fields (S%)
by

nen converges uniformly on [a,b], for all N € N the rest R}y, defined

+oo
Ry():= Y. 1;Yx,,
n=N+1

is also continuous on [a, b]. Remark also that we have, for all o,/ € [a,b] and N € N,
*k * d
(Ry(a) = Ry(d/),rn(a, @) = (Ry(a) = Ry (o), rv (e, o)),

where Ry () = Y011 T X g = S(a) — Sy(a) and

+o00 9 1/2

n=N-+1

As done for Sy, the previous lines allow to replace Ry by R} in the proof of Theorem 3.2. Moreover,
applying as previously the Mean Value Theorem and Equation (34), we obtain that almost surely, for
all N € N| and o, o € [a, ],

+00 +oo 1/2
rN(a,o/) < cﬂa—o/[( Z Tn_Q/b |Xn|2—|-ZTn_2/a !Xn|2> (36)
n=N+1 n=1

where b’ € (b, min(2,2p)) and a’ € (0,a). Let us now fix p’ > 0 such that 1/p’ € (0,1/b—1/min(2p, 2)).
Up to change ', we assume without loss of generality that 1/p’ € (0,1/0' — 1/ min(2p,2)). Then, by

Theorem 2.2 in [11], almost surely

“+oo
sup N2/¥' Z T2 X, |° < +o0
N20 n=N+1

since X2 € LP with p > b'/2 and b'/2 € (0,1). Moreover, since a’ > b, 1/p’ € (0,1/a’ — 1/ min(2p, 2))
and then by Theorem 2.2 in [11], almost surely

+o0o
sup N?/7' Z T2 X, 2 < +00
N20 n=N+1

Therefore, Assumption 3 is fulfilled for all o = ag € [a, b] with b(N) = (N + 1)~'/#'. Note also that
by Theorem 2.1 in [11], for all g = ag € [a, b], almost surely

+oo
sup NP’ Z T,V X, | < oo
N20 n=N+1

Therefore, applying Theorem 3.2 (substituting Ry by RY), for any o = ag € [a,b], almost surely
there exists v* € (0, 1) such that

sup sup N |Ry ()] < 400
NeN aeB(ap,v*)N|a,b]
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Then, by covering the compact set [a, b], we deduce that almost surely,

sup sup NP |Ry(a)| < +oo,
NeN agla,b]

which concludes the proof. ]

C.2 Modulus of continuity and rate of convergence

This section is devoted to the proofs of the results stated in Section 4.2. Let us first establish Theo-

rem 4.2.

Proof of Theorem 4.2. Let xo = (ap,uo) € Kq41 = [a, b] X H;l:l[aj,bj] c (0,2) x R%.

Let us assume that p > b/2 and consider s the conditional parameter defined by (7). Then, for any
T = (a,u) € Kd+l and Yy = (O/,’U) € KdJrl:

s(z,y) < s1(z,y) + s2(2,9), (37)
where
oo 1/2
si(z,y) = <Z T, %% V() — Vn<y>l2>
n=1
and

+o00 2 1/2
s2(a,y) = (Z (T —17) |Vn<y>!2> -

n=1

Let us now remark that almost surely, there exists a finite positive constant ¢; such that for all n > 1,

Wrél[?z] T Y7 < ¢ max <Tn_1/b, Tn_l/a). (38)

Hence, for any z,y € Kq41,

+00 400 1/2
s1(z,y) < eip(a,y)’logmin (p(z,y),1/2)|" (Z T2 Y, + ZTJ”"\YAQ>
n=1 n=1

with
Yn _ sup |Vn(x) B Vn(y)‘

z,y€EK 411 p(l‘v y)ﬂ’mln (p(CC, y)v 1/2) |17 ‘
z#yY

Since the map h — hP|log h|" is increasing around 0, Equation (15) implies that

2p

]E(YnQp) =E sup V(@) — Va(y)| < 4-00.

z,y€Kq41 p(x, y)ﬂuog min (,O(SU, y)7 1/2) |77
TAY

This follows from a covering argument of the compact set K41 and Equation (8). Then, since
2p > b > a and since the random variables Y,,, n > 1, are i.i.d, Theorem 1.4.5 of [32] ensures that
ST, 2"y, 2 < +oo and ST, /9,2 < 400 almost surely. Therefore there exists a finite

positive random variable Cs such that
s1(,y) < Cap(z,y)”[log min (p(z,y),1/2)|"
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almost surely for any z,y € Kgy1.

Let us now focus on sa. Observe that |V, (y)| < X,,, with
X, = |Vn(ﬂfo)‘ + oY,

for o = sup.eg,,, p(z0, 2)°|log min (p(z0, 2)),1/2|?. Let us remark that by continuity of p on the
compact set {xg} X Kgi1, ca < +00. Moreover, since V,,(x9) € L* by assumption, (X,),>1 still be a
sequence of i.i.d. variables in L? and following the same lines as for Equation (35), we obtain that,
almost surely, for any z,y € Kgy1,

32($,y) < 02‘04 - 0/’7

up to change the random variable Cs. Let us also note that by Equation (9), there exist finite positive

constants ¢z and ¢4 such that for any = = (a,u) € Kgy1 and any y = (o/,v) € Kgy1,
o — o) < espla, )T < capla,y)
since H < 1. Hence, since 3 € (0, 1], up to change Cs, almost surely, for any x,y € Kqy1,
s(z,y) < Cap(x,y)”|logmin (p(=,y), 1/2)["> "),

This, combined with Remarks 3.3, leads to Assertion 1. of Theorem 4.2.

Let us now prove Assertion 2. of Theorem 4.2. Let us choose p’ > 0 such that 1/p’ € (0,1/b —
1/ min(2,2p)). Then, replacing in the previous lines s by the parameter ry and Theorem 1.4.5 of [32]
by Theorem 2.2 of [11], we obtain: there exists C3 a finite positive random variable such that almost

surely, for any x,y € K441, and for any N € N,
(22 1) < Cs(N + 17 p(, 1) log (i, )P 70,

In other words, Assumption 3 holds with v* = 1 deterministic and b(N) = (N + 1)~'/#'. Note also
that by Theorem 2.1 in [11], almost surely

sup N7 | Ry ()| < +o00.
N>0

Therefore, by Theorem 3.2 and a covering argument, almost surely,

sup NP sup |Ry(z)] < 400,
NeN IEGKd+1

which concludes the proof. O
Let us now prove Proposition 4.3.

Proof of Proposition 4.3. Since Equation (8) is fulfilled, there exists r € (0,1) such that p(x,y) < hg
for all z,y € K411 with ||z — y|| < r. Then, the assumptions done imply that

Xi1:= sup ’Vl(? _ Vl(y)| 7 < sup 7ﬁg(h) 5= G.
eyeKar1 P Y)Pog p(x, Y)|" ~ he(o,no) PP |log bl
o<||z—y|<r
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Note that assuming hg = 270 with an integer ky > 1 (which is not restrictive),

G = sup sup @

k>ko he(2—+—1,2-+) F'(R)
where the function F' is defined by
F(h) := h®[log h|".

Therefore, up to choose hy small enough, using that F' is increasing on (0, hg] and the monotonicity of

g, we obtain:

+o00 2 +o0 — 2p
g(h)) Y (9(2 k))
2p n_1)2p .
“r= k:zko he(z—sl?—pl,z—k] (F(h) < max(2, 1) k:zko F(27F)

Moreover, up to choose hg small enough (and then r smaller), by assumption,
Vh € (0, ho), E(G(h)*) < F(h)*[logh| "=,

Therefore, we have

+oo
E(XP) < E(G?) < max(2',1)7 Y [klog2| ™% < +o0,
k=ko
which concludes the proof. O

D Application to LePage random series
D.1 Proof of Proposition 5.1

Let K411 = [a,b] X H;-lzl[aj, b;] € (0,2) xR?. Let us fix an integer p > 1 and consider 219) = (o, u)) €

K41 for each integer 1 < j < p. Then, we set ¥ = (33(1), ey x(p)). Choosing
S = {g e R m(€) > 0} x C,

we can define Hz : (0,+00) x S — CP by

H(r. (€)= (172 £, @V, ) m(&) g, 7 Vor g, ) ) m(e) ™ rg).  (39)
Let us note that, N
S HalTo (€s9n)) = (S (20,0 S (27))) s
n=1
and then converges almost surely to (Sm (ac(l)), ceey S (x(p))). Then, since g; is symmetric, setting P,

its distribution, Theorem 2.4 of [31] ensures that

YA=(AL,...,\) €CP, ¥z € C, E(em(i?:l Aﬁm@‘”))) = exp (Izx(2))

Iza(z) = /(0 s (em(EQ’Hf(T’(g’g))» —1—iR(Z(\, Hz(r, (57g))>1|§R(E<)\,Hf(r,(§,g))>)|§1))m(g)dry(dg)lpg(dg)'
,+00) X
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Then, by definition of Hgz, using the change or variable t = rm(§), and the fact that m(§) > 0 for

v-almost every &, we get

Iza(z) = / (em(EQ’J’E(t’(g’g)))) —1—iR(Z(\, Jz(t, (£,9) e, Jf(t,(g,g))>)|g1))dtV(df)Pg(dQ)
(0,+00)xREXxC

Te(t, (€.9) = (7 f,, @V, €) g, 17 f, (@, €)g).
Therefore, Iz 5 does not depend on the function m, and then neither does the distribution of the vector
(Sm (x(l)), By (x(p))). Since this holds for any p and &, Assertion 1. is established, that is replacing

m by m and then &, by &,,

(S (@)aercrss = (Sa(@))percy,

Let us now consider the space B = C(K441,C) of complex-valued continuous functions defined on
the compact set K4y1. This space is endowed with the topology of the uniform convergence, so that
it is a Banach space.

Let us assume that Sy belongs almost surely to H,(K4y1,0,1) C B. For any & = (a:(l), e ,m(p)) € KP,
in view of its characteristic function given above, the vector (Sm (x(l)), ey S (a:(p))) is infinitely

divisible and its Lévy measure is given by

) = [ Lo (€.9) dedee o

- / 1 g0y (H(r, (£, 9)))m(€)drd€P, (dg)
(0,40) xS

for any Borel set A € B(CP). We first assume that (a,u) +— fa(u,&) belongs to B for all £ € R? so
that we may define
H: (0,400) xS — B
(. (€9) = ()= r Ve fa(u, OmE ™).

Since Hz is defined by (39), one checks that (S (z))

variable with Lévy measure defined by

weK gy, 15 8 B-valued infinitely divisible random

F(A) = A Loy (oy (H(r, (€, 9)))m(€)drdéPy(dg), A € B(E).
Then, by Theorem 2.4 of [31],

N
> H(Tn, (bns gn))
n=1

converges almost surely in B as N — +o0c. Then, by definition of H, the sequence (S, n) 5 cn converges
in B almost surely. Therefore, its limit .S;, is almost surely continuous on Kg.1.
Let us now consider D C K41 a countable dense set in K411. Since almost surely Sy belongs to

HP(Kd-i-l?ﬁvn)v we get that

su [Sin(z) — S (y)] -
xzyprP(ﬂﬂ 1)8log (min (p(z, y),1/2))|" <+
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almost surely. Therefore, almost surely

sup [Sm (%) = Sm(y)] < too

ryeD p(z,y)?log (min (p(z, y),1/2))"
z#y

. . . dd N e .
since D is a countable set and since Sy, I Sr- Then, by continuity of p, by almost sure continuity of

Sm and by density of D on K441,

o [Sim(@) = S (y)]

T,y€Kq41 p(SE, y)ﬁ“Og (mln (,O(IL', y)? 1/2))‘77
x Ay

< +00

almost surely, that is Sy, belongs almost surely to H,(K441,3,n). This establishes Assertion 2. when
(o, u) — folu, &) is continuous for all £ € RZ.
Assume now that (o, u) — fo(u,€) is continuous for £ € R\N with v(N) = 0 and set

9a (1, &) := falu, E)1pa\n(§)-

Then, almost surely, for all = (o, u) € (0,2) x R? and all N > 1,

N
S (@) =3 T Vg0 (u, &)m (€)™ g,
n=1

and the conclusion follows from the previous lines since (o, u) — gq(u, ) is continuous on K411 for all

¢ € R%. The proof of Proposition 5.1 is then complete. O

D.2 Proof of Proposition 5.2

Let us first note that using Remark 5.1, we can and may assume without loss of generality that a1 = 1,

up to replace E by E/a; and 7, by 7‘}31//511.

Let us choose ¢ > 0 arbitrarily small and consider the Borel function 7 defined on R by

(€)= 1€ Ly <n + 7, (€) TP flog 7, ()] Lyga-

Observe that 7 is positive on R%\{0}. Then,

0<c:/ m(&)dé = ¢, + ¢,
R4

with
a= / HSHQOdg and € = / TEt (5)7q(E)‘10gTEt (5)’_1_Cd€.
€l<A

l1€]>A

Let us first observe that ¢, < oo since ap > 0. To prove that ¢, is also a finite constant, we need some

tools given in [28, 9]. As in Chapter 6 of [28], let us consider the norm |- ||, defined by

1
ol = [ [}o""
B 0
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where || - || is the BEuclidean norm on R%. Then, according to Chapter 6 of [28], | - ||, is a norm on R?

such that the map
U, (0,400) xS, — ]Rdt\ {0}
(r,0) — 70

is a homeomorphism, where

SEt = {5 eRd : ||€”Et = 1}

is the unit sphere for || - || ,. According to the change of variables in polar coordinates (see [9]) there
exists a finite positive Radon measure o, on S, such that for all measurable function ¢ non-negative
or in L'(RY, d¢),

+o0
_ Et q(E)-1
[ e = [ /S Plr¥ ), (d0)r 1P,

using the fact that ¢(F) = trace(E'). Applying this change of variables, it follows that ¢, < oo since
¢ > 0. Hence, m = m/c is well-defined and u(d§) = m(€)d¢ is a probability measure equivalent to the
Lebesgue measure. Then we may consider S,,(ap,u) defined by (16) for u € R? so that

dd
Xao f: daosm(a07 )

with dq, given by (17).
To study the sample path regularity of S, (a,-) on K4 = H?Zl[aj, b;], we apply Proposition 4.3
on Kgp1 = {ap} x K4 C (0,2) x R for
Vi(ao, u) = £, (u, &)m(&) =/

with f, ~defined by (19). We recall that here & is a random vector of R? with density m. Therefore
let us now check that assumptions of Proposition 4.3 are fulfilled.

For h > 0 and ¢ € R? we consider

g(h,€) = min(c,, [|KE€|| ., 1)[tay (6],

where ¢, > 0 is chosen such that |etwE) — 1] < ¢ 7 (u)E¢| zi- We consider the quasi-metric defined
on R by
p(a,u), (a',0)) = la — o/ + py(u,v),  V(a,u),(a’,v) € R x R,

which clearly satisfies Equation (8). By definition of Vi, g and ||- HEt , the random field G = (g(h, £1)) bepo +o0)

satisfies (7). and (7). of Proposition 4.3. It remains to consider assumption (7). Let
I0) =G0 = [ gl €m(©)' 2/ de. (a1)
Since 14, satisfies (20),

2
e ,1> o (6) 2E < Tu(h) + (k)

1) = [ m©)' = nin

Et

with
t |2 o —
nmy = et [ i e @R de
[€l<A ¢

E
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where A is given by the condition (20), and

Iy (h) = 02/6‘0_105’1 /Rd min <cEt

From Lemma 3.2 of [7] there exists C; > 0 such that for all h € (0,e™!]

2
,2) 7 (O log 7, (&) OO ge,
Et

hEtg‘

I, (h) < C1R*™ | log(h)[24—D).

Moreover, using again the change of variables in polar coordinates, there exists Co > 0 such that for
all h € (0,e7],
L (h) < Cyh2P|log(h)|(IHOE/a0=1),

Since § < a1, one can find C5 > 0 such that
I(h) < 03h2ﬁ| log(h)|2(1+o(1/o‘°_1/2). (42)

Hence, assumption (7). of Proposition 4.3 is also fulfilled and applying this proposition, it follows
that (15) is satisfied with # and n = 1/ag + ¢, for all € > 0. Then, by Theorem 4.2, almost surely
Sm € Hy(Kgt1,8,1/a0+1/2 +€). By definition of p and K41, this means that

Sm(a07 ) € HPE (Kd7 ﬂ? 1/0[(] + 1/2 + 8)'

Since dq, S (0, *) Jdd Xy, it follows that a.s.

C = sup ’Xao (u) — XOto (’U)’

< 400,
w,veD,utv Ty (u— U)B| log 7, (u — v)’l/ao+1/2+€

where D C K} is a countable dense in Ky = H;lzl[aj, b;]. So let us write 2* this event and let us define
a modification of X,, on K.

First, if w ¢ O, we set X7 (u)(w) =0 for all u € K. Let us now fix w € Q*. Then, we set
Xoo(u)(w) = Xop(u)(w),Yu € D.

Let us now consider u € Ky. Then, there exists u™ € D such that limy, 400 u(™ = u. Tt follows that,

X, (1) @) = Xz, (40 @)] < Cl)m (@™ = ul™)? 1o 7, (u® — )| H/e0t1/24,
so that (X oo (u(”))(w))n is a Cauchy sequence and hence converges. We set

X:(u)(w) = lim X7 (u(")) ().

n—-+o0o

Remark that this limit does not depend on the choice of (u(”))n. Observe also that X (-)(w) is then
well-defined on Kj.
Moreover, by continuity of 7,, we have therefore

Cw)= sup | X3 () (w) = X3, (v) (w)]
uweK g uo Te (u —v)P|log 7 (u — U)|1/a0+1/2+s

< 400
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for all w € © and X is continuous on Ky. To conclude the proof, let us prove that X7 is a
modification of Xo,. Since X7 (u)(w) = Xqoo(u)(w) for any w € Q* and any u € D, it is sufficient
to prove that X,, is stochastically continuous. Since m is positive and since p(d§) = m(£)d¢ is a
probability measure, by Holder Inequality, for u,v € R¢ we have

ao/2

/R Ny @8 = 1, (09| ds < ( /R g (0,6 = £y (0,€)F ey =20 d§>

S A e e

where I is defined by (41). Moreover, in view of Equation (42), I(7,(u — v))*/? — 0 as u tends to
v. Therefore it follows that X,, is stochastically continuous on R?, by Proposition 6.2.3 of [32]. This

conclude the proof.

D.3 Multistable random fields

This section is devoted to the proofs of the results stated in Section 5.3. Let us first establish Propo-

sition 5.3.

Proof of Proposition 5.3. Since p satisfies Equation (8), so does p. Then, Assumptions of Theorem 4.2
are fulfilled, which implies that (Sx)ycy converges uniforlmy to S on K41 = [a,b] x Kq. Therefore,
(S’N> ey COnverges uniformly to S on K since Sy (u) = Sy(a(u),u) and S(u) = S(a(u),u) and « is
continuous.

Moreover, by Theorem 4.2 and since S(u) = S(a(u), ), there exists a finite positive random variable

C' such that for any u,v € Ky,
[5(u) = 5(v)| < Co(a(u), 2(v)) log min (plw(u), 2 (v)), 1/2) ">+

where z(w) = (a(w), w). Moreover, by definition of p and since o € H;(Ky, 1,0), there exists a finite

positive constant ¢y such that
Vu, v € Ka, p(a(u), 2(v)) < e1(u,v),
Let us now recall that since p is continuous on the compact set Ky x Ky,

M= sup p(u,v) < +00
u,veKy

Then, up to change C, for all u,v € Ky,

S(u) — 8(v)| < Cp(u,v)°[log min (5(u, v), 1/2)[mex (1O+L/2

since h — h8|log min(h, 1/2) 10+1/2 i5 increasing around 0 and bounded on [0, M]. Assertion 1.
is then proved. Moreover, Assertion 2. is a direct consequence of Assertion 2. of Theorem 4.2. The

proof is then complete. O

Let us conclude this paper by the proof of Corollary 5.4.
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Proof of Corollary 5.4. Let Kg = H;izl[aj, bj] C R? and up € K4. Let us set

a=mina, b=maxa and Ky = [a,b] x K4 C (0,2) x R?
Ky Ky

Let us first note that Assertion 5. of Assumption 5 is fulfilled by f, with K; = [a,b] and then S is

well-defined. Let us now consider p, and 7, as defined in Example 2.1. Then we set

~ _ C¢
@ g, O

with ¢ > 0 a parameter chosen arbitrarily small. Therefore, let us consider

Valew) = fo (& )in(€) ™/

where ({n) . is a sequence of i.i.d. random variables with common distribution fi(d§) = m(§)d¢.
n>
The sequence (én) - is assumed to be independent from (7}, gn),,~;- Then, Assumption 4 is fulfilled.
n> >
Moreover,
Vo, u) — Vi, (o/,v)| < Vi, 1) = Vi (o, 0)| + Vi, 0) = Vi, (o/, ) ‘
Let us set
‘f/l(a,u)—f/l(a,v)‘ ‘f/l(a,u)—f/l(a’,u)‘
Ci= sup sup 7 and Cy= sup sup ;
u‘,"UEIT(i a€la,b] P (u7 v)“Og Pr (uv U)’ a,a Ela,b) ueKy ’O‘ - ‘
0<|lu—vll<r a#al

where r > 0 and the choice of n € R is given below. Then, for any = (a,u) € K441 and any
y = (/,v) € K441 such that ||z —y| <,

Vi(z) = Vily)| < (C1+ Co)(pp(u,v)llog py(u, v)|" + |a — o|)

< a(Cr+ Co)p(z,y)llog p(z, )|
where ¢; € (0,400) is a finite constant and p(z,y) = p,(u,v) + |a — &/|. Then, to apply Assertion 1.
of Proposition 5.3 with p = p, and § = 1, it suffices to establish that C;, Cy and ffl(a(uo),uo) e L?
(since b < 2).
Let us first deal with V;(a(ug), ug). By definition of V; and 7,

E(‘VI(@(UO)7UO)‘2> - /Rd

Then, using polar coordinates associated with E? (see [28]),

E((ﬁ(awo),uo)f) <o 7 i ([

with co a finite positive constant. Hence, Lemma 2.1 of [9] proves that Vi(a(ug),uo) € L? for any

. 2
oi{u0.€) _ 1‘ b(£)22(E) (o)

Et

(§>(2/a(uo)—l)q(E) ‘lOg TEt (5) ‘ (1+<)(2/Q(UO)*1)d£.

7 1)Qtfs,logt|2<1+<>/a<uo>—1dt

choice of (.
Let us now consider the random variable C7. By homogeneity and continuity of ¢, there exists a
finite positive constant cg such that for any u,v € Ky,

sup fﬁ(a,u) — Vl(oz,v)’ < c3
a€la,b]

ei<u_v7gl> — 1 Zl
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with

Zy =T, <§1)71 max (‘bg T, (51) ‘(1+C)/a’ log 7., <é1) )((1+§)/b)‘

Combining the proofs of Propositions 4.3 and 5.2, we obtain that for any £ > 0, choosing 7 small

enough,
} 2
eilu—vé1) _ 1|7,
E sup < 400,
ek pg(u,v)[log o (u, )|+
<|lu—v|<r

This implies that for any € > 0, C; € L? for n = 1/a + ¢ and ¢ well-chosen.
Let us now study Cs. Since Ky is a compact set, using polar coordinates and the Mean Value
Theorem, we have

Ssup
veKy

V(e v) = Vi (o,0)| < esla—a'| 2,

with Zo = min (‘ T (&"n)Et
polar coordinates, one checks that Zo € L?, which implies that Cy € L?.

,1>Z1‘10g 7. (&n) + 65‘ and ¢4 and cs two finite positive constants. Using

Therefore, for any ¢ > 0, Assumptions of Assertion 1. of Proposition 5.3 are fulfilled for a well-
chosen ¢. This implies that almost surely, for any € > 0, Sy, € Hy, (Ka,1,1/a+1/e) with a = ming, o
Hence, for any € > 0, Sm € H_ B(uo,r) (w0, 1,1/a(uo) +1/2 + 1/¢) for r small enough. This concludes
the proof.

O
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