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Abstract
In this paper we study modulus of continuity and rate of convergence of series of conditionally
sub-Gaussian random fields. This framework includes both classical series representations of
Gaussian fields and LePage series representations of stable fields. We enlighten their anisotropic
properties by using an adapted quasi-metric instead of the classical Euclidean norm. We specify
our assumptions in the case of shot noise series where arrival times of a Poisson process are
involved. This allows us to state unified results for harmonizable (multi)operator scaling sta-
ble random fields through their LePage series representation, as well as to study sample path
properties of their multistable analogous.
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regularity.
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1. Introduction

In recent years, lots of new random fields have been defined to propose new models
for rough real data. To cite a few of them let us mention the (multi)fractional Brownian
fields (see e.g. Benassi et al. (1997)), the linear and harmonizable (multi)fractional stable
processes Stoev and Taqqu (2004); Dozzi and Shevchenko (2011) and some anisotropic
fields such as the (multi)fractional Brownian and stable sheets Ayache and Leger (2000);
Ayache et al. (2009) and the (multi)operator scaling Gaussian and stable fields Biermé
et al. (2007, 2011). In the Gaussian setting, sample path regularity relies on mean square
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regularity. To study finer properties such as modulus of continuity, a powerful technique
consists in considering a representation of the field as a series of random fields, using for
instance Karhunen Loeve decomposition (see Adler (1981) Chapter 3), Fourier or wavelet
series (as in Kahane (1960); Ayache and Xiao (2005)). This also allows generalizations to
non-Gaussian framework using for instance LePage series LePage (1989, 1981) for stable
distributions (see e.g. Kôno and Maejima (1991a)). Actually, following previous works
of LePage LePage (1981) and Marcus and Pisier Marcus and Pisier (1984), Kôno and
Maejima proved in Kôno and Maejima (1991b) that, for α ∈ (0, 2), an isotropic complex-
valued α-stable random variable may be represented as a convergent shot noise series of
the form

+∞∑
n=1

T−1/αn Xn, (1)

with (Tn)n≥1 the sequence of arrival times of a Poisson process of intensity 1, and (Xn)n≥1
a sequence of independent identically distributed (i.i.d.) isotropic complex-valued random
variables, which is assumed to be independent of (Tn)n≥1 and such that E(|X1|α) < +∞.
When Xn = Vngn with (gn)n≥1 a sequence of i.i.d. Gaussian random variables indepen-
dent of (Vn, Tn)n≥1, the series may be considered as a conditional Gaussian series. This
is one of the main argument used in Kôno and Maejima (1991a); Dozzi and Shevchenko
(2011); Biermé and Lacaux (2009); Biermé et al. (2011) to study the sample path regu-
larity of some stable random fields. Another classical representation consists in choosing
Xn = Vnεn with (εn)n≥1 a sequence of i.i.d. Rademacher random variables i.e. such that
P(εn = 1) = P(εn = −1) = 1/2. Both gn and εn are sub-Gaussian random variables.
Sub-Gaussian random variables have first been introduced in Kahane (1960) for the study
of random Fourier series. Their main property is that their tail distributions behave like
the Gaussian ones and then sample path properties of sub-Gaussian fields may be set as
for Gaussian ones (see Theorem 12.16 of Ledoux and Talagrand (1991) for instance). In
particular they also rely on their mean square regularity.

In this paper we study the sample path regularity of the complex-valued series of
conditionally sub-Gaussian fields defined as

S(x) =

+∞∑
n=1

Wn(x)gn, for x ∈ Kd ⊂ Rd, (2)

with (gn)n≥1 a sequence of independent symmetric sub-Gaussian complex random vari-
ables, which is assumed independent of (Wn)n≥1. In this setting we give sufficient as-
sumptions on the sequence (Wn)n≥1 to get an upper bound of the modulus of continuity
of S as well as a uniform rate of convergence. Then, we focus on shot noises series

S(α, u) =

+∞∑
n=1

T−1/αn Vn(α, u)gn, x = (α, u) ∈ Kd+1 ⊂ (0, 2)× Rd,

with (Tn)n≥1 the sequence of arrival times of a Poisson process. Assuming the indepen-
dence of (Tn)n≥1, (Vn)n≥1 and (gn)n≥1, we state some more convenient conditions based
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on moments of Vn to ensure that the main assumptions of this paper are fulfilled. In
particular when Vn(α, u) := Xn is a symmetric random variable, one of our main result
gives a uniform rate of convergence of the shot noise series (1) in α on any compact
K1 = [a, b] ⊂ (0, 2), which improves the results obtained in Cohen et al. (2008) on the
convergence of such series. In the framework of LePage random series, which are partic-
ular examples of shot noise series, we also establish that to improve the upper bound of
the modulus of continuity of S, one has the opportunity to use an other series represen-
tation of S. On the one hand, our framework allows to include in a general setting some
sample path regularity results already obtained in Biermé and Lacaux (2009); Biermé
et al. (2011) for harmonizable (multi)-operator scaling stable random fields. On the other
hand, considering α as a function of u ∈ Rd, we also investigate sample path properties of
multistable random fields that have been introduced in Falconer and Lévy Véhel (2009).
To illustrate our results, we focus on harmonizable random fields.

The paper falls into the following parts. In Section 2 we recall definition and properties
of sub-Gaussian random variables and state our first assumption needed to ensure that
the random field S is well-defined by (2). We also introduce a notion of anisotropic
local regularity, which is obtained by replacing the isotropic Euclidean norm of Rd by
a quasi-metric that can reveal the anisotropy of the random fields. Section 3 is devoted
to our main results concerning both local modulus of continuity of the random field S
defined by the series (2) and rate of convergence of this series. Section 4 deals with
the particular setting of shot noise series, the case of LePage series being treated in
Subsection 4.3. Then Section 5 is devoted to the study of the sample path regularity of
stable or even multistable random fields. Technical proofs are postponed to Appendix
for reader convenience.

2. Preliminaries

2.1. Sub-Gaussian random variables

Real-valued sub-Gaussian random variables have been defined by Kahane (1960). The
structure of the class of these random variables and some conditions for continuity of
real-valued sub-Gaussian random fields have been studied in Buldygin and Kozačenko
(1980). In this paper we focus on conditionally complex-valued sub-Gaussian random
fields, where a complex sub-Gaussian random variable is defined as follows.

Definition 2.1. A complex-valued random variable Z is sub-Gaussian if there exists
s ∈ [0,+∞) such that

∀z ∈ C,E
(

e<(zZ)
)
≤ e

s2|z|2
2 . (3)

Remark 2.1. This definition coincides also with complex sub-Gaussian random vari-
ables as defined in Fukuda (1990) in the more general setting of random variables with
values in a Banach space. Moreover, for a real-valued random variable Z, it also coincides
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with the definition in Kahane (1960). Kahane (1960) called the smallest s such that (3)
holds the Gaussian shift of the sub-Gaussian variable Z. In this paper, if (3) is fulfilled,
we say that Z is sub-Gaussian with parameter s.

Remark 2.2. A complex-valued random variable Z is sub-Gaussian if and only if <(Z)
and =(Z) are real sub-Gaussian random variables. Note that if Z is sub-Gaussian with
parameter s then E(<(Z)) = E(=(Z)) = 0 and E(<(Z)2) ≤ s2 as well as E(=(Z)2) ≤ s2.

The main property of sub-Gaussian random variables is that their tail distributions
decrease exponentially as the Gaussian ones (see Lemma A.1). Moreover, considering
convergent series of independent symmetric sub-Gaussian random variables, a uniform
rate of decrease is available and the limit remains a sub-Gaussian random variable. This
result, stated below, is one of the main tool we use to study sample path properties of
conditionally sub-Gaussian random fields.

Proposition 2.1. Let (gn)n≥1 be a sequence of independent symmetric sub-Gaussian
random variables with parameter s = 1. Let us consider a complex-valued sequence a =
(an)n≥1 such that

‖a‖2
`2

=

+∞∑
n=1

|an|2 < +∞.

1. Then, for any t ∈ (0,+∞), P

(
sup

N∈N\{0}

∣∣∣∣∣
N∑
n=1

angn

∣∣∣∣∣ > t‖a‖
`2

)
≤ 8 e−

t2

8 .

2. Moreover, the series
∑

angn converges almost surely, and its limit

+∞∑
n=1

angn is a

sub-Gaussian random variable with parameter ‖a‖
`2

.

Proof. See Appendix, Section A.

Remark 2.3. In the previous proposition, assuming that the parameter s = 1 is not
restrictive since an can be replaced by ansn and gn by gn/sn when gn is sub-Gaussian
with parameter sn > 0.

2.2. Conditionally sub-Gaussian series

In the whole paper, for d ≥ 1, Kd =
∏d
j=1[aj , bj ] ⊂ Rd is a compact d-dimensional

interval and for each integer N ∈ N, we consider

SN (x) =

N∑
n=1

Wn(x)gn, x ∈ Kd (4)

where
∑0
n=1 = 0 by convention and where the sequence (Wn, gn)n≥1 satisfies the follow-

ing assumption.
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Assumption 1. Let (gn)n≥1 and (Wn)n≥1 be independent sequences of random vari-
ables.

1. (gn)n≥1 is a sequence of independent symmetric complex-valued sub-Gaussian ran-
dom variables with parameter s = 1.

2. (Wn)n≥1 is a sequence of complex-valued continuous random fields defined on Kd

and such that

∀x ∈ Kd, almost surely

+∞∑
n=1

|Wn(x)|2 < +∞.

Under Assumption 1, conditionally on (Wn)n≥1, each SN is a sub-Gaussian random
field defined on Kd. Moreover, for each x, Proposition 2.1 and Fubini Theorem lead to
the almost sure convergence of SN (x) as N → +∞. The limit field S defined by

S(x) =

+∞∑
n=1

Wn(x)gn, x ∈ Kd ⊂ Rd, (5)

is then a conditionally sub-Gaussian random field. In the sequel, we study almost sure
uniform convergence and rate of uniform convergence of (SN )N∈N as well as the sample
path properties of S.

Assume first that each gn is a Gaussian random variable and that each Wn is a
deterministic random field, which implies that S is a Gaussian centered random field.
Then, it is well-known that its sample path properties are given by the behavior of

s(x, y) :=

(
+∞∑
n=1

|Wn(x)−Wn(y)|2
)1/2

, x, y ∈ Kd, (6)

since s2 is proportional to the variogram (x, y) 7→ v(x, y) := E
[
|S(x)− S(y)|2

]
. In the

following, we see that under Assumption 1, the behavior of S is still linked with the
behavior of the parameter s. In this more general framework, a key tool is to remark
that conditionally on (Wn)n≥1, S is a sub-Gaussian random field and the random variable
S(x)− S(y) is sub-Gaussian with parameter s(x, y).

We are particularly interested in anisotropic random fields S (and then anisotropic
parameters s). Therefore, next section deals with an anisotropic generalization of the
classical Hölder regularity, that is with a notion of regularity which takes into account
the anisotropy of the fields under study.

2.3. Anisotropic local regularity

Let us first recall the notion of quasi-metric (see e.g. Paluszyński and Stempak (2009)),
which is more adapted to our framework.
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Definition 2.2. A continuous function ρ : Rd ×Rd → [0,+∞) is called a quasi-metric
on Rd if

1. ρ is faithful i.e. ρ(x, y) = 0 iff x = y;
2. ρ is symmetric i.e. ρ(x, y) = ρ(y, x);
3. ρ satisfies a quasi-triangle inequality: there exists a constant κ ≥ 1 such that

∀x, y, z ∈ Rd, ρ(x, z) ≤ κ (ρ(x, y) + ρ(y, z)) .

Observe that a continuous function ρ is a metric on Rd if and only if ρ is a quasi-metric
on Rd which satisfies Assertion 3. with κ = 1. In particular, the Euclidean distance is an
isotropic quasi-metric and its following anisotropic generalization

(x, y) 7→ ρ(x, y) :=

(
d∑
i=1

|xi − yi|p/ai
)1/p

where p > 0 and a1, . . . , ad > 0,

is also a quasi-metric. Such quasi-metrics are particular cases of the following general
example.

Example 2.1. Let us consider E a real d × d matrix whose eigenvalues have positive
real parts and τ

E
: Rd → R+ a continuous even function such that

i) for all x 6= 0, τ
E

(x) > 0;
ii) for all r > 0 and all x ∈ Rd, τ

E
(rEx) = rτ

E
(x) with rE = exp ((ln r)E).

The classical example of such a function is the radial part of polar coordinates with respect
to E introduced in Chapter 6 of Meerschaert and Scheffler (2001). Other examples have
been given in Biermé et al. (2007).

Let us consider the continuous function ρ
E

, defined on Rd × Rd by

ρ
E

(x, y) = τ
E

(x− y).

Then, by definition of τ
E

, ρ
E

is faithful and symmetric. Moreover, by Lemma 2.2 of
Biermé et al. (2007), ρ

E
also satisfies a quasi-triangle inequality. Hence, ρ

E
is a quasi-

metric on Rd and it is adapted to study operator scaling random fields (see Biermé et al.
(2007); Biermé and Lacaux (2009) for example).

Let us remark that since ρβ
E

define a quasi-metric for E/β whatever β > 0 is, we may
restrict our study to matrix E whose eigenvalues have real parts greater than one. Then,
by Proposition 3.5 of Biermé et al. (2011), there exist 0 < H ≤ H ≤ 1 and two constants
c
2,1
, c

2,2
∈ (0,∞) such that for all x, y ∈ Rd,

c2,1 min(‖x− y‖H , ‖x− y‖H) ≤ ρ
E

(x, y) ≤ c2,2 max(‖x− y‖H , ‖x− y‖H),

where ‖ · ‖ is the Euclidean norm on Rd. In Biermé et al. (2011); Biermé and Lacaux
(2009), this comparison is one of the main tool in the study of the regularity of some
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stable anisotropic random fields. Therefore, throughout the paper, we consider a quasi-
metric ρ such that there exist 0 < H ≤ H ≤ 1 and two constants c

2,1
, c

2,2
∈ (0,∞) such

that for all x, y ∈ Rd, with ‖x− y‖ ≤ 1,

c
2,1
‖x− y‖H ≤ ρ(x, y) ≤ c

2,2
‖x− y‖H . (7)

Before we introduce the anisotropic regularity used in the following, let us briefly com-
ment this assumption.

Remark 2.4.

1. The upper bound is needed in the sequel to construct a particular 2−k net for ρ,
whose cardinality can be estimated using the lower bound.

2. Using the quasi-triangle inequality satisfied by ρ and its continuity, one deduces
from (7) that for any non-empty compact set Kd =

∏d
j=1[aj , bj ] ⊂ Rd, there exist

two finite positive constants c
2,1

(Kd) and c
2,2

(Kd) such that for all x, y ∈ Kd,

c2,1(Kd)‖x− y‖H ≤ ρ(x, y) ≤ c2,2(Kd)‖x− y‖H . (8)

3. It is not restrictive to assume that H ≤ 1 since for any c > 0, ρc is also a quasi-
metric.

We will consider the following anisotropic local and uniform regularity property.

Definition 2.3. Let β ∈ (0, 1] and η ∈ R. Let x0 ∈ Kd with Kd ⊂ Rd. A real-
valued function f defined on Kd belongs to Hρ,Kd(x0, β, η) if there exist γ ∈ (0, 1) and
C ∈ (0,+∞) such that

|f(x)− f(y)| ≤ C ρ(x, y)β | log(ρ(x, y))|η

for all x, y ∈ B(x0, γ)∩Kd = {z ∈ Kd; ‖z−x0‖ ≤ γ}. Moreover f belongs to Hρ(Kd, β, η)
if there exists C ∈ (0,+∞) such that

∀x, y ∈ Kd, |f(x)− f(y)| ≤ C ρ(x, y)β
[
log(1 + ρ(x, y)−1)

]η
.

Remark 2.5.

1. If f ∈ Hρ,Kd(x0, β, η), then f is continuous at x0. Moreover, since hβ
[
log(1 + h−1)

]η ∼h→0+

hβ |log(h)|η and since ρ satisfies Equation (7), f ∈ Hρ,Kd(x0, β, η) if and only if for
some γ > 0, f ∈ Hρ(B(x0, γ) ∩Kd, β, η).

2. If f ∈ Hρ(Kd, β, η), then f ∈ Hρ,Kd(x0, β, η) for all x0 ∈ Kd. The converse is also
true since Kd is a compact. This follows from the Lebesgue’s number lemma and
the boundedness of the continuous function f on the compact set Kd (see Lemma
B.2 stated in the appendix for an idea of the proof).
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3. A function in Hρ(Kd, β, 0) may be view as a Lipschitz function on an homogeneous
space Maćıas and Segovia (1979). Note also that when ρ is the Euclidean distance,
for any β ≤ 1 and η ≤ 0, the set Hρ(Kd, β, η) (respectively Hρ,Kd(x0, β, η)) is
included in the set of Hölder functions of order β on Kd (respectively around x0).

4. Assuming β ≤ 1 is not restrictive since, for any c > 0, ρc is also a quasi-metric.

The introduction of the logarithmic term appears naturally when considering Gaussian
random fields. Actually, Benassi et al. (1997) proves that for all β ∈ (0, 1], a large class
of elliptic Gaussian random fields Xβ , including the famous fractional Brownian fields,
belongs a.s. to Hρ,Kd(x0, β, 1/2) with ρ the Euclidean distance (see Theorem 1.3 in
Benassi et al. (1997)). Moreover, Xiao Xiao (2010) also gives some anisotropic examples
of Gaussian fields belonging a.s. to Hρ,Kd(x0, 1, 1/2) for some anisotropic quasi-distance
ρ = ρ

E
associated with E a diagonal matrix (see Theorem 4.2 of Xiao (2009)). Finally,

in Biermé et al. (2011), we construct stable and Gaussian random fields belonging a.s. to
Hρx0 ,Kd(x0, 1− ε, 0) for some convenient ρx0

(see Theorem 4.6 in Biermé et al. (2011)).

3. Main results on conditionally sub-Gaussian series

3.1. Local modulus of continuity

In this section, we first give an upper bound of the local modulus of continuity of S
defined by (4) under the following local assumption on the conditional parameter (6).

Assumption 2. Let x0 ∈ Kd with Kd =
∏d
j=1[aj , bj ] ⊂ Rd. Let us consider ρ a quasi-

metric on Rd satisfying Equation (7). Assume that there exist an almost sure event Ω′

and some random variables γ > 0, β ∈ (0, 1], η ∈ R and C ∈ (0,+∞) such that on Ω′

∀x, y ∈ B(x0, γ) ∩Kd, s(x, y) ≤ C ρ(x, y)β | log(ρ(x, y))|η,

where we recall that the conditional parameter s is given by (6).

Note that the event Ω′, the random variables γ, β, η, C and the quasi-metric ρ may
depend on x0.

Let us now state the main result of this section on the modulus of continuity. The
main difference with Kôno and Maejima (1991b); Biermé and Lacaux (2009); Biermé
et al. (2011) is that we do not only consider the limit random field S but obtain a
uniform upper bound in N for the modulus of continuity of SN .

Theorem 3.1. Assume that Assumptions 1 and 2 are fulfilled. Then, almost surely,
there exist γ∗ ∈ (0, γ) and C ∈ (0,+∞) such that for all x, y ∈ B(x0, γ

∗) ∩Kd,

sup
N∈N
|SN (x)− SN (y)| ≤ Cρ(x, y)β |log ρ(x, y)|η+1/2

.
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Moreover, almost surely (SN )N∈N converges uniformly on B(x0, γ
∗) ∩Kd to S and the

limit S belongs to Hρ,Kd(x0, β, η + 1/2). In particular, almost surely S is continuous at
x0.

Proof. See Appendix, Section B.1.

Strengthening Assumption 2, the uniform convergence and the upper bound for the
modulus of continuity are obtained on deterministic set. Next corollary is obtained using
some covering argument.

Corollary 3.2. Assume that Assumptions 1 is fulfilled.

1. Assume that Assumption 2 holds for any x0 ∈ Kd with the same almost sure event
Ω′, the same random variables β and η, and the same quasi-metric ρ. Then Theorem
3.1 holds replacing B(x0, γ

∗)∩Kd by all the set Kd and almost surely S belongs to
Hρ(Kd, β, η + 1/2).

2. Assume now that Assumption 2 holds with a deterministic γ. Then Theorem 3.1
holds replacing B(x0, γ

∗) ∩ Kd by B(x0, γ) ∩ Kd and almost surely S belongs to
Hρ(B(x0, γ) ∩Kd, β, η + 1/2).

Proof. See Appendix, Section B.1.

When considering S an operator scaling Gaussian random field, note that Li et al.
(2013) proves that the upper bound obtained by Corollary 3.2 is optimal. Moreover
for some Gaussian anisotropic random fields, Xiao (2009) also obtains a sample path
regularity in the stronger Lp-sense on whole the compact Kd. This follows from an
extension of the Garsia-Rodemich-Rumsey continuity lemma Garsia et al. (1970) or the
minorization metric method of Kwapień and Ronsiński (2004). This would be interesting
to study if these results still hold when considering a quasi-metric ρ (and not a metric)
and if they can be applied to obtain the sample path regularity of S in the stronger
Lp-sense on whole the compact Kd, strenghtening the assumption on the parameter s.

3.2. Rate of almost sure uniform convergence

This section is concerned with the rate of uniform convergence of the series (SN )N∈N
defined by (4). Under Assumption 1, this series converges to S and, for any integer N ,
we consider the rest

RN (x) = S(x)− SN (x) =

+∞∑
n=N+1

Wn(x)gn, x ∈ Kd ⊂ Rd.

Then, conditionally on (Wn)n≥1, RN (x)−RN (y) is a sub-Gaussian random variable with
parameter

rN (x, y) =

(
+∞∑

n=N+1

|Wn(x)−Wn(y)|2
)1/2

, x, y ∈ Kd. (9)
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Observe that R0 = S and that r0(x, y) = s(x, y). To obtain a rate of uniform convergence
for the sequence (SN )N∈N, the general assumption relies on a rate of convergence for the
sequence (rN )N∈N.

Assumption 3. Let x0 ∈ Kd with Kd =
∏d
j=1[aj , bj ] ⊂ Rd and let ρ be a quasi-metric

on Rd satisfying (7). Assume that there exist an almost sure event Ω′, some random
variables γ > 0, β ∈ (0, 1], η ∈ R and a positive random sequence (b(N))N∈N such that
on Ω′,

∀N ∈ N, ∀x, y ∈ B(x0, γ) ∩Kd, rN (x, y) ≤ b(N)ρ(x, y)β | log(ρ(x, y))|η. (10)

Note that Ω′, ρ and the random variables γ, β, η and b(N) may depend on x0. Note
also that since Assumption 3 implies Assumption 2, according to Theorem 3.1, almost
surely, there exists γ∗ ∈ (0, γ) such that RN = S − SN is continuous on B(x0, γ

∗). The
following theorem precises the modulus of continuity of RN with respect to N and a rate
of uniform convergence.

Theorem 3.3. Assume that Assumptions 1 and 3 are fulfilled.

1. Then, almost surely, there exists γ∗ ∈ (0, γ) and C ∈ (0,+∞) such that for

|RN (x)−RN (y)| ≤ Cb(N)
√

log(N + 2)ρ(x, y)β |log ρ(x, y)|η+1/2

for all N ∈ N and all x, y ∈ B(x0, γ
∗) ∩Kd.

2. Moreover, if almost surely, for all N ∈ N,

|RN (x0)| ≤ b(N)
√

log(N + 2), (11)

then, almost surely, there exists γ∗ ∈ (0, γ) and C ∈ (0,+∞) such that

|RN (x)| ≤ Cb(N)
√

log(N + 2)

for all N ∈ N and all x ∈ B(x0, γ
∗) ∩Kd.

Proof. See Appendix, Section B.2.

An analogous of Corollary 3.2 holds for strengthening the previous local theorem to
get uniform results on Kd or on B(x0, γ) ∩Kd when γ is deterministic.

Corollary 3.4. Assume that Assumptions 1 is fulfilled.

1. Assume that Assumption 3 holds for any x0 ∈ Kd with the same almost sure event
Ω′, the same random variables β and η, the same sequence (b(N))N∈N and the same
quasi-metric ρ. Then Assertion 1. of Theorem 3.3 holds replacing B(x0, γ

∗) ∩Kd

by all the set Kd. If moreover, Equation (11) is fulfilled for some x0 ∈ Kd, then

sup
N∈N

sup
x∈Kd

|RN (x)|
b(N)

√
log(N + 2)

< +∞ almost surely.

2. Assume now that Assumption 3 holds with a deterministic γ. Then Theorem 3.3
holds replacing B(x0, γ

∗) ∩Kd by B(x0, γ) ∩Kd.
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4. Shot noise series

4.1. Preliminaries

In this section, we consider the sequence of shot noise series defined by

∀N ∈ N, ∀α ∈ K1 = [a, b] ⊂ (0, 2), S∗N (α) =

N∑
n=1

T−1/αn Xn,

where for all n ≥ 1, the random variable Tn is the nth arrival time of a Poisson process
with intensity 1 and (Xn)n≥1 is a sequence of i.i.d. symmetric random variables, which is
assumed independent of (Tn)n≥1. Let us first recall that S∗N (α) converges almost surely
to S∗(α) an α-stable random variable as soon as Xn ∈ Lα (see Samorodnitsky and Taqqu
(1994) for instance). Under a strengthened assumption on the integrability of Xn, rate of
pointwise almost sure convergence and rate of absolute convergence have also been given
in Theorems 2.1 and 2.2 of Cohen et al. (2008).

Since (Xn)n≥1 may not be a sequence of sub-Gaussian random variables, we cannot
apply Section 3 to the sequence (S∗N )N∈N. However, due to symmetry of (Xn)n≥1,

(Xn)n≥1
(d)
= (Xngn)n≥1

with (gn)n≥1 a Rademacher sequence independent of (Xn, Tn)n≥1 and Section 3 allows
to study

SN (α) =

N∑
n=1

Wn(α)gn with Wn(α) := T−1/αn Xn.

Moreover, in Theorems 3.1 and 3.3, SN (respectively RN = S − SN ) can be replaced
by S∗N (respectively R∗N = S∗ − S∗N ), see the proof of next theorem for details. Then,
assuming that Xn is sufficiently integrable, we obtain the uniform convergence of S∗N on
a deterministic compact interval K1 = [a, b] ⊂ (0, 2) and a rate of uniform convergence.
These results, stated in the following theorem, strengthen Theorem 2.1 of Cohen et al.
(2008) which deals with the pointwise rate of convergence.

Theorem 4.1. For any integer n ≥ 1, let Tn be the nth arrival time of a Poisson
process with intensity 1. Let (Xn)n≥1 be a sequence of i.i.d. symmetric random variables,
which is assumed independent of (Tn)n≥1. Furthermore assume that E(|X1|2p) < +∞ for
some p > 0.

1. Then, almost surely, for all b ∈ (0,min(2, 2p)) and for all a ∈ (0, b], the sequence
of partial sums (S∗N )N∈N converges uniformly on [a, b].

2. Moreover, almost surely, for all b ∈ (0,min(2, 2p)) and for all a ∈ (0, b), for all
p′ > 0 with 1/p′ ∈ (0, 1/b− 1/min(2p, 2)),

sup
N∈N

sup
α∈[a,b]

N1/p′

∣∣∣∣∣
+∞∑

n=N+1

T−1/αn Xn

∣∣∣∣∣ < +∞.
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Proof. See Appendix, Section C.1.

4.2. Modulus of continuity and rate of convergence of shot noise
series

In this section, we focus on some shot noise series, which are particular examples of con-
ditionally sub-Gaussian series. For this purpose we assume that the following assumption
is fulfilled.

Assumption 4. Let (Tn)n≥1, (Vn)n≥1 and (gn)n≥1 be independent sequences satisfying
the following conditions.

1. (gn)n≥1 is a sequence of independent complex-valued symmetric sub-Gaussian ran-
dom variables with parameter s = 1.

2. Tn is the nth arrival time of a Poisson process with intensity 1.
3. (Vn)n≥1 is a sequence of i.i.d. complex-valued random fields defined on Kd+1 ⊂

(0, 2)× Rd.
4. For any (α, u) ∈ Kd+1, Vn(α, u) ∈ Lα.

For any integer n ≥ 1, we consider the complex-valued random field Wn defined by

Wn(α, u) := T−1/αn Vn(α, u), (α, u) ∈ Kd+1 ⊂ (0, 2)× Rd. (12)

Since |Vn(α, u)|2 ∈ Lα/2 and α/2 ∈ (0, 1), according to Theorem 1.4.5 of Samorodnitsky
and Taqqu (1994),

+∞∑
n=1

|Wn(α, u)|2 =

+∞∑
n=1

T−2/αn |Vn(α, u)|2 < +∞ almost surely.

Therefore the independent sequences (Wn)n≥1 and (gn)n≥1 satisfy Assumption 1. Then,

S and (SN )N∈N are well-defined on Kd+1 ⊂ (0, 2) × Rd ⊂ Rd+1 by (5) and (4). Before
we study, the modulus of continuity of S and the rate of convergence of (SN )N∈N, let us
state some remarks.

Remark 4.1. Assume that Conditions 1–3 of Assumption 4 are fulfilled with (gn)n≥1
a sequence of i.i.d. random variables. Then Remark 2.6 of Rosiński (1990) proves that
Condition 4 is a necessary and sufficient condition for the almost sure convergence of
(SN (α, u))N∈N for each (α, u) ∈ Kd+1. Note that by Itô-Nisio Theorem (see e.g. Theorem
6.1 of Ledoux and Talagrand (1991)), it is also a necessary and sufficient condition for
the convergence in distribution of the sequence (SN (α, u))N∈N. Then, Condition 4 is not
a strong assumption and is clearly essential to ensure that S(α, u) is well-defined.
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Remark 4.2. Assume that Assumption 4 is fulfilled with (gn)n≥1 a sequence of i.i.d.
random variables. Then, it is well-known that for each α ∈ (0, 2), S(α, ·) is an α-stable
symmetric random field, as field in variable u. In Section 5.1, we will focus on α-stable
random fields defined through a stochastic integral and see that, up to a multiplicative
constant, such a random field Xα has the same finite distributions as S(α, ·) for a suitable
choice of (gn, Vn)n≥1. The sample path regularity of S in its variable α is not needed to
obtain an upper bound of the modulus of continuity of Xα. Nevertheless, this regularity
is useful to deal with multistable random fields (see Section 5.2).

The sequel of this section is devoted to simple criteria, based on some moments of Vn,
which ensure that Assumption 3 (and then Assumption 2) is fulfilled. More precisely, the
results given below help us to give simple conditions in order to get Assumption 3 and
(11) satisfied with b(N) = (N + 1)−1/p

′
for some convenient p′ > 0. Then, all the results

of Section 3 hold.

Theorem 4.2. Assume that Assumption 4 is fulfilled with Kd+1 = [a, b]×
∏d
j=1[aj , bj ] ⊂

(0, 2)×Rd and let ρ be a quasi-metric on Rd+1 satisfying Equation (7). Assume also that
for some x0 ∈ Kd+1, there exist r ∈ (0,+∞), β ∈ (0, 1], η ∈ R and p ∈ (b/2,+∞) such

that E
(
|V1(x0)|2p

)
< +∞ and

E


 sup
x,y∈Kd+1
0<‖x−y‖≤r

|V1(x)− V1(y)|
ρ(x, y)β |log ρ(x, y)|η


2p <∞. (13)

Let us recall that S and SN are defined by (5) and (4) with Wn given by (12).

1. Then, almost surely (SN )N∈N converges uniformly on Kd+1 and its limit S belongs
almost surely to Hρ(Kd+1, β,max (η, 0) + 1/2).

2. Moreover, when p′ > 0 is such that 1/p′ ∈ (0, 1/b− 1/min(2p, 2)), almost surely

sup
N∈N

N1/p′ sup
x∈Kd+1

|S(x)− SN (x)| < +∞.

Proof. See Appendix, Section C.2.

Example 4.1. Assume that V1 is a fractional Brownian field on Rd with Hurst param-
eter H. Then (13) is satisfied for all p > 0 with ρ(x, y) = ‖x − y‖, β = H and η = 1/2
(see e.g. Theorem 1.3 of Benassi et al. (1997)).

Let us now present a method (similar to those used in Kôno and Maejima (1991a);
Biermé and Lacaux (2009); Biermé et al. (2011) to bound some conditional variance) to
establish (13).
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Proposition 4.3. Let x0 = (α0, u0) ∈ Kd+1 with Kd+1 = [a, b] ×
∏d
j=1[aj , bj ] ⊂

(0, 2)×Rd. Let V1 be a complex-valued random field defined on Kd+1. Assume that there
exists a random field (G(h))h∈[0,+∞) with values in [0,∞) and such that

(i). there exists ρ a quasi-metric on Rd+1 satisfying Equation (7) such that almost
surely,

∀x, y ∈ Kd+1, |V1(x)− V1(y)| ≤ G(ρ(x, y));

(ii). there exists h0 ∈ (0, 1] such that almost surely, the function h 7→ G(h) is monotonic
on [0, h0];

(iii). there exist p > b/2 and some constants β ∈ (0, 1], η ∈ R and C ∈ (0,∞) such that
for some ε > 0 and for h > 0 small enough,

I(h) := E
(
G(h)2p

)
≤ Ch2pβ |log h|2p(η−1/2p−ε). (14)

Then, Equation (13) holds for r > 0 small enough.

Proof. See Appendix, Section C.2.

Remark 4.3. If (Vn)n≥1 is a sequence of independent symmetric random variables,
Theorem 4.2 still holds replacing SN (α, u) (respectively S(α, u)) by

S∗N (α, u) =

N∑
n=1

T−1/αn Vn(α, u) (respectively by S∗(α, u) =

+∞∑
n=1

T−1/αn Vn(α, u)).

In particular, following Example 4.1, when Assumption 4 is fulfilled with V1 a fractional
Brownian field on Rd with Hurst parameter H, Assumptions of Theorem 4.2 are fulfilled
with ρd+1 the Euclidean distance on Rd+1, β = H and η = 1/2, on any compact (d +
1)-dimensional interval Kd+1. Especially, this leads to an upper bound of the modulus
of continuity of S∗ on any compact (d + 1)-dimensional interval Kd+1. Then for any
fixed α0 ∈ (0, 2), we also obtain that the α0-stable random field (S∗(α0, u))u∈Rd is in

Hρd(Kd, H, 1) for ρd the Euclidean distance on Rd and for any compact set Kd ⊂ Rd.

4.3. LePage random series representation

Representations in random series of infinitely divisible laws have been studied in LePage
(1989, 1981). Such representations have been successfully used to study sample path
properties of some symmetric α0-stable random processes (d = 1) and fields (see e.g.
Kôno and Maejima (1991a); Biermé and Lacaux (2009); Biermé et al. (2011); Dozzi and
Shevchenko (2011)).

Let us be more precise on the assumptions on the LePage series under study.

Assumption 5. Let (Tn)n≥1 and (gn)n≥1 be as in Assumption 4. Let (ξn)n≥1 be a
sequence of i.i.d. random variables with common law

µ(dξ) = m(ξ)ν(dξ)
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equivalent to a σ-finite measure ν on (Rd,B(Rd)) (that is such that m(ξ) > 0 for ν-almost
every ξ). This sequence is independent from (gn, Tn)n≥1. Moreover we consider

Vn(α, u) := f
α

(u, ξn)m(ξn)
−1/α

,

where for any α ∈ K1 ⊂ (0, 2), fα : Kd × Rd → C is a deterministic function such that

∀u ∈ Kd ⊂ Rd,
∫
Rd
|f
α

(u, ξ)|αν(dξ) < +∞.

Under this assumption, Assumption 4 is fulfilled with Kd+1 = K1 × Kd. Then, em-
phasizing the dependence on the function m, Sm,N and Sm are well-defined on Kd+1 by
(4) and (5) with Wn given by (12). In particular,

Sm(α, u) =

+∞∑
n=1

T−1/αn fα(u, ξn)m(ξn)
−1/α

gn, (α, u) ∈ Kd+1 := K1 ×Kd ⊂ (0, 2)× Rd.

(15)
Under appropriate assumptions on fα and m, the previous sections state the uniform
convergence of the series, give a rate of convergence and some results on regularity for
Sm. Precise results on regularity of Sm may be obtained using the following proposition,
which states that the finite distributions of Sm does not depend on the choice of the
ν-density m.

Proposition 4.4. Assume that Assumption 5 is fulfilled and let Sm be defined by (15).
Let (ξ̃n)n≥1 be a sequence of i.i.d. random variables with common law µ̃(dξ) = m̃(ξ)ν(dξ)

equivalent to ν. Assume that the sequences (ξ̃n)n≥1, (gn)n≥1 and (Tn)n≥1 are indepen-
dent.

1. Then, Sm
fdd
= Sm̃, where

fdd
= means equality of finite distributions. In other words,

(Sm(α, u))(α,u)∈Kd+1

fdd
=

(
+∞∑
n=1

T−1/αn fα

(
u, ξ̃n

)
m̃
(
ξ̃n

)−1/α
gn

)
(α,u)∈Kd+1

.

2. Assume moreover that for ν-almost every ξ ∈ Rd, the map (α, u) 7→ fα(u, ξ) is
continuous on the compact set Kd+1 ⊂ (0, 2)×Rd. Let us consider ρ a quasi-metric
on Rd+1, β ∈ (0, 1] and η ∈ R. Then, Sm belongs almost surely in Hρ(Kd+1, β, η)
if and only if Sm̃ does.

Proof. See Appendix, Section C.3.

In particular, when studying the sample path properties of Sm, this result allows us
to replace m by an other function m̃ so that the regularity of Sm may be deduced from
the regularity of Sm̃. For example, replacing m by mx0 depending on x0 this may lead to
a more precised bound for the modulus of continuity of Sm around x0 (see e.g. Example
5.3).
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5. Applications

5.1. α-stable isotropic random fields

Let us fix α = α0 ∈ (0, 2) and assume that Assumption 5 is fulfilled with gn some
isotropic complex random variables. Then, the proof of Proposition 4.4 (see Section C.3)
allows to compute the characteristic function of the isotropic α0-stable random field
Sm(α0, ·) = (Sm(α0, u))u∈Kd , which leads to

Sm(α0, ·)
fdd
= dα0

(∫
Rd
f
α0

(u, ξ)Mα0
(dξ)

)
u∈Kd

,

with Mα0
a complex isotropic α0-stable random measure on Rd with control measure ν

and

dα0
= E(|<(g1)|α0)

1/α0

(
1

2π

∫ 2π

0

|cos (θ)|α0dθ

)−1/α0(∫ +∞

0

sin (θ)

θα0
dθ

)1/α0

. (16)

When ν is a finite measure (respectively the Lebesgue measure), this stochastic inte-
gral representation of Sm(α0, ·) has been provided in Samorodnitsky and Taqqu (1994);
Marcus and Pisier (1984) (respectively Kôno and Maejima (1991a); Biermé and Lacaux
(2009)).

Let us note that assumptions of Theorem 4.2 and Proposition 4.3 can be stated in term
of the deterministic kernel fα0

to obtain an upper bound of the modulus of continuity of
Sm. In general, well-choosing mu0

and applying Proposition 4.4, we obtain a more precise
upper bound of the modulus of continuity of Sm(α0, ·) around u0, which also holds for a
modification of the random field

Xα0
=

(∫
Rd
f
α0

(u, ξ)Mα0
(dξ)

)
u∈Kd

. (17)

To illustrate how the previous sections can be applied to study the field Xα0
, which

is defined through a stochastic integral and not a series, let us focus on the case of
harmonizable stable random fields. More precisely, we consider

f
α0

(u, ξ) =
(

ei〈u,ξ〉 − 1
)
ψα0

(ξ), ∀(u, ξ) ∈ Rd × Rd, (18)

with ψα0
: Rd → C a borelian function such that∫

Rd
min(1, ‖ξ‖α0)|ψα0

(ξ)|α0ν(dξ) < +∞.

Note that, since this assumption does not depend on u, the random field Xα0 may be
defined on the whole space Rd. For the sake of simplicity, in the sequel, we consider
the case where ν is the Lebesgue measure and first focus on a random field Xα0

which
behaves as operator scaling random fields studied in Biermé et al. (2007).
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Proposition 5.1. Let α0 ∈ (0, 2) and let Xα0
be defined by (17) with ν the Lebesgue

measure on Rd. Let E be a real matrix of size d× d whose eigenvalues have positive real
parts. Let τ

E
and τ

Et
be functions as introduced in Example 2.1 and let us set q(E) =

trace(E) and a1 = minλ∈Sp(E) <(λ) with Sp(E) the spectrum of E, that is the set of
the eigenvalues of E. Assume that there exist some finite positive constants cψ, A and
β ∈ (0, a1) such that

|ψα0(ξ)| ≤ cψτEt (ξ)
−β−q(E)/α0 , for almost every ‖ξ‖ > A. (19)

Then, there exists a modification X∗α0
of Xα0

such that almost surely, for any ε > 0, for
any non-empty compact set Kd ⊂ Rd,

sup
u,v∈Kd
u 6=v

∣∣X∗α0
(u)−X∗α0

(v)
∣∣

τ
E

(u− v)
β
[
log
(

1 + τ
E

(u− v)
−1
)]ε+1/2+1/α0

< +∞.

Remark 5.1. The quasi-metric (x, y) 7→ τ
E

(x− y) may not fulfill Equation (7) since
the eigenvalues of E may not be greater than 1. Nevertheless, the quasi-metric (x, y) 7→
τ
E/a1

(x− y) does and the conclusion with τ
E

in the previous proposition then follows from
the comparison

∀ξ ∈ Rd, c1τE (ξ)a1 ≤ τ
E/a1

(ξ) ≤ c2τE (ξ)a1

with c1, c2 two finite positive constants.

Proof. See Appendix, Section D.1.

An upper bound for the modulus of continuity of such harmonizable random fields is
also obtained in Xiao (2010). This upper bound is given in term of the Euclidean norm
and then does not take into account the anisotropic behavior of Xα0

. Even when τ
E

is
the Euclidean norm, our result is a little more precise that the one of Xiao (2010). The
difference is only in the power of the logarithmic term.

Let us now give some examples. We keep the notation of the previous proposition and
the eigenvalues of the matrix E have always positive real parts.

Example 5.1. (Operator scaling random fields Biermé et al. (2007)) Let ψ :
Rd → [0,∞) be an Et-homogeneous function, which means that

∀c ∈ (0,+∞), ∀ξ ∈ Rd, ψ
(
cE

t

ξ
)

= cψ(ξ)

where cE
t

= exp (Et log c). Let us assume that ψ is a continuous function such that
ψ(ξ) 6= 0 for ξ 6= 0. Then we consider the function ψα0

: Rd → [0,+∞] defined by

ψα0(ξ) = ψ(ξ)−H−q(E)/α0 .
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The random field Xα0
, associated with ψα0

by (17) and (18), is well-defined and is
stochastically continuous if and only if H ∈ (0, a1). Then, let us now fix H ∈ (0, a1).
Since ψα0

is Et-homogeneous, one easily checks that there exists cψ ∈ (0,+∞) such that

∀ξ ∈ Rd, ψα0
(ξ) ≤ cψτEt (ξ)

−H−q(E)/α0 .

Then, the assumptions of Proposition 5.1 are fulfilled with β = H. The corresponding
conclusion was stated in Theorem 5.1 of Biermé and Lacaux (2009) when H = 1 and
a1 > 1, which is enough to cover the general case using Remark 2.1 of Biermé and Lacaux
(2009).

Example 5.2. (Anisotropic Riesz-Bessel α-stable random fields) Let us con-
sider

ψα0
(ξ) =

1

τ
Et

(ξ)2β1/α0
(
1 + τ

Et
(ξ)2

)β2/α0
, ξ ∈ Rd\{0}

with two real numbers β1 and β2. Assuming that

q(E)

2
< β1 + β2 and β1 <

q(E)

2
+
α0a1

2
,

the random field Xα0 is well-defined by (17). When τ
Et

is the Euclidean norm, this
random field has been introduced in Xiao (2010) to generalize the Gaussian fractional
Riesz-Bessel motion Anh et al. (1999).

We distinguish two cases. If β1 +β2 <
q(E)
2 + α0a1

2 , Proposition 5.1 can be applied with

β = 2(β1+β2)−q(E)
α0

. Otherwise, Proposition 5.1 can be applied for any β ∈ (0, a1).

Random fields defined by (17) have stationary increments so that their regularity on
Kd does not depend on the compact set Kd. To avoid this feature one can consider
non-stationary generalizations by substituting ψα0 by a function that also depends on
u ∈ Kd. More precisely, we can consider

Xα0
=

(∫
Rd

(
ei〈u,ξ〉 − 1

)
ψα0

(u, ξ)Mα0
(dξ)

)
u∈Kd

(20)

with Mα0
a complex isotropic α0-stable random measure with Lebesgue control measure

and ψα0
a borelian function such that, for all u ∈ Kd,∫

Rd

∣∣∣ei〈u,ξ〉 − 1
∣∣∣α0

|ψα0(u, ξ)|α0dξ < +∞.

Under some conditions on ψα0 , when considering the local behavior of Xα0 around a
point u0 one can conveniently choose a Lebesgue density mu0

to obtain an upper bound
of the modulus of continuity of the shot noise series Smu0 (α0, ·) given by (15) with

fα0
(u, ξ) =

(
ei〈u,ξ〉 − 1

)
ψα0(u, ξ).
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For the sake of conciseness, let us illustrate this with multi-operator random fields, which
have already been studied in Biermé et al. (2011).

Example 5.3. (Multi-operator scaling α-stable random fields) In Biermé et al.
(2011), we consider E a function defined on Rd with values in the set of real matrix of
size d × d whose eigenvalues have real parts greater than 1 and ψ : Rd × Rd → [0,+∞)
a continuous function such that for any u ∈ Rd, ψ(u, ·) is homogeneous with respect to
E(u)t i.e.

ψ(u, cE(u)tξ) = cψ(u, ξ),∀ξ ∈ Rd, ∀c > 0.

Under convenient regularity assumptions on ψ and E, the α0-stable random field Xα0 is
well-defined by (20) setting

ψα0(u, ξ) = ψ(u, ξ)−1−q(E(u))/α0 with q(E(u)) = trace(E(u)).

Let Kd =
∏d
j=1[aj , bj ] ⊂ Rd and u0 ∈ Kd. Let us set Kd+1 = {α0} ×Kd and consider

the quasi-metric ρ defined on Rd+1 by

ρ((α, u), (α′, v)) = |α− α′|+ τ
E(u0)

(u− v)

for all (α, u), (α′, v) ∈ R×Rd, which clearly satisfies Equation (7). Then, under assump-
tions of Biermé et al. (2011), there exists a Lebesgue density mu0 > 0 a.e. such that
Assumption 2 holds for Smu0 on Kd+1 with η = 0 and all β ∈ (0, 1), adapting similar
arguments as in Proposition 5.1 (see Lemma 4.7 of Biermé et al. (2011)). Therefore,
following a part of the proof of Proposition 5.1, there exists a modification X∗α0

of Xα0

such that almost surely,

lim
r↓0

sup
u,v∈B(u0,r)∩Kd

u 6=v

∣∣X∗α0
(u)−X∗α0

(v)
∣∣

τ
E(u0)

(u− v)1−ε
< +∞

for any ε ∈ (0, 1). This is Theorem 4.6 of Biermé et al. (2011).

For the sake of conciseness, we do not develop other examples. Nevertheless, let us
mention that our results can also be applied to harmonizable fractional α-stable sheets or
even to operator stable sheets. In particular, this improves the result stated in Mason and
Xiao (2001) for fractional α-stable sheets. Note that we can also deal with real symmetric
measure Wα.

5.2. Multistable random fields

Multistable random fields have first been introduced in Falconer and Lévy Véhel (2009)
and then studied in Falconer et al. (2009). Each marginal X(u) of such a random field is
a stable random variable but its stability index is allowed to depend on the position u.
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Generalizing the class of multistable random fields introduced in Le Guével and
Lévy Véhel (2012), we consider a multistable random field defined by a LePage series.
More precisely, under Assumption 5, we consider

S̃m(u) =

+∞∑
n=1

T−1/α(u)n f
α(u)

(u, ξn)m(ξn)
−1/α(u)

gn, u ∈ Kd (21)

where α : Kd → (0, 2) is a function. Then since S̃m(u) = Sm(α(u), u) with Sm defined
by (15), we deduce from Section 4 an upper bound for the modulus of continuity of S̃.
In particular, assuming that α is smooth enough, we obtain the following theorem.

Proposition 5.2. Let Kd =
∏d
j=1[aj , bj ] ⊂ Rd. Let us choose u0 ∈ Kd. Let ρ̃ be a quasi-

metric on Rd satisfying Equation (7) and let α : Kd → (0, 2) belongs to Hρ̃(Kd, 1, 0).
Let us set

a = min
Kd

α, b = max
Kd

α and K1 = [a, b] ⊂ (0, 2)

and consider the quasi-metric ρ defined on R× Rd by

ρ((α, u), (α′, v)) = |α− α′|+ ρ̃(u, v).

Assume that Assumption 5 is fulfilled and that Equation (13) holds on Kd+1 = [a, b]×Kd

for some p > b/2, β ∈ (0, 1] and η ∈ R. Assume also that

E
(
|V1(α(u0), u0)|2p

)
=

∫
Rd

∣∣∣fα(u0)
(u0, ξ)

∣∣∣2pm(ξ)
1−2p/α(u0)dξ < +∞.

Let Sm,N be defined by (4) with Wn(α, u) = T
−1/α
n f

α
(u, ξn)m(ξn)

−1/α
and let S̃m,N (u) =

Sm,N (α(u), u).

1. Then, almost surely, (S̃m,N )N∈N converges uniformly on Kd to S̃m and almost

surely the limit S̃m belongs to Hρ̃(Kd, β,max (η, 0) + 1/2).
2. Moreover, for all p′ > 0 such that 1/p′ ∈ (0, 1/b− 1/min(2p, 2)),

sup
N∈N

N1/p′ sup
u∈Kd

∣∣∣S̃m(u)− S̃m,N (u)
∣∣∣ < +∞.

Proof. See Appendix, Section D.2.

Remark 5.2. Let us recall that S̃m ∈ Hρ̃(Kd, β,max (η, 0) + 1/2) if and only if S̃m̃ ∈
Hρ̃(Kd, β,max (η, 0) + 1/2), with m̃ an other ν-density equivalent to ν, by Proposition
4.4.

To illustrate the previous proposition, we only focus on multistable random fields
obtained replacing in a LePage series representation of an harmonizable operator scaling
stable random field the index α by a function. Many other examples can be given, such
as multistable anisotropic Riesz-Bessel random fields or the class of linear multistable
random fields defined in Falconer et al. (2009).
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Corollary 5.3 (Multistable versions of harmonizable operator scaling random
fields). Let E be a real matrix of size d × d such that minλ∈SpE <(λ) > 1. Let us
consider ρ

E
and τ

E
as defined in Example 2.1. Let us also consider ψ : Rd → [0,∞) a

continuous, Et-homogeneous function such that ψ(ξ) 6= 0 for ξ 6= 0. Then we set

f
α

(u, ξ) =
(

ei〈u,ξ〉 − 1
)
ψ(ξ)−1−q(E)/α

with q(E) = trace(E). Let m be a Lebesgue density a.e. positive on Rd, (ξn, Tn, gn)n≥1 be

as in Assumption 5 with ν the Lebesgue measure and consider a function α : Rd → (0, 2).
Therefore, the multistable random field S̃m is well-defined by (21) on the whole space Rd.
Moreover if α ∈ Hρ

E

(
Rd, 1, 0

)
, then for any u0 ∈ Rd and ε > 0, there exists r ∈ (0, 1]

such that almost surely

sup
u,v∈B(u0,r)

u6=v

∣∣∣S̃m(u)− S̃m(v)
∣∣∣

τ
E

(u− v)|log τ
E

(u− v)|1/α(u0)+1/2+ε
< +∞.

Proof. See Appendix, Section D.2.

Remark 5.3. In particular, when E = Id, τ
E

is the Euclidean norm and we obtain an
upper bound of the modulus of continuity of multistable versions of fractional harmoniz-
able stable fields.

Appendix A: Proof of Proposition 2.1

The proof of Proposition 2.1 is based on the following lemma.

Lemma A.1. If Z is a complex-valued sub-Gaussian random variable with parameter

s ∈ (0,+∞), then for all t ∈ (0,+∞), P(|Z| > t) ≤ 4e−
t2

8s2 .

Proof. Let t ∈ (0,+∞). Since Z is sub-Gaussian with parameter s, <(Z) and =(Z) are
real-valued sub-Gaussian random variables with parameter s. Then applying Proposition
4 of Kahane (1960),

P(|Z| > t) ≤ P
(
|<(Z)| > t

2

)
+ P

(
|=(Z)| > t

2

)
≤ 4 exp

(
− t2

8s2

)
,

which concludes the proof

Let us now prove Proposition 2.1.
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Proof of Proposition 2.1. Let t ∈ (0,+∞). Since Proposition 2.1 is straightforward
if a = 0, we assume that a 6= 0. Since the sequence (gn)n≥1 is symmetric, by the Lévy
inequalities (see Proposition 2.3 in Ledoux and Talagrand (1991)), for any M ∈ N\{0},

P

(
sup

1≤P≤M

∣∣∣∣∣
P∑
n=1

angn

∣∣∣∣∣ > t‖a‖
`2

)
≤ 2P

(∣∣∣∣∣
M∑
n=1

angn

∣∣∣∣∣ > t‖a‖
`2

)
.

We now prove that
∑M
n=1 angn is sub-Gaussian. By independence of the random vari-

ables gn and since each gn is sub-Gaussian with parameter s = 1,

∀z ∈ C, E
(

e<(z
∑M
n=1 angn)

)
=

M∏
n=1

E
(

e<(zangn)
)
≤

M∏
n=1

e
|z|2|an|2

2 = e
|z|2s2M

2 (22)

with sM =
(∑M

n=1 |an|
2
)1/2

≤ ‖a‖
`2

. Hence, for any M ∈ N\{0},
∑M
n=1 angn is sub-

Gaussian with parameter sM . Since a 6= 0, for M large enough, sM 6= 0 and then
applying Lemma A.1,

∀t > 0, P

(
sup

1≤P≤M

∣∣∣∣∣
P∑
n=1

angn

∣∣∣∣∣ > t‖a‖
`2

)
≤ 8 exp

(
−
t2‖a‖2

`2

8s2M

)
≤ 8e−

t2

8 .

Assertion 1. follows letting M → +∞.

Let us now prove Assertion 2. If there exists N ∈ N\{0}, such that

∀n ≥ N, an = 0,

then, Assertion 2. is fulfilled since
∑+∞
n=1 angn =

∑N
n=1 angn is a sub-Gaussian random

variable with parameter sN =
(∑N

n=1 |an|
2
)1/2

= ‖a‖`2 . Therefore to prove Assertion

2., we now assume that
∀N ∈ N\{0},∃n ≥ N, an 6= 0,

so that
∑+∞
n=N |an|

2 6= 0 for any integer N ≥ 1. Then, applying Assertion 1. replacing an
by an1n≥N , we have

∀ε > 0, ∀N ∈ N\{0}, P

(
sup
P≥N

∣∣∣∣∣
P∑

n=N

angn

∣∣∣∣∣ > ε

)
≤ 8e

− ε2

8
∑+∞
n=N

|an|2 .

Since ‖a‖2
`2

=
∑+∞
n=1 |an|

2
< +∞, this implies that

(∑N
n=1 angn

)
N

is a Cauchy se-

quence in probability. Then, by Lemma 3.6 in Kallenberg (2002), the series
∑+∞
n=1 angn

converges in probability. By Itô-Nisio Theorem (see Ledoux and Talagrand (1991) for
instance), this series also converges almost surely, since the random variables gn, n ≥ 1,

are independent. Moreover, since supM≥1 s
2
M = ‖a‖2`2 < +∞, Equation (22) implies the
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uniform integrability of the sequence
(

e<(z
∑M
n=1 angn)

)
M≥1

for any z ∈ C. Then, letting

M → +∞ in (22), we obtain that
∑+∞
n=1 angn is sub-Gaussian with parameter ‖a‖

`2
.

Moreover, we conclude the proof noting that

∀t > 0, P

(∣∣∣∣∣
+∞∑
n=1

angn

∣∣∣∣∣ > t‖a‖
`2

)
≤ P

(
sup
P≥1

∣∣∣∣∣
P∑
n=1

angn

∣∣∣∣∣ > t‖a‖
`2

)
≤ 8e−

t2

8 .

Appendix B: Main results on conditionally
sub-Gaussian series

B.1. Local modulus of continuity

This section is devoted to the proofs of the results stated in Section 3.1.

Proof of Theorem 3.1. Let us recall that x0 ∈ Kd =
∏d
j=1[aj , bj ] ⊂ Rd. We assume,

without loss of generality, that

∀1 ≤ j ≤ d, aj < bj .

Actually, if some aj = bj , we may identify (SN )N∈N and its limits S as random fields

defined on Kd′ ⊂ Rd′ for d′ < d. Note that if aj = bj for all 1 ≤ j ≤ d, there is nothing
to prove.

We also assume that γ(ω) ∈ (0, 1), which is not restrictive and allows us to apply
Equation (7) as soon as ‖x− y‖ ≤ γ(ω) (with c

2,1
and c

2,2
which do not depend on γ).

First Step We first introduce a convenient sequence (Dνk)k≥1 of countable sets included
on dyadics, which is linked to the quasi-metric ρ. It allows to follow some arguments of
the proof of the Kolmogorov’s Lemma to obtain an upper bound for the modulus of
continuity of S.

Let us first introduce some notation. For any k ∈ N\{0} and j ∈ Zd, we set

x
k,j

=
j

2k
, Dk =

{
x
k,j

: j ∈ Zd
}

and νk = min
{
n ∈ N\{0} : c2,2d

H/22−nH ≤ 2−k
}

with c2,2 the constant given by Equation (7). Then, choosing c2,2 large enough (which
is not restrictive), one checks that (νk)k≥1 is an increasing sequence. In particular, the

sequence (Dνk)k≥1 is increasing and D =
⋃+∞
k=1Dk =

⋃+∞
k=1Dνk . Moreover, D ∩ Kd is

dense in Kd since aj < bj for any 1 ≤ j ≤ d. Then, as done in Step 1 of the proof
of Theorem 5.1 of Biermé and Lacaux (2009), one also checks that for k large enough,
Dνk ∩Kd is a 2−k net of Kd for ρ, which means that for any x ∈ Kd, there exists j ∈ Zd
such that ρ(x, xνk,j) ≤ 2−k, with xνk,j = j/2νk ∈ Kd.
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Second Step This step is inspired from Step 2 of Biermé and Lacaux (2009); Biermé
et al. (2011). The main difference is that we use Proposition 2.1 to obtain a uniform
control in N .

For k ∈ N\{0} and (i, j) ∈ Zd, we consider

Eki,j =

{
ω : sup

N∈N
|SN (xνk,i)− SN (xνk,j)| > s(xνk,i, xνk,j)ϕ(ρ(xνk,i, xνk,j))

}
with, following Kôno (1970),

ϕ(t) =

√
8Ad log

1

t
, t > 0, (23)

for A > 0 conveniently chosen later. We choose δ ∈ (0, 1) and set for k ∈ N\{0},

δk = 2−(1−δ)k, I
k

=
{

(i, j) ∈
(
Zd ∩ 2νkKd

)2
: ρ (xνk,i, xνk,j) ≤ δk

}
and Ek =

⋃
(i,j)∈Ik

Eki,j .

(24)
Since ϕ is a decreasing function and s ≥ 0, for any k ∈ N\{0} and for any (i, j) ∈ Ik

P
(
Eki,j

)
≤ P

(
sup
N∈N
|SN (xνk,i)− SN (xνk,j)| > s(xνk,i, xνk,j)ϕ(δk)

)
.

Since (gn)n≥1 is a sequence of symmetric independent sub-Gaussian random variables
with parameter s = 1, conditionning to (Wn)n≥1 and applying Assertion 1. of Proposition
2.1, one has

∀k ∈ N\{0}, ∀(i, j) ∈ Ik, P
(
Eki,j

)
≤ 8 e−

ϕ(δk)
2

8 = 8e−Ad(1−δ)k log 2

by definition of s, SN , ϕ and δk. Moreover, since Kd ⊂ Rd is a compact set, using
Equations (8) and the definition of νk, one easily proves that there exists a finite positive

constant c1 ∈ (0,+∞) such that for any k ∈ N\{0}, card I
k
≤ c

1
2

2kd
H δ

d
H

k . Hence,

+∞∑
k=1

P(Ek) ≤
+∞∑
k=1

∑
(i,j)∈I

k

P
(
Eki,j

)
≤ c

1

+∞∑
k=1

e−(A(1−δ)− 2
H+ 1−δ

H
)kd log 2 < +∞

choosing A > 2
H −

1
H

and δ small enough. Then, setting

Ω′′ = Ω′
⋂(

+∞⋃
k=1

+∞⋂
`=k

Ec`

)

with Ω′ the almost sure event introduced by Assumption 2, the Borel-Cantelli Lemma
leads to P(Ω′′) = 1. Moreover, by Assumption 2, for any ω ∈ Ω′′ there exists k∗(ω)
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such that for every k ≥ k∗(ω) and for all x, y ∈ Dνk with x, y ∈ B(x0, γ(ω)) ∩Kd and
ρ(x, y) ≤ δk = 2−(1−δ)k,

sup
N∈N
|SN (x)− SN (y)| ≤ Cρ(x, y)β | log(ρ(x, y))|η+1/2. (25)

Third Step: In this step we prove that (25) holds, up to a multiplicative constant, for
any x, y ∈ D closed enough to x0. This step is adapted from Step 4 of the proof of
Theorem 5.1 in Biermé and Lacaux (2009), taking care that (25) only holds for some
x, y ∈ Dνk ∩Kd randomly closed enough of x0. Let us mention that this step has been
omitted in the proof of the main result of Biermé et al. (2011) but is not trivial. We then
decide to provide a proof here for the sake of completeness and clearness.

Let us now fix ω ∈ Ω′′ and denote by κ ≥ 1 the constant appearing in the quasi-
triangle inequality satisfied by ρ. We also consider the function F defined on (0,+∞)
by

F (h) := hβ | log(h)|η+1/2.

Observe that F is a random function since β and η are random variables. Then, we
choose k0 = k0(ω) ∈ N such that the three following assertions are fulfilled:

(a) F is increasing on (0, δk0 ], where δk is given by (24),
(b) for all k ≥ k0(ω), Dνk ∩Kd is a 2−k net of Kd for ρ
(c) 2k0δk0+1 > 3κ2.

Even if it means to choose k∗(ω) larger, we can assume that k∗(ω) ≥ k0 and that

γ(ω) ≥
(
δk∗(ω)

3κ2c2,2

)1/H

:= 2γ∗(ω) (26)

where H and c2,2 are defined in Equation (7).
Let us now consider x, y ∈ D ∩Kd ∩B(x0, γ

∗(ω)) such that x 6= y. Let us first note that
x, y ∈ B(x0, γ(ω)). Moreover, since ‖x− y‖ ≤ 2γ∗(ω) ≤ γ(ω) ≤ 1, the upper bound of
Equation (7) leads to

3κ2ρ(x, y) ≤ 3κ2c
2,2
‖x− y‖H ≤ δk∗(ω)

by definition of γ∗(ω). Then, there exists a unique k ≥ k∗(ω) such that

δk+1 < 3κ2ρ(x, y) ≤ δk. (27)

Furthermore, since x, y ∈ D ∩Kd, there exists n ≥ k + 1 such that x, y ∈ Dνn ∩Kd and
for j = k, . . . , n− 1, there exist x(j) ∈ Dνj ∩Kd and y(j) ∈ Dνj ∩Kd such that

ρ
(
x, x(j)

)
≤ 2−j and ρ

(
y, y(j)

)
≤ 2−j . (28)



26 H. Biermé and C. Lacaux

Let us now fix N ∈ N and focus on SN (x)−SN (y). Then, setting x(n) = x and y(n) = y,

SN (x)− SN (y) =
(
SN

(
x(k)

)
− SN

(
y(k)

))
+

n−1∑
j=k

(
SN

(
x(j+1)

)
− SN

(
x(j)

))
(29)

−
n−1∑
j=k

(
SN

(
y(j+1)

)
− SN

(
y(j)
))
.

The following lemma, whose proof is given below for the sake of clearness, allows to
apply (25) for each term of the right hand side of the last inequality.

Lemma B.1. Choosing k∗(ω) large enough, the sequences
(
x(j)

)
k≤j≤n and

(
y(j)
)
k≤j≤n

satisfy the three following assertions.

1. x(j), y(j) ∈ B(x0, γ(ω)) for any j = k, . . . , n,
2. for any j = k, . . . , n− 1, max(ρ(x(j+1), x(j)), ρ(y(j+1), y(j))) ≤ δj+1,
3. ρ(x(k), y(k)) ≤ δk.

Therefore, even if it means to choose k∗(ω) larger, applying this lemma and Equations
(25) and (29), we obtain

|SN (x)− SN (y)| ≤ C

F (ρ(x(k), y(k))
)

+ 2

n−1∑
j=k

F (δj+1)


since F is increasing on (0, δk0 ] and since j ≥ k0. This implies, by definition of F that

|SN (x)− SN (y)| ≤ C
(
F
(
ρ(x(k), y(k))

)
+ 2C̃F (δk+1)

)
,

where

C̃(ω) = 2

+∞∑
j=0

δ
β(ω)
j (j + 1)max(η(ω)+1/2,0) < +∞

since β > 0 and δj = 2−(1−δ)j with δ < 1. Then, since F is increasing on (0, δ0), by
Assertion 3. of Lemma B.1 and Equation (27), we get

|SN (x)− SN (y)| ≤ C(1 + 2C̃)F (3κ2ρ(x, y)),

for every N ∈ N and x, y ∈ D ∩ B(x0, γ
∗(ω)) ∩ Kd. Therefore, by continuity of ρ and

each SN and by density of D ∩Kd in Kd

|SN (x)− SN (y)| ≤ C(1 + 2C̃)F (3κ2ρ(x, y)), (30)

for every N ∈ N and x, y ∈ B(x0, γ
∗(ω)) ∩Kd.
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Fourth Step: Uniform convergence of SN . Let us now consider

Ω̃ =
⋂
u∈D

{
lim

N→+∞
SN (u) = S(u)

}
∩ Ω′′.

Observe that P
(

Ω̃
)

= 1. Let us now fix ω ∈ Ω̃. Hence, by Equation (30), the sequence

(SN (·)(ω))N∈N, which converges pointwise on D∩B(x0, γ
∗(ω))∩Kd is uniformly equicon-

tinuous on B(x0, γ
∗(ω)). Since D ∩B(x0, γ

∗(ω)) ∩Kd is dense in B(x0, γ
∗(ω)) ∩Kd, by

Theorem I.26 and adapting Theorem I.27 in Reed and Simon (1972), (SN (·)(ω))N∈N con-
verges uniformly onB(x0, γ

∗(ω))∩Kd. Therefore, its limit S is continuous onB(x0, γ
∗(ω))∩

Kd. Moreover, letting N → +∞ in (30) (which holds since ω ∈ Ω̃), we get

|S(x)− S(y)| ≤ C(1 + 2C̃)F (3κ2ρ(x, y)), (31)

for every x, y ∈ B(x0, γ
∗(ω)) ∩Kd, which concludes the proof.

Let us now prove Lemma B.1.

Proof of Lemma B.1.. Let us first observe that x(n) = x ∈ B(x0, γ(ω)) ∩ Kd and
y(n) = y ∈ B(x0, γ(ω)) ∩ Kd. Let us now fix j ∈ {k, . . . , n− 1}. The lower bound of
Equation (7) leads to

∥∥∥x(j) − x0∥∥∥ ≤ ∥∥∥x(j) − x∥∥∥+ ‖x− x0‖ ≤
ρ
(
x(j), x

)1/H
c
1/H
2,1

+ ‖x− x0‖.

Since x ∈ B(x0, γ
∗(ω)) with γ∗ satisfying Equation (26) and since ρ

(
x(j), x

)
≤ 2−j with

j ≥ k ≥ k∗(ω), ∥∥∥x(j) − x0∥∥∥ ≤ 2−k
∗(ω)/H

c
1/H
2,1

+
γ(ω)

2
.

Then, choosing k∗(ω) large enough, x(j) ∈ B(x0, γ(ω)) for j = k, . . . , n − 1. The same
holds for y(j). Assertion 1. is then proved.

Let us now observe that since j ≥ k0 and since κ ≥ 1,

2jδj+1 ≥ 2k0δk0+1 > 3κ2 ≥ 3κ (32)

by definition of k0 (see the third step of the proof of Theorem 3.1). Then, using the
quasi-triangle inequality fulfilled by ρ and (28), we obtain that

ρ(x(j+1), x(j)) ≤ 3κ2−(j+1) ≤ δj+1

2
≤ δj+1.

Since the same holds for ρ(y(j+1), y(j)), Assertion 2. is fulfilled. Moreover, applying twice
the quasi-triangle inequality fulfilled by ρ and Equations (27), (28) and (32) (with j = k),
we obtain

ρ(x(k), y(k)) ≤ κ2(21−k + ρ(x, y)) ≤ 3κ2ρ(x, y) ≤ δk,
which is Assertion 3.
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Let us now focus on Corollary 3.2. Its proof is based on the following technical lemma.

Lemma B.2. Let Kd =
∏d
i=1[ai, bi] ⊂ Rd be a compact d-dimensional interval, β ∈

(0, 1), η ∈ R and ρ be a quasi-metric on Rd satisfying Equation (7). Let (fn)n∈N be

sequence of functions defined on Kd and let
(
B̊(xi, ri)

)
1≤i≤p

be a finite covering of Kd

by open balls with xi ∈ Kd and ri > 0. Assume that for each 1 ≤ i ≤ p, there exists a
finite positive constant Ci such that

∀x, y ∈ B̊(xi, ri) ∩Kd, sup
n∈N
|fn(x)− fn(y)| ≤ Ciρ(x, y)

β[
log
(
1 + ρ(x, y)−1

)]η
.

Then there exists a finite positive constant C such that

∀x, y ∈ Kd, sup
n∈N
|fn(x)− fn(y)| ≤ Cρ(x, y)

β[
log
(
1 + ρ(x, y)−1

)]η
. (33)

Proof. By the Lebesgue’s number lemma, there exists r > 0 such that

∀x ∈ Kd,∃1 ≤ i ≤ p, B̊(x, r) ⊂ B̊(xi, ri).

Let us first note that since the map Fρ : (u, v) 7→ ρβ(u, v)
[
log
(
1 + ρ(u, v)−1

)]η
is positive

and continuous on the compact set K̃ = {(u, v) ∈ K ×K / ‖u− v‖ ≥ r},

m := inf
K̃
Fρ ∈ (0,+∞).

Then distinguishing the cases ‖x− y‖ < r and ‖x− y‖ ≥ r, one easily sees that

sup
n∈N
|fn(x)− fn(y)| ≤ max

(
max
1≤i≤p

Ci,
M

m

)
ρ(x, y)β

[
log(1 + ρ(x, y)−1)

]η
where M = supn∈N supx,y∈Kd |fn(x)− fn(y)|. It remains to prove that M < +∞. Note
that

sup
x,y∈Kd
‖x−y‖<r

|fn(x)− fn(y)| ≤ c max
1≤i≤p

Ci

where c = supKd×Kd Fρ < +∞ by continuity of Fρ on the compact set Kd ×Kd. Then
since Kd is a compact convex set, using a chaining argument, one easily obtains that
M < +∞, which concludes the proof.

Proof of Corollary 3.2. We only prove Assertion 1. Actually, Assertion 2. is proved
using the same arguments but replacing Kd by B(x0, γ) ∩Kd.

Assume that for any x0 ∈ Kd, Assumption 2 holds with Ω′, β, η and the quasi-metric
ρ independent of x0. Following the proof of Theorem 3.1 and keeping its notation, let us
quote that γ∗ and Ω̃ do not depend on x0. Let us now fix ω ∈ Ω̃. From the third step of
the proof of Theorem 3.1 and Lemma B.2, we deduce that Equation (30) still hold for
any x, y ∈ Kd. This allows to replace B(x0, γ

∗(ω)) by Kd in the fourth step of the proof
of Theorem 3.1, which leads to Assertion 1.



Modulus of continuity of some conditionally sub-Gaussian fields 29

B.2. Rate of almost sure uniform convergence

Proof of Theorem B.2. Let us first observe that Theorem 3.1 holds. Then, for al-
most ω, even if it means to choose γ smaller, the sequence of continuous functions
(SN (·)(ω))N∈N converges uniformly onB(x0, γ(ω))∩Kd, which implies that eachRN (·)(ω)
is continuous on B(x0, γ(ω)) ∩Kd. As in the proof of Theorem 3.1, we assume without

loss of generality that Kd =
∏d
j=1[aj , bj ] with aj < bj .

Proof of Assertion 1. Since it is quite similar to the proof of Equation (30), we only
sketch it.
For k ∈ N\{0}, N ∈ N and (i, j) ∈ Zd, we consider

Ek,Ni,j =
{
ω : |RN (xνk,i)−RN (xνk,j)| >

√
log(N + 2)rN (xνk,i, xνk,j)ϕ(ρ(xνk,i, xνk,j))

}
with rN defined by (9), ϕ by (23) and (νk)k≥1 by Step 1 of the proof of Theorem 3.1.
Then, we proceed as in Step 1 of the proof of Theorem 3.1 replacing the set Ek by

E′k =

+∞⋃
N=0

⋃
(i,j)∈Ik

Ek,Ni,j ,

with Ik and δk defined by (24), and applying Assertion 2. of Proposition 2.1 instead of
Assertion 1. Then, choosing the constant A, which appears in the definition of ϕ, and
δ ∈ (0, 1) such that

A(1− δ)− 2

H
+

1− δ
H

> 0 and A(1− δ) log 2 > 1

we obtain that

+∞∑
k=1

P(E′k) ≤ c2
+∞∑
N=2

2−A(1−δ) logN = c2

+∞∑
N=2

N−A(1−δ) log 2 < +∞

with c2 a finite positive constant. Then, by Borel-Cantelli Lemma, the definition of ϕ and
Assumption 3, almost surely there exists an integer k∗(ω) such that for every k ≥ k∗(ω),
for all N ∈ N, and for all x, y ∈ Dνk with x, y ∈ B(x0, γ(ω)) ∩ Kd and ρ(x, y) ≤ δk =
2−(1−δ)k

|RN (x)−RN (y)| ≤ Cb(N)
√

log(N + 2)ρ(x, y)β | log(ρ(x, y))|η+1/2.

In addition, replacing in Step 2 of the proof of Theorem 3.1, SN by RN (which still be,
for almost ω, continuous on B(x0, γ(ω))∩Kd), we obtain that for almost ω, there exists
γ∗ ∈ (0, γ), such that

|RN (x)−RN (y)| ≤ Cb(N)
√

log(N + 2)ρ(x, y)β | log(ρ(x, y))|η+1/2 (34)
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for every N ∈ N and x, y ∈ B(x0, γ
∗(ω)) ∩Kd. This establishes Assertion 1.

Proof of Assertion 2. This assertion follows from Equations (34) and (11), the conti-
nuity of ρ on the compact set B(x0, γ(ω)) ∩Kd and

|RN (x)| ≤ |RN (x)−RN (x0)|+ |RN (x0)|.

The proof of Theorem 3.3 is then complete.

Proof of Corollary 3.4. We only prove Assertion 1. Actually, Assertion 2. is proved
using the same arguments but replacing Kd by B(x0, γ) ∩Kd.

Let us assume that Assumption 3 holds with Ω′, β, η and the quasi-metric ρ inde-
pendent of x0. Note first that the almost sure event Ω̃ under which (34) holds does not

depend on x0. Then applying Lemma B.2 to fn = Rn/
(
b(n)

√
log(n+ 2)

)
, we obtain

that Equation (34) still holds for x, y ∈ Kd. If moreover for some x0, Equation (11) is
fulfilled, then following the proof of Assertion 2. of Theorem 3.3, we also have: there
exists C a finite positive random variable such that for all N ∈ N,

sup
x∈Kd

|RN (x)| ≤ Cb(N)
√

log (N + 2),

which concludes the proof.

Appendix C: Shot noise series

C.1. Proof of Theorem 4.1

Let (gn)n≥1 be a Rademacher sequence, that is a sequence of i.i.d. random variables
with symmetric Bernoulli distribution. This Rademacher sequence is assumed to be in-
dependent of (Tn, Xn)n≥1. Then, by independence and also by symmetry of the sequence
(Xn)n≥1, (Xngn)n≥1 has the same distribution as (Xn)n≥1 and is independent of the
sequence (Tn)n≥1.

Let us now set

Wn(α) = T−1/αn Xn and SN (α) =

N∑
n=1

Wn(α)gn,

so that {S∗N (α), N ≥ 1} has the same finite distribution as {SN (α), N ≥ 1}. Moreover,
since

N∑
n=1

|Wn(α)|2 =

N∑
n=1

T−2/αn |Xn|2

with Xn ∈ L2p (with p > 0), Assumption 1 is fulfilled on any K1 = [a, b] ⊂ (0,min(2, 2p))
(see e.g. Samorodnitsky and Taqqu (1994)).
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Let us now fix a, b ∈ (0,min(2, 2p)) such that a < b, a′ ∈ (0, a) and b′ ∈ (b,min(2, 2p)).
Proof of Assertion 1. By the Mean Value Inequality, we get that for any α, α′ ∈ [a, b]
and n ≥ 1, ∣∣∣T−1/αn − T−1/α

′

n

∣∣∣ ≤ c|α− α′|max
(
T−1/b

′

n , T−1/a
′

n

)
(35)

with c a finite positive constant. It follows that, almost surely, for all α, α′ ∈ [a, b],

s(α, α′) :=

(
+∞∑
n=1

|Wn(α)−Wn(α′)|2
)1/2

≤ C|α− α′|, (36)

with C = c
(∑+∞

n=1 T
−2/b′
n |Xn|2 +

∑+∞
n=1 T

−2/a′
n |Xn|2

)1/2
< +∞ since |Xn|2 ∈ Lp with

2p > b′ ≥ a′ and a′, b′ ∈ (0, 2). Therefore, the assumptions of Assertion 1. of Corollary
3.2 hold. Let us now remark that for all α, α′ ∈ [a, b],

{(S∗N (α)− S∗N (α′), s(α, α′));N ≥ 1} fdd= {(SN (α)− SN (α′), s(α, α′));N ≥ 1}.

This allows us to replace SN by S∗N in the Second Step of the proof of Theorem 3.1. Then,
the third and the fourth step of this proof still hold replacing SN by S∗N and the limit S
by the limit S∗ since each S∗N is continuous (as SN is) and since S∗N converges pointwise
to S∗. This allows us to also replace (SN , S) by (S∗N , S

∗) in the proof of Assertion 1.
of Corollary 3.2. It follows that almost surely, (S∗N )N∈N converges uniformly on [a, b] to
S∗. Since this holds for any 0 < a < b < min(2, 2p), Assertion 1. of Theorem 4.1 is
established.

Proof of Assertion 2. Since almost surely the sequence of continuous random fields
(S∗N )N∈N converges uniformly on [a, b], for all N ∈ N the rest R∗N , defined by

R∗N (α) :=

+∞∑
n=N+1

T−1/αn Xn,

is also continuous on [a, b]. Remark also that we have, for all α, α′ ∈ [a, b] and N ∈ N,

(R∗N (α)−R∗N (α′), rN (α, α′))
d
= (RN (α)−RN (α′), rN (α, α′)),

where RN (α) =
∑+∞
n=N+1 T

−1/α
n Xngn = S(α)− SN (α) and

rN (α, α′) =

(
+∞∑

n=N+1

|Xn|2
∣∣∣T−1/αn − T−1/α

′

n

∣∣∣2)1/2

.

As done for SN , the previous lines allow to replace RN by R∗N in the proof of Theorem
3.3. Moreover, by Equation (35), almost surely, for all N ∈ N, and α, α′ ∈ [a, b],

rN (α, α′) ≤ c|α− α′|

(
+∞∑

n=N+1

T−2/b
′

n |Xn|2 +

+∞∑
n=N+1

T−2/a
′

n |Xn|2
)1/2

. (37)
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Let us now fix p′ > 0 such that 1/p′ ∈ (0, 1/b − 1/min(2p, 2)). Choosing if necessary
b′ > b smaller, we assume without loss of generality that 1/p′ ∈ (0, 1/b′−1/min(2p, 2)) ⊂
(0, 1/a′− 1/min(2p, 2)). Then, by Theorem 2.2 in Cohen et al. (2008), almost surely, for
all α, α′ ∈ [a, b],

sup
N∈N

N2/p′

(
+∞∑

n=N+1

T−2/b
′

n |Xn|2 +

+∞∑
n=N+1

T−2/a
′

n |Xn|2
)
< +∞

since X2
n ∈ Lp with p > b′/2 > a′/2 and a′, b′ ∈ (0, 2). Note also that by Theorem 2.1 in

Cohen et al. (2008), for all x0 = α0 ∈ [a, b], almost surely

sup
N∈N

N1/p′

∣∣∣∣∣
+∞∑

n=N+1

T−1/α0
n Xn

∣∣∣∣∣ < +∞.

Therefore, the assumptions of Assertion 1. of Corollary 3.2 hold with b(N) = (N+1)−1/p
′

for any p′ such that 1/p′ ∈ (0, 1/b − 1/min(2p, 2)). And then, substituting in its proof
RN by R∗N , almost surely

sup
N∈N

sup
α∈[a,b]

N1/p′ |R∗N (α)| < +∞,

which concludes the proof. �

C.2. Modulus of continuity and rate of convergence

This section is devoted to the proofs of the results stated in Section 4.2. First, let us
establish Theorem 4.2.

Proof of Theorem 4.2. Let us fix x0 = (α0, u0) ∈ Kd+1 = [a, b] ×
∏d
j=1[aj , bj ] ⊂

(0, 2)× Rd.
Proof of Assertion 1. Let us assume that p > b/2 and consider s the conditional
parameter defined by (6). Then, for any x = (α, u) ∈ Kd+1 and y = (α′, v) ∈ Kd+1,

s(x, y) ≤ s1(x, y) + s2(x, y), (38)

where

s1(x, y) =

(
+∞∑
n=1

T−2/αn |Vn(x)− Vn(y)|2
)1/2

and s2(x, y) =

(
+∞∑
n=1

(
T−1/αn − T−1/α

′

n

)2
|Vn(y)|2

)1/2

.

First, let us focus on s1. Note that for any x, y ∈ Kd+1,

s1(x, y) ≤ C1ρ(x, y)
β

log(1 + ρ(x, y)−1)η,
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with C1 =
(∑+∞

n=1 T
−2/b
n |Yn|2 +

∑+∞
n=1 T

−2/a
n |Yn|2

)1/2
, where we have set

Yn = sup
x,y∈Kd+1

x 6=y

|Vn(x)− Vn(y)|
ρ(x, y)β log(1 + ρ(x, y)−1)η

.

Since Kd is a convex compact set, applying a chaining argument and using the continuity
of ρ, one checks that Equation (13) implies that Yn ∈ L2p. Then, since 2p > b ≥ a and
since the random variables Yn, n ≥ 1, are i.i.d, Theorem 1.4.5 of Samorodnitsky and
Taqqu (1994) ensures that C1 < +∞ almost surely.
Let us now focus on s2. Observe that |Vn(y)| ≤ Xn, with

Xn = |Vn(x0)|+ c1Yn

for c1 = supz∈Kd+1
ρ(x0, z)

β
∣∣log

(
1 + ρ(x0, z)

−1)∣∣η. Let us remark that c1 < +∞, by

continuity of ρ on the compact set {x0}×Kd+1. Moreover, since Vn(x0) ∈ L2p, (Xn)n≥1
is still a sequence of i.i.d. variables in L2p and following the same lines as for Equation
(36), we obtain that, almost surely, for any x, y ∈ Kd+1,

s2(x, y) ≤ C2|α− α′|

with C2 a finite positive random variable. Let us also note that by Equation (8), there
exist finite positive constants c2 and c3 such that for any x = (α, u) ∈ Kd+1 and any
y = (α′, v) ∈ Kd+1,

|α− α′| ≤ c2ρ(x, y)
1/H ≤ c3ρ(x, y)

since H ≤ 1. Hence, since β ∈ (0, 1], almost surely, for any x, y ∈ Kd+1,

s(x, y) ≤ Cρ(x, y)
β

log(1 + ρ(x, y)−1)max (η,0)

with C a finite positive random variable. Then Assertion 1. follows from Corollary 3.2.

Proof of Assertion 2. Let us choose p′ > 0 such that 1/p′ ∈ (0, 1/b − 1/min(2, 2p)).
Then, replacing in the previous lines s by the parameter rN and Theorem 1.4.5 of
Samorodnitsky and Taqqu (1994) by Theorem 2.2 of Cohen et al. (2008), we obtain: there
exists C a finite positive random variable such that almost surely, for any x, y ∈ Kd+1,
and for any N ∈ N,

rN (x, y) ≤ C(N + 1)
−1/p′

ρ(x, y)
β

log(1 + ρ(x, y)−1)max (η,0).

Note also that by Theorem 2.1 in Cohen et al. (2008), almost surely

sup
N∈N

N1/p′ |RN (x0)| < +∞.

Therefore, by Corollary 3.4, almost surely,

sup
N∈N

N1/p′ sup
x∈Kd+1

|RN (x)| < +∞,

which concludes the proof.
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Let us now prove Proposition 4.3.

Proof of Proposition 4.3. Since Equation (7) is fulfilled, there exists r ∈ (0, 1) such
that ρ(x, y) ≤ h0 for all x, y ∈ Kd+1 with ‖x− y‖ ≤ r. Then, the assumptions done
imply that

X1 := sup
x,y∈Kd+1
0<‖x−y‖≤r

|V1(x)− V1(y)|
ρ(x, y)β |log ρ(x, y)|η

≤ sup
h∈(0,h0]

G(h)

F (h)
:= G

where F (h) := hβ |log h|η. We assume without loss of generality that h0 = 2−k0 with
an integer k0 ≥ 1 is such that F is increasing on (0, h0] and Equation (14) holds for
h ∈ (0, h0]. Then, using the monotonicity of G and F ,

G2p ≤
+∞∑
k=k0

sup
h∈(2−k−1,2−k]

(
G(h)

F (h)

)2p

≤ max(2η, 1)2p
+∞∑
k=k0

(
G(2−k)

F (2−k)

)2p

.

Therefore, by Equation (14) and definition of F ,

E(X2p
1 ) ≤ E(G2p) ≤ max(2η, 1)2p

+∞∑
k=k0

|k log 2|−1−2pε < +∞,

which concludes the proof.

C.3. Proof of Proposition 4.4

Let Kd+1 = [a, b]×
∏d
j=1[aj , bj ] ⊂ (0, 2)× Rd.

Proof of Assertion 1. Let us fix an integer p ≥ 1 and consider x(j) =
(
αj , u

(j)
)
∈

Kd+1 for each integer 1 ≤ j ≤ p. Then, we set ~x =
(
x(1), . . . , x(p)

)
. Choosing S ={

ξ ∈ Rd;m(ξ) > 0
}

we define H~x : (0,+∞)× S × C→ Cp by

H~x(r, ξ, g) =
(
r−1/α1fα1

(u(1), ξ)m(ξ)
−1/α1g, . . . , r−1/αpfαp (u(p), ξ)m(ξ)

−1/αpg
)
. (39)

Let us note that almost surely

N∑
n=1

H~x(Tn, ξn, gn) =
(
Sm,N

(
x(1)

)
, . . . , Sm

(
x(p)

))
where Sm,N is defined by (4) with Wn given by (12). Then this series converges al-
most surely to

(
Sm
(
x(1)

)
, . . . , Sm

(
x(p)

))
. Since g1 is symmetric, applying Theorem 2.4

of Rosiński (1990) and using a simple change of variables (t = rm(ξ)) and ν
(
Rd\S

)
= 0,

we obtain that

∀λ = (λ1, . . . , λp) ∈ Cp, ∀z ∈ C, E
(

ei<(z
∑p
j=1 λjSm(x(j)))

)
= exp (I~x,λ(z))
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where

I~x,λ(z) =

∫
(0,+∞)×Rd×C

(
ei<(z〈λ,J~x(t,(ξ,g))〉) − 1− i<

(
z〈λ, J~x(t, (ξ, g))〉1|<(z〈λ,J~x(t,(ξ,g))〉)|≤1

))
dtν(dξ)Pg(dg)

with Pg the distribution of g1 and

J~x(t, (ξ, g)) =
(
t−1/α1fα1

(u(1), ξ) g, . . . , t−1/αpfαp (u(p), ξ)g
)
.

Therefore, I~x,λ does not depend on the function m, and then neither does the distribution
of the vector

(
Sm
(
x(1)

)
, . . . , Sm

(
x(p)

))
. Since this holds for any p and ~x, Assertion 1. is

established.

Proof of Assertion 2. Let us now consider the space B = C(Kd+1,C) of complex-valued
continuous functions defined on the compact set Kd+1. This space is endowed with the
topology of the uniform convergence, so that it is a Banach space.
Let us assume that Sm̃ belongs almost surely to Hρ(Kd+1, β, η) ⊂ B. For any ~x =(
x(1), . . . , x(p)

)
∈ Kp

d+1, in view of its characteristic function, the vector
(
Sm̃
(
x(1)

)
, . . . , Sm̃

(
x(p)

))
is infinitely divisible and its Lévy measure is given by

F~x(A) =

∫
(0,+∞)×S×C

1A\{0}(H~x(r, ξ, g))m(ξ)drν(dξ)Pg(dg)

for any Borel set A ∈ B(Cp). We first assume that (α, u) 7→ fα(u, ξ) belongs to B for all
ξ ∈ Rd so that the function

H : (0,+∞)× S × C −→ B

(r, ξ, g) 7→
(

(α, u) 7→ r−1/αfα(u, ξ)m(ξ)
−1/α

)
is well-defined. Since H~x is defined by (39), one checks that (Sm̃(x))x∈Kd+1

is a B-valued
infinitely divisible random variable with Lévy measure defined by

F (A) =

∫
(0,+∞)×S×C

1A\{0}(H(r, ξ, g))m(ξ)drν(dξ)Pg(dg), A ∈ B(B).

Then, by Theorem 2.4 of Rosiński (1990),
∑N
n=1H(Tn, (ξn, gn)) converges almost surely

in B as N → +∞. Then, by definition of H, the sequence (Sm,N )N∈N converges in B
almost surely. Therefore, its limit Sm is almost surely continuous on Kd+1.

Let us now consider D ⊂ Kd+1 a countable dense set in Kd+1. Then, since almost

surely Sm̃ ∈ Hρ(Kd+1, β, η) and since Sm
fdd
= Sm̃, we get that almost surely

sup
x,y∈D
x6=y

|Sm(x)− Sm(y)|
ρ(x, y)β [log(1 + ρ(x, y)−1)]

η < +∞.
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Then, by continuity of ρ, by almost sure continuity of Sm and by density of D on the
compact set Kd+1,

sup
x,y∈Kd+1

x 6=y

|Sm(x)− Sm(y)|
ρ(x, y)β [log(1 + ρ(x, y)−1)]

η < +∞

almost surely, that is Sm belongs almost surely to Hρ(Kd+1, β, η). This establishes As-
sertion 2. when (α, u) 7→ fα(u, ξ) is continuous for all ξ ∈ Rd.

Assume now that (α, u) 7→ fα(u, ξ) is continuous for ξ ∈ Rd\N with ν(N ) = 0 and
set

gα(u, ξ) := fα(u, ξ)1Rd\N (ξ).

Then, almost surely, for all x = (α, u) ∈ (0, 2)× Rd and all N ≥ 1,

Sm,N (x) =

N∑
n=1

T−1/αn gα(u, ξn)m(ξn)
−1/α

gn,

and the conclusion follows from the previous lines since (α, u) 7→ gα(u, ξ) is continuous
on Kd+1 for all ξ ∈ Rd. The proof of Proposition 4.4 is then complete. �

Appendix D: Applications

D.1. Proof of Proposition 5.1

Let us first note that using Remark 5.1, we can and may assume without loss of generality
that a1 = 1, up to replace E by E/a1 and τ

E
by τ1/a1

E/a1
.

Let us choose ζ > 0 arbitrarily small and consider the Borel function m̃ defined on Rd
by

m̃(ξ) = ‖ξ‖α01‖ξ‖≤A + τ
Et

(ξ)
−q(E)∣∣log τ

Et
(ξ)
∣∣−1−ζ1‖ξ‖>A.

Observe that m̃ is positive on Rd\{0}. Then,

0 < c =

∫
Rd
m̃(ξ)dξ = c

1
+ c

2

with

c1 =

∫
‖ξ‖≤A

‖ξ‖α0dξ and c2 =

∫
‖ξ‖>A

τ
Et

(ξ)
−q(E)∣∣log τ

Et
(ξ)
∣∣−1−ζdξ.

Let us first observe that c
1
<∞ since α0 > 0. To prove that c

2
is also a finite constant,

we need some tools given in Meerschaert and Scheffler (2001); Biermé et al. (2007). As
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in Chapter 6 of Meerschaert and Scheffler (2001), let us consider the norm ‖ · ‖
Et

defined
by

‖x‖
Et

=

∫ 1

0

∥∥∥θEtx∥∥∥dθ
θ
, ∀x ∈ Rd. (40)

According to the change of variables in polar coordinates (see Biermé et al. (2007)) there
exists a finite positive Radon measure σ

Et
on S

Et
= {ξ ∈ Rd : ‖ξ‖

Et
= 1} such that for

all measurable function ϕ non-negative or in L1(Rd, dξ),∫
Rd
ϕ(ξ)dξ =

∫ +∞

0

∫
S
Et

ϕ(rE
t

θ)σ
Et

(dθ)rq(E)−1dr.

Applying this change of variables, it follows that c2 < ∞ since ζ > 0. Hence, m = m̃/c
is well-defined and µ(dξ) = m(ξ)dξ is a probability measure equivalent to the Lebesgue

measure. Then we may consider Sm(α0, u) defined by (15) for u ∈ Rd so that Xα0

fdd
=

dα0
Sm(α0, ·) with dα0

given by (16).

To study the sample path regularity of Sm(α0, ·) on Kd =
∏d
j=1[aj , bj ], we apply

Proposition 4.3 on Kd+1 = {α0} ×Kd ⊂ (0, 2)× Rd for

V1(α0, u) = f
α0

(u, ξ1)m(ξ1)−1/α0

with f
α0

defined by (18). We recall that here ξ1 is a random vector of Rd with density
m. Therefore let us now check that assumptions of Proposition 4.3 are fulfilled.

For h > 0 and ξ ∈ Rd we consider

g(h, ξ) = min(c
Et
‖hE

t

ξ‖
Et
, 1)|ψα0

(ξ)|,

where c
Et
> 0 is chosen such that |ei〈u,ξ〉 − 1| ≤ c

Et
‖τ
E

(u)E
t

ξ‖
Et

. We consider the quasi-

metric defined on Rd+1 by

ρ((α, u), (α′, v)) = |α− α′|+ ρ
E

(u, v), ∀(α, u), (α′, v) ∈ R× Rd,

which clearly satisfies Equation (7). By definition of V1, g and ‖ · ‖
Et

, the random field
G = (g(h, ξ1))h∈[0,+∞) satisfies (i). and (ii). of Proposition 4.3. It remains to consider

assumption (iii). Let

I(h) = E(G(h)2) =

∫
Rd
g(h, ξ)2m(ξ)1−2/α0dξ. (41)

Since ψα0
satisfies (19),

I(h) =

∫
Rd
m(ξ)

1−2/α0 min

(
c
Et

∥∥∥hEtξ∥∥∥
Et

, 1

)2

|ψα0
(ξ)|2dξ ≤ I1(h) + I2(h)

with

I1(h) = c2/α0−1c2
Et

∫
‖ξ‖≤A

∥∥∥hEtξ∥∥∥2
Et

‖ξ‖α0−2|ψα0(ξ)|2 dξ,
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where A is given by the condition (19), and

I2(h) = c2/α0−1cψ

∫
Rd

min

(
c
Et

∥∥∥hEtξ∥∥∥
Et

, 2

)2

τ
Et

(ξ)
−q(E)−2β∣∣log τ

Et
(ξ)
∣∣(1+ζ)(2/α0−1)

dξ.

From Lemma 3.2 of Biermé and Lacaux (2009) there exists a finite constant C1 > 0 such
that for all h ∈ (0, e−1]

I1(h) ≤ C1h
2a1 | log(h)|2(d−1).

Moreover, using again the change of variables in polar coordinates, there exists a finite
constant C2 > 0 such that for all h ∈ (0, e−1],

I2(h) ≤ C2h
2β | log(h)|(1+ζ)(2/α0−1).

Since β < a1, one find a finite constant C3 > 0 such that

I(h) ≤ C3h
2β | log(h)|2(1+ζ)(1/α0−1/2). (42)

Hence, assumption (iii). of Proposition 4.3 is also fulfilled and applying this proposition,
it follows that (13) is satisfied with β and η = 1/α0 + ε, for all ε > 0. Then, by Theorem
4.2, almost surely Sm ∈ Hρ(Kd+1, β, 1/α0 + 1/2 + ε). By definition of ρ and Kd+1, this
means that

Sm(α0, ·) ∈ Hρ
E

(Kd, β, 1/α0 + 1/2 + ε).

In particular, Sm(α0, ·) is continuous on Kd. Then, since dα0Sm(α0, ·)
fdd
= Xα0 , Xα0 is

stochastically continuous and almost surely

C := sup
u,v∈D,u6=v

|Xα0
(u)−Xα0

(v)|
τ
E

(u− v)β [log(1 + τ
E

(u− v)−1)]
1/α0+1/2+ε

< +∞,

where D ⊂ Kd is a countable dense in Kd =
∏d
j=1[aj , bj ]. So let us write Ω∗ this event

and let us define a modification of Xα0
on Kd.

First, if ω 6∈ Ω∗, we set X∗α0
(u)(ω) = 0 for all u ∈ Kd. Let us now fix ω ∈ Ω∗. Then, we

set
X∗α0

(u)(ω) = Xα0(u)(ω),∀u ∈ D.

Let us now consider u ∈ Kd. Then, there exists u(n) ∈ D such that limn→+∞ u(n) = u.
It follows that,∣∣∣X∗α0

(
u(n)

)
(ω)−X∗α0

(
u(m)

)
(ω)
∣∣∣ ≤ C(ω)τ

E
(u(n)−u(m))β

[
log(1 + τ

E
(u(n) − u(m))−1)

]1/α0+1/2+ε

,

so that
(
X∗α0

(
u(n)

)
(ω)
)
n

is a Cauchy sequence and hence converges. We set

X∗α0
(u)(ω) = lim

n→+∞
X∗α0

(
u(n)

)
(ω).
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Remark that this limit does not depend on the choice of
(
u(n)

)
n

and that X∗α0
(·)(ω) is

then well-defined on Kd. Observe also that, by stochastic continuity of Xα0
, X∗α0

is a
modification of Xα0

. Moreover, by continuity of τ
E

,

C(ω) = sup
u,v∈Kd,u6=v

|X∗α0
(u)(ω)−X∗α0

(v)(ω)|
τ
E

(u− v)β [log(1 + τ
E

(u− v)−1)]
1/α0+1/2+ε

< +∞

for all ω ∈ Ω and X∗α0
is continuous on Kd. This concludes the proof. �

D.2. Multistable random fields

This section is devoted to the proofs of the results stated in Section 5.2. Let us first
establish Proposition 5.2.

Proof of Proposition 5.2. Since ρ̃ satisfies Equation (7), so does ρ. Then, Assump-
tions of Theorem 4.2 are fulfilled, which implies that (Sm,N )N∈N converges uniformly to

Sm on Kd+1 = [a, b] × Kd. Therefore,
(
S̃m,N

)
N∈N

converges uniformly to S̃m on Kd

since S̃m,N (u) = Sm,N (α(u), u) and S̃m(u) = Sm(α(u), u) and α is continuous.
Moreover, by Theorem 4.2 there exists a finite positive random variable C such that for
any u, v ∈ Kd,∣∣∣S̃m(u)− S̃m(v)

∣∣∣ ≤ Cρ(x(u), x(v))
β
[
log
(

1 + ρ(x(u), x(v))
−1
)]max(η,0)+1/2

where x(w) = (α(w), w). Moreover, by definition of ρ and since α ∈ Hρ̃(Kd, 1, 0), there
exists a finite positive constant c1 such that

∀u, v ∈ Kd, ρ(x(u), x(v)) ≤ c1ρ̃(u, v).

Let us now recall that since ρ̃ is continuous on the compact setKd×Kd,M = supu,v∈Kd ρ̃(u, v) <
+∞. Then, up to change C, for all u, v ∈ Kd,∣∣∣S̃m(u)− S̃m(v)

∣∣∣ ≤ Cρ̃(u, v)
β
[
log
(

1 + ρ̃(u, v)
−1
)]max (η,0)+1/2

since h 7→ hβ log(1 + h−1)max (η,0)+1/2 is increasing around 0 and bounded on [0,M ].
Assertion 1. is then proved. Moreover, Assertion 2. is a direct consequence of Assertion
2. of Theorem 4.2. The proof is then complete.

Let us conclude this paper by the proof of Corollary 5.3.

Proof of Corollary 5.3. Let Kd =
∏d
j=1[aj , bj ] ⊂ Rd and u0 ∈ Kd. Let us set

a = min
Kd

α, b = max
Kd

α and Kd+1 = [a, b]×Kd ⊂ (0, 2)× Rd
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Let us first note that Assumption 5 is fulfilled with K1 = [a, b] and then S̃m is well-
defined. Let us now consider ρ

E
and τ

E
as defined in Example 2.1. Then we set

m̃(ξ) =
cζ

τ
Et

(ξ)
q(E)∣∣log τ

Et
(ξ)
∣∣1+ζ ,

with ζ > 0 a parameter chosen arbitrarily small. Therefore, let us consider

Ṽn(α, u) = fα

(
u, ξ̃n

)
m̃
(
ξ̃n

)−1/α
where (ξ̃n)n≥1 is a sequence of i.i.d. random variables with common distribution µ̃(dξ) =

m̃(ξ)dξ. The sequence (ξ̃n)n≥1 is assumed to be independent from (Tn, gn)n≥1. Then,
Assumption 4 is fulfilled. Moreover,∣∣∣Ṽn(α, u)− Ṽn(α′, v)

∣∣∣ ≤ ∣∣∣Ṽn(α, u)− Ṽn(α, v)
∣∣∣+
∣∣∣Ṽn(α, v)− Ṽn(α′, v)

∣∣∣.
Let us set

C1 = sup
u,v∈Kd

0<‖u−v‖≤r

sup
α∈[a,b]

∣∣∣Ṽ1(α, u)− Ṽ1(α, v)
∣∣∣

ρ
E

(u, v)|log ρ
E

(u, v)|η
and C2 = sup

α,α′∈[a,b]
α 6=α′

sup
u∈Kd

∣∣∣Ṽ1(α, u)− Ṽ1(α′, u)
∣∣∣

|α− α′|

where r > 0 and the choice of η ∈ R is given below. Then, for any x = (α, u) ∈ Kd+1

and any y = (α′, v) ∈ Kd+1 such that ‖x− y‖ ≤ r,∣∣∣Ṽ1(x)− Ṽ1(y)
∣∣∣ ≤ (C1 + C2)(ρ

E
(u, v)|log ρ

E
(u, v)|η + |α− α′|)

≤ c1(C1 + C2)ρ(x, y)|log ρ(x, y)|η

where c1 ∈ (0,+∞) is a finite constant and ρ(x, y) = ρ
E

(u, v) + |α− α′|. Then, to apply
Assertion 1. of Proposition 5.2 with ρ̃ = ρ

E
and β = 1, it suffices to establish that C1, C2

and Ṽ1(α(u0), u0) ∈ L2 (since b < 2).
Let us first deal with Ṽ1(α(u0), u0). Using polar coordinates associated with Et (see

Meerschaert and Scheffler (2001)),

E
(∣∣∣Ṽ1(α(u0), u0)

∣∣∣2) ≤ c2 ∫ +∞

0

min
(∥∥∥tEt∥∥∥, 1)2t−3|log t|2(1+ζ)/α(u0)−1dt

with c2 ∈ (0,+∞). Hence, Lemma 2.1 of Biermé et al. (2007) proves that V1(α(u0), u0) ∈
L2 for any choice of ζ.

Let us now consider the random variable C1. By homogeneity and continuity of ψ,
there exists a finite positive constant c3 such that for any u, v ∈ Kd,

sup
α∈[a,b]

∣∣∣Ṽ1(α, u)− Ṽ1(α, v)
∣∣∣ ≤ c3∣∣∣ei〈u−v,ξ̃1〉 − 1

∣∣∣Z1
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with

Z1 = τ
Et

(
ξ̃1

)−1
max

(∣∣∣log τ
Et

(
ξ̃1

)∣∣∣(1+ζ)/a, ∣∣∣log τ
Et

(
ξ̃1

)∣∣∣(1+ζ)/b).
Combining the proofs of Propositions 4.3 and 5.1, we obtain that for any ε > 0, choosing
r small enough,

E


 sup

u,v∈Kd
0<‖u−v‖≤r

∣∣∣ei〈u−v,ξ̃1〉 − 1
∣∣∣Z1

ρ
E

(u, v)|log ρ
E

(u, v)|1/a+ε


2 < +∞.

This implies that for any ε > 0, C1 ∈ L2 for η = 1/a+ ε and ζ well-chosen.
Let us now study C2. Since Kd is a compact set, using polar coordinates and the Mean

Value Theorem, we have

sup
v∈Kd

∣∣∣Ṽ1(α, v)− Ṽ1(α′, v)
∣∣∣ ≤ c4|α− α′|Z2

with Z2 = min
(∥∥∥τ

Et
(ξn)

Et
∥∥∥, 1)Z1

∣∣log τ
Et

(ξn) + c5
∣∣ and c4 and c5 two finite positive

constants. Using polar coordinates, one checks that Z2 ∈ L2, which implies that C2 ∈ L2.
Therefore, for any ε > 0, Assumptions of Assertion 1. of Proposition 5.2 are fulfilled for

a well-chosen ζ. This implies that almost surely, for any ε > 0, S̃m ∈ Hρ
E

(Kd, 1, 1/a+ 1/ε)

with a = minKd α. Hence, for any ε > 0, S̃m ∈ Hρ
E
,B(u0,r)(u0, 1, 1/α(u0) + 1/2 + 1/ε)

for r small enough. This concludes the proof.
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