MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells - Archive ouverte HAL Access content directly
Journal Articles Materials Year : 2012

MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

Abstract

Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8%) and that increasing the thickness up to 15 nm does not change the device performance.

Domains

Materials
Fichier principal
Vignette du fichier
EffectMoO3_materials_2012-05-02521_Chambon.pdf (430.36 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00780649 , version 1 (24-01-2013)

Identifiers

Cite

Sylvain Chambon, Lionel Derue, Michel Lahaye, Bertrand Pavageau, Lionel Hirsch, et al.. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells. Materials, 2012, 5 (12), pp.2521-2536. ⟨10.3390/ma5122521⟩. ⟨hal-00780649⟩
199 View
328 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More