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Abstract: This paper proposes a model of interactions between two point
processes, ruled by a reproduction function h, which is considered as the
intensity of a Poisson process. In particular, we focus on the context of neu-
rosciences to detect possible interactions in the cerebral activity associated
with two neurons. To provide a mathematical answer to this specific prob-
lem of neurobiologists, we address so the question of testing the nullity of the
intensity h. We construct a multiple testing procedure obtained by the aggre-
gation of single tests based on a wavelet thresholding method. This test has
good theoretical properties: it is possible to guarantee the level but also the
power under some assumptions and its uniform separation rate over weak
Besov bodies is adaptive minimax. Then, some simulations are provided,
showing the good practical behavior of our testing procedure.
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1 Introduction

In neurosciences, an important issue lies in a better understanding of the dynamics of cerebral activity
in the cortex. In practice it is possible to measure, in vivo and for a specific task, the cerebral
activity through the emission of action potentials by several neurons, and the specific interest of the
neurobiologists is to understand how these action potentials appear. During a task, the recording of
all arrival times of these action potentials (or spikes) on a neuron forms a spike train. From this point
of view, the spike train can be modeled by a point process.

Several years ago it was thought that activities of different neurons during a task were independent
(for example, see Barlow [3]); this explains why in the studies, the spike trains were usually modeled
by independent Poisson processes. Today, thanks to technological advances in terms of recording brain
activity, various studies show that this belief is false (for instance, see Gerstein [13] and Lestienne [24]).
Thus the recent studies consider neuronal assemblies instead of the separate neuronal activities. For
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example activities of pairs of neurons, that have been recorded simultaneously, show that there exists a
phenomenon called synchronization (see Grammont and Riehle [14] and Grün et al. [16]): the presence
of a spike on one of the two spike trains can affect the apparition of a spike, with a delay, on the
second spike train. From a biological point of view, such a phenomenon reflects a reality. Indeed, an
action potential appears if the neuron is sufficiently excited. However, to obtain a sufficient excitation,
two strategies exist: either the frequency of spikes received by a single neuron increases, either the
receiving neuron receives less spikes but at the same time from different neurons. This second strategy
is precisely the synchronization. From a biological point of view, it is less energy consuming and
the reaction is faster. Therefore, the neurobiologists are interested in detecting the synchronization
phenomenon. More generally, they want to detect whether or not neurons evolve independently of
each other, a dependence being a hint of a functional connection during a task.

To mathematically answer this question, we need a model taking into account the possible inter-
actions between two neurons. In neurosciences, a possible model is the Hawkes process (for instance,
see [18] for theoretical aspects and [5, 23, 27, 28] for its introduction in neurosciences). However, the
Hawkes process is, theoretically speaking, a very complicated model, thus we consider a simpler version
of Hawkes process which is realistic for the possible applications (in neurosciences, or in genomics, . . . )
and for which it is possible to carry out computations. Our model is the following one. Let Np and
Nc be two point processes with respective conditional intensity

λ̃p : t 7−→ µp and λ̃c : t 7−→ µc +

∫ t

−∞
h(t− u) dNp(u), (1.1)

where µp and µc are positive parameters describing the spontaneous part (in the context of neuro-
sciences, the spontaneous apparition of spikes) and h is a function which reflects the influence of Np

on Nc. In this model, we have to assume that supp(h) ⊂ R
∗
+, where supp(h) is the support of the

function h. Moreover, Np is a homogeneous Poisson process (for instance, see [22]) and Nc is a special
case of Hawkes process. The biological problem which consists in knowing whether Np influences Nc

is equivalent to test the null hypothesis H0: "h = 0" against the alternative H1: "h 6= 0".
The above formulation of λ̃c is an integral form. However it is possible conditionally on the points

of Np to have a vision in terms of descendants and no more in terms of intensity conditionally on
the only past observations. Indeed, given T a positive real number representing the time of record of
the neuronal activity and given n an integer, conditionally on the event "the number of points of Np

lying in [0;T ] is n", the points of the process Np obey the same law as a n-sample of uniform random
variables on [0;T ], denoted U1, . . . , Un and named parents. Thus, conditionally on U1, . . . , Un, we can
write λ̃c(t) = µc +

∑n
i=1 h(t − Ui). This new expression of λ̃c can be interpreted as follows. Each Ui

gives birth independently to a Poisson process N i
c with intensity the function t 7−→ h(t − Ui) with

respect to the Lebesgue measure on R, to which is added a homogeneous Poisson process N0
c with

constant intensity µc, representing the orphans. We consequently consider the aggregated process

Nc =

n
∑

i=0

N i
c whose intensity is given by the function t 7−→ µc +

n
∑

i=1

h(t− Ui) (1.2)

and the points of the process Nc are named children. With this interpretation, the goal of the present
paper is to test the "influence or not" of the parents on the children, via the reproduction function h.
This second writing contains many benefits. First, the assumption supp(h) ⊂ R

∗
+ is not mandatory.

With respect to the first formulation, this may appear like a minor difference, but in practice the
impact is considerable. Indeed, if we refer to the context of neurosciences, assuming that the support
of h is in R+ means that one favors a sense of interactions, namely Np affects Nc. However in practice,
we do not have this information a priori. Therefore, when the test does not reject H0, it means that Np

does not seem to influence Nc, but this may be because in reality this is Nc that affects Np. We must
be careful that the initially proposed model is not symmetric in terms of neurons and that a support in
R+ does not really allow to answer the question of dependence. The causality is indeed represented by
the fact that a child appears after its parent and therefore h has to be supported in R+. Heuristically, a
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consequence is the following interpretation: if a parent has a child before its own birth, it may represent
that the child is the parent and the parent the real child. Looking at both sides of the support makes
the procedure in some sense adaptive to the causality of parent/child roles. Another advantage of this
second writing is that it allows applications to other disciplines such as genomics where one studies
for instance the favored or avoided distances between patterns on a strand of DNA and where it is not
always possible to know which pattern rules the other. More details about this application to genomics
can be find in Sansonnet [34], where the author proposes an estimation procedure of the function h,
assumed to be well localized, based on wavelet thesholding methods, in a very similar model to the
one studied here. The interested reader will find other estimation procedures of the function h in this
DNA context, by using a Hawkes’ model in Gusto and Schbath [17] and Reynaud-Bouret and Schbath
[30]. In this paper, we consider the model defined by (1.2). For the simulation study, parents process
(Ui)i is simulated by a homogenous Poisson process of intensity µp.

Since the null hypothesis H0: "h = 0" means that conditionally on the total number of points
of Nc, the points of the process Nc are i.i.d. (independent and identically distributed) with uniform
distribution, a first rather naive approach is to perform a Kolmogorov-Smirnov test (see for instance
[8]). But this test is not powerful, as illustrated in the section devoted to the simulations. The aim
of this paper is then to build a more powerful and nonparametric test Φα with values in {0, 1} of H0:
"h = 0" against the alternative H1: "h 6= 0", rejecting H0 when Φα = 1, with prescribed probabilities
of first and second kind errors. The performance of the test Φα is measured by its uniform separation
rate (see for instance [1]).

In neurosciences, parametric methods exist to detect such dependence. For instance, the Unitary
Event (UE) (see [16]) and the Multiple Tests based on a Gaussian Approximation of the UE (MTGAUE)
(see [35]) methods answer partially the problem by considering coincidences (see Section 4 for more
details). In the one-sample Poisson process model (that is to say n = 1 and µc = 0 in our model),
many papers deal with different problems of testing the simple hypothesis that an observed point
process is a Poisson process with a known intensity. We can cite for instance the papers by Fazli
and Kutoyants [10] where the alternative is also a Poisson process with a known intensity, Fazli [9]
where the alternatives are Poisson processes with one-sided parametric intensities or Dachian and
Kutoyants [7] where the alternatives are self-exciting point processes (namely, Hawkes processes). In
the nonparametric framework, Ingster and Kutoyants [20] propose a goodness-of-fit test where the
alternatives are Poisson processes with nonparametric intensities in a Sobolev or a Besov ball Bδ

2,q(R)
with 1 6 q < ∞ and known smoothness parameter δ. They establish its uniform separation rate over
a Sobolev or a Besov ball and show the adaptivity of their testing procedure in a minimax sense.

In some practical cases like the study of the expression of neuronal interactions or the study of
favored or avoided distances between patterns on a strand of DNA, such smooth alternatives (Sobolev
or Besov balls) cannot be considered. Indeed, the intensity of the Poisson process Nc in these cases
may burst at a particular position of special interest for the neuroscientist or the biologist. So we
have to develop a testing procedure able to distinguish a constant function (or here a null function)
from a function that has some small localized spikes. These features are not well captured by using
classical Besov spaces. Hence we focus in particular on alternatives based on sparsity rather than on
alternatives based on smoothness. For this, we are interested in the computation of uniform separation
rates over weak versions of Besov balls. Such alternatives have already been considered. For instance,
Fromont et al. [11] propose non-asymptotic and nonparametric tests of the homogeneity of a Poisson
process that are adaptive over various Besov bodies simultaneously and in particular over weak Besov
bodies. Another example is Fromont et al. [12] which construct non-asymptotic and nonparametric
multiple tests of the equality of the intensities of two independent Poisson processes, that are adaptive
in the minimax sense over a large variety of classes of alternatives based on classical and weak Besov
bodies in particular.

The test Φα proposed in this paper consists in a multiple testing procedure obtained by aggregating
several single tests based on a wavelet thresholding method as in Fromont et al. [11, 12] (they also
consider model selection and kernel estimation methods). First, Proposition 2 proves that the multiple
test is an α-level test and Theorem 2 gives a condition on the alternative to ensure that our multiple
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test has a prescribed second kind error. This result reveals two regimes as in [34]. Indeed our model
presents a double asymptotic through the number n of parents and the recording time T (namely, the
length of the observations interval), which is not usual. Since Np is a homogeneous Poisson process
with constant intensity µp, the number n of points of Np falling into [0;T ] is the realization of a Poisson
random variable with parameter µpT . As a consequence with very high probability, T is proportional
to n and in this case, the uniform separation rates of the multiple test over weak Besov bodies are
established by Theorem 3. Thus, our testing procedure is near adaptive in the minimax sense over a
class of such alternatives. The proofs of these results are essentially based on concentration inequalities
(see [26]) and on exponential inequalities for U -statistics (see [19]). Secondly, some simulations are
carried out to validate our procedure, which is compared with the classical Kolmogrov-Smirnov test
and a testing procedure proposed by Tuleau-Malot et al. [35], which formalized a well-known procedure
in neurosciences, namely the UE method (see Grün et al. [16]).

The paper is organized as follows. Section 2 deals with the description of our testing procedure.
Section 3 is devoted to the general results of the paper. The control of the probability of second kind
error is ensured by Theorem 1 for the single testing procedures and by Theorem 2 for the multiple test.
The uniform separation rates of the multiple test over weak Besov bodies are provided in Theorem 3.
Section 4 presents the simulation study. The proofs of our main theoretical results are finally postponed
in Section 6.

To end this section we introduce some notations that will be used along the paper. We denote by
dNp and dNc the point measures associated with Np and Nc respectively. We denote by P0 the distri-
bution of the aggregated process Nc under H0, Ph the distribution of Nc whose intensity conditionally
on U1, . . . , Un is given by the function t 7−→ µc +

∑n
i=1 h(t − Ui) for any alternative h and by Eh the

corresponding expectation. The uniform distribution on [0;T ] is named π and Eπ(f(U)) denotes the
expectation of f(U) where U ∼ π (an independent copy of U1, . . . , Un) for any measurable function f .
For an orthonormal basis {ϕλ, λ ∈ L} of a finite dimensional subspace SL of L2(R), we denote by DL

the dimension of SL (namely the cardinal of L) and by hL the orthogonal projection of h onto SL.

2 Description of our testing procedure

In the sequel, we assume that h is compactly supported (there is a maximal time of synchronization
during a task according to the neuroscientists). Without loss of generality, we suppose now that the
support of h is strictly included in [−1; 1] and that we observe the Ui’s (the parents) on [0;T ] and
realizations of the process Nc (the children) on [−1;T + 1]. Consequently, h belongs to L1(R), L2(R)
and L∞(R). Then, we can consider the decomposition of h on the Haar basis denoted by {ϕλ, λ ∈ Λ}:

h =
∑

λ∈Λ

βλϕλ with βλ =

∫

R

h(x)ϕλ(x) dx,

where
Λ = {λ = (j, k) : j > −1, k ∈ Z}

and for any λ ∈ Λ and any x ∈ R,

ϕλ(x) =

{

φ(x− k) if λ = (−1, k)

2j/2ψ(2jx− k) if λ = (j, k) with j > 0
,

with
φ = 1[0;1] and ψ = 1] 1

2
;1] − 1[0; 1

2
].

The functions φ and ψ are respectively the father and the mother wavelets. Since the goal is to detect a
signal and not to reconstruct it, the Haar basis is suitable in our context. Furthermore from a practical
point of view, the use of the Haar basis yields fast algorithms, easy to implement. Nevertheless the
theoretical results of the present paper can be generalized to a biorthogonal wavelet basis (see [6] for
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a definition of this particular basis) as in [29, 31, 34]. We precise that we can easily extend our results
to a function h compactly supported in [−A;A] for any A > 0 by scaling the data by ⌈A⌉+ 1.

By considering this wavelet decomposition of h, the null hypothesis H0: "h = 0" means that all
the coefficients βλ are null and the alternative hypothesis H1: "h 6= 0" means that there exists at least
one non-zero coefficient. Since h is strictly supported in [−1; 1], if one coefficient β(−1,k) is non-zero,
then there exists at least one coefficient β(j,k) with j > 0 which is also non-zero. Therefore, we focus
only on the coefficients β(j,k) with j > 0 and we introduce the following subset Γ of Λ

Γ = {λ = (j, k) ∈ Λ : j > 0, k ∈ Kj}

with Kj = {k ∈ Z : −2j 6 k 6 2j − 1} (Kj is the set of integers k such that the intersection of the
support of ϕλ and [−1; 1] is not empty, with λ = (j, k)).

For every λ in Γ, the coefficient βλ is estimated by

β̂λ =
G(ϕλ)

n
, with G(ϕλ) =

∫

R

n
∑

i=1

[

ϕλ(x− Ui)−
n− 1

n
Eπ(ϕλ(x− U))

]

dNc(x).

These estimates, inspired by those proposed in [34] for a simpler model, namely with µc = 0, are
unbiased:

Proposition 1. For all λ = (j, k) in Γ, β̂λ is an unbiased estimator of βλ.

The proof of Proposition 1 uses the fact that for all λ in Γ,
∫ 1
−1 ϕλ(t) dt = 0, avoiding boundary

effects (see Section 6.1).
In order to test the null hypothesis H0: "h = 0" against H1: "h 6= 0", namely "∃λ ∈ Γ, βλ 6= 0",

we first propose to test for all λ ∈ Γ, the null hypothesis H0 against the alternative Hλ
1 : "βλ 6= 0". For

each λ ∈ Γ, the associated simple test actually consists in testing "βλ = 0" against "βλ 6= 0" or more
precisely, in testing the absence of variation of the function h on a small interval. Then in a second
time, we will aggregate these simple tests to test the nullity of h on its complete support.

2.1 The single testing procedures

Let us fix some α ∈]0; 1[ and λ ∈ Γ. We want to construct an α-level test of the null hypothesis H0:
"h = 0" against Hλ

1 : "βλ 6= 0", from the observation of the parents U1, . . . , Un and the realization of
the Poisson process Nc. We notice first that the null hypothesis entails in particular that βλ = 0.

We introduce the testing statistic T̂λ defined by

T̂λ = |β̂λ|. (2.1)

Our single test consists in rejecting the null hypothesis when T̂λ is too large and more precisely, when

T̂λ > q
[U1,...,Un;Nc,tot]
λ (α),

where Nc,tot is the (random) number of points of the process Nc falling into [−1;T + 1] and for any

m ∈ N
∗, q[U1,...,Un;m]

λ (α) is the (1− α)-quantile conditionally on U1, . . . , Un of

T̂ 0
λ,m =

1

n

∣

∣

∣

∣

∣

m
∑

k=1

n
∑

i=1

[

ϕλ(V
0
k − Ui)−

n− 1

n
Eπ

(

ϕλ(V
0
k − U)

)

]

∣

∣

∣

∣

∣

, (2.2)

with (V 0
1 , . . . , V

0
m) a m-sample with uniform distribution on [−1;T + 1] (namely a m-sample of the

process Nc under H0). We can easily prove that conditionally on U1, . . . , Un and Nc,tot = m, T̂λ and
T̂ 0
λ,m have exactly the same distribution under H0. Thus, the corresponding test function is defined by

Φλ,α = 1
T̂λ>q

[U1,...,Un;Nc,tot]

λ (α)
. (2.3)
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2.2 The multiple testing procedure

Previously, we have built testing procedures based on each single empirical coefficient β̂λ. We propose
in this subsection to consider a collection of empirical coefficients instead of a single one, and to define
a multiple testing procedure by aggregating the corresponding single tests.

Let {wλ, λ ∈ Γ} be a collection of positive numbers such that
∑

λ∈Γ e
−wλ 6 1. This set allows us

to put weights to empirical coefficients according to their index λ = (j, k) ∈ Γ. Given α ∈]0; 1[, we
consider the test which rejects H0 when there exists at least one λ in Γ such that

T̂λ > q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ),

where

u
[U1,...,Un;Nc,tot]
α

= sup

{

u > 0 : P

(

max
λ∈Γ

(

T̂ 0
λ,Nc,tot

− q
[U1,...,Un;Nc,tot]
λ (ue−wλ)

)

> 0
∣

∣

∣U1, . . . , Un;Nc,tot

)

6 α

}

.
(2.4)

The corresponding test function is defined by

Φα = 1
maxλ∈Γ

(

T̂λ−q
[U1,...,Un;Nc,tot]

λ (u
[U1,...,Un;Nc,tot]
α e−wλ )

)

>0
. (2.5)

We mention that, since the set Γ is infinite countable, the number of tests to be performed is infinite
and this is not a problem from a theoretical point of view. But in practice, we have to perform a finite
number of single tests and so, we will fix a maximal resolution level j0 and we will carry out the single
tests Φλ,α for λ = (j, k) in Γ with j 6 j0.

In the next section, we study the properties of the single tests Φλ,α defined by (2.3) and the multiple
test Φα defined by (2.5), through their probabilities of first and second kind errors.

3 Main theoretical results

3.1 Probability of first kind error

We constructed our single and multiple tests in such a way that the first kind error, which measures
the probability that the test wrongly rejects the null hypothesis, is less than α.

Proposition 2. Let α be a fixed level in ]0; 1[. Then the single test Φλ,α defined by (2.3) for any λ ∈ Γ

and the multiple test Φα defined by (2.5) are of level α. Furthermore, u
[U1,...,Un;Nc,tot]
α defined by (2.4)

satisfies u
[U1,...,Un;Nc,tot]
α > α.

This result shows that the tests are exactly of level α, which is required for a test from a non-
asymptotic point of view (namely n and T are not required to tend to infinity).

3.2 Probability of second kind error

The second kind error, which measures the probability that the test does not wrongly reject the null
hypothesis is not fixed by the testing procedure, unlike the first kind error. We have to control the
probability of second kind error in such a way that it is close to 0, in order to obtain powerful tests.
The following theorem brings out a condition which guarantees that the single tests have a prescribed
second kind error.

Since h belongs to L1(R) and L∞(R), we introduce R1 and R∞ two positive real numbers such
that ‖h‖1 6 R1 and ‖h‖∞ 6 R∞.
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Theorem 1. Let α, β be fixed levels in ]0; 1[. Let ζ and κ be positive constants depending on β, µc,
R1 and R∞. For all λ ∈ Γ, let Φλ,α be the test function defined by (2.3). Assume that

|βλ| >
√

2ζ

β

(

1

n
+

1

T
+

2−jn

T 2

)

+ κ

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(

2j/2

n3/2
+

2−j/2

nT

)}

,

(3.1)

for λ = (j, k). Then,

Ph(Φλ,α = 0) 6 β.

Note that the quantity 1
n + 1

T + 2−jn
T 2 that appears under the square root of the first term of the

right hand side of (3.1) is of the same order as the upper bound of the variance of the estimates β̂λ
(see Proposition 1 of [34]). Consequently, the right hand side of (3.1) can be viewed as a standard
deviation term, since the other terms are not asymptotically larger than the first term if we assume
that 2j 6 n2, where asymptotic means n→ +∞ or T → +∞.

Theorem 1 means that if the coefficient βλ is far enough from 0, then the probability of second
kind error is controlled. This result gives a threshold for βλ from which our associated single testing
procedure is able to detect a signal and shows that its power is larger than 1− β. Furthermore, if we
consider the regime "T proportional to n" in order to compare our result with known asymptotic rates
of testing, Condition (3.1) can be easily obtained for instance if β2λ > C/n by assuming that 2j 6 n2,
with C a positive constant.

Now we are interested in the power of the multiple testing procedure and the following theorem
gives a condition on the alternative in order to ensure that our multiple test has a prescribed second
kind error.

Theorem 2. Let α, β be fixed levels in ]0; 1[. Let Φα be the test function defined by (2.5). Assume
that there exists at least one finite subset L of Γ such that

‖hL‖22 >
(

C1DL + C2

∑

λ∈L

wλ

)

[

1

n
+

n

T 2

]

+

(

C3DL + C4

∑

λ∈L

wλ + C5

∑

λ∈L

w2
λ

)

[

2jL

n3
+

1

n2T 2

]

, (3.2)

where jL = max{j > 0 : (j, k) ∈ L with k ∈ Kj} and C1, C2, C3, C4 and C5 are positive constants
depending on α, β, µc, R1 and R∞. Then,

Ph(Φα = 0) 6 β.

This theorem means that if there exists one subspace SL of L2(R) such that hL (the orthogonal
projection of h onto SL) lies outside a small ball around 0, then the probability of second kind error is
controlled. This result gives a threshold for the energy of hL from which our multiple testing procedure
is able to detect a signal and shows that its power is larger than 1−β. Furthermore, if we consider the
regime "T proportional to n" in order to compare our result with known asymptotic rates of testing,
Condition (3.2) can be easily obtained for instance if ‖hL‖22 > C ×

(

DL +
∑

λ∈Lwλ +
∑

λ∈Lw
2
λ

)

/n
by assuming that 2jL 6 n2, with C a positive constant. Then, the separation rate between the null
and the alternative hypotheses is of order DL/n and this is typical for testing procedures based on
a thresholding approach (see [11, 12] for instance). Usually, nested tests (namely based on model
selection) achieve a faster rate of separation of order

√
DL/n (see [1, 2] for instance). But these

latter tests are not adaptive over weak Besov bodies. Consequently, the separation rate established by
Theorem 2 leads to sharp upper bounds for the uniform separation rates over such particular classes
of alternatives and so, our multiple testing procedure will be proved to be adaptive over particular
classes of alternatives, based on weak Besov bodies.
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3.3 Uniform separation rates

Given some α, β ∈]0; 1[, we have previously built an α-level test Φα defined by (2.5), with a probability
of second kind error at most equals to β if Condition (3.2) is satisfied. Then, given a class Sδ of
alternatives h, it is natural to measure the performance of the test via its uniform separation rate
ρ(Φα,Sδ , β) over Sδ (see [1]) defined by

ρ(Φα,Sδ, β) = inf

{

ρ > 0 : sup
h∈Sδ,‖h‖2>ρ

Ph(Φα = 0) 6 β

}

. (3.3)

In order to compare our result with known asymptotic rates of testing, we consider the regime "T
proportional to n" in this subsection.

We introduce for δ > 0, R > 0 the Besov body

Bδ
2,∞(R) =







f ∈ L2(R) : f =
∑

λ∈Λ

βλϕλ, ∀j > 0,
∑

k∈Kj

β2(j,k) 6 R22−2jδ







.

We also consider a weaker version of the above Besov bodies defined for p > 0, R′ > 0 by

W∗
p(R

′) =

{

f ∈ L2(R) : f =
∑

λ∈Λ

βλϕλ, sup
s>0

sp
∑

λ∈Γ

1|βλ|>s 6 R′p

}

.

Whereas the spaces Bδ
2,∞(R) constitute an ideal class to measure the regularity of the possible alterna-

tives h, the spaces W∗
p (R

′) constitute an ideal class to measure the sparsity of a wavelet decomposed
signal h. Indeed, if f =

∑

λ∈Λ βλϕλ ∈ W∗
p (R

′), then the associated sequence β = (βλ)λ∈Γ satis-

fies supℓ∈N∗ ℓ1/p|β|(ℓ) < ∞, where the sequence (|β|(ℓ))ℓ is the non-increasing rearrangement of β:
|β|(1) > |β|(2) > . . . > |β|(ℓ) > . . .. This condition gives a polynomial control of the decreasing rate of
the sequence (|β|(ℓ))ℓ and smaller p, sparser the signal. There exists an embedding between Besov and
weak Besov balls:

Bδ
2,∞(R) ⊂ W∗

2
1+2δ

(r),

where the radius r of the weak Besov ball depends on δ and R (more precisely, r = 4δR/
√
22δ − 1). See

[21, 32, 33] for more details and for extensions in a more general setting. So, we consider in this paper
such alternatives based on the intersection of Besov and weak Besov bodies, namely sparse functions
with some minimal regularity, see below.

To evaluate the uniform separation rates, we choose the following collection of weights {wλ, λ ∈ Γ}
defined by

wλ = 2
(

ln (j + 1) + ln (π/
√
6)
)

+ ln |Kj |, (3.4)

for any λ = (j, k) ∈ Γ, where |Kj | is the cardinal of Kj which is of order 2j . With this choice, the
collection of weights satisfies the condition

∑

λ∈Γ e
−wλ 6 1. The following theorem gives the uniform

separation rates over Bδ
2,∞(R) ∩W∗

2
1+2γ

(R′), for γ > δ.

Theorem 3. Let α, β be fixed levels in ]0; 1[. Assume that T is proportional to n. Let Φα be the test
function defined by (2.5) with the weights wλ’s defined by (3.4). Then, for any δ > 0, γ > 0, R > 0,
R′ > 0, if 2δ > γ/(1 + 2γ)

ρ(Φα,Bδ
2,∞(R) ∩W∗

2
1+2γ

(R′), β) 6 C

(

lnn

n

)
γ

1+2γ

,

with C a positive constant depending on δ, γ, R, R′, α, β, µc, R1 and R∞.
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Note that this result holds for instance with δ = 1/4. It corresponds to the minimal regularity
mentioned previously.

Theorem 3 illustrates the optimality of our testing procedure in the minimax setting. Indeed,
considering the regime "T proportional to n", uniform separation rates of the test Φα match the
minimax separation rates obtained by Fromont et al. [11, 12], if 2δ > γ/(1 + 2γ) and also δ < γ/2 and
γ > 1/2 (see Theorem 1 of [11]). Furthermore, the upper bound of uniform separation rates of our test
Φα over Bδ

2,∞(R)∩W∗
2

1+2γ

(R′) has already obtained, up to a logarithmic term, for a wavelet thresholding

estimation method proposed by Sansonnet [34] in a very similar context and more precisely, this is
equal to the minimax estimation rates of the maxisets of the thresholding estimation procedure (see
[21, 29, 33] for more details). This means that it is at least as difficult to test as to estimate over such
classes of alternatives. Note that on Sobolev or Besov spaces, testing rates are usually faster than
estimation rates.

4 Simulation study

In this section, we study our testing procedure from a practical point of view and we compare it to
the conditional Kolmogorov-Smirnov (KS) test and a Gaussian Approximation of the Unitary Events
(GAUE) method developed by Tuleau-Malot et al.[35].

4.1 Description of the data

We create different data sets that are to a certain extent a reflection of a neurobiological reality. We
consider the spike trains of two neurons Np and Nc which are modeled by two point processes with
respective conditional intensity λ̃p and λ̃c defined by (1.1).

For real spike trains it is not reasonable to postulate the stationarity of Np and Nc, i.e.µp and µc
are constant and considering the same function h on the entire recording period [0;T ] (see Grün et
al. [16]). But this assumption is quite feasible on smaller time ranges (see Grün [15] and Grammont
and Riehle [14]). However, to date, we have no algorithmic and statistical tool to clearly identify the
stationarity ranges. Several methods (UE and MTGAUE, see [35] for instance) propose to perform
many tests on different small windows of time and to use multiple testing procedure (see Benjamini and
Hochberg [4] for instance) to combine them. Hence those methods can solve, at least in practice, this
stationarity problem. The aim of this simulation study is not to show how our testing procedure can
be incorporated in a Benjamini and Hochberg’s approach, which lies outside the scope of the present
paper, but to discuss the advantage of our method on one small window of time. This explains the use
of the simulated data described below.

We need therefore to simulate dependence between Np and Nc on [0;T ] and to take into account
the major part of the neurobiological reality. So, we simulate processes Np and Nc whose intensities
are respectively given by

λ̃p = 50 and λ̃c = 20 +

∫ t

−∞
h(t− u) dNp(u), with h = θ1[ν;0.01].

In order to evaluate the performance of different procedures, several parameters θ and ν are tested. The
parameter θ represents the influence strength of Np on Nc: larger the parameter θ and more important
the influence of Np on Nc. The parameter ν introduces a possible minimal delay in the synchronization,
i.e. the synchronization of the neuronal activity occurs with a delay δ uniform on [ν; 0.01]. We consider
nine different data sets denoted Data0, Data10, Data30, Data50, Data80, Data10r, Data30r, Data50r
and Data80r. For k ∈ {0, 10, 30, 50, 80}, Datak is simulated with θ = k and ν = 0 while Datakr is
simulated with θ = k and ν = 0.005.

4.2 The Kolmogorov-Smirnov test

First, we look at the performance of the Kolmogorov-Smirnov test (see Darling [8]) to convince us that
this commonly used test is not reliable in this context. Indeed, even if the KS test is not a test of
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Data set Power for KS
Data10 0.040
Data30 0.051
Data50 0.087
Data80 0.113
Data10r 0.054
Data30r 0.059
Data50r 0.053
Data80r 0.073

Table 1: Power of the KS test with level α = 0.05, evaluated for various interactions.

independence, the KS test may answer the problem. Since as said before, under H0 and conditionally on
U1, . . . , Un and Nc,tot = m, the observations of Nc are i.i.d. with common law the uniform distribution
on [−1;T + 1], looking for the adequation of Nc with this law could be an idea to detect the rejection
of H0. So, the use of the KS test is relevant.

First, we focus on the empirical rate of the type I error which is an approximation of the level of
the test. Thus, we simulate 5000 independent realizations of Data0, simulations on which we perform
the KS test with level α = 0.05. The empirical rate of the type I error evaluated on those data is 0.051,
which is as desired.

What about the number of wrong rejections of H1? We consider the power of the tests which is the
proportion of correct rejections of H0. We simulate 1000 independent realizations of Data10, Data30,
Data50, Data80, Data10r, Data30r, Data50r and Data80r, data on which we perform the KS test with
level α = 0.05 and we evaluate the empirical power of the test. Table 1 summarizes the obtained
results. The KS test power is extremely close to the expected level. Hence the KS test is not able to
clearly detect the dependence.

4.3 The GAUE method adapted to our context

Before comparing both methods, we briefly return to the principle of the GAUE method. The aim
of the GAUE method is to detect the dependence on a single window [0;T ]. This method is based
on the coincidences with delay. More precisely for the couple of processes (Np, Nc), we compute the
number of coincidences with delay δ on [0;T ], i.e. the variable XT =

∫

[0;T ]2 1|x−y|6δ dNp(x) dNc(y), that

represents the number of pairs (x, y) in Np×Nc such that |x− y| 6 δ. Let us define λ̂p = Np([0;T ])/T

and λ̂c = Nc([0;T ])/T where Np([0;T ]) and Nc([0;T ]) denote respectively the number of spikes of Np

and Nc among [0;T ]. The quantities λ̂p and λ̂c are estimators of λ̃p and λ̃c.

We reject the null hypothesis H0: "h = 0" when XT > m̂0+ σ̂u1−α/2, where m̂0 = λ̂pλ̂c(2Tδ− δ2),

σ̂2 = λ̂pλ̂c(2Tδ− δ2) + λ̂pλ̂c

(

λ̂p + λ̂c

)

(

2
3δ

3 − 1
T δ

4
)

and u1−α/2 is the (1−α/2)-quantile of a standard

normal. This threshold comes from the theory developed in [35] and is adapted to our context. The
quantity m̂0 is a plug-in estimator of the expectation of XT under H0 and σ̂2 is an estimator of the
variance. It can be shown that under the assumptions "Np and Nc are Poisson processes" and "Np

and Nc are stationary", this test is asymptotically of level α. Further details about the meaning of
those different estimators are given in [35].

The GAUE method was developed jointly with a neurophysiologist and it fits in line the UE method
developed by Grün and coauthors (for instance, see [15] and [16]), which is a commonly used method
in neurosciences. One of its main disadvantage is that δ has to be chosen beforehand. Part of the aim
of this work is to propose a more adaptive method.
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Data set our procedure GAUE
Data0 0.0486 0.0446/0.0510/0.0548

Table 2: Empirical rate of type I error associated to our procedure and the GAUE method. The
theoretical level is α = 0.05. Since the GAUE method depends on the tuning parameter δ, the given
value is the minimum/median/maximum of the empirical rate over all the δ.

4.4 Our procedure in practice

From a theoretical point of view, considering all the resolution levels is not a problem. However, in
practice, we have a maximal resolution level, denoted j0 in the sequel. We choose j0 quite small for
time computational reasons (j0 = 3). Thus, it is better to have the support [−A;A] of h with A close
to 1. Nevertheless, if in addition to a global detection, we are interested in a more local detection,
i.e. the coefficients λ ∈ Γ for which Φα,λ rejected, j0 should not be too small. For instance, if h = 1[0;A]

and if the order of magnitude of A is 2−J or 1− 2−J , with J > j0 +1, our procedure does not allow to
detect locally the jump of h at A. Consequently, taking A close to 1/2 may appear reasonable. Hence,
the data are multiplied by 50 before being treated.

Let us recall that our test rejects H0 when there exists at least one λ = (j, k) in Γ with j 6 j0 such
that

T̂λ > q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ),

where j0 > 1 denotes the maximal resolution level, u[U1,...,Un;Nc,tot]
α is defined by (2.4) and the wλ’s

are given by (3.4). Hence, for each observation of the process Nc whose number of points is denoted

by Nc,tot = m, given the points of Np denoted U1, . . . , Un, we estimate u[U1,...,Un;m]
α and the quantiles

q
[U1,...,Un;m]
λ by classical Monte Carlo methods based on the simulations of B independent sequences
{V b, 1 6 b 6 B}, where V b = (V b

1 , . . . , V
b
m) is a m-sample of uniform variables on [−1;T + 1] (i.e. the

law of Nc under H0, conditionally on U1, . . . , Un and Nc,tot = m). We fix B = 20000 in the sequel since

for larger values of B, the gain in precision for the estimates of u[U1,...,Un;m]
α and q

[U1,...,Un;m]
λ becomes

negligible. We define for any λ = (j, k) in Γ with j 6 j0, for 1 6 b 6 B:

T̂ 0,b
λ,m =

1

n

∣

∣

∣

∣

∣

m
∑

k=1

n
∑

i=1

[

ϕλ(V
b
k − Ui)−

n− 1

n
Eπ

(

ϕλ(V
b
k − U)

)

]

∣

∣

∣

∣

∣

.

We compute these T̂ 0,b
λ,m’s with a cascade algorithm (see Mallat [25]).

Half of the m-samples is used to estimate the quantiles by putting in ascending order the T̂ 0,b
λ,m’s for

any λ. The other half is used to approximate the conditional probabilities occurring in (2.4). Then,

u
[U1,...,Un;m]
α is obtained by dichotomy, such that the estimated conditional probability occurring in

(2.4) is less than α, but as close as possible to α. Choosing j0 = 3, our procedure considers 15 single
tests Φλ,α involving wavelets whose support length is respectively 0.125, 0.25, 0.5 and 1. This allows
us to make detections at the positions m × 2−3 (m in {0, . . . , 7}) with a range of 2−3. Due to the
scaling of the data in our procedure, we need to divide the positions and the range of the possible
detections by 50. Consequently, in the real time, the positions and the range become m× 0.0025 (m
in {0, . . . , 7}) and 0.0025.

4.5 Results

We compare our testing procedure and the GAUE method on the different data sets. As for the KS
test, we look first at the level of both tests. We simulate 5000 independent realizations of Data0,
simulations on which we perform the present method and the GAUE ones with α = 0.05. For the
GAUE, the tuning parameter δ varies on a regular grid of [0.001; 0.04] of step 0.001. The order of
magnitude of δ is similar to the range of the possible detections done with our method. On those data,
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Data set our procedure GAUE
Data10 0.095 0.068/0.1085/0.168
Data30 0.478 0.154/0.3795/0.707
Data50 0.864 0.278/0.6645/0.953
Data80 0.993 0.451/0.9160/0.998
Data10r 0.073 0.047/0.0575/0.077
Data30r 0.282 0.050/0.1415/0.277
Data50r 0.664 0.053/0.2825/0.589
Data80r 0.968 0.048/0.4900/0.879

Table 3: Powers associated with our procedure and the GAUE method, evaluated for various interac-
tions. The theoretical level is α = 0.05. Since the GAUE method depends on the tuning parameter δ,
the given value is the minimum/median/maximum of the empirical rate over all the δ.

we evaluate the empirical rate of type I error. Those results, for both methods, are summarized in
Table 2: both testing methods seem to have a correct level in practice. This means that the number
of wrong rejections of H0 is well controlled.

Now we want to see if the number of wrong rejections of H1 is also controlled. To evaluate the power
of both tests, we simulate 1000 independent realizations of Data10, Data30, Data50, Data80, Data10r,
Data30r, Data50r and Data80r as for the KS test (see Section 4.2). The results of the empirical power
are given by Table 3: both methods are comparable in terms of power when ν = 0 (i.e. for the Datak).
However when ν 6= 0, our method seems to have better performance since the power is higher.

Moreover, if both methods are comparable in terms of performance, it remains that the testing
procedure proposed in this paper has an advantage over the GAUE method. In fact, our method is
statistically adaptive. Indeed, the parameter δ which appears in the GAUE method is not calibrated
in practice. In our method, we aggregate the single tests over (j, k). So on one hand, we do not
need to specify this parameter but just an upper bound j0, the maximal resolution level: the method
through weights (3.4), adapts to this unspecified parameter (j, k). But on the other hand, by looking
at the single tests Φλ,α that have supported the rejection, we are able to partially recover an important
information for the practitioner: the position (k2−j) and the range (2−j) of the influence. In fact, by
looking only at this single testing procedure, we get an upper value for 0.01 and a lower value for ν
on the range of delay δ of synchronization. To obtain more precise estimations of the support of h, we
can consider an estimate of h, for instance the one proposed by Sansonnet [34]. The capacity to our
method to get an information on ν is due to the fact that for a resolution level j we consider different
positions k. This is not possible with the GAUE method. This explains why the results on Data10r,
Data30r, Data50r and Data80r are better with our method.

5 Conclusion

In our paper, we have investigated the influence of a point process on another one. We have built a
multiple testing procedure based on wavelet thresholding. The main results of the paper have revealed
the optimality of the procedure. Furthermore, our test is adaptive in the minimax sense over classes
of alternatives essentially based on weak Besov bodies. Then, from a practical point of view, our
method answers several practical questions. However, a number of challenges remain before applying
our method on real data. To overcome the problem of stationarity, we could use a Benjamini and
Hochberg’s approach as for the GAUE method. Finally, we could consider a more sophisticated model
that takes into account the phenomenons of spontaneous apparition and self-excitation (as for the
complete Hawkes model). But this model raises serious difficulties from the theoretical point of view.
This is an exciting challenge.
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6 Proofs

All along the proofs, we introduce some positive constants denoted by C(ξ, . . .) meaning that they may
depend on ξ, . . . . They do not depend on j, n and T (which drive the asymptotic). Furthermore, the
values of these constants may vary from line to line.

We recall that {ϕλ, λ ∈ Λ} is the Haar basis and consequently, we have:

‖ϕλ‖1 = 2−j/2, ‖ϕλ‖2 = 1 and ‖ϕλ‖∞ = 2j/2.

In the case of a biorthogonal wavelet basis, ‖ϕλ‖1, ‖ϕλ‖2 and ‖ϕλ‖∞ are of the same order as above, up
to a positive constant respectively depending on ‖ψ‖1, ‖ψ‖2 and ‖ψ‖∞, where ψ is the mother wavelet
associated to the considered biorthogonal wavelet basis. Consequently, the same proofs potentially lead
to the results on a biorthogonal wavelet basis as well as in [34] for the wavelet thresholding estimation.

6.1 Proof of Proposition 1

We first notice that for any λ in Γ, for any u ∈ [0;T ],
∫ T+1

−1
ϕλ(t− u) dt = 0. (6.1)

Let λ ∈ Γ be fixed. By considering the aggregated process (1.2), we can write

G(ϕλ) = G0(ϕλ) +G(ϕλ), (6.2)

with

G0(ϕλ) =

∫

R

n
∑

i=1

[

ϕλ(x− Ui)−
n− 1

n
Eπ(ϕλ(x− U))

]

dN0
c (x)

and

G(ϕλ) =

∫

R

n
∑

i=1

[

ϕλ(x− Ui)−
n− 1

n
Eπ(ϕλ(x− U))

] n
∑

j=1

dN j
c (x).

On the one hand, we notice that G(ϕλ) is the same quantity as the one defined by equation (2.3) of
[34]. Thus, by applying the first part of Proposition 1 of [34], we obtain

E(G(ϕλ)) = n

∫

R

ϕλ(x)h(x) dx.

On the other hand, we have

G0(ϕλ) =

∫

R

ϕλ(x− U1) dN
0
c (x) +

n
∑

i=2

∫

R

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dN0
c (x).

Thus,

E(G0(ϕλ)|U1, . . . , Un) =

∫ T+1

−1
ϕλ(x− U1)µc dx+

n
∑

i=2

∫ T+1

−1
[ϕλ(x− Ui)− Eπ(ϕλ(x− U))]µc dx

and by using (6.1), we obtain

E(G0(ϕλ)) =
n
∑

i=2

∫ T+1

−1
E
[

ϕλ(x− Ui)− Eπ(ϕλ(x− U))
]

µc dx = 0.

Finally,

E(β̂λ) = E

(G(ϕλ)

n

)

=

∫

R

ϕλ(x)h(x) dx = βλ,

which proves Proposition 1.
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6.2 Proof of Proposition 2

Let α be a fixed level in ]0; 1[. Let λ ∈ Γ be fixed. First, the probability that the single test defined
by (2.3) wrongly detects a signal is

P0(Φλ,α = 1) = P0

(

T̂λ > q
[U1,...,Un;Nc,tot]
λ (α)

)

.

Since conditionally on U1, . . . , Un and Nc,tot, T̂λ and T̂ 0
λ,Nc,tot

have exactly the same distribution under

H0, q
[U1,...,Un;Nc,tot]
λ (α) is also the (1− α)-quantile of T̂λ

∣

∣U1, . . . , Un;Nc,tot under H0. Thus,

P0(Φλ,α = 1) 6 α

and the level of the single test is α.
Then, the probability that the multiple test defined by (2.5) wrongly detects is

P0(Φα = 1) = P0

(

max
λ∈Γ

(

T̂λ − q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ)

)

> 0

)

.

By definition (2.4) of u[U1,...,Un;Nc,tot]
α ,

P0

(

max
λ∈Γ

(

T̂λ − q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ)

)

> 0
∣

∣

∣
U1, . . . , Un;Nc,tot

)

6 α,

because conditionally on U1, . . . , Un and Nc,tot, T̂λ and T̂ 0
λ,Nc,tot

have exactly the same distribution
under H0. By taking the expectation over U1, . . . , Un and Nc,tot, we obtain that

P0(Φα = 1) 6 α

and the level of the multiple test is α.
Furthermore, by Bonferroni’s inequality we have

P

(

max
λ∈Γ

(

T̂ 0
λ,Nc,tot

− q
[U1,...,Un;Nc,tot]
λ (αe−wλ)

)

> 0
∣

∣

∣
U1, . . . , Un;Nc,tot

)

6
∑

λ∈Γ

P

(

T̂ 0
λ,Nc,tot

− q
[U1,...,Un;Nc,tot]
λ (αe−wλ) > 0

∣

∣

∣
U1, . . . , Un;Nc,tot

)

6
∑

λ∈Γ

αe−wλ

6 α

and consequently u[U1,...,Un;Nc,tot]
α > α by definition (2.4) of u[U1,...,Un;Nc,tot]

α , which concludes the proof
of Proposition 2.

6.3 Proof of Theorem 1

Let λ ∈ Γ be fixed. Here we want to find a condition which will guarantee that

Ph(Φλ,α = 0) 6 β,

given β ∈]0; 1[.
Let us introduce qα1−β/2 the (1− β/2)-quantile of the conditional quantile q[U1,...,Un;Nc,tot]

λ (α). Then
for any h,

Ph(Φλ,α = 0) = Ph

(

T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (α) , q

[U1,...,Un;Nc,tot]
λ (α) 6 qα1−β/2

)

+ Ph

(

T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (α) , q

[U1,...,Un;Nc,tot]
λ (α) > qα1−β/2

)
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6 Ph(T̂λ 6 qα1−β/2) + β/2

and a condition which guarantees Ph(T̂λ 6 qα1−β/2) 6 β/2 will be enough to ensure that

Ph(Φλ,α = 0) 6 β.

The following lemma gives such a condition.

Lemma 6.1. Let α, β be fixed levels in ]0; 1[. For any λ = (j, k) ∈ Γ, if

Eh(T̂λ) >

√

2ζQj,n,T

β
+ qα1−β/2 (6.3)

for a particular ζ which is a positive constant depending on µc, R1 and R∞, where

Qj,n,T =
1

n
+

1

T
+

2−jn

T 2
,

then

Ph(T̂λ 6 qα1−β/2) 6 β/2,

so that

Ph(Φλ,α = 0) 6 β.

The proof of this lemma is postponed in Section 6.6.1.
In order to have an idea of the order of the right hand side of (6.3), we are now interested in the

control of qα1−β/2, the (1−β/2)-quantile of q[U1,...,Un;Nc,tot]
λ (α). A sharp upper bound for qα1−β/2 is given

by the following lemma.

Lemma 6.2. Let α, β be fixed levels in ]0; 1[. For any λ = (j, k) ∈ Γ, there exists some positive
constant κ depending on β, µc and R1 such that

qα1−β/2 6 κ

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(

2j/2

n3/2
+

2−j/2

nT

)}

.

The proof of this lemma is postponed in Section 6.6.2.
Now, observe that if Condition (3.1) of Theorem 1 is satisfied, namely

|βλ| >
√

2ζQj,n,T

β
+ κ

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(

2j/2

n3/2
+

2−j/2

nT

)}

,

then by Lemma 6.2,

|βλ| >
√

2ζQj,n,T

β
+ qα1−β/2.

We notice by Jensen’s inequality that |βλ| = |Eh(β̂λ)| 6 Eh(|β̂λ|) = Eh(T̂λ). Thus, Condition (6.3) of
Lemma 6.1 is satisfied and by Lemma 6.1,

Ph(Φλ,α = 0) 6 β,

which concludes the proof of Theorem 1.
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6.4 Proof of Theorem 2

Since u[U1,...,Un;Nc,tot]
α > α (see Proposition 2) and by setting αλ = αe−wλ , we have

Ph(Φα = 0) = Ph

(

∀λ ∈ Γ, T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (u

[U1,...,Un;Nc,tot]
α e−wλ)

)

6 Ph

(

∀λ ∈ Γ, T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (αλ)

)

6 min
λ∈Γ

Ph

(

T̂λ 6 q
[U1,...,Un;Nc,tot]
λ (αλ)

)

6 min
λ∈Γ

Ph(Φλ,αλ
= 0)

6 β,

as soon as there exists λ in Γ such that Ph(Φλ,αλ
= 0) 6 β.

First, let us give the precise values of the constants that appear in Condition (3.2) of Theorem 2:

C1 = 8

(

ζ

β
+3κ2 ln (2/α)

)

, C2 = 24κ2, C3 = 8κ2 ln2 (2/α), C4 = 16κ2 ln (2/α) and C5 = 8κ2,

where ζ and κ are the constants defined respectively by Lemma 6.1 and Lemma 6.2. We recall that
Qj,n,T = 1

n + 1
T + 2−jn

T 2 and we denote Rj,n,T = 2j

n3 + 2−j

n2T 2 .
Let us assume that there exists one finite subset L of Γ such that Condition (3.2) of Theorem 2 is

satisfied. Thus,

‖hL‖22 > 8

(

(

ζ

β
+ 3κ2 ln (2/α)

)

DL + 3κ2
∑

λ∈L

wλ

)

[

1

n
+

n

T 2

]

+

(

8κ2 ln2 (2/α)DL + 16κ2 ln (2/α)
∑

λ∈L

wλ + 8κ2
∑

λ∈L

w2
λ

)

[

2jL

n3
+

1

n2T 2

]

.

Since ln (2/α) + wλ = ln (2/αλ),
∑

λ∈L

β2λ >
∑

λ∈L

{

8

(

ζ

β
+ 3κ2 ln (2/αλ)

)[

1

n
+

n

T 2

]

+ 8κ2 ln2 (2/αλ)

[

2jL

n3
+

1

n2T 2

]}

and it implies that there exists one coefficient λ = (j, k) in Γ such that

β2λ > 8

(

ζ

β
+ 3κ2 ln (2/αλ)

)[

1

n
+

n

T 2

]

+ 8κ2 ln2 (2/αλ)

[

2j

n3
+

1

n2T 2

]

.

Seeing that Qj,n,T 6 2
[

1
n + n

T 2

]

and Rj,n,T 6

[

2j

n3 + 1
n2T 2

]

, we have:

β2λ > 4
ζ

β
Qj,n,T + 12κ2 ln (2/αλ)Qj,n,T + 8κ2 ln2 (2/αλ)Rj,n,T .

Since (
√
a+

√
b)2 6 2(a+b) and (

√
a+

√
b+

√
c)2 6 3(a+b+c) for all a, b, c nonnegative real numbers,

β2λ > 4
ζ

β
Qj,n,T + 4κ2 ln (2/αλ)

(

1√
n
+

1√
T

+
2−j/2√n

T

)2

+ 4κ2 ln2 (2/αλ)

(

2j/2

n3/2
+

2−j/2

nT

)2

and then,

β2λ >

(
√

2ζ

β
Qj,n,T + κ

{

√

ln (2/αλ)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/αλ)

(

2j/2

n3/2
+

2−j/2

nT

)})2

.

Finally, it is equivalent to

|βλ| >
√

2ζ

β
Qj,n,T + κ

{

√

ln (2/αλ)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/αλ)

(

2j/2

n3/2
+

2−j/2

nT

)}

,

which is exactly Condition (3.1) of Theorem 1 and we conclude the proof of Theorem 2 by applying
Theorem 1.
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6.5 Proof of Theorem 3

With T proportional to n, Condition (3.2) of Theorem 2 is satisfied if there exists one finite subset L
of Γ such that

‖h‖22 > ‖h− hL‖22 + C(α, β, µc, R1, R∞)

{(

DL +
∑

λ∈L

wλ

)

1

n
+

(

DL +
∑

λ∈L

wλ +
∑

λ∈L

w2
λ

)

2jL

n3

}

,

with jL = max{j > 0 : (j, k) ∈ L with k ∈ Kj},
∑

λ∈L wλ 6 C × (jL + 1)DL and
∑

λ∈Lw
2
λ 6

C× (jL+1)2DL. Consequently, Condition (3.2) is satisfied if there exists one finite subset L of Γ such
that

‖h‖22 > ‖h− hL‖22 + C(α, β, µc, R1, R∞)
(jL + 1)

n
DL, (6.4)

with the maximal resolution level jL such that 2jL 6 n2/ ln n.
Let J > 1 that will be chosen later. We consider the following finite subset ΓJ of Γ

ΓJ = {λ = (j, k) ∈ Γ : 0 6 j 6 J, k ∈ Kj}.

We introduce for all integer D 6 |ΓJ | the subset L of ΓJ such that {βλ, λ ∈ L} is the set of the D
largest coefficients among {βλ, λ ∈ ΓJ}. We can notice that

‖h − hL‖22 = ‖h− hΓJ
‖22 + ‖hΓJ

− hL‖22.

On the one hand, since h belongs to Bδ
2,∞(R),

‖h− hΓJ
‖22 =

∑

j>J

∑

k∈Kj

β2(j,k) 6 C(δ)R22−2Jδ.

On the other hand, using equivalent definitions of weak Besov balls given by Lemma 2.2 of [21] and
using for instance page 211 of [11], we obtain:

‖hΓJ
− hL‖22 6 C(γ)R′′2+4γD−2γ ,

since h belongs to W∗
2

1+2γ

(R′), with R′′ an absolute positive constant depending eventually on γ and

R′.
Taking

J = ⌊log2 (nε)⌋+ 1

for some 0 < ε < 2, we obtain that the right hand side of (6.4) is upper bounded by

C(δ, γ,R,R′, α, β, µc, R1, R∞)

(

n−2εδ +D−2γ +
εD lnn

n

)

.

Taking D =
⌊

(n/ ln n)1/(1+2γ)
⌋

and ε > γ/(δ(1 + 2γ)), we obtain that the right hand side of (6.4) is
upper bounded by

C(δ, γ,R,R′, α, β, µc, R1, R∞)
( n

lnn

)
−2γ
1+2γ

when 2δ > γ/(1 + 2γ) and so,

ρ(Φα,Bδ
2,∞(R) ∩W∗

2
1+2γ

(R′), β) 6 C(δ, γ,R,R′, α, β, µc, R1, R∞)
( n

lnn

)
−γ

1+2γ
,

which concludes the proof of Theorem 3.
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6.6 Proof of lemmas

6.6.1 Proof of Lemma 6.1

Let λ ∈ Γ be fixed. From Markov’s inequality, we have that for any x > 0,

Ph

(∣

∣

∣
T̂λ − Eh(T̂λ)

∣

∣

∣
> x

)

6
Var(T̂λ)

x2
. (6.5)

Let us control Var(T̂λ) = Eh(T̂
2
λ )−E

2
h(T̂λ). We easily obtain by Jensen’s inequality and by considering

the decomposition (6.2) of G(ϕλ):

Var(T̂λ) 6 Var(β̂λ)

6
1

n2
Var(G0(ϕλ) +G(ϕλ))

6
2

n2
[

Var(G0(ϕλ)) + Var(G(ϕλ))
]

,

with

Var(G(ϕλ)) 6 C(R1, R∞)

{

n+
n2

T
+

2−jn3

T 2

}

,

by applying the second part of Proposition 1 of [34]. It remains to compute Var(G0(ϕλ)). For this
purpose, we apply the same methodology developed in Section 6.1.2 of [34]. We have the following
decomposition of Var(G0(ϕλ)) into two terms:

Var(G0(ϕλ)) = E(Var(G0(ϕλ)|U1, . . . , Un)) + Var(E(G0(ϕλ)|U1, . . . , Un)). (6.6)

We start by dealing with the first term of (6.6). We have

Var(G0(ϕλ)|U1, . . . , Un)

=

∫ T+1

−1

(

n
∑

i=1

[

ϕλ(x− Ui)−
n− 1

n
Eπ(ϕλ(x− U))

]

)2

µc dx

= µc

∫ T+1

−1

(

ϕλ(x− U1) +
n
∑

i=2

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))]

)2

dx

= µc

∫ T+1

−1
ϕ2
λ(x− U1) dx+ 2µc

∫ T+1

−1
ϕλ(x− U1)

n
∑

i=2

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dx

+ µc

∫ T+1

−1

n
∑

i=2

n
∑

k=2

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] [ϕλ(x− Uk)− Eπ(ϕλ(x− U))] dx.

In the first integral, write y = x− U1. So,

Var(G0(ϕλ)|U1, . . . , Un)

= µc‖ϕλ‖22 + 2µc

∫ T+1

−1
ϕλ(x− U1)

n
∑

i=2

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dx

+ µc

∫ T+1

−1

n
∑

i=2

n
∑

k=2

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] [ϕλ(x− Uk)− Eπ(ϕλ(x− U))] dx.

Thus,

E(Var(G0(ϕλ)|U1, . . . , Un)) = µc‖ϕλ‖22 + µc

∫ T+1

−1

n
∑

i=2

E

(

[ϕλ(x− Ui)− Eπ(ϕλ(x− U))]2
)

dx

18



= µc‖ϕλ‖22 + (n− 1)µc

∫ T+1

−1
Varπ(ϕλ(x− U)) dx

6 µc‖ϕλ‖22 + (n− 1)µc(T + 2)
‖ϕλ‖22
T

6 C(µc)n, (6.7)

by using (6.1) and Lemma 6.1 of [34].
Now, we deal with the second term of (6.6). We have

E(G0(ϕλ)|U1, . . . , Un) =

∫ T+1

−1
ϕλ(x− U1)µc dx+

n
∑

i=2

∫ T+1

−1
[ϕλ(x− Ui)− Eπ(ϕλ(x− U))]µc dx

= µc

n
∑

i=2

∫ T+1

−1
[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dx,

by using (6.1). Therefore,

Var(E(G0(ϕλ)|U1, . . . , Un)) = µ2cVar

(

n
∑

i=2

∫ T+1

−1
[ϕλ(x− Ui)− Eπ(ϕλ(x− U))] dx

)

= µ2c(n − 1)Var

(
∫ T+1

−1
[ϕλ(x− U1)− Eπ(ϕλ(x− U))] dx

)

6 µ2c(n − 1)E

[

(∫ T+1

−1
|ϕλ(x− U1)| dx

)2
]

6 µ2c(n − 1)‖ϕλ‖21
6 C(µc)2

−jn. (6.8)

Finally, by combining inequalities (6.6), (6.7) and (6.8), we obtain:

Var(G0(ϕλ)) 6 C(µc)n.

Thus,

Var(T̂λ) 6
C(µc, R1, R∞)

n2

{

n+
n2

T
+

2−jn3

T 2

}

6 ζQj,n,T ,

with

Qj,n,T =
1

n
+

1

T
+

2−jn

T 2

and ζ a positive constant depending on µc, R1 and R∞.
Taking x =

√

2ζQj,n,T/β in (6.5) and using the previous inequality leads to

Ph

(

∣

∣

∣T̂λ − Eh(T̂λ)
∣

∣

∣ >

√

2ζQj,n,T/β

)

6
β

2
.

Therefore, if Eh(T̂λ) >
√

2ζQj,n,T/β + qα1−β/2, then

Ph(T̂λ 6 qα1−β/2) = Ph

(

T̂λ − Eh(T̂λ) 6 qα1−β/2 − Eh(T̂λ)
)

6 Ph

(∣

∣

∣T̂λ − Eh(T̂λ)
∣

∣

∣ > Eh(T̂λ)− qα1−β/2

)

6 Ph

(

∣

∣

∣T̂λ − Eh(T̂λ)
∣

∣

∣ >

√

2ζQj,n,T/β

)

6 β/2

and so
Ph(Φλ,α = 0) 6 β,

which concludes the proof of Lemma 6.1.
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6.6.2 Proof of Lemma 6.2

We focus first on the control of the conditional quantile q
[U1,...,Un;Nc,tot]
λ (α). For all m ∈ N

∗, the

(1− α)-quantile q[U1,...,Un;m]
λ (α) is the smallest real number such that

P

(

T̂ 0
λ,m > q

[U1,...,Un;m]
λ (α)

∣

∣

∣

∣

U1, . . . , Un;Nc,tot = m

)

6 α,

where T̂ 0
λ,m is defined by (2.2). Let m ∈ N

∗ be fixed. We write

T̂ 0
λ,m =

1

n

∣

∣

∣

∣

∣

m
∑

k=1

S(ϕλ)(V
0
k )

∣

∣

∣

∣

∣

,

where (V 0
1 , . . . , V

0
m) is a m-sample with uniform distribution on [−1;T +1] and for any v ∈ [−1;T +1],

S(ϕλ)(v) =

n
∑

i=1

[

ϕλ(v − Ui)−
n− 1

n
Eπ(ϕλ(v − U))

]

.

Since E(ϕλ(V −U)|U) = 0 for independent random variables U and V uniformly distributed on [0;T ]
and [−1;T+1] respectively, the S(ϕλ)(V

0
k )’s are centered and independent conditionally on U1, . . . , Un.

Then we apply Bernstein’s inequality (for instance, see Proposition 2.9 of [26]) to get that for all ω > 0,
with probability larger than 1− 2e−ω,

∣

∣

∣

∣

∣

m
∑

k=1

S(ϕλ)(V
0
k )

∣

∣

∣

∣

∣

6

√

2mVar(S(ϕλ)(V
0
1 )|U1, . . . , Un)ω +

ω

3
sup

v∈[−1;T+1]

∣

∣S(ϕλ)(v)
∣

∣.

Thus, with probability larger than 1− α,

T̂ 0
λ,m 6 f(U1, . . . , Un;m),

with

f(U1, . . . , Un;m) =
1

n

{

√

2m ln (2/α)VS +
ln (2/α)

3
BS

}

, (6.9)

where
VS = Var(S(ϕλ)(V

0
1 )|U1, . . . , Un) and BS = sup

v∈[−1;T+1]
|S(ϕλ)(v)|.

Therefore we have q[U1,...,Un;m]
λ (α) 6 f(U1, . . . , Un;m) by definition of the quantile q[U1,...,Un;m]

λ (α).

Let us now provide a control in probability of f(U1, . . . , Un;m). We control first VS .

VS = Var

(

n
∑

i=1

ϕλ(V
0
1 − Ui)− (n− 1)Eπ

(

ϕλ(V
0
1 − U)

)

∣

∣

∣U1, . . . , Un

)

6 E

[

(

n
∑

i=1

ϕλ(V
0
1 − Ui)− (n− 1)Eπ(ϕλ(V

0
1 − U))

)2∣
∣

∣U1, . . . , Un

]

6
1

T + 2

∫ T+1

v=−1

(

n
∑

i=1

ϕλ(v − Ui)− (n− 1)Eπ(ϕλ(v − U))

)2

dv

6
2

T + 2

∫ T+1

v=−1





∑

16i,k6n

ϕλ(v − Ui)ϕλ(v − Uk) + (n− 1)2E2
π(ϕλ(v − U))



 dv

6
2

T + 2

{

∫ T+1

v=−1

n
∑

i=1

ϕ2
λ(v − Ui) dv +

∫ T+1

v=−1

∑

16i 6=k6n

ϕλ(v − Ui)ϕλ(v − Uk) dv

20



+
(n− 1)2

T 2

∫ T+1

v=−1

(
∫ T

0
|ϕλ|(v − u) du

)2

dv

}

6
2

T + 2







n‖ϕλ‖22 +
∫ T+1

v=−1

∑

16i 6=k6n

ϕλ(v − Ui)ϕλ(v − Uk) dv +
(n− 1)2

T 2
(T + 2)‖ϕλ‖21







6
C

T







n+
∑

16i 6=k6n

∫ T+1

v=−1
ϕλ(v − Ui)ϕλ(v − Uk) dv +

2−jn2

T







, (6.10)

with C an absolute positive constant. We have a decomposition of the second term in a sum of
degenerate U -statistics of order 0, 1 and 2. Indeed

∑

16i 6=k6n

∫ T+1

v=−1
ϕλ(v − Ui)ϕλ(v − Uk) dv =W0 +W1,1 +W1,2 +W2,

with

W2 =
∑

16i 6=k6n

∫ T+1

v=−1
[ϕλ(v − Ui)− Eπ(ϕλ(v − U))][ϕλ(v − Uk)− Eπ(ϕλ(v − U))] dv,

W1,1 =
∑

16i 6=k6n

∫ T+1

v=−1
ϕλ(v − Ui)Eπ(ϕλ(v − U)) dv,

W1,2 =
∑

16i 6=k6n

∫ T+1

v=−1
Eπ(ϕλ(v − U))ϕλ(v − Uk) dv

and

W0 = −
∑

16i 6=k6n

∫ T+1

v=−1
E
2
π(ϕλ(v − U)) dv.

First we control W0:

|W0| 6
n(n− 1)(T + 2)

T 2
‖ϕλ‖21

6 C
2−jn2

T
, (6.11)

with C an absolute positive constant. Next we deal with the control of W1,1 and W1,2. We notice that

W1,1 =W1,2 = (n − 1)
n
∑

i=1

∫ T+1

v=−1
ϕλ(v − Ui)Eπ(ϕλ(v − U)) dv

and consequently we have by using Lemma 6.3 of [34]

|W1,1| = |W1,2| 6 (n− 1)

n
∑

i=1

∫ T+1

v=−1
|ϕλ|(v − Ui) dv

‖ϕλ‖1
T

6 C
2−jn2

T
, (6.12)

with C an absolute positive constant.
Now it remains to control W2, with

W2 =
∑

16i<k6n

g(Ui, Uk),
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where

g(Ui, Uk) = 2

∫ T+1

v=−1
[ϕλ(v − Ui)− Eπ(ϕλ(v − U))][ϕλ(v − Uk)− Eπ(ϕλ(v − U))] dv.

One can apply Theorem 3.4 of [19] to W2 and −W2. It implies that there exist absolute positive
constants c1, c2, c3 and c4 such that with probability larger than 1− 2× 2.77e−ω ,

|W2| 6 c1C
√
ω + c2Dω + c3Bω

3/2 + c4Aω
2

for all ω > 0, where

• A = ‖g‖∞ 6 8‖ϕλ‖1‖ϕλ‖∞ 6 8;

• C2 = E(W 2
2 ) and we have

C2 =
∑

16i<k6n

E(g2(Ui, Uk))

6 4n(n− 1)E

[

(
∫ T+1

v=−1
[ϕλ(v − U1)− Eπ(ϕλ(v − U))][ϕλ(v − U2)− Eπ(ϕλ(v − U))] dv

)2
]

.

We denote E(U,U ′)∼π⊗π(f(U,U
′)) the expectation of f(U,U ′) where U ∼ π and U ′ ∼ π are

independent and fU(v) = f(v − U). Hence,

C2

6 4n(n − 1)E(U,U ′)∼π⊗π

[

(
∫ T+1

v=−1

[

ϕU
λ (v)− Eπ(ϕ

U
λ (v))

][

ϕU ′

λ (v)− Eπ(ϕ
U ′

λ (v))
]

dv

)2
]

6 4n2E(U,U ′)∼π⊗π

[(

∫ T+1

v=−1
ϕU
λ (v)ϕ

U ′

λ (v) dv − EU ′∼π

(
∫ T+1

v=−1
ϕU
λ (v)ϕ

U ′

λ (v) dv

)

− EU∼π

(∫ T+1

v=−1
ϕU
λ (v)ϕ

U ′

λ (v) dv

)

+ E(U,U ′)∼π⊗π

(∫ T+1

v=−1
ϕU
λ (v)ϕ

U ′

λ (v) dv

)

)2]

6 Cn2

{

E(U,U ′)∼π⊗π

[

(∫ T+1

v=−1
|ϕU

λ |(v)|ϕU ′

λ |(v) dv
)2
]

+

[

E(U,U ′)∼π⊗π

(∫ T+1

v=−1
|ϕU

λ |(v)|ϕU ′

λ |(v) dv
)]2

}

,

with C an absolute positive constant. But,

E(U,U ′)∼π⊗π

[

(∫ T+1

v=−1
|ϕU

λ |(v)|ϕU ′

λ |(v) dv
)2
]

6 E(U,U ′)∼π⊗π

(
∫ T+1

v=−1
|ϕU

λ |2(v)|ϕU ′

λ |(v) dv
∫ T+1

v=−1
|ϕU ′

λ |(v) dv
)

= E(U,U ′)∼π⊗π

(∫ T+1

v=−1
|ϕU

λ |2(v)|ϕU ′

λ |(v) dv
)

‖ϕλ‖1

6 ‖ϕλ‖22
‖ϕλ‖21
T

and

E(U,U ′)∼π⊗π

(
∫ T+1

v=−1
|ϕU

λ |(v)|ϕU ′

λ |(v) dv
)

=

∫ T+1

v=−1
Eπ(|ϕU

λ |(v))Eπ(|ϕU ′

λ |(v)) dv 6 (T + 2)
‖ϕλ‖21
T 2

,

by using Lemma 6.3 of [34]. So,

C2
6 Cn2

{

2−j

T
+

2−2j

T 2

}

,

with C an absolute positive constant;
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• D = sup







E





∑

16k<i6n

g(Ui, Uk)ai(Ui)bk(Uk)



 : E

(

n
∑

i=2

ai(Ui)
2

)

6 1,E

(

n−1
∑

k=1

bk(Uk)
2

)

6 1







.

But, with the conditions on the ai’s and the bk’s, we have:

E





∑

16k<i6n

g(Ui, Uk)ai(Ui)bk(Uk)





= 2E

(

n
∑

i=2

i−1
∑

k=1

∫ T+1

v=−1
[ϕλ(v − Ui)− Eπ(ϕλ(v − U))][ϕλ(v − Uk)− Eπ(ϕλ(v − U))] dvai(Ui)bk(Uk)

)

6 2

∫ T+1

v=−1
E

( n
∑

i=2

∣

∣ϕλ(v − Ui)− Eπ(ϕ
U
λ (v))

∣

∣|ai(Ui)|
)

E

( n−1
∑

k=1

∣

∣ϕλ(v − Uk)− Eπ(ϕ
U
λ (v))

∣

∣|bk(Uk)|
)

dv

6 2

∫ T+1

v=−1

√

(n− 1)Varπ(ϕλ(v − U))E

( n−1
∑

k=1

∣

∣ϕλ(v − Uk)− Eπ(ϕ
U
λ (v))

∣

∣|bk(Uk)|
)

dv

6 2

√

(n− 1)
‖ϕλ‖22
T

E

(

n−1
∑

k=1

∫ T+1

v=−1

∣

∣ϕλ(v − Uk)− Eπ(ϕλ(v − U))
∣

∣|bk(Uk)| dv
)

6 2

√

n− 1

T
‖ϕλ‖2E

(

2‖ϕλ‖1
n−1
∑

k=1

|bk(Uk)|
)

6 4

√

n− 1

T
‖ϕλ‖2‖ϕλ‖1

√
n− 1

6 4
n − 1√
T

‖ϕλ‖1‖ϕλ‖2,

by using Lemma 6.1 of [34]. Then,

D 6 C
2−j/2n√

T
,

with C an absolute positive constant;

• B2 = sup
u

(

n−1
∑

k=1

E(g2(u,Uk))

)

, with

E(g2(u,Uk))

= 4E

[

(∫ T+1

v=−1
[ϕλ(v − u)− Eπ(ϕλ(v − U))][ϕλ(v − Uk)− Eπ(ϕλ(v − U))] dv

)2
]

6 4E

[
∫ T+1

v=−1

[

ϕu
λ(v)− Eπ(ϕ

U
λ (v))

]2∣
∣ϕUk

λ (v)− Eπ(ϕ
U
λ (v))

∣

∣ dv

∫ T+1

v=−1

∣

∣ϕUk

λ (v)− Eπ(ϕ
U
λ (v))

∣

∣ dv

]

6 8E

[∫ T+1

v=−1

[

ϕλ(v − u)− Eπ(ϕλ(v − U))
]2∣
∣ϕλ(v − Uk)− Eπ(ϕλ(v − U))

∣

∣ dv

]

‖ϕλ‖1

6
16

T

∫ T+1

v=−1

[

ϕλ(v − u)− Eπ(ϕλ(v − U))
]2
dv‖ϕλ‖21

6
64

T
‖ϕλ‖21‖ϕλ‖22,

by using Lemma 6.3 of [34]. Hence,

B2
6 C

2−jn

T
,

with C an absolute positive constant.
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Finally, we obtain for all ω > 0, with probability larger than 1− 2× 2.77e−ω ,

|W2| 6 C

{

2−j/2n√
T

√
ω +

2−jn

T

√
ω +

2−j/2n√
T

ω +
2−j/2√n√

T
ω3/2 + ω2

}

, (6.13)

with C an absolute positive constant.
Thus, by inequalities (6.10), (6.11), (6.12) and (6.13), for all ω > 0, with probability larger than

1− 2× 2.77e−ω ,

VS 6
C(ω)

T

{

n+
2−jn2

T
+

2−j/2n√
T

}

. (6.14)

Then it remains to compute BS. We recall that

BS = sup
v∈[−1;T+1]

∣

∣

∣

∣

∣

n
∑

i=1

[

ϕλ(v − Ui)−
n− 1

n
Eπ(ϕλ(v − U))

]

∣

∣

∣

∣

∣

6 B̃S +
1

T
‖ϕλ‖1,

with B̃S = sup
v∈[−1;T+1]

∣

∣

∣

∣

∣

n
∑

i=1

[

ϕλ(v − Ui)− Eπ(ϕλ(v − U))
]

∣

∣

∣

∣

∣

. Since the Haar basis is considered here, we

can write for any x ∈ R:

ϕλ(x) = 2j/2
(

1(2k+1)2−(j+1)<x6(k+1)2−j − 1k2−j6x6(2k+1)2−(j+1)

)

,

with λ = (j, k). Thus,

B̃S 6 2j/2
(

B̃1
S + B̃2

S

)

,

where

B̃1
S = sup

v∈[−1;T+1]

∣

∣

∣

∣

∣

n
∑

i=1

[

1k2−j6v−Ui6(2k+1)2−(j+1) − Eπ(1k2−j6v−U6(2k+1)2−(j+1))
]

∣

∣

∣

∣

∣

and

B̃2
S = sup

v∈[−1;T+1]

∣

∣

∣

∣

∣

n
∑

i=1

[

1(2k+1)2−(j+1)<v−Ui6(k+1)2−j − Eπ(1(2k+1)2−(j+1)<v−U6(k+1)2−j )
]

∣

∣

∣

∣

∣

.

We observe that

B̃1
S 6 sup

Bv,v∈R

∣

∣

∣

∣

∣

n
∑

i=1

[

1Bv (Ui)− Eπ

(

1Bv (U)
)]

∣

∣

∣

∣

∣

,

where for any v ∈ R, Bv = [v − (2k + 1)2−(j+1); v − k2−j ]. We set B = {Bv, v ∈ R} and for every
integer n, mn(B) = sup

A⊂R,|A|=n
|{A ∩Bv, v ∈ R}|. It is easy to see that

mn(B) 6 1 +
n(n+ 1)

2

and so, the VC-dimension of B defined by sup{n > 0,mn(B) = 2n} is bounded by 2 (see Definition 6.2
of [26]). By applying Lemma 6.4 of [26], we obtain:

√
nE(B̃1

S) 6
K

2

√
2,

where K is an absolute constant. So, with a similar argument for B̃2
S , we obtain for any λ in Γ

E(B̃S) 6
2j/2√
n
K
√
2.
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Consequently,

E(BS) 6 C

{

2j/2√
n

+
2−j/2

T

}

,

with C an absolute positive constant and from Markov’s inequality, we have that for all ω > 0

P

(

BS > C(ω)

{

2j/2√
n

+
2−j/2

T

})

6 e−ω. (6.15)

Thus, by combining inequalities (6.9), (6.14) and (6.15), we obtain for all ω > 0, with probability
larger than 1− (2× 2.77 + 1)e−ω ,

f(U1, . . . , Un;m) 6
C(ω)

n







√

m ln (2/α)

(

n

T
+

2−jn2

T 2
+

2−j/2n

T 3/2

)

+ ln (2/α)

(

2j/2√
n

+
2−j/2

T

)







.

Furthermore, N[−1;T+1] ∼ P((T + 2)µc + n‖h‖1). Hence,

E(N[−1;T+1]) 6 C(µc, R1)(n+ T ).

From Markov’s inequality, we have that for all ω > 0

P
(

N[−1;T+1] > C(ω, µc, R1)(n + T )
)

6 e−ω. (6.16)

Then, we choose ω such that this quantity (2× 2.77 + 2)e−ω is equal to β/2. So, with probability
larger than 1− β/2,

f(U1, . . . , Un;m)

6
C(β, µc, R1)

n







√

ln (2/α)

√

(n+ T )

(

n

T
+

2−jn2

T 2
+

2−j/2n

T 3/2

)

+ ln (2/α)

(

2j/2√
n

+
2−j/2

T

)







6
C(β, µc, R1)

n

{

√

ln (2/α)

√

n+
n2

T
+

2−jn3

T 2
+ ln (2/α)

(

2j/2√
n

+
2−j/2

T

)}

6 C(β, µc, R1)

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(

2j/2

n3/2
+

2−j/2

nT

)}

.

Therefore by definition of qα1−β/2,

qα1−β/2 6 C(β, µc, R1)

{

√

ln (2/α)

(

1√
n
+

1√
T

+
2−j/2√n

T

)

+ ln (2/α)

(

2j/2

n3/2
+

2−j/2

nT

)}

,

which concludes the proof of Lemma 6.2.
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