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Adaptive Markov Random Fields for
Joint Unmixing and Segmentation
of Hyperspectral Images

Olivier Eches, Jon Atli Benediktssofellow, IEEE, Nicolas DobigeonMember, IEEE and
Jean-Yves Tournere§enior Member, IEEE

Abstract—Linear spectral unmixing is a challenging problem been devoted to the spectral unmixing problem. Classical
inhyperspectral imaging that consists of decomposing an unmixing algorithms assume that the image pixels are linear
observed pixel into a linear combination of pure spectra (or end- combinations of a given number of pure materials spectra

member$ with their corresponding proportions (or abundancey d b ith ding fracti f dt
Endmember extraction algorithms can be employed for recov- or endmembersvith corresponding fractions referred 1o as

ering the spectral signatures while abundances are estimated abundance§l] (the most recent techniques have been reported
using an inversion step. Recent works have shown that exploiting in [2]). The mathematical formulation of this linear mixing

spatial dependencies between image pixels can improve spectralmodel (LMM) for an observed pixep in L bands is
unmixing. Markov random fields (MRF) are classically used

to model these spatial correlations and partition the image Yo = Map +np (1)
into multiple classes with homogeneous abundances. This paper P
proposes to define the MRF sites using similarity regions. These where M = [m4, ..., mRg] is the L x R spectral signature

regions are built using a self-complementary area filter that : . .
stems from the morphological theory. This kind of filter divides matrl?(, ap IS. theRx1 abu'ndance vector ant, is the L x 1 .
the original image into flat zoneswhere the underlying pixels additive noise vector. This paper assumes that the additive
have the same spectral values. Once the MRF has been clearlynoise vector is white Gaussian with the same variance in each
established, a hierarchical Bayesian algorithm is proposed to band as in [3], [4]. For a hyperspectral image wRhpixels,
estimate the abundances, the class labels, the noise variance, anghy denotingY = [Vi.---.¥p], A=[ar,...,ap] andN =

the corresponding hyperparameters. A hybrid Gibbs sampler is . .

constructed to generate samples according to the corresponding [n1, ..., npl, the LMM for the whole image is
posterior distribution of the unknown parameters and hyperpa-
rameters. Simulations conducted on synthetic and real AVIRIS
data demonstrate the good performance of the algorithm.

Y=MA+N. (2

The unmixing problem consists of estimating the endmember
Index Terms—Hyperspectral images, Markov random field spectra contained ifM and the corresponding abundance
(MRF), morphological filter, segmentation, spectral unmixing.  magrix A, Endmember extraction algorithms (EEA) are classi-
cally used to recover the spectral signatures. These algorithms
|. INTRODUCTION include the minimum volume simplex analysis (MVSA) [5]

. . ._and the well-known N-FINDR algorithm [6]. After the EEA
YPERSPECTRAI.‘ images are very high reS.OIUt'Qrétep, the abundances are estimated under the sum-to-one and
remote sensing images that have been acquired in_a

; . POsitivi nstraints. Several meth hav n pr for
hundred of spectral bands simultaneously. Since the grow gsitivity constraints. Several methods have been proposed fo

ing.. : . T
availability of such images within the last years, many studi?lé%mversmnstep. They are based on constrained optimization

have been conducted by the imade brocessin COmmumefchniques such as the fully constrained least squares (FCLS)
for the analysis of theseyima es ,% grticular aq[tention h& orithm [7] or on Bayesian techniques [8], [9]. The Bayesian
y ges. A p paradigm consists of assigning appropriate prior distributions
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works involving MRFs for segmentation and classificationf the posterior [28, p. 259]. Moreover, using the EM
include [16]-[18]. A major drawback of MRFs is their com-algorithm to jointly solve the unmixing and classification
putational cost, which is proportional to the image sizgroblem is not straightforward. Therefore, we study as in [11]
In [19], the authors proposew partition the image in two a Markov chain Monte Carlo (MCMC) method that bypasses
independent set of pixels, allowing the sampling algoriththese shortcomings and allow samples asymptotically distrib-
to be parallelized. However, this method is only valid for ated according to the posterior of interest to be generated.
4-pixel neighborhood. Note that this method has some analogy with previous works
This paper studies a novel approach for introducing spatjaoposed for the analysis of hyperspectral images [9], [16].
correlation between adjacent pixels of an hyperspectral imatjee samples generated by the MCMC method are then used
allowing computational cost of MRFs to be reduced signifto compute the Bayesian estimators of the image labels and
cantly. The neighborhood relations are usually defined betwedass parameters. Therefore, the proposed Bayesian framework
spatially close pixels osites This contribution proposes tojointly solves the classification and abundance estimation
define a new neighborhood relation between sites regroygeblems.
ing spectrally consistent pixels. Thesanilarity regionsare The paper is organized as folls. Section Il describes the
built using a filter stemming from mathematical morphologynorphological area filter and its associated MRF. Section |l
Mathematical morphology is a nonlinear image processipgesents the hierarchical Bayesian model used for the joint
methodology based upon lattickebry [20], [21] that has unmixing and segmentation of hyperspectral images. The
been widely used for image analysis (see [22] and refédlCMC algorithm used to generate samples according to
ences therein), with a focus on hyperspectral images in [28}e joint posterior distribution of this model is described in
Based on mathematical morphology, Soille developed a sefection IV. Simulation results on synthetic and real hyper-
complementary area filter in [24] that allows one to properlgpectral data are presented in Sections V and VI. Conclusions
define structures while removing meaningless objects. Thed future works are finally reported in Section VII.
self-complementary area filter has also been used in [25] for
classifying hyperspectral images. This paper defines similarity 1. TECHNICAL BACKGROUND

regions using the same self-complementary area filter. AﬁerThls section presents in more details the morphological self-

image partitioning, image nghborhoods are defined betWee’E;omplementary area filter and introduces the MRF that is used
similarity regions ensuring a distance criterion between thef r describing the dependence between the regions.
spectral medians. The resulting MRF sites are less numer-

ous than the number of pixels, which reduces computatlonal
complexity. A. Adaptive Neighborhood

This new way of defining MRFs is applied to the joint In order to build the adaptive neighborhood on hyper-
unmixing and segmentation algorithm of [11]. After a prespectral data, aflattening procedure stemming from the
processing step defining the similarity regions, an implicgelf-complementarity property [24] was employed in [25].
classification is carried out bgssigning hidden discrete vari-Self-complementarity is an important property in morpholog-
ables or clas$abelsto image regions. Then, a Potts-Markovcal theory and allows the structure of interest to be preserved
field [26] is chosen as a prior for the labels, using thmdependently of their contrasts while removing small mean-
proposed neighborhood relation. Therefore, a pixel belongiimgless structures (e.g., cars, treeg,in very high resolution
to a given similarity region must belong to the class that shanesnote sensing images. The algorithm developed by Soille in
not only the same abundance mean vector and covariaf@4] exploits this property in a two step procedure that divides
matrix but also the same spectral characteristics. In addititte image into flat zones, i.e., regions whose neighboring
to the label prior, the Bayesian method used in this workixels have the same values satisfying any area critetion
requires to define an abundance prior distribution. Insted@tlis procedure is repeated tilnthe desired minimal flat
of reparameterizing the abundances as in [11], we choasme sizel is obtained. Note that this self-complementary
a Dirichlet distribution whose parameters can be selecteddrea filter cannot be directly used on hyperspectral images
adjust the abundance means and variances for each class.siiee the complete ordering property that any morphological
Dirichlet distribution is classically used as prior for parameterperator needs is absent from these data. The strategy studied
subjected to positivity and sum-to-one constraints [27]. Thi [25] uses principal component analysis (PCA) to reduce
associated hyperparameters are assigned non-informative pdimta dimensionality. The area filtering is then computed on the
distributions according to a &iiarchical Bayesian model. data projected on the first principal component defined by the

The resulting joint posterior distribution of the unknownargest covariance matrix eigenvalue. The resulting flat zones
model parameters and hyperparameters can be computed fommtain pixels that are spectrally consistent and are therefore
the likelihood and the priors. Deriving the Bayesian estim@&onsidered in the same similarity region.
tors such as the minimum mean square error (MMSE) andAs stated in the introduction, the main contribution of
maximum a posteriori (MAP) estimators is too difficult fromthis paper consists of using the similarity region building
this posterior distribution. One might think to handle thisnethod developed in [25] as a pre-processing step for a spatial
problem by using the well-known expectation maximizatioonmixing algorithm. The regions resulting from the method
(EM) algorithm. However, this algorithm can have seriouderived in [25] are considered for each band of the data.
shortcomings including the convergence to a local maximu8patial information is then extracted from each of these



regions by computing the corresponding median vector. Modensity function ofz
precisely, if we denote the number of similarity regions by

S and thesth region byQs (s = 1,...,5), then the vector 1 P
median value for this region is defined as f@==—==exp| > > BoZp—2y) (6)
GH &,
=1peV(p)
TS = medYQs)D (3)

wherep is thegranularity coefficient, G(£) is the normalizing
where Ygq, is the matrix of observed pixels belonging taconstant orpartition function and J(-) is the Kronecker
the region®s and dim(Ys) = L is the number of spectral function ¢(x) = 1 if x = 0 andd(x) = O otherwise).
bands. As explained in [25], the median vector ensures specNake that drawing a label vectar = [z, ..., zp] from the
consistency as opposed to the mean vector. distribution (6) can be easily achieved without knowi@ags)

As in [11], this paper assumes that the classes contain neigh-using a Gibbs sampler [11]. The hyperparamgteunes
boring pixels that have priori close abundances. This spatiathe degree of homogeneity of each region in the image.
dependency is modeled using the resulting similarity regiops illustrated in [11], the value off has an influence on
that contain spectrally consistent pixels. In other words, if wi@e number and the size of the regions. Moreover, its value
denote a€’;, ..., Ck the image classes, a label vector of sizelearly depends on the neighborhood structure [33]. Note that
Sx 1 (with S> K) denoted ag = [z, ...,zs]" with zs € it is often unnecessary to consider valuespof> 2 for the
{1,..., K} is introduced to identify the class of each regionst-order neighborhood structure, as mentioned in [34, p. 237].
Qs, i.e.,zs = k if and only if all pixels of s belong toCk. In this paper, we propose an MRF depending on new
Note that, in each class, the abundance vectors to be estimaéggce and neighborhood structures. More precisely, our set
are assumed to share the same first and second order statisptgites is composed with the similarity regions built by the

moments, i.e.¥k € {1,..., K}, V&s € Ck, Vp € Rs area filter. These regions are successively indexed in the pre-
Ela] = processing step. We introduce the following binary relaton
[ p] = Mk @) to define the partially ordered set (poset) composed with the

E[(ap — ) (ap — uk)T] = Ay. similarity regions{®i, ..., s}: if s < t then we assume
Q2s < ;. For obvious reason, this binary relation has the
Therefore, thekth class of the hyperspectral image to beeflectivity, antisymmetry and @nsitivity properties necessary
unmixed is fully characterized by its abundance mean vecter the definition of the poset. It is also straightforward to see
ry and its abundance covariance matii. that for any subset i1, . .., s}, a supremum (join) and an
infimum (meet) exist. For this reason, the poget, ..., 2s}
is a lattice allowing the similarity regions to be used as sites
for a neighborhood structure. This neighborhood structure is
Since the work of Geman and Geman [13], MRFs haugased upon the square distance between the corresponding
been widely used in the image processing community (fefiedian vector which is compared to a given threshold. In
examples, see [29], [30]). The advantages of MRFs have alsther terms®s and 2; are neighbors if the relatiobs; =
been outlined in [16], [17], [31], [32] for hyperspectral imageYs — Y¢|? < 7 is fulfilled, wherer is a fixed value. By
analysis and in [11] for spectral unmixing. Considering twgenotingV; (s) the set of regions that are neighbors 9§
sitesof a given lattice (e.g., two image pixels) with coordinategnd by associating a random discrete hidden variabléo
i and j, the neighborhood relation between these two sitegery similarity regiorf2s, the following relation can be easily
must be symmetric: ifi is a neighbor ofj then j is a established (zs|zs) = f (zs|V: (S)), thus implying that the set
neighbor ofi. In image analysis, this neighborhood relation isf labelszs is an MRF with
applied to the nearest pixels depending on the neighborhood
structure, for example the fourth, eighth or twelfth nearest

B. Adaptive Markov Random Fields

pixels. Once the neighborhood structure has been established, P(zs = k|zs) ccexp| z 0(zs — z) (7)
we can define the MRF. Lez, denote a random variable teVe(t)

associated with theth site of a lattice (havind® sites). The )

variableszy, . . ., zp (indicating site classes) take their value¥/h€rec means “proportional to”.

in a finite set{l, ..., K} whereK is the nhumber of possible

classes. The whole set of random varialiles. .., zp} forms i
a random field. An MRF is then defined when the conditional
distribution ofz; given the other sites is positive for every ~ This section studies a Bayesian model based on the adap-

. HIERARCHICAL BAYESIAN MODEL

and if it only depends on its neighbozsg ), i.e., tive MRF introduced in the previous Section. The unknown
parameter vector of this model is denoted¥as= {A, z, 62},
f@lzi) = f (zlzvp) (3)  wheres2is the noise variance, contains the labels associated
where V(i) represents the set of neighbors amd = with the S'”?"a”.t{] regions and =(£al’ -+ aplis the abqrn—
{zj; ] # i}. In the case of a Potts-Markov model, given dance matrix withp = 1,..., P andap = [a1,p, ..., ar,p| -

discrete random field attached to an image witR pixels,
the Hammersley-Clifford theorem yields the joint probability 1|x|| = vxTx is the standard’> norm.



A. Likelihood (i

Since the additive noise in (1) is white, the likelihood
function of thepth pixel y,, is / \ \

B

1 lyp — Mapl|® a i
f( a,az)oc—ex -—F | 8
yp' p ol P 242 ( ) \ \
By assuming independence between the noise veotgrthe
image likelihood is Zp Y,
° Fig. 1. DAG for th iorsid h iors. Dashed b fixed
2\ _ 2 ig. 1. or the parameter priorsxd hyperpriors. Dashed boxes: fixe
f (YIA’G ) - f (yplap,a ) ©) parameters.
p=1

C. Hyperparameter Priors

B. Parameter Priors Hierarchical Bayesian algorithms can be used to estimate
the hyperparameters defining the parameter priors. These
This section defines the prior distributions of the UnknOW@|gorithms require to define prior distributions for the hyper-
parameters and their associated hyperparameters that willjagameters (sometimes referred to as hyperpriors). The values
used for the LMM. of the vectorauy are important for a correct description of the
1) Label Prior: The prior distribution for the labets is classes, since the mean vegigrand the covariance matrik
the Potts-Markov random field whose distribution is givefefined in (4) explicitly depend on these vectors. The lack of

in (7). Using the Hammersley-Clifford theorem, we can shoyyrior information for these hyperparameters leads us to choose
that the joint prior distribution associated with the label vectefn improper uniform distribution on the interv&*. Since

z=[z1,...,2zg]" is also a Potts-Markov random field (seghese parameters are independent, the joint prior distribution is
Appendix), i.e.,
f(U) = Ipre (V) (14)
s +
where 1p+(-) denotes the indicator function defined on
P(2) o exp ﬁz Z 0(2s — 1) (10 R+ The noise hyperparametérhas been assigned a non-

s=1teV, () informative Jeffreys’ prior (see [36, p. 131] for motivations)

with a known granularity coefficient (fixed a priori).
2) Abundance Prior Distribution:The abundance vectors

have to satisfy the positivity and sum-to-one constraintgt this last hierarchy level witin the Bayesian inference, the
This paper proposes to use Dirichlet prior distributions fq{ynerparameter vector can be definedras {U, 6}.
these vectors as in [35]. More precisely, the prior distribu-

tion for the abundance, is defined conditionally upon its
class

f(9) o % g+ (). (15)

D. Joint Distribution

The joint posterior of the unknown parameter and hyperpa-
rameter vectol(®, I') can be obtained from the hierarchical
Bayesian model associated with the directed acyclic graph
(DAG) depicted in Fig. 1

aplzs =k, ux ~ Dr(Uk) (11)

where Dg (uk) is the Dirichlet distribution with parameter
vectorug = (Ugk- .., uR,k)T. Note that the vectonk depends
on the region defined by pixels belonging to clasgssuming f(O,T)Y)= f(Y|®)f(@O|I)f(). (16)
independence between the abundance veetgrs. ., ap, the
joint abundance prior is

K f(O,TIY) (i)%ﬁexp _Lvp —Mapl®
fAzW =] [T I] f(aplzs=ku) (12 ’ o2) 3 202

k=1 QseCx pefs

Straightforward computations lead to

S
with U = [uy, ..., uk]. xexp| £ D 6(zs—z)
3) Noise Variance Prior:A conjugate inverse-gamma dis- t=1teV:(®
tribution is assigned to the noise variance o1 K
x—m [ 11 11
o2y, 8 ~ TG, ) (13) (02)"" k=t @oeci pegs
R
. . F(UO,k) urk—1
wherev and ¢ are adjustable hyperparameters. This paper X ﬁ arp ls(ap) 1REK(U)
assumes = 1 (as in [8]) and estimated jointly with the [1r=1 T(uri) 721

other unknown parameters and hyperparameters. (17)



whereugk = Zle urk, I'(.) is the gamma function and Algorithm 1 Hybrid Gibbs Sampler for Joint Unmixing and
S is the simplex defined by the sum-to-one and positivitgegmentation

constraints. This distribution is far too complex to obtain 1) % Initialization:

closed-form exprESSionS for the MMSE or MAP estimators 1: Generata(o) by rand0m|y assigning a discrete value

of (®,T). Thus, we propose to use MCMC methods for from (1, ..., K) to each regiors.

generating samples asymptatly distributed according to 2: GenerateU© ands© from the probability density
(17). By excluding the firstNy; generated samples (belonging functions (pdfs) in (14) and (15).

to the so-called burn in period), it is then possible to approx- 3: GenerateA© and ¢2© from the pdfs in (12) and
imate the MMSE and MAP estimators from the remaining (13).

samples.

2) % lterations:

L.fort=1,2,...do
IV. HYBRID GIBBS SAMPLER 2. for each pixelp=1,...,P do

This section studies a hybrid Metropolis-within-Gibbs sam- 3: Sampleag) from the pdf in (19),
pler that iteratively generatesamples according to the full 4: end for
conditional distributions off (®, I'|Y). The algorithm is sum- 5. Samples2® from the pdf in (21),
marized in Algo. 1 and its main steps will now be detailed. 6: for each regioss=1,...,Sdo
7. Samplezl! from the pdf in (18),
; : 8: end for
A. Generf';mng ?arnp!es AcFord|ng to[ig,_ Klzs, AS.’ uk] o: for each clas€i k= 1..... K do
For agiven S|mllgr|ty regioif2s, Bayes' theorem yields the 10: Sampleu  from the pdf in (22),
conditional distribution ofzg 11:  end for
Pzs = K|Zs, As, U] o f(zs]Zs) H f (Ap|zs, Uk) 12:  Sampled from the pdf in (23),
13: end for

pefs

where As is the abundance matrix associated with the pixels

belonging to the neighborhod®s. Since the label of a given this move is a Gaussian distribution with the following mean

neighborhood is the same for all pixels, it makes sense thaid covariance matrix (from [8])

the abundance vectors &g contribute to the conditional 1
istributi i iti A =L M —mgu")" (M*— mguT

distribution ofzs. The complete expression of the conditional pd ( R ) ( R ) >

ST 20)
distribution is " T (
L= A[g—lz(M —mguT) (yp—mR)],
P[zs = K|zs, As, U] o< exp| Z 5(zs — z1) whereM* = [my,...,mg_1] andu=1[1,...,1]7 e RR-L
teV, (1) This distribution is truncated on the set defined by the abun-

dance constraints (see [37] and [8] for more details).
_ I'(Uok) Urk—1
1s(ap). (18) . .
s, 1R T(Urk) H C. Generating Samples According tdaf|Y, A, o)

The conditional distribution 0&?2 is

X

Note that sampling from this conditional distribution can p

be ach|eveq by drawing a discrete yglue in the finite set f(o2lY, A, 8) o f(02|5)H f(yplap,az).
{1,..., K} with the normalized probabilities (18). e}
_ _ 2 As a consequence,?|Y, A, ¢ is distributed according to the
B. Generating Samples According tdah|zs = K, yp, o) following inverse-gamma distribution

The Bayes’ theorem leads to P 5
o2 A5~ TG (S s S e m Mael
b b 2 9

(21)
p=1 2

f (@plzs = k. Yp, 0?) o f (aplzs = k. u) T (Vplap, o?)

or equivalently to
Ma (2 D. Generating Samples According to(uf x|z, ar)
— Ma -
f (aplzs = k, Yp, o?) o exp[—M} 1s(ap) The Dirichlet parameters are generated for each endmember
20 r(r=1...,R and eachclas§« (k=1,...,K)

H U= (19) f (Ur,k|Z,ar) o f (Ur,k) H H f (aplzs =Kk, uk)

QseCx pes
i . ) . I ding to (19) which leads to
ince it is not easy to sample according to , we propose T (U 1
to use a Metropolis-Hastings step for generating ke 1 Ur klZ, ar H H [F((uo ; i }1R+(ur,k).
first abundance sa 'gles and to compute f&tle abundance QseCy pefs K

usingarp = 1 — >/ & p. The proposal distribution for (22)



Since it is not easy to sample from (22), we propose to use a
Metropolis-Hastings move. More precisely, samples are gener-
ated using a random-walk defined by the Gaussian distribution
N (0, w?), where the variance? has been adjusted to obtain
an acceptance rate betweed®and 050 as recommended in
[38, p. 55].

E. Generating Samples According tc(éfa 2) Fig. 2. (a) Actual label map. (b) Label map estimated by the proposed Gibbs
The conditional distribution ob is the following gamma Sampler.
distribution _
oo ~G(1, = (23) ol
15
wheregG(a, b) is the gamma distribution with shape parameter 2o
a and scale parametér[39, p. 581]. =

V. SIMULATION RESULTS ONSYNTHETIC DATA =

The first experiments evaluate the performance of the pro-”
posed algorithm for unmixing a 2625 synthetic image with i
K = 3 different classes. The image contaiRs= 3 mixed 2 : 5 i

5 10 15 20 25 5 10 15 20 25 5 M0 15 20 25
components (construction caete, green grass and micaceous (b)
loam) whose spectra have been extracted from the spectral
libraries distributed with the ENVI package [40] (these spectfag: 3.  (a) Abundance maps of thepBire materials. (b) Abundance maps
havel — 413 spectral bands ranging from wavelength Om ﬁf rt]h.e 3 pure materials estimated by the hybrid Gibbs sampler. From left to
g t: construction concrete, green grass, and micaceous loam.

to 25 um, from the visible to the near infrared and are
plotted in [41]). The synthetic label map shown in Fig. 2 (left) . _ )
has been generated using a Potts-Markov random field with l
a granularity coefficienfg = 2, allowing large and distinct = | ® |1 I
regions to be constructed. The abundance means and variances ~+
in each class have been chosen to ensure a single endmember ~ |
is prominent in a given class. The actual values of these
parameters reported in Table | show that the 1st endmember o5 1 % 0s 1% o5 '
is more present in class 1. v average Con.centratlon OfF' . 4. Histograms of the abundance MMSE estimates for the 2nd class.
60%), the 2nd endmember is more present in class 2 (W'Ithg'e dotted lines correspond to the actual abundance means contajage=in
average concentration of 50%) and the 3rd endmember is mprgs, 2.2, 12,31"-
present in class 3 (with averagconcentration of 50%). All
the abundance variances have been fixed to B) 3. The
abundance maps used to mix the endmembers are depi@stimates belonging to the 2nd class (i.e., ko= 2) have
in Fig. 3 (top). Note that a white (resp. black) pixel irbeen depicted in Fig. 4. This figure shows that the abundance
the fraction map indicates a large (resp. small) value of tlestimates are concentrated around the actual valugs,of
abundance coefficient. The noise variance has been choseS8iimilar results would be obtained for the other classes. They
order to have an average signal-to-noise ratio SNRO dB, are omitted here for brevity.
i.e., 02 = 0.001. The similarity regions have been built The proposed method has been tested on a larger dataset
using the self-complementary area filter with an area criterimomposed of 50 different images of size 2525 pixels.
A = 5. The neighborhoods have been established using-ar each image, one classification map and one abundance
thresholdr = 5 x 1073, The proposed sampler has been rumap have been generated as explained above. The algorithm
with Nyc = 5000 iterations includingNpi = 500 burn-in has been run on each image by assuming first that the
iterations. The estimates of the class labels are obtained usamgimember spectra are known. Table | shows the estimated
the MAP estimator approximated by retaining the samplebundance means and variances for each class obtained by
that maximizes the posterior conditional probabilities 2f averaging the results from the 50 Monte Carlo runs. The
These estimates depicted in FR(right) agree with the actual estimated abundances areeally in accordance with the
class labels. After computindné estimated class labels, theactual ones. Then, to evaluate the sensibility of the pro-
abundances have been estimated conditionally to these gstised unmixing algorithm with respect to the endmember
mates using the MMSE estimator. The estimated abundanoearix, we have proposed to use endmembers identified by
represented in Fig. 3 (bottom) are also in good agreeméhé vertex component analysis (VCA) [42] instead of the
with the actual abundances. Moreover, the mean vegtQrs endmembers actually used to generate the data. The esti-
are of great interest since they characterize each €lagsor mated abundance means and variances (averaged over the 50
illustration purposes, the histograms of the abundance MM3$#onte Carlo runs) are reported in Table |. The estimations




TABLE |
ACTUAL AND ESTIMATED ABUNDANCE MEAN AND VARIANCE (x10—3)

Actual values Adaptive-MRF FCLS
M known VCA M known VCA
Class 1 |_El@p. pezy] | [06,03, 017 | 0580290137 | [0.64 0.21,0.14]T | [0.58 0.29,0.13]T | [0.650.21,0.13]7
Varap, pez; ] 5,5,5]" [43,41,63]T | [143,122,115]" | [454.267]" (151,13, 121]"
Class 2 |__El@p. pezp] | 03,05, 02]" | [0.2904902]T | [01306702]T | [029 049027 | [0.13 067027
Varap r, pez,] (5.5,5]" (4.7,48,87]" (8.7,143,136]" (5.4.8,9.1)7 (103,141, 146]"
Class 3|__E1@p. pezs] | 10.3,02,057 | [03,02,0497 | (019,018 063 | (029,002,049 | [0.17,0.19,0.64"
Varlap pets] 5,5,5]" (5.1,4.9,9.8] [112,117,188]" | [53,49,10" | [128,126,198]
TABLE Il

are slightly less accurate whehe endmember spectra have
been estimated using VCA. Inapicular, variances of the
estimated abundances are greater when endmembers provided

GLOBAL MSEs oFEACH ABUNDANCE COMPONENT AND EXECUTION
TIMES FOR THETHREEUNMIXING ALGORITHMS

by VCA are used in the unmixing process. This behavior Bayesian | Local-MRF | Adapt-MRF
of the. proposed unmixing Fechnlque is compared with the MSE2 53102 | 34x10% | 32x10-2
behavior of the FCLS algorithm when used in the same two > 3 — —
scenariosi known in one scenario arld estimated by VCA MSE; [ 54x107° | 95x10 95x 10

in the other). Similarly, one can notice that the abundance MSE] | 23x10°* | 24x10* | 23x10°*
mean variances increase when using FCLS with estimated | Time (sec.)| 46 % 10° | 2% 108 | 16 x 10° |

endmembers.

The proposed spatial hybrid Gibbs sampler has been com-
pared with its “local” MRF counterpart developed in [11] and . ]
with the non-spatial Bayesian algorithm developed in [8]. Agn@ging Spectrometer (AVIRIS) over Moffett Field, CA and
a performance criterion, the global mean square errors (MSIE&S been used intensively in the geoscience community [8],

of the estimated abundances have been computed. The gldbal: [43]: [44]. The data set has been reduced from the
MSE for therth abundance is defined as original 224 bands toL = 189 bands by removing water

absorption bands. First, the image has been pre-processed
by PCA to determine the number of endmembers present
in the scene, as explained in [1] and applied in [11]. Note
that several other techniques could be used to perform such
where &, denotes the MMSE estimate of the abundanggeprocessing step. For example, the number of endmembers
ap- The obtained results are reported in Table Il with thg, | he estimated by using the minimum noise fraction
cqrresponding computation times. The algorithm devglo_ped(iMNF) method [45], the HySime algorithm [46] or other
this paper (referred to as “Adapt.-MRF") performs similarli ategies exploiting virtual dimensionality, as in [47] or [48].
or better than the two other algorithms (referred to as “Locafhen, the N-FINDR algorithm, proposed by Winter in [6] has
MRF” and “Bayesian”) in terms of global MSE. Howeverpeen ysed to estimate the endmember spectra. Rhe 3
the proposed algorithm shows the lowest computational tig&racted endmembers shown in [11] correspond to vegetation,
which is a very interesting propeftyBy assumingP > SK, \ater and soil, and have been used as the mean vators
the computational complexity of the proposed algorithm i,§]2 andms. The proposed algorithm has been applied to this
of O(NmcP). As a comparison, the previously developeqnage with a number of classes beikg= 4 andNyc = 5000
spatial algorithm in [11] has a larger computational compleXifyerations (with 500 burn-in iterations). The number of classes
of O(NucPK). Note that the pre-processing step requireghg peen fixed t& = 4 since prior knowledge on the scene
by the "Adapt.-MRF" method has been included in the timg);o\s one to identify 4 areas in the image: water point, lake

evaluation. shore, vegetation and soil. The minimum flat zone size and the
threshold of the neighborhood distance have been respectively
fixed to 4 = 10 andz = 0.005.

The estimated classification and abundance maps for the

A. Moffett Field o ) : -
roposed hybrid Gibbs algorithm are depicted in Figs. 5 (left)

This sectign considers a real hyperspectral image of Sigﬁd 6 (top). The results provided by the algorithm are very
50 x 50 (available in [41]) to evaluate the performance of th&milar to those obtained with its “local” MRF counterpart
different algorithms. This image has been extracted fromhﬁ] as shown in Figs. 5 (right) and 6 (bottom).

larger image acquired in 1997 by the Airborne Visible Infrare We have also compared the reconstruction error (RE)

and the spectral angle mapper (SAM) [1] for the proposed
algorithm and two classical unmixing algorithms: the FCLS

P
1 A
MSE? = P > (&rp—arp)’ (24)
p=1

VI. REAL AVIRIS HYPERSPECTRALIMAGE

2These simulations have been run on an unoptimized MATLAB& bit
implementation on a Core(TM)2Dua93 GHz computer.



TABLE Il
PERFORMANCECOMPARISONBETWEEN NONSPATIAL AND
SPATIAL BASED UNMIXING ALGORITHMS

RE (x102) | SAM (x1073) | Time (s.)

FCLS 163 1507 0.388

10 20 30 40 50 10 20 30 40 50 local-MRF 1.66 1507 8.4 x 10°
@) (b) adaptive-MRF 163 1516 6.3 x 10°

Fig. 5. (a) Label map estimated by the proposed algorithm. (b) “Local” MRF
algorithm.
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Classification maps obtained with @)= 5 and (b)r =5 x 1075,

Fig. 7.

= ' s = —
10 20 30 40 50 10 20 30 40 50

10 20 30 40 S0

(b)

Fig. 6. (a) Abundance maps estimated by the proposed algorithm. (b) “Local”
MRF algorithm. From left to right: vegetation, water, and soil.

algorithm and the “local” MRF algorithm [11]. The recon-
struction error has been computed using the following relation

L. A

5 = |
10 20 30 40 S0 10 20 30 40 S0

10 20 30 40 %0

(b)
Fig. 8. Abundance maps obtained with @)= 5 and (b)r =5 x 1075,

P
1
—_ —_ .12
RE = F,I_F)E_lllyp Yol (25)

. . _ B. Influence ofr and A
where the number of pixels iB = 2500 for the region con-

sidered in our experiments, is the number of spectral bands
(note that the water absorption bands have been removed)
yp andy, are the observed and estimated spectra forpthe
pixel. The spectral angle mapper used in [1] as an unmixi
performance criterion is given below

The influence of the intrinsic MRF parametersand /. on
estimation performance deserves to be studied. For each
simulation scenario, we have changed one of the mentioned
r;?grameters while keeping the others fixed to the values given
previously. Firstly, the influence of the neighborhood distance
parameterz has been tested with the two extremum values
r =5 andr = 5x 107>, With = 5, the neighborhood
system is very tolerant since the similarity regions are accepted
very easily as neighbors. Conversely, the threshold valge
5x 10~° ensures a stricter neighborhood system. The resulting
label and abundance maps foe= 5 and 5x 10~ are respec-
tively given in Figs. 7 and 8. Reducing the parametatoes
not change the classification results. Conversely, when5,
the resulting label map suffefiiom under-segmentation, as the
and arcco6) is the inverse cosine function. The estimatedontinental part of the image globally belongs to a single class.
mixing matrix used in all the experiments has been comlote that the abundance maps do not change significantly
puted using the N-FINDR procedure. The results reported fior the two values ofr, which means that the abundance
Table Il show that the proposed hybrid Gibbs sampler &stimation is relatively unaffected by the precision chosen for
less computationally intensive than its “local” counterpart witthe classification. However, this parameter must be chosen
similar performance. Note that the FCLS algorithm shows tloarefully to avoid under-segmentation effects.
lowest execution time with similar performances. However, The influence of the area filtering parameterhas also
the proposed algorithm provides a classification map in adtieen studied by applying the proposed method with- 5
tion to the abundance estimates contrary to FCLS algorithend 2 = 20, i.e., allowing smaller and larger similarity
Moreover, the samples generated by the MCMC metheoegions to be built. Label maps are shown in Fig. 9 (for
can also provide confidence intervals for the estimates lmrevity the abundance maps have not been depicted since
probability of presence in some parts of the image [9]. they do not change for the two values Of For . = 5, the

P
1 .
SAM = 5 Ze (Yp: ¥p) (26)
p=1

0 (Yp. Yp) = arcco{M)

TAIRAL

where
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Fig. 9. Classification maps obtained with ()= 5 and (b)1 = 20. Fig. 12.  Classification maps obtained f& = 3 with (a) K = 5 and
(b) K = 10.
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Fig. 10. Classification maps obtained with @)= 4 and (b)R = 5.

10 20 30 40 %0 10 20 30 40 50

(b)

Fig. 13. Relevant abundance maps obtained with(a} 5 and (b)K = 10.
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Fig. 14. Classification map obtained on the 190250 Cuprite area
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. N with K = 14.
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Fig. 11.  Abundance mapobtained with (@R =4 and (b)R = 5. of endmembersR = 4 andR = 5) and a number of classes

fixed to K = 4 (as in the previous paragraph). The estimated

classification results are slitih different from those in Fig. 5 classification and abundance maps obtained with these two
9- 9 ifferent values ofR are depicted in Fig. 10 (middle and

especially for the “shore” class (black) that can be found alsr%ht) and 11, respectively. When increasing the number of

in the continental part of somegions. Indeed, the area size d b h ding label d h
being smaller, the self-complementary area filter tends to buﬁg MEmbErs, t € corresponding fabel maps 0o not change
' nificantly. With R = 5, the “soil” abundance map has

. e S
much precise fIat“ zonef. In the; classn‘lgatlon map optamg@en split into different materials. However, this fact is not
for 1 = 20, the “shore” class is essentially present in the

“vegetation band” in the middle of the continental part. Thi;ss%is?:;g?rg;;hii I(::(i);ress F()Ic;r;glng label map which is similar

can be explained by the area filter behavior (resulting from th|s.|.he influence of the number of classés has been

threshold value) building large flat zones that could remove . ;
. .~ Investigated by applying the proposed algorithm on the Moffett
smaller structures of interests, such as the “shore” regions g y appying prop 9

image with larger numbers of classds & 5 andK = 10)

and a number of endmembers equalRo= 3 (as in the

C. Influence of R and K previous paragraph). The estimated classification and
The performance of the proposed algorithm has finally beabundance maps obtained with these two different values of

evaluated for different values of the number of endmemBersK are given in Fig. 12 (middle and right) and 13, respectively.

and the number of classé&s First, the proposed algorithm hasincreasing the number of classes has no influence on the

been applied on the Moffett field image with larger numbebundance maps results. However, the estimated label maps



Fig. 15. Fraction maps of the 130250 Cuprite area.

suffer from over-segmentation, especially #&r= 10, where classification map recoversdtgeneral shape of the area and
nine classes are describing the continental part of the imadimits the number of “isolated” regions.

VIl. CONCLUSION

A joint unmixing and segmentation algorithm based on a
This section evaluates the performance of the proposeelw Markov random field (MRF) has been introduced. The
method on a larger real hyperspectral image. The image tstes of this MRF have been built using a morphological
been extracted from the AVIRIS Cuprite scene, acquired ovesalf-complementary area filter. The resulting similarity regions
mining site in Nevada, in 1997. The geological characteristipgrtition the image into multiple classes that are characterized
of the complete data have been mapped in [49], [50]. Thw close abundances sharing the same means and covariances.
area of interest of size 190250 has been previously studiedA Bayesian model based on this new MRF and on ideas
in [42] for testing the VCA algorithm withR = 14 and in presented in a previous study was derived. The complexity
[11] using the “local” counterpart of our proposed methodf this Bayesian model was alleviated by implementing a
with K = 14. Therefore, these values have been respectivélybrid Gibbs sampler generating data asymptotically dis-
chosen forR andK. The endmembers used in this experimentibuted according to the posterior distribution of interest.
have been extracted using the VCA algorithm (see [11] f&@imulations conducted on synthetic and real hyperspectral
more details). Due to the scale of this image, the area filteridgta showed that the proposed algorithm achieved similar
parameterl has been set to 50 while has not been changed classification and unmixing p®rmance than its “local” MRF
i.e., 7 = 5 x 1073. The proposed algorithm has been usecbunterpart at the price of a reduced computational time. The
to estimate the abundance and label maps related to fheus of future works will be to investigate the generalization
analyzed scene. These maps are depicted in Fig. 14 and dlfility of the self-complementary area filter to multiple bands
respectively. The extracted abundance maps agree with Hyeusing a method inspired by [51]. Another way of defining
ones previously obtained in [11]. Moreover, when comparede neighbors of each site (using other criteria than the
with the classification map obtained in [11], the estimatetiedian of the corresponding similarity region) will also be

D. Cuprite Image



explored. Finally, a fully Bayesian approach jointly estimatings]
the endmember matrix, the similarity regions and the other
parameters of interest would deserve to be investigated. g

APPENDIX

LABEL PRIOR DISTRIBUTION [10]
The Hammersley-Clifford theorem [34, p. 231] yields
S P(zs|Z; ZE 1, Zsy1 Zs) (]
P(Z)C(H S i]_k)"" i_l’ S+1, -+ - -5 £S
bl Pz, ..., Zs_1, Zs+1, .- -, Z9) [12]
where the labels marked with a sty are arbitrary auxiliary
variables. As a consequence [13]
s
P(2) cc expi f > > dzs-7) [14]
s=1 teV;(t),t<s
[15]
+ Z 0(2s — zt)
teV, (t),t>s [16]
- > dZ-zH+ Y, Z-n)
teV; (t),t<s teV: (t).t>s (17]
By interverting the indexes andt, we have
s S [18]
DD des-H=). D> dZ-zm). (27)
s=1teV,(t),t<s s=1teV,(t),t>s
This allows us to write the final expression (19]
S
P(2oxcexp| > D 6zs—2)|. (28) [29
s=1teV, (t) [21]
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