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Adaptive Markov Random Fields for
Joint Unmixing and Segmentation

of Hyperspectral Images
Olivier Eches, Jón Atli Benediktsson,Fellow, IEEE, Nicolas Dobigeon,Member, IEEE, and

Jean-Yves Tourneret,Senior Member, IEEE

Abstract—Linear spectral unmixing is a challenging problem
in hyperspectral imaging that consists of decomposing an
observed pixel into a linear combination of pure spectra (or end-
members) with their corresponding proportions (or abundances).
Endmember extraction algorithms can be employed for recov-
ering the spectral signatures while abundances are estimated
using an inversion step. Recent works have shown that exploiting
spatial dependencies between image pixels can improve spectral
unmixing. Markov random fields (MRF) are classically used
to model these spatial correlations and partition the image
into multiple classes with homogeneous abundances. This paper
proposes to define the MRF sites using similarity regions. These
regions are built using a self-complementary area filter that
stems from the morphological theory. This kind of filter divides
the original image into flat zoneswhere the underlying pixels
have the same spectral values. Once the MRF has been clearly
established, a hierarchical Bayesian algorithm is proposed to
estimate the abundances, the class labels, the noise variance, and
the corresponding hyperparameters. A hybrid Gibbs sampler is
constructed to generate samples according to the corresponding
posterior distribution of the unknown parameters and hyperpa-
rameters. Simulations conducted on synthetic and real AVIRIS
data demonstrate the good performance of the algorithm.

Index Terms—Hyperspectral images, Markov random field
(MRF), morphological filter, segmentation, spectral unmixing.

I. I NTRODUCTION

H YPERSPECTRAL images are very high resolution
remote sensing images that have been acquired in a

hundred of spectral bands simultaneously. Since the growing
availability of such images within the last years, many studies
have been conducted by the image processing community
for the analysis of these images. A particular attention has
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been devoted to the spectral unmixing problem. Classical
unmixing algorithms assume that the image pixels are linear
combinations of a given number of pure materials spectra
or endmemberswith corresponding fractions referred to as
abundances[1] (the most recent techniques have been reported
in [2]). The mathematical formulation of this linear mixing
model (LMM) for an observed pixelp in L bands is

yp = Map + np (1)

where M = [m1, . . . , mR] is the L × R spectral signature
matrix, ap is the R× 1 abundance vector andnp is the L × 1
additive noise vector. This paper assumes that the additive
noise vector is white Gaussian with the same variance in each
band as in [3], [4]. For a hyperspectral image withP pixels,
by denotingY =

[

y1, . . . , yP

]

, A =
[

a1, . . . , ap
]

and N =
[n1, . . . , nP], the LMM for the whole image is

Y = M A + N . (2)

The unmixing problem consists of estimating the endmember
spectra contained inM and the corresponding abundance
matrix A. Endmember extraction algorithms (EEA) are classi-
cally used to recover the spectral signatures. These algorithms
include the minimum volume simplex analysis (MVSA) [5]
and the well-known N-FINDR algorithm [6]. After the EEA
step, the abundances are estimated under the sum-to-one and
positivity constraints. Several methods have been proposed for
the inversionstep. They are based on constrained optimization
techniques such as the fully constrained least squares (FCLS)
algorithm [7] or on Bayesian techniques [8], [9]. The Bayesian
paradigm consists of assigning appropriate prior distributions
to the abundances and to solve the unmixing problem using the
joint posterior distribution of the unknown model parameters.

Another approach based on a fuzzy membership process
introduced in [10] inspired a Bayesian technique where spa-
tial correlation between pixels are taken into account [11].
This approach that used Markov random fields (MRFs) to
model pixel dependencies resulted in a joint segmentation and
unmixing algorithm. MRFs have been introduced by Besag in
[12] with their pseudo-likelihood approximation. The Gibbs
distribution inherent to MRFs was exploited in [13]. Since
this pioneer work, MRFs have been actively used in the
image processing community for modeling spatial correlations.
Examples of applications include the segmentation of SAR or
brain magnetic resonance images [14], [15]. Other interesting



works involving MRFs for segmentation and classification
include [16]–[18]. A major drawback of MRFs is their com-
putational cost, which is proportional to the image size.
In [19], the authors proposedto partition the image in two
independent set of pixels, allowing the sampling algorithm
to be parallelized. However, this method is only valid for a
4-pixel neighborhood.

This paper studies a novel approach for introducing spatial
correlation between adjacent pixels of an hyperspectral image
allowing computational cost of MRFs to be reduced signifi-
cantly. The neighborhood relations are usually defined between
spatially close pixels orsites. This contribution proposes to
define a new neighborhood relation between sites regroup-
ing spectrally consistent pixels. Thesesimilarity regionsare
built using a filter stemming from mathematical morphology.
Mathematical morphology is a nonlinear image processing
methodology based upon lattice theory [20], [21] that has
been widely used for image analysis (see [22] and refer-
ences therein), with a focus on hyperspectral images in [23].
Based on mathematical morphology, Soille developed a self-
complementary area filter in [24] that allows one to properly
define structures while removing meaningless objects. The
self-complementary area filter has also been used in [25] for
classifying hyperspectral images. This paper defines similarity
regions using the same self-complementary area filter. After
image partitioning, image neighborhoods are defined between
similarity regions ensuring a distance criterion between their
spectral medians. The resulting MRF sites are less numer-
ous than the number of pixels, which reduces computational
complexity.

This new way of defining MRFs is applied to the joint
unmixing and segmentation algorithm of [11]. After a pre-
processing step defining the similarity regions, an implicit
classification is carried out byassigning hidden discrete vari-
ables or classlabels to image regions. Then, a Potts-Markov
field [26] is chosen as a prior for the labels, using the
proposed neighborhood relation. Therefore, a pixel belonging
to a given similarity region must belong to the class that shares
not only the same abundance mean vector and covariance
matrix but also the same spectral characteristics. In addition
to the label prior, the Bayesian method used in this work
requires to define an abundance prior distribution. Instead
of reparameterizing the abundances as in [11], we choose
a Dirichlet distribution whose parameters can be selected to
adjust the abundance means and variances for each class. The
Dirichlet distribution is classically used as prior for parameters
subjected to positivity and sum-to-one constraints [27]. The
associated hyperparameters are assigned non-informative prior
distributions according to a hierarchical Bayesian model.

The resulting joint posterior distribution of the unknown
model parameters and hyperparameters can be computed from
the likelihood and the priors. Deriving the Bayesian estima-
tors such as the minimum mean square error (MMSE) and
maximum a posteriori (MAP) estimators is too difficult from
this posterior distribution. One might think to handle this
problem by using the well-known expectation maximization
(EM) algorithm. However, this algorithm can have serious
shortcomings including the convergence to a local maximum

of the posterior [28, p. 259]. Moreover, using the EM
algorithm to jointly solve the unmixing and classification
problem is not straightforward. Therefore, we study as in [11]
a Markov chain Monte Carlo (MCMC) method that bypasses
these shortcomings and allow samples asymptotically distrib-
uted according to the posterior of interest to be generated.
Note that this method has some analogy with previous works
proposed for the analysis of hyperspectral images [9], [16].
The samples generated by the MCMC method are then used
to compute the Bayesian estimators of the image labels and
class parameters. Therefore, the proposed Bayesian framework
jointly solves the classification and abundance estimation
problems.

The paper is organized as follows. Section II describes the
morphological area filter and its associated MRF. Section III
presents the hierarchical Bayesian model used for the joint
unmixing and segmentation of hyperspectral images. The
MCMC algorithm used to generate samples according to
the joint posterior distribution of this model is described in
Section IV. Simulation results on synthetic and real hyper-
spectral data are presented in Sections V and VI. Conclusions
and future works are finally reported in Section VII.

II. T ECHNICAL BACKGROUND

This section presents in more details the morphological self-
complementary area filter and introduces the MRF that is used
for describing the dependence between the regions.

A. Adaptive Neighborhood

In order to build the adaptive neighborhood on hyper-
spectral data, aflattening procedure stemming from the
self-complementarity property [24] was employed in [25].
Self-complementarity is an important property in morpholog-
ical theory and allows the structure of interest to be preserved
independently of their contrasts while removing small mean-
ingless structures (e.g., cars, trees,. . .) in very high resolution
remote sensing images. The algorithm developed by Soille in
[24] exploits this property in a two step procedure that divides
the image into flat zones, i.e., regions whose neighboring
pixels have the same values satisfying any area criterionλ.
This procedure is repeated until the desired minimal flat
zone sizeλ is obtained. Note that this self-complementary
area filter cannot be directly used on hyperspectral images
since the complete ordering property that any morphological
operator needs is absent from these data. The strategy studied
in [25] uses principal component analysis (PCA) to reduce
data dimensionality. The area filtering is then computed on the
data projected on the first principal component defined by the
largest covariance matrix eigenvalue. The resulting flat zones
contain pixels that are spectrally consistent and are therefore
considered in the same similarity region.

As stated in the introduction, the main contribution of
this paper consists of using the similarity region building
method developed in [25] as a pre-processing step for a spatial
unmixing algorithm. The regions resulting from the method
derived in [25] are considered for each band of the data.
Spatial information is then extracted from each of these



regions by computing the corresponding median vector. More
precisely, if we denote the number of similarity regions by
S and thesth region by�s (s = 1, . . . , S), then the vector
median value for this region is defined as

ϒs = med(Y�s), (3)

where Y�s is the matrix of observed pixels belonging to
the region�s and dim(ϒs) = L is the number of spectral
bands. As explained in [25], the median vector ensures spectral
consistency as opposed to the mean vector.

As in [11], this paper assumes that the classes contain neigh-
boring pixels that havea priori close abundances. This spatial
dependency is modeled using the resulting similarity regions
that contain spectrally consistent pixels. In other words, if we
denote asC1, . . . , CK the image classes, a label vector of size
S× 1 (with S ≥ K ) denoted asz = [z1, . . . , zS]T with zs ∈
{1, . . . , K } is introduced to identify the class of each region
�s, i.e., zs = k if and only if all pixels of�s belong toCk.
Note that, in each class, the abundance vectors to be estimated
are assumed to share the same first and second order statistical
moments, i.e.,∀k ∈ {1, . . . , K } , ∀�s ∈ Ck, ∀p ∈ �s

E
[

ap
]

= µk

E
[

(

ap − µk
) (

ap − µk
)T
]

= �k.
(4)

Therefore, thekth class of the hyperspectral image to be
unmixed is fully characterized by its abundance mean vector
µk and its abundance covariance matrix�k.

B. Adaptive Markov Random Fields

Since the work of Geman and Geman [13], MRFs have
been widely used in the image processing community (for
examples, see [29], [30]). The advantages of MRFs have also
been outlined in [16], [17], [31], [32] for hyperspectral image
analysis and in [11] for spectral unmixing. Considering two
sitesof a given lattice (e.g., two image pixels) with coordinates
i and j , the neighborhood relation between these two sites
must be symmetric: ifi is a neighbor of j then j is a
neighbor ofi . In image analysis, this neighborhood relation is
applied to the nearest pixels depending on the neighborhood
structure, for example the fourth, eighth or twelfth nearest
pixels. Once the neighborhood structure has been established,
we can define the MRF. Letzp denote a random variable
associated with thepth site of a lattice (havingP sites). The
variablesz1, . . . , zP (indicating site classes) take their values
in a finite set{1, . . . , K } whereK is the number of possible
classes. The whole set of random variables{z1, . . . , zP} forms
a random field. An MRF is then defined when the conditional
distribution ofzi given the other sites is positive for everyzi

and if it only depends on its neighborszV(i ), i.e.,

f (zi |z-i ) = f
(

zi |zV(i )
)

(5)

where V(i ) represents the set of neighbors andz-i =
{z j ; j �= i }. In the case of a Potts-Markov model, given a
discrete random fieldz attached to an image withP pixels,
the Hammersley-Clifford theorem yields the joint probability

density function ofz

f (z) = 1

G(β)
exp

⎡

⎣

P
∑

p=1

∑

p′∈V(p)

βδ(zp − zp′)

⎤

⎦ (6)

whereβ is thegranularitycoefficient,G(β) is the normalizing
constant or partition function and δ(·) is the Kronecker
function (δ(x) = 1 if x = 0 and δ(x) = 0 otherwise).
Note that drawing a label vectorz = [z1, . . . , zP] from the
distribution (6) can be easily achieved without knowingG(β)

by using a Gibbs sampler [11]. The hyperparameterβ tunes
the degree of homogeneity of each region in the image.
As illustrated in [11], the value ofβ has an influence on
the number and the size of the regions. Moreover, its value
clearly depends on the neighborhood structure [33]. Note that
it is often unnecessary to consider values ofβ ≥ 2 for the
1st-order neighborhood structure, as mentioned in [34, p. 237].

In this paper, we propose an MRF depending on new
lattice and neighborhood structures. More precisely, our set
of sites is composed with the similarity regions built by the
area filter. These regions are successively indexed in the pre-
processing step. We introduce the following binary relation≤
to define the partially ordered set (poset) composed with the
similarity regions{�1, . . . ,�S}: if s ≤ t then we assume
�s ≤ �t . For obvious reason, this binary relation has the
reflectivity, antisymmetry and transitivity properties necessary
for the definition of the poset. It is also straightforward to see
that for any subset of{�1, . . . ,�S}, a supremum (join) and an
infimum (meet) exist. For this reason, the poset{�1, . . . ,�S}
is a lattice allowing the similarity regions to be used as sites
for a neighborhood structure. This neighborhood structure is
based upon the square distance between the corresponding
median vector which is compared to a given threshold. In
other terms,�s and �t are neighbors if the relationDs,t =
‖ϒs − ϒt‖2 ≤ τ is fulfilled1, whereτ is a fixed value. By
denotingVτ (s) the set of regions that are neighbors of�s

and by associating a random discrete hidden variablezs to
every similarity region�s, the following relation can be easily
establishedf (zs|z-s) = f (zs|Vτ (s)), thus implying that the set
of labelszs is an MRF with

P(zs = k|z-s) ∝ exp

⎡

⎣β
∑

t∈Vτ (t)

δ(zs − zt )

⎤

⎦ (7)

where∝ means “proportional to”.

III. H IERARCHICAL BAYESIAN MODEL

This section studies a Bayesian model based on the adap-
tive MRF introduced in the previous Section. The unknown
parameter vector of this model is denoted asϒ = {A, z, σ 2},
whereσ 2 is the noise variance,z contains the labels associated
with the similarity regions andA = [a1, . . . , aP] is the abun-
dance matrix withp = 1, . . . , P and ap =

[

a1,p, . . . , aR,p
]T.

1‖x‖ =
√

xT x is the standardℓ2 norm.



A. Likelihood

Since the additive noise in (1) is white, the likelihood
function of thepth pixel yp is

f
(

yp |ap, σ
2
)

∝ 1

σ L
exp

[

−
‖yp − Map‖2

2σ 2

]

. (8)

By assuming independence between the noise vectorsnp, the
image likelihood is

f
(

Y|A, σ 2
)

=
P
∏

p=1

f
(

yp|ap, σ
2
)

. (9)

B. Parameter Priors

This section defines the prior distributions of the unknown
parameters and their associated hyperparameters that will be
used for the LMM.

1) Label Prior: The prior distribution for the labelzs is
the Potts-Markov random field whose distribution is given
in (7). Using the Hammersley-Clifford theorem, we can show
that the joint prior distribution associated with the label vector
z = [z1, . . . , zS]T is also a Potts-Markov random field (see
Appendix), i.e.,

P(z) ∝ exp

⎡

⎣β

S
∑

s=1

∑

t∈Vτ (t)

δ(zs − zt )

⎤

⎦ (10)

with a known granularity coefficientβ (fixed a priori).
2) Abundance Prior Distribution:The abundance vectors

have to satisfy the positivity and sum-to-one constraints.
This paper proposes to use Dirichlet prior distributions for
these vectors as in [35]. More precisely, the prior distribu-
tion for the abundanceap is defined conditionally upon its
class

ap|zs = k, uk ∼ DR (uk) (11)

where DR (uk) is the Dirichlet distribution with parameter
vectoruk = (u1,k . . . , uR,k)

T. Note that the vectoruk depends
on the region defined by pixels belonging to classk. Assuming
independence between the abundance vectorsa1, . . . , aP, the
joint abundance prior is

f (A|z, U) =
K
∏

k=1

∏

�s∈Ck

∏

p∈�s

f
(

ap|zs = k, uk
)

(12)

with U = [u1, . . . , uK ].
3) Noise Variance Prior:A conjugate inverse-gamma dis-

tribution is assigned to the noise variance

σ 2|ν, δ ∼ IG(ν, δ) (13)

where ν and δ are adjustable hyperparameters. This paper
assumesν = 1 (as in [8]) and estimatesδ jointly with the
other unknown parameters and hyperparameters.

Fig. 1. DAG for the parameter priors and hyperpriors. Dashed boxes: fixed
parameters.

C. Hyperparameter Priors

Hierarchical Bayesian algorithms can be used to estimate
the hyperparameters defining the parameter priors. These
algorithms require to define prior distributions for the hyper-
parameters (sometimes referred to as hyperpriors). The values
of the vectorsuk are important for a correct description of the
classes, since the mean vectorµk and the covariance matrix�k

defined in (4) explicitly depend on these vectors. The lack of
prior information for these hyperparameters leads us to choose
an improper uniform distribution on the intervalR

+. Since
these parameters are independent, the joint prior distribution is

f (U) = 1
R

RK
+

(U) (14)

where 1R+(·) denotes the indicator function defined on
R

+. The noise hyperparameterδ has been assigned a non-
informative Jeffreys’ prior (see [36, p. 131] for motivations)

f (δ) ∝ 1

δ
1R+(δ). (15)

At this last hierarchy level within the Bayesian inference, the
hyperparameter vector can be defined asŴ = {U, δ}.

D. Joint Distribution

The joint posterior of the unknown parameter and hyperpa-
rameter vector(�,Ŵ) can be obtained from the hierarchical
Bayesian model associated with the directed acyclic graph
(DAG) depicted in Fig. 1

f (�,Ŵ|Y) = f (Y|�) f (�|Ŵ) f (Ŵ). (16)

Straightforward computations lead to

f (�,Ŵ|Y) ∝
(

1

σ 2

)
L P
2

P
∏

p=1

exp

[

−
‖yp − Map‖2

2σ 2

]

× exp

⎡

⎣β

S
∑

t=1

∑

t∈Vτ (t)

δ(zs − zt )

⎤

⎦

× δν−1

(

σ 2
)ν+1

K
∏

k=1

∏

�s∈Ck

∏

p∈�s

×
[

Ŵ(u0,k)
∏R

r=1 Ŵ(ur,k)

R
∏

r=1

a
ur,k−1
r,p 1S (ap)

]

1
R

RK
+

(U)

(17)



where u0,k =
∑R

r=1 ur,k, Ŵ(.) is the gamma function and
S is the simplex defined by the sum-to-one and positivity
constraints. This distribution is far too complex to obtain
closed-form expressions for the MMSE or MAP estimators
of (�,Ŵ). Thus, we propose to use MCMC methods for
generating samples asymptotically distributed according to
(17). By excluding the firstNbi generated samples (belonging
to the so-called burn in period), it is then possible to approx-
imate the MMSE and MAP estimators from the remaining
samples.

IV. H YBRID GIBBS SAMPLER

This section studies a hybrid Metropolis-within-Gibbs sam-
pler that iteratively generates samples according to the full
conditional distributions off (�,Ŵ|Y). The algorithm is sum-
marized in Algo. 1 and its main steps will now be detailed.

A. Generating Samples According to P[zs = k|z-s, As, uk]

For a given similarity region�s, Bayes’ theorem yields the
conditional distribution ofzs

P [zs = k|z-s, As, uk] ∝ f (zs|z-s)
∏

p∈�s

f (Ap|zs, uk)

where As is the abundance matrix associated with the pixels
belonging to the neighborhood�s. Since the label of a given
neighborhood is the same for all pixels, it makes sense that
the abundance vectors of�s contribute to the conditional
distribution ofzs. The complete expression of the conditional
distribution is

P [zs = k|z-s, As, uk] ∝ exp

⎡

⎣β
∑

t∈Vτ (t)

δ(zs − zt )

⎤

⎦

×
∏

p∈�s

Ŵ(u0,k)
∏R

r=1 Ŵ(ur,k)

R
∏

r=1

a
ur,k−1
r,p 1S (ap). (18)

Note that sampling from this conditional distribution can
be achieved by drawing a discrete value in the finite set
{1, . . . , K } with the normalized probabilities (18).

B. Generating Samples According to f(ap|zs = k, yp, σ
2)

The Bayes’ theorem leads to

f (ap|zs = k, yp, σ
2) ∝ f

(

ap|zs = k, uk
)

f
(

yp|ap, σ
2
)

or equivalently to

f (ap|zs = k, yp, σ
2) ∝ exp

[

−
‖yp − Map‖2

2σ 2

]

1S(ap)

×
R
∏

r=1

a
ur,k−1
r,p . (19)

Since it is not easy to sample according to (19), we propose
to use a Metropolis-Hastings step for generating theR − 1
first abundance samples and to compute theRth abundance
using aR,p = 1 −

∑R−1
r=1 ar,p. The proposal distribution for

Algorithm 1 Hybrid Gibbs Sampler for Joint Unmixing and
Segmentation

1) % Initialization:
1: Generatez(0) by randomly assigning a discrete value

from (1, . . . , K ) to each region�s.
2: GenerateU(0) and δ(0) from the probability density

functions (pdfs) in (14) and (15).
3: GenerateA(0) and σ 2(0) from the pdfs in (12) and

(13).
2) % Iterations:

1: for t = 1, 2, . . . do
2: for each pixelp = 1, . . . , P do
3: Samplea(t)

p from the pdf in (19),
4: end for
5: Sampleσ 2(t) from the pdf in (21),
6: for each region�s s = 1, . . . , S do
7: Samplez(t)

s from the pdf in (18),
8: end for
9: for each classCk k = 1, . . . , K do

10: Sampleur,k from the pdf in (22),
11: end for
12: Sampleδ from the pdf in (23),
13: end for

this move is a Gaussian distribution with the following mean
and covariance matrix (from [8])
⎧

⎨

⎩

� =
[

1
σ2

(

M ∗ − mRuT
)T (

M ∗ − mRuT
)

]−1
,

µ = �

[

1
σ2

(

M ∗ − mRuT
)T (

yp − mR
)

]

,
(20)

whereM ∗ =
[

m1, . . . , mR−1
]

andu = [1, . . . , 1]T ∈ R
R−1.

This distribution is truncated on the set defined by the abun-
dance constraints (see [37] and [8] for more details).

C. Generating Samples According to f
(

σ 2|Y, A, δ
)

The conditional distribution ofσ 2 is

f (σ 2|Y, A, δ) ∝ f (σ 2|δ)
P
∏

p=1

f (yp|ap, σ
2).

As a consequence,σ 2|Y, A, δ is distributed according to the
following inverse-gamma distribution

σ 2|Y, A, δ ∼ IG

⎛

⎝

L P

2
+1, δ +

P
∑

p=1

‖yp − Map‖2

2

⎞

⎠. (21)

D. Generating Samples According to f
(

ur,k|z, ar
)

The Dirichlet parameters are generated for each endmember
r (r = 1, . . . , R) and each classCk (k = 1, . . . , K )

f
(

ur,k|z, ar
)

∝ f
(

ur,k
)

∏

�s∈Ck

∏

p∈�s

f
(

ap|zs = k, uk
)

which leads to

f
(

ur,k|z, ar
)

∝
∏

�s∈Ck

∏

p∈�s

[

Ŵ(u0,k)

Ŵ(ur,k)
a

ur,k−1
r,p

]

1R+(ur,k).

(22)



Since it is not easy to sample from (22), we propose to use a
Metropolis-Hastings move. More precisely, samples are gener-
ated using a random-walk defined by the Gaussian distribution
N (0, w2), where the variancew2 has been adjusted to obtain
an acceptance rate between 0.15 and 0.50 as recommended in
[38, p. 55].

E. Generating Samples According to f
(

δ|σ 2
)

The conditional distribution ofδ is the following gamma
distribution

δ|σ 2
∼ G

(

1,
1

σ 2

)

(23)

whereG(a, b) is the gamma distribution with shape parameter
a and scale parameterb [39, p. 581].

V. SIMULATION RESULTS ONSYNTHETIC DATA

The first experiments evaluate the performance of the pro-
posed algorithm for unmixing a 25× 25 synthetic image with
K = 3 different classes. The image containsR = 3 mixed
components (construction concrete, green grass and micaceous
loam) whose spectra have been extracted from the spectral
libraries distributed with the ENVI package [40] (these spectra
haveL = 413 spectral bands ranging from wavelength 0.4 µm
to 2.5 µm, from the visible to the near infrared and are
plotted in [41]). The synthetic label map shown in Fig. 2 (left)
has been generated using a Potts-Markov random field with
a granularity coefficientβ = 2, allowing large and distinct
regions to be constructed. The abundance means and variances
in each class have been chosen to ensure a single endmember
is prominent in a given class. The actual values of these
parameters reported in Table I show that the 1st endmember
is more present in class 1 (with average concentration of
60%), the 2nd endmember is more present in class 2 (with
average concentration of 50%) and the 3rd endmember is more
present in class 3 (with average concentration of 50%). All
the abundance variances have been fixed to 5× 10−3. The
abundance maps used to mix the endmembers are depicted
in Fig. 3 (top). Note that a white (resp. black) pixel in
the fraction map indicates a large (resp. small) value of the
abundance coefficient. The noise variance has been chosen in
order to have an average signal-to-noise ratio SNR= 20 dB,
i.e., σ 2 = 0.001. The similarity regions have been built
using the self-complementary area filter with an area criterion
λ = 5. The neighborhoods have been established using a
thresholdτ = 5 × 10−3. The proposed sampler has been run
with NMC = 5000 iterations includingNbi = 500 burn-in
iterations. The estimates of the class labels are obtained using
the MAP estimator approximated by retaining the samples
that maximizes the posterior conditional probabilities ofz.
These estimates depicted in Fig.2 (right) agree with the actual
class labels. After computing the estimated class labels, the
abundances have been estimated conditionally to these esti-
mates using the MMSE estimator. The estimated abundances
represented in Fig. 3 (bottom) are also in good agreement
with the actual abundances. Moreover, the mean vectorsµk
are of great interest since they characterize each classCk. For
illustration purposes, the histograms of the abundance MMSE

(a) (b)

Fig. 2. (a) Actual label map. (b) Label map estimated by the proposed Gibbs
sampler.

(a)

(b)

Fig. 3. (a) Abundance maps of the 3pure materials. (b) Abundance maps
of the 3 pure materials estimated by the hybrid Gibbs sampler. From left to
right: construction concrete, green grass, and micaceous loam.

Fig. 4. Histograms of the abundance MMSE estimates for the 2nd class.
The dotted lines correspond to the actual abundance means contained inµ2 =
[µ2,1, µ2,2, µ2,3]T.

estimates belonging to the 2nd class (i.e., fork = 2) have
been depicted in Fig. 4. This figure shows that the abundance
estimates are concentrated around the actual values ofµ2.
Similar results would be obtained for the other classes. They
are omitted here for brevity.

The proposed method has been tested on a larger dataset
composed of 50 different images of size 25× 25 pixels.
For each image, one classification map and one abundance
map have been generated as explained above. The algorithm
has been run on each image by assuming first that the
endmember spectra are known. Table I shows the estimated
abundance means and variances for each class obtained by
averaging the results from the 50 Monte Carlo runs. The
estimated abundances are clearly in accordance with the
actual ones. Then, to evaluate the sensibility of the pro-
posed unmixing algorithm with respect to the endmember
matrix, we have proposed to use endmembers identified by
the vertex component analysis (VCA) [42] instead of the
endmembers actually used to generate the data. The esti-
mated abundance means and variances (averaged over the 50
Monte Carlo runs) are reported in Table I. The estimations



TABLE I

ACTUAL AND ESTIMATED ABUNDANCE MEAN AND VARIANCE (×10−3)

Actual values
Adaptive-MRF FCLS

M known VCA M known VCA

Class 1
E[ap, p∈I1] [0.6, 0.3, 0.1]T [0.58, 0.29, 0.13]T [0.64, 0.21, 0.14]T [0.58, 0.29, 0.13]T [0.65, 0.21, 0.13]T

Var[ap,r, p∈I1] [5, 5, 5]T [4.3, 4.1, 6.3]T [14.3, 12.2, 11.5]T [4.5, 4.2, 6.7]T [15.1, 13, 12.1]T

Class 2
E[ap, p∈I2] [0.3, 0.5, 0.2]T [0.29, 0.49, 0.2]T [0.13, 0.67, 0.2]T [0.29, 0.49, 0.2]T [0.13, 0.67, 0.2]T

Var[ap,r, p∈I2] [5, 5, 5]T [4.7, 4.8, 8.7]T [8.7, 14.3, 13.6]T [5, 4.8, 9.1]T [10.3, 14.1, 14.6]T

Class 3
E[ap, p∈I3

] [0.3, 0.2, 0.5]T [0.3, 0.2, 0.49]T [0.19, 0.18, 0.63]T [0.29, 0.2, 0.49]T [0.17, 0.19, 0.64]T

Var[ap,r, p∈I3
] [5, 5, 5]T [5.1, 4.9, 9.8] [11.2, 11.7, 18.8]T [5.3, 4.9, 10]T [12.8, 12.6, 19.8]T

are slightly less accurate whenthe endmember spectra have
been estimated using VCA. In particular, variances of the
estimated abundances are greater when endmembers provided
by VCA are used in the unmixing process. This behavior
of the proposed unmixing technique is compared with the
behavior of the FCLS algorithm when used in the same two
scenarios (M known in one scenario andM estimated by VCA
in the other). Similarly, one can notice that the abundance
mean variances increase when using FCLS with estimated
endmembers.

The proposed spatial hybrid Gibbs sampler has been com-
pared with its “local” MRF counterpart developed in [11] and
with the non-spatial Bayesian algorithm developed in [8]. As
a performance criterion, the global mean square errors (MSEs)
of the estimated abundances have been computed. The global
MSE for ther th abundance is defined as

MSE2
r = 1

P

P
∑

p=1

(âr,p − ar,p)
2 (24)

where âr,p denotes the MMSE estimate of the abundance
ar,p. The obtained results are reported in Table II with the
corresponding computation times. The algorithm developed in
this paper (referred to as “Adapt.-MRF”) performs similarly
or better than the two other algorithms (referred to as “Local-
MRF” and “Bayesian”) in terms of global MSE. However,
the proposed algorithm shows the lowest computational time
which is a very interesting property2. By assumingP ≫ SK,
the computational complexity of the proposed algorithm is
of O(NMC P). As a comparison, the previously developed
spatial algorithm in [11] has a larger computational complexity
of O(NMC PK). Note that the pre-processing step required
by the “Adapt.-MRF” method has been included in the time
evaluation.

VI. REAL AVIRIS HYPERSPECTRALIMAGE

A. Moffett Field

This section considers a real hyperspectral image of size
50× 50 (available in [41]) to evaluate the performance of the
different algorithms. This image has been extracted from a
larger image acquired in 1997 by the Airborne Visible Infrared

2These simulations have been run on an unoptimized MATLAB 7.1 64 bit
implementation on a Core(TM)2Duo 2.93 GHz computer.

TABLE II

GLOBAL MSES OFEACH ABUNDANCE COMPONENT AND EXECUTION

T IMES FOR THETHREE UNMIXING ALGORITHMS

Bayesian Local-MRF Adapt.-MRF

MSE2
1 5.3 × 10−3 3.4 × 10−4 3.2 × 10−4

MSE2
2 5.4 × 10−3 9.5 × 10−5 9.5 × 10−5

MSE2
3 2.3 × 10−4 2.4 × 10−4 2.3 × 10−4

Time (sec.) 4.6 × 103 2 × 103 1.6 × 103

Imaging Spectrometer (AVIRIS) over Moffett Field, CA and
has been used intensively in the geoscience community [8],
[11], [43], [44]. The data set has been reduced from the
original 224 bands toL = 189 bands by removing water
absorption bands. First, the image has been pre-processed
by PCA to determine the number of endmembers present
in the scene, as explained in [1] and applied in [11]. Note
that several other techniques could be used to perform such
preprocessing step. For example, the number of endmembers
could be estimated by using the minimum noise fraction
(MNF) method [45], the HySime algorithm [46] or other
strategies exploiting virtual dimensionality, as in [47] or [48].
Then, the N-FINDR algorithm, proposed by Winter in [6] has
been used to estimate the endmember spectra. TheR = 3
extracted endmembers shown in [11] correspond to vegetation,
water and soil, and have been used as the mean vectorsm1,
m2 and m3. The proposed algorithm has been applied to this
image with a number of classes beingK = 4 andNMC = 5000
iterations (with 500 burn-in iterations). The number of classes
has been fixed toK = 4 since prior knowledge on the scene
allows one to identify 4 areas in the image: water point, lake
shore, vegetation and soil. The minimum flat zone size and the
threshold of the neighborhood distance have been respectively
fixed to λ = 10 andτ = 0.005.

The estimated classification and abundance maps for the
proposed hybrid Gibbs algorithm are depicted in Figs. 5 (left)
and 6 (top). The results provided by the algorithm are very
similar to those obtained with its “local” MRF counterpart
[11], as shown in Figs. 5 (right) and 6 (bottom).

We have also compared the reconstruction error (RE)
and the spectral angle mapper (SAM) [1] for the proposed
algorithm and two classical unmixing algorithms: the FCLS



(a) (b)

Fig. 5. (a) Label map estimated by the proposed algorithm. (b) “Local” MRF
algorithm.

(a)

(b)

Fig. 6. (a) Abundance maps estimated by the proposed algorithm. (b) “Local”
MRF algorithm. From left to right: vegetation, water, and soil.

algorithm and the “local” MRF algorithm [11]. The recon-
struction error has been computed using the following relation

RE =

√

√

√

√

1

PL

P
∑

p=1

‖yp − ŷp‖2 (25)

where the number of pixels isP = 2500 for the region con-
sidered in our experiments,L is the number of spectral bands
(note that the water absorption bands have been removed) and
yp and ŷp are the observed and estimated spectra for thepth
pixel. The spectral angle mapper used in [1] as an unmixing
performance criterion is given below

SAM = 1

P

P
∑

p=1

θ
(

yp, ŷp

)

(26)

where

θ
(

yp, ŷp
)

= arccos

(
〈

yp, ŷp
〉

‖yp‖‖ ŷp‖

)

and arccos(·) is the inverse cosine function. The estimated
mixing matrix used in all the experiments has been com-
puted using the N-FINDR procedure. The results reported in
Table III show that the proposed hybrid Gibbs sampler is
less computationally intensive than its “local” counterpart with
similar performance. Note that the FCLS algorithm shows the
lowest execution time with similar performances. However,
the proposed algorithm provides a classification map in addi-
tion to the abundance estimates contrary to FCLS algorithm.
Moreover, the samples generated by the MCMC method
can also provide confidence intervals for the estimates or
probability of presence in some parts of the image [9].

TABLE III

PERFORMANCECOMPARISONBETWEEN NONSPATIAL AND

SPATIAL BASED UNMIXING ALGORITHMS

RE (×10−2) SAM (×10−3) Time (s.)

FCLS 1.63 15.07 0.388

local-MRF 1.66 15.07 8.4 × 103

adaptive-MRF 1.63 15.16 6.3 × 103

(a) (b)

Fig. 7. Classification maps obtained with (a)τ = 5 and (b)τ = 5 × 10−5.

(a)

(b)

Fig. 8. Abundance maps obtained with (a)τ = 5 and (b)τ = 5 × 10−5.

B. Influence ofτ and λ

The influence of the intrinsic MRF parametersτ andλ on
the estimation performance deserves to be studied. For each
simulation scenario, we have changed one of the mentioned
parameters while keeping the others fixed to the values given
previously. Firstly, the influence of the neighborhood distance
parameterτ has been tested with the two extremum values
τ = 5 and τ = 5 × 10−5. With τ = 5, the neighborhood
system is very tolerant since the similarity regions are accepted
very easily as neighbors. Conversely, the threshold valueτ =
5×10−5 ensures a stricter neighborhood system. The resulting
label and abundance maps forτ = 5 and 5×10−5 are respec-
tively given in Figs. 7 and 8. Reducing the parameterτ does
not change the classification results. Conversely, whenτ = 5,
the resulting label map suffersfrom under-segmentation, as the
continental part of the image globally belongs to a single class.
Note that the abundance maps do not change significantly
for the two values ofτ , which means that the abundance
estimation is relatively unaffected by the precision chosen for
the classification. However, this parameter must be chosen
carefully to avoid under-segmentation effects.

The influence of the area filtering parameterλ has also
been studied by applying the proposed method withλ = 5
and λ = 20, i.e., allowing smaller and larger similarity
regions to be built. Label maps are shown in Fig. 9 (for
brevity the abundance maps have not been depicted since
they do not change for the two values ofλ). For λ = 5, the



(a) (b)

Fig. 9. Classification maps obtained with (a)λ = 5 and (b)λ = 20.

(a) (b)

Fig. 10. Classification maps obtained with (a)R = 4 and (b)R = 5.

(a)

(b)

Fig. 11. Abundance maps obtained with (a)R = 4 and (b)R = 5.

classification results are slightly different from those in Fig. 5,
especially for the “shore” class (black) that can be found also
in the continental part of some regions. Indeed, the area size
being smaller, the self-complementary area filter tends to build
much precise flat zones. In the classification map obtained
for λ = 20, the “shore” class is essentially present in the
“vegetation band” in the middle of the continental part. This
can be explained by the area filter behavior (resulting from this
threshold value) building large flat zones that could remove
smaller structures of interests, such as the “shore” regions.

C. Influence of R and K

The performance of the proposed algorithm has finally been
evaluated for different values of the number of endmembersR
and the number of classesK . First, the proposed algorithm has
been applied on the Moffett field image with larger numbers

(a) (b)

Fig. 12. Classification maps obtained forR = 3 with (a) K = 5 and
(b) K = 10.

(a)

(b)

Fig. 13. Relevant abundance maps obtained with (a)K = 5 and (b)K = 10.

Fig. 14. Classification map obtained on the 190× 250 Cuprite area
with K = 14.

of endmembers (R = 4 and R = 5) and a number of classes
fixed to K = 4 (as in the previous paragraph). The estimated
classification and abundance maps obtained with these two
different values ofR are depicted in Fig. 10 (middle and
right) and 11, respectively. When increasing the number of
endmembers, the corresponding label maps do not change
significantly. With R = 5, the “soil” abundance map has
been split into different materials. However, this fact is not
represented in the corresponding label map which is similar
to the label map in Fig. 5 (left).

The influence of the number of classesK has been
investigated by applying the proposed algorithm on the Moffett
image with larger numbers of classes (K = 5 and K = 10)
and a number of endmembers equal toR = 3 (as in the
previous paragraph). The estimated classification and
abundance maps obtained with these two different values of
K are given in Fig. 12 (middle and right) and 13, respectively.
Increasing the number of classes has no influence on the
abundance maps results. However, the estimated label maps



Fig. 15. Fraction maps of the 190× 250 Cuprite area.

suffer from over-segmentation, especially forK = 10, where
nine classes are describing the continental part of the image.

D. Cuprite Image

This section evaluates the performance of the proposed
method on a larger real hyperspectral image. The image has
been extracted from the AVIRIS Cuprite scene, acquired over a
mining site in Nevada, in 1997. The geological characteristics
of the complete data have been mapped in [49], [50]. The
area of interest of size 190× 250 has been previously studied
in [42] for testing the VCA algorithm withR = 14 and in
[11] using the “local” counterpart of our proposed method
with K = 14. Therefore, these values have been respectively
chosen forR andK . The endmembers used in this experiment
have been extracted using the VCA algorithm (see [11] for
more details). Due to the scale of this image, the area filtering
parameterλ has been set to 50 whileτ has not been changed,
i.e., τ = 5 × 10−3. The proposed algorithm has been used
to estimate the abundance and label maps related to the
analyzed scene. These maps are depicted in Fig. 14 and 15,
respectively. The extracted abundance maps agree with the
ones previously obtained in [11]. Moreover, when compared
with the classification map obtained in [11], the estimated

classification map recovers the general shape of the area and
limits the number of “isolated” regions.

VII. C ONCLUSION

A joint unmixing and segmentation algorithm based on a
new Markov random field (MRF) has been introduced. The
sites of this MRF have been built using a morphological
self-complementary area filter. The resulting similarity regions
partition the image into multiple classes that are characterized
by close abundances sharing the same means and covariances.
A Bayesian model based on this new MRF and on ideas
presented in a previous study was derived. The complexity
of this Bayesian model was alleviated by implementing a
hybrid Gibbs sampler generating data asymptotically dis-
tributed according to the posterior distribution of interest.
Simulations conducted on synthetic and real hyperspectral
data showed that the proposed algorithm achieved similar
classification and unmixing performance than its “local” MRF
counterpart at the price of a reduced computational time. The
focus of future works will be to investigate the generalization
ability of the self-complementary area filter to multiple bands
by using a method inspired by [51]. Another way of defining
the neighbors of each site (using other criteria than the
median of the corresponding similarity region) will also be



explored. Finally, a fully Bayesian approach jointly estimating
the endmember matrix, the similarity regions and the other
parameters of interest would deserve to be investigated.

APPENDIX

LABEL PRIOR DISTRIBUTION

The Hammersley-Clifford theorem [34, p. 231] yields

P(z) ∝

S
∏
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1, . . . , z∗
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P(z∗
s |z∗

1, . . . , z∗
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where the labels marked with a starz∗
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variables. As a consequence
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By interverting the indexess and t, we have

S
∑
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∑
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This allows us to write the final expression

P(z) ∝ exp

⎡
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S
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δ(zs − zt )
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ACKNOWLEDGMENT

The authors would like to thank M. Fauvel from the
University of Toulouse, Toulouse, France, for providing us
with the adaptive neighborhood building codes.

REFERENCES

[1] N. Keshava and J. Mustard, “Spectral unmixing,”IEEE Signal Process.
Mag., vol. 19, no. 1, pp. 44–56, Jan. 2002.

[2] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectralunmixing overview: Geometrical,
statistical, and sparse regression-based approaches,”IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sensing, vol. 5, no. 2, pp. 354–379, Apr.
2012.

[3] C.-I. Chang, X.-L. Zhao, M. L. G. Althouse, and J. J. Pan, “Least
squares subspace projection approachto mixed pixel classification for
hyperspectral images,”IEEE Trans. Geosci. Remote Sensing, vol. 36,
no. 3, pp. 898–912, May 1998.

[4] D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral subpixel target
detection using the linear mixing model,”IEEE Trans. Geosci. Remote
Sensing, vol. 39, no. 7, pp. 1392–1409, Jul. 2001.

[5] J. Li and J. M. Bioucas-Dias, “Minimum volume simplex analysis: A
fast algorithm to unmix hyperspectral data,” inProc. IEEE Int. Conf.
Geosci. Remote Sensors, Jul. 2008, pp. 250–253.

[6] M. E. Winter, “Fast autonomous spectral endmember determination in
hyperspectral data,” inProc. 13th Int. Conf. Appl. Geologic Remote
Sensing, Apr. 1999, pp. 337–344.

[7] D. C. Heinz and C.-I. Chang, “Fully constrained least squares linear
spectral mixture analysis method for material quantification in hyper-
spectral imagery,”IEEE Trans. Geosci. Remote Sensing, vol. 39, no. 3,
pp. 529–545, Mar. 2001.

[8] N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, “Semi-supervised linear
spectral using a hierarchical Bayesian model for hyperspectral imagery,”
IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684–2696, Jul. 2008.

[9] O. Eches, N. Dobigeon, C. Mailhes, and J.-Y. Tourneret, “Bayesian
estimation of linear mixtures using the normal compositional model.
Application to hyperspectral imagery,”IEEE Trans. Image Process.,
vol. 19, no. 6, pp. 1403–1413, Jun. 2010.

[10] J. T. Kent and K. V. Mardia, “Spatial classification using fuzzy mem-
bership models,”IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, no. 5,
pp. 659–671, Sep. 1988.

[11] O. Eches, N. Dobigeon, and J.-Y. Tourneret, “Enhancing hyperspectral
image unmixing with spatial correlations,”IEEE Trans. Geosci. Remote
Sensing, vol. 49, no. 11, pp. 4239–4247, Nov. 2011.

[12] J. Besag, “Spatial interaction and the statistical analysis of lattice
systems,”J. Royal Stat. Soc. Series B, vol. 36, no. 2, pp. 192–236,
1974.

[13] S. Geman and D. Geman, “Stochasticrelaxation, Gibbs distributions, and
the Bayesian restoration of images,”IEEE Trans. Pattern Anal. Mach.
Intell., vol. 6, no. 6, pp. 721–741, Nov. 1984.

[14] F. Arduini, C. Dambra, and C. S. Regazzoni, “A coupled MRF model for
SAR image restoration andedge-extraction,” inProc. IEEE Int. Conf.
Geosci. Remote Sensing, vol. 2. 1992, pp. 1120–1122.

[15] K. Held, E. Kops, J. Krause, W. Wells, R. Kikinis, and H. Muller-
Gartner, “Markov random field segmentation of brain mr images,”IEEE
Trans. Med. Imag., vol. 16, no. 6, pp. 878–886, Dec. 1997.

[16] N. Bali and A. Mohammad-Djafari, “Bayesian approach with hidden
Markov modeling and mean field approximation for hyperspectral data
analysis,”IEEE Trans. Image Process., vol. 17, no. 2, pp. 217–225, Feb.
2008.

[17] G. Rellier, X. Descombes, F. Falzon, and J. Zerubia, “Texture feature
analysis using a Gauss-Markov model in hyperspectral image classifi-
cation,” IEEE Trans. Geosci. Remote Sensing, vol. 42, no. 7, pp. 1543–
1551,Jul. 2004.

[18] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, “SVM
and MRF-based method for accurate classification of hyperspectral
images,” IEEE Geosci. Remote Sensing Lett., vol. 7, no. 4, pp. 736–
740, Oct. 2010.

[19] O. Féron and A. Mohammad-Djafari, “Image fusion and unsupervised
joint segmentation using a HMM and MCMC algorithms,”J. Electron.
Imaging, vol. 14, no. 2, pp. 1–12, May 2005.

[20] J. Serra,Image Analysis and Mathematical Morphology, vol. 1. New
York: Academic Press, 1982.

[21] J. Serra,Image Analysis and Mathematical Morphology: Theoretical
Advances. New York: Academic Press, 1988.

[22] P. Soille, Morphological Image Analysis: Principles and Applications.
New-York: Springer-Verlag, 1999.

[23] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 3, pp. 480–
491, Mar. 2005.

[24] P. Soille, “Beyond self-duality in morphological image analysis,”Image
Vision Comput., vol. 23, no. 2, pp. 249–257, Jun. 2005.

[25] M. Fauvel, J. Chanussot, and J. A. Benediktsson, “A spatial-spectral
kernel based approach for the classification of remote sensing images,”
Pattern Recogn., vol. 45, no. 1, pp. 281–392, 2012.

[26] F. Y. Wu, “The Potts model,”Rev. Modern Phys., vol. 54, no. 1, pp.
235–268, Jan. 1982.

[27] J. M. P. Nascimento and J. M. Bioucas-Dias, “Hyperspectral unmixing
based on mixtures of Dirichlet components,”IEEE Trans. Geosci.
Remote Sensing, vol. 50, no. 3, pp. 863–878, Mar. 2012.

[28] J. Diebolt and E. H. S. Ip, “Stochastic EM: Method and application,”
in Markov chain Monte Carlo in Practice, W. R. Gilks, S. Richardson,
and D. J. Spiegelhalter, Eds. London: Chapman & Hall, 1996.

[29] C. Kevrann and F. Heitz, “A Markov random field model-based approach
to unsupervised texture segmentation using local and global statistics,”
IEEE Trans. Image Process., vol. 4, no. 6, pp. 856–862, Jun. 1995.

[30] A. Tonazzini, L. Bedini, and E. Salerno, “A Markov model for blind
image separation by a mean-field EM algorithm,”IEEE Trans. Image
Process., vol. 15, no. 2, pp. 473–481, Feb. 2006.

[31] R. S. Rand and D. M. Keenan, “Spatially smooth partitioning of hyper-
spectral imagery using spectral/spatial measures of disparity,”IEEE
Trans. Geosci. Remote Sensing, vol. 41, no. 6, pp. 1479–1490, Jun.
2003.

[32] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semisupervised hyperspectral
image segmentation using multinomial logistic regression with active
learning,” IEEE Trans. Geosci. Remote Sensing, vol. 48, no. 11, pp.
4085–4098, Nov. 2010.



[33] B. D. Ripley, Statistical Inference for Spatial Processes. Cambridge,
U.K.: Cambridge Univ. Press, 1988.

[34] J.-M. Marin and C. P. Robert,Bayesian Core: A Practical Approach to
Computational Bayesian Statistics. New-York: Springer-Verlag, 2007.

[35] R. Mittelman, N. Dobigeon, and A. O. Hero, “Hyperspectral image
unmixing using a multiresolution sticky HDP,”IEEE Signal Process.,
vol. 60, no. 4, pp. 1656–1671, Apr. 2012.

[36] C. P. Robert,The Bayesian Choice: From Decision-Theoretic Moti-
vations to Computational Implementation. New York: Springer-Verlag,
2007.

[37] N. Dobigeon and J.-Y. Tourneret. (2007, Mar.).Efficient Sampling
According to a Multivariate Gaussian Distribution Truncated on a
Simplex. IRIT/ENSEEIHT/TeSA, Toulouse, France [Online]. Available:
http:// dobigeon.perso.enseeiht.fr/papers/Dobigeon_TechReport_2007b.
pdf

[38] G. O. Roberts, “Markov chain concepts related to sampling algorithms,”
in Markov Chain Monte Carlo in Practice, W. R. Gilks, S. Richardson,
and D. J. Spiegelhalter, Eds. London: Chapman & Hall, 1996, pp. 45–57.

[39] C. P. Robert and G. Casella,Monte Carlo Statistical Methods. New
York: Springer-Verlag, 2004.

[40] ENVI Users Guide Version 4.0, Research Systems Inc., Boulder, CO,
Sep. 2003.

[41] O. Eches, N. Dobigeon, and J.-Y.Tourneret, “Estimating the number
of endmembers in hyperspectral images using the normal compositional
model and a hierarchical Bayesian algorithm,”IEEE J. Sel. Topics Signal
Process., vol. 3, no. 3, pp. 582–591, Jun. 2010.

[42] J. M. P. Nascimento and J. M. Bioucas-Dias, “Vertex component
analysis: A fast algorithm to unmix hyperspectral data,”IEEE Trans.
Geosci. Remote Sensing, vol. 43, no. 4, pp. 898–910, Apr. 2005.

[43] E. Christophe, D. Léger, and C. Mailhes, “Quality criteria benchmark for
hyperspectral imagery,”IEEE Trans. Geosci. Remote Sensing, vol. 43,
no. 9, pp. 2103–2114, Sep. 2005.

[44] T. Akgun, Y. Altunbasak, and R. M. Mersereau, “Super-resolution
reconstruction of hyperspectral images,”IEEE Trans. Image Process.,
vol. 14, no. 11, pp. 1860–1875, Nov. 2005.

[45] A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation for
ordering multispectral data in terms of image quality with implications
for noise removal,”IEEE Trans. Geosci. Remote Sensing, vol. 26, no. 1,
pp. 65–74, Jan. 1994.

[46] J. M. Bioucas-Dias and J. M. P. Nascimento, “Hyperspectral subspace
identification,” IEEE Trans. Geosci. Remote Sensing, vol. 46, no. 8, pp.
2435–2445, Aug. 2008.

[47] C.-I. Chang and Q. Du, “Estimation of number of spectrally distinct
signal sources in hyperspectral imagery,”IEEE Trans. Geosci. Remote
Sensing, vol. 42, no. 3, pp. 608–619, Mar. 2004.

[48] B. Luo, J. Chanussot, S. Douté, and X. Ceamanos, “Empirical automatic
estimation of the number of endmembers in hyperspectral images,”IEEE
Geosci. Remote Sensing Lett., no. 99, 2012, to be published.

[49] R. N. Clark, G. A. Swayze, and A. Gallagher, “Mapping minerals with
imaging spectroscopy, U.S. Geological Survey,”Off. Mineral Resour.
Bullet., vol. 2039, pp. 141–150, 1993.

[50] R. N. Clark, G. A. Swayze, K. E. Livo, R. F. Kokaly, S. J. Sutley, J. B.
Dalton, R. R. McDougal, and C. A. Gent, “Imaging spectroscopy: Earth
and planetary remote sensing with the USGS Tetracorder and expert
systems,”J. Geophys. Res., vol. 108, no. E12, pp. 1–44, Dec. 2003.

[51] S. Velasco-Forero and J. Angulo, “Supervised ordering inRp: Applica-
tion to morphological processing of hyperspectral images,”IEEE Trans.
Image Process., vol. 20, no. 11, pp. 3301–3308, Nov. 2011.

Olivier Eches was born in Villefranche-de-
Rouergue, France, in 1984. He received the
Eng. degree in electrical engineering from
École Nationale Supérieure d’Électronique,
d’Électrotechnique, d’Informatique et d’Hydraulique
in Toulouse (ENSEEIHT), Toulouse, France, in
2007, and the M.Sc. and Ph.D. degrees in signal
processing from the National Polytechnic Institute
of Toulouse, the University of Toulouse, in 2007
and 2010, respectively.

From 2010 to 2011, he was a Postdoctoral
Research Associate with the Department of Electrical and Computer
Engineering, University of Iceland, Reykjavik, Iceland, working on joint
segmentation and unmixing of hyperspectral images. He is currently a
Post-Doctoral Research Associate with the Institut Fresnel, Marseille, France.
His current research interests include unmixing sea bottom using nonnegative
matrix factorization methods.

Jón Atli Benediktsson (S’84–M’90–SM’99–F’04)
received the Cand.Sci. degree in electrical engi-
neering from the University of Iceland, Reykjavik,
Iceland, in 1984, and the M.S.E.E. and Ph.D. degrees
from Purdue University, West Lafayette, IN, in 1987
and 1990, respectively.

He is currently Pro Rector for Academic Affairs
and Professor of Electrical and Computer Engi-
neering at the University of Iceland. His research
interests are in remote sensing, biomedical analysis
of signals, pattern recognition, image processing,

and signal processing, and he has published extensively in those fields.
Prof. Benediktsson is the President of the IEEE Geoscience and Remote

Sensing Society (GRSS) from 2011 to 2012 and has been on the GRSS
AdCom since 1999. He was an Editor of the IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING (TGRS) from 2003 to 2008, and
has served as an Associate Editor of TGRS since 1999 and the IEEE
GEOSCIENCE AND REMOTE SENSING LETTERS since 2003. He is a co-
founder of the biomedical startup company Oxymap. He was a recipient of
the Stevan J. Kristof Award from Purdue University in 1991 as Outstanding
Graduate Student in remote sensing. Hewas the recipient of the Outstanding
Young Researcher Award by Icelandic Research Council in 1997. He was
granted the IEEE Third Millennium Medal in 2000. He was a co-recipient
of the Technology Innovation Award by the University of Iceland in 2004.
He was a recipient of the Yearly Research Award from the Engineering
Research Institute of the University of Iceland in 2006, and he was a recipient
of the Outstanding Service Award from the IEEE Geoscience and Remote
Sensing Society in 2007. He is a co-recipient of the IEEE TRANSACTIONS

ON GEOSCIENCE ANDREMOTE SENSING Best Paper Award in 2012. He is
a member of Societas Scinetiarum Islandica and Tau Beta Pi.

Nicolas Dobigeon (S’05–M’08) was born in
Angoulême, France, in 1981. He received the Eng.
degree in electrical engineering from ENSEEIHT,
Toulouse, France, in 2004, and the M.Sc. and Ph.D.
degrees in signal processing from the National Poly-
technic Institute of Toulouse, in 2004 and 2007,
respectively.

From 2007 to 2008, he was a Postdoctoral
Research Associate with the Department of Electri-
cal Engineering and Computer Science, University
of Michigan, Ann Arbor. Since 2008, he has been

an Assistant Professor with the National Polytechnic Institute of Toulouse
(ENSEEIHT, University of Toulouse), within the Signal and Communication
Group of the IRIT Laboratory. His research interests are focused on sta-
tistical signal and image processing, with a particular interest in Bayesian
inverse problems with applications to remote sensing, biomedical imaging
and genomics.

Jean-Yves Tourneret (M’94–SM’08) received the
Ingénieur degree in electrical engineering from
ENSEEIHT, Toulouse, France, in 1989, and the
Ph.D. degree from the National Polytechnic Institute,
Toulouse, France, in 1992.

He is currently a Professor at ENSEEIHT. His
current research interests include statistical signal
processing with particular interest in classification
and Markov Chain Monte Carlo methods.

Dr. Tourneret was the Program Chair of the Euro-
pean Conference on Signal Processing (EUSIPCO),

Toulouse, in 2002. He was a member of the IRIT Laboratory (UMR 5505
of the CNRS). He was also a member of the Organizing Committee for the
International Conference on Acoustics, Speech, and Signal Processing May
2006 (ICASSP’06) which was held in Toulouse in 2006. He has been a
member of different technical committees, including the Signal Processing
Theory and Methods Committee of the IEEE Signal Processing Society from
2001 to 2007. He is currently serving as an Associate Editor for the IEEE
TRANSACTIONS ONSIGNAL PROCESSING.


