
HAL Id: hal-00780565
https://hal.science/hal-00780565v1

Submitted on 24 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Is GPU the future of Scientific Computing?
Georges-Henri Cottet, Jean-Matthieu Etancelin, Franck Pérignon, Christophe

Picard, Florian de Vuyst, Christophe Labourdette

To cite this version:
Georges-Henri Cottet, Jean-Matthieu Etancelin, Franck Pérignon, Christophe Picard, Florian de
Vuyst, et al.. Is GPU the future of Scientific Computing?. Annales Mathématiques Blaise Pascal,
2013, 20 (1), pp.75-99. �10.5802/ambp.322�. �hal-00780565�

https://hal.science/hal-00780565v1
https://hal.archives-ouvertes.fr

Annales mathématiques Blaise Pascal Version de travail – 24 janvier 2013

Particle method on GPU

Jean-Matthieu Etancelin
Georges-Henri Cottet

Christophe Picard
Franck Perignon

Particle method on GPU

Abstract. In this article we present a graphics processing unit (GPU)
implementation of a particle method for transport equations. More
precisely the numerical method under consideration is a remeshed
particle method. Not only remeshing particles makes simulations more
accurate in flows with strong strain, but it leads to algorithms more
regular in term of data structures. In this work, we develop a Py-
thon library using GPU through OpenCL standard that implements
this remeshed particle method which already shows interesting per-
formances.

1. Introduction

Particle methods are well adapted to numerical simulations of fluid dy-
namics, especially for turbulent flows where accurate simulations are re-
quired to represent small scales. Particle advection and remeshing [2] lead
to a simple algorithm, working on extremely regular data structures, that
is suited to a graphics processing unit (GPU) implementation. Today’s
supercomputers are based on hybrid architectures mixing thousands of
multi-core processors and GPUs. Our goal is therefore to develop GPU
implementations within a framework allowing to combine different type of
software. The paper is organized as follows. In Section 2, we describe the
method and in Section 3 we detail the GPU implementation. Section 4 is
dedicated to numerical illustrations and performances results. Finally, a
conclusion is drawn in Section 5.

Mots-clés: GPU, méthode particulaire, EDP.
Classification math.: 35L05, 65M08, 76M25, 76N15, 76P05, 97N40, 00X99.

1

J.M. Etancelin, G. H. Cottet, C. Picard, & F. Perignon

2. Previous work

2.1. Particle method
In the present work, we focus on solving advection equation (2.1) by

means of remeshed particle method.

∂tu+ div(au) = 0 (2.1)
Remeshed particle methods can be seen as forward semi-Lagrangian

methods. For each time step, they consist in 2 sub-steps. An advection
step where particles, carrying local masses of u, are advected with their
local velocity, followed by a remeshing step where particles are restarted
on a regular grid. In the advection step, one solves the following system
of different equations.

dx̃p

dt = a(x̃p, t) (2.2)

The remeshing step is performed with the following general formula.

ug =
∑

p

ũpW

(
xg − x̃p

h

)
(2.3)

In the above formulas x̃p, ũp represent the particle locations and weights
after advection, and xg, ug their location and weights after remeshing on
a regular grid.

The algorithm to solve equation (2.1) for a time step t = n∆t can be
summarized as follows :

- Initialize particle locations and weights : x̃n
p ← xg , ũn

p ← un
g

- Solve equation (2.2) with a 2nd (or 4th) order Runge Kutta scheme
x̃n

p ← x̃n
p + ∆tan(x̃n

p + ∆t
2 a

n(x̃n
p))

- Remesh particles on grid : ug =
∑

p ũpW
(

xg−x̃p

h

)
Note that depending on the problem at hand, particle velocities are

either computed analytically or interpolated from grid-values.
In general this scheme is extended to any dimension using tensor-product

formulas for the remeshing kernels. In [2], an alternating direction algo-
rithm was proposed where particles are successively pushed and remeshed
along axis directions. This method reduces the cost of the remeshing step,
allowing to use high order interpolation kernels with large stencils. In this
work we use the 6-point kernel M ′6 [1].

2

PARTICLE METHOD ON GPU

M ′6(x) =

1
12 (1− |x|)

(
25|x|4 − 38|x|3 − 3|x|2 + 12|x|+ 12

)
if 0 < |x| < 1

1
24 (|x| − 1) (|x| − 2)

(
25|x|3 − 114|x|2 + 153|x| − 48

)
if 1 < |x| < 2

1
24 (3− |x|)3 (5|x| − 8) (|x| − 2) if 2 < |x| < 3
0 if 3 < |x|

A distinctive feature of remeshed particle methods is the time step does
not depend on the number of particles. This allows to perform accurate
high resolution simulations with large time steps.

2.2. OpenCL computing
OpenCL is an open standard for parallel programming of heterogeneous

systems [3]. It provides application programming interfaces for managing
hybrid platforms containing many CPUs and GPUs and a programming
language based on C99 for writing instructions executed concurrently on
the OpenCL devices.

OpenCL applications must define an execution model by setting a host
program that executes on the host system and send OpenCL kernels to
devices using a command queue. A kernel contains executable code that
concurrently runs on devices compute units which are called work-items.
A memory model need to be explicitly defined to manage data layout in
the memory hierarchy. Details of these models such as work-item number
in a work-group or memory access pattern have a very strong impact on
program efficiency.

3. Particle method with OpenCL

Particle methods have already been implemented on GPU. In [4], a two
dimensional solver for bluff body flows is developed using OpenGL and
CUDA. The method allows to deal with particle distributions of up to
10242 at a speed greater than 20 fps. The accuracy of GPU computations
was also addressed by comparing GPU results with high resolution double
precision benchmark calculations on CPU.

Our implementation of the method presented in section 2.1 uses different
abstract layers by means of a Python class hierarchy in order to have a

3

J.M. Etancelin, G. H. Cottet, C. Picard, & F. Perignon

well-defined program structure easy to use and develop. Computations
are not performed on the host side of the program but on the devices in
different kernels, unnoticed by user.

According to the method, the algorithm is split into two parts namely
an advection and a remeshing step. These two parts are repeated several
times to perform a dimensional splitting for each simulation time step. We
depict in figure 1 the algorithm for one splitting direction. For simplicity
we take the velocity as a constant. In the general case, the velocity field is
computed once at every time step.

Grid velocity
x
y
z

Grid scalar

Particle position

Particle scalar

Advection kernel Remeshing kernel

Figure 1. Execution layout on GPU. Memory objects are
depicted in red and OpenCL kernels in green

The main constraints for implementations on GPU are to make a proper
and optimized use of the memory size and bandwidth. In fact, in a tree-
dimensional case, each particle needs 6 floats in global memory to be
completely defined. For example, 10243 particles need 6GB memory in
simple precision 1. This problem will be tackled in future work using several
GPUs. The memory access is detailed in the following sections. In figure 1,
memory objects are either OpenCL Buffers or Images. The current work
is to determine which type of object is best suited to our algorithm.

In order to take advantage of the splitting algorithm, the different one
dimensional problems are distributed among work-items. In our imple-
mentation, one work-item is not in charge of one grid point but of one line
of grid points in the splitting direction. Advantages of this distribution

1. Today’s cards memory ranges between 128MB and 8GB.

4

PARTICLE METHOD ON GPU

are detailed in the following parts. For example, 10243 particles will be
computed over 10242 work-items, each one in charge of 1024 particles.

3.1. Advection step

In our splitting algorithm, only one component of velocity and particle
position in the current splitting direction need to be considered. The other
components are respectively unused or leaved unchanged. The particle
position variable reduces to a scalar. In our method, particles are created
on each grid point and initialized with the value on the grid. Grid points
coordinates are re-computed each time from the global OpenCL index
space thanks to buit-in functions.

Once particles are created and initialized, evolution ODEs are solved
for particle position using the grid velocity field. This is done by means
of a 2nd order Runge-Kutta scheme. The problem is to interpolate the
grid velocity to compute intermediary steps in the time-stepping scheme
because the needed data depend on the velocity field. Therefore the me-
mory access pattern might not be linear, depending on the computation
process.

A simple improvement for this point is to make data closer to work-
items, by use of a copy of the needed grid data in private memory. Inter-
polations are then performed in private memory so data are read with the
fastest memory access available.

A strong performance improvement was obtained by arranging data
layout for the grid velocity. In fact, as data are accessed line by line, we
make the data contiguous in a direction orthogonal to the splitting di-
rection. Consequently, work-items can together read contiguous data in
global memory and then avoid strided accesses. For scalar data, a similar
memory layout can be used by transposing data from one splitting di-
rection to the next. This implementation needs further improvements to
cope with small private memory, or larger problems. In these cases, a new
re-arrangement of tasks is required.

3.2. Remeshing step

As for advection, memory access pattern is execution dependant since
a particle is remeshed on its nearest grid points. On top of that, two
different particles can have exactly the same remeshing grid points. We

5

J.M. Etancelin, G. H. Cottet, C. Picard, & F. Perignon

need synchronization within particles to avoid concurrent memory writing
access. More precisely, remeshing points overlap for particles that are in
the same one dimensional line in the splitting direction under considera-
tion. Thus, synchronization is done when only one work-item works on the
line. A simple improvement is to write results in a local buffer and, once
all particles are remeshed, copy this buffer into the global memory. This
minimizes global memory access for remeshing.

4. Performances and results

4.1. Level set test case
Our method is tested with a classical and challenging problem for level

set methods, namely a sphere subjected to a incompressible velocity field
in a periodic cube [0; 1]3. This test consists in the advection of a passive
scalar initialized with value u = 1 inside a sphere of radius 0.15 and u = 0
elsewhere. The advection velocity is given by the following formula.

a(x) =

2 sin(πx)2 sin(2πy) sin(2πz)
− sin(2πx) sin(πy)2 sin(2πz)
− sin(2πx) sin(2πy) sin(πz)2

One of the tests implemented in [2] and the references therein is presen-

ted in Figure 2. This simulation is performed with N = 2563 and a time
step value which would correspond to a CFL number equal to 25 at this
resolution. Time T = 1 is reached in 20 iterations and took 25 seconds.

4.2. Computational efficiency
OpenCL kernels can be compute-bound or memory-bound. Our advec-

tion kernel is memory-bound since the operational intensity equals to 2.25
operations per byte of data accessed from the memory and remeshing ker-
nel is nearly compute-bound with a operational intensity of 9.5.

In figure 3, we present profiling results and timings. For larger problems,
almost all compute time is spent in kernels that could be optimized. The
initialization and host code are sequential codes quite independent of the
problem size. The initialization part consists in reading problems data
and creating python objects structure. The host code tasks are to set the

6

PARTICLE METHOD ON GPU

(a) T = 0 (b) T = 0.2 (c) T = 0.4

(d) T = 0.6 (e) T = 0.8 (f) T = 1.0

Figure 2. Iso-surface of level 0.5 at different times,
CFL = 25, dt = 0.05.

OpenCL execution layout and to launch the kernels. For 2563 particles,
the whole computation is performed in 25 seconds, which corresponds to
1.25 seconds per time step.

As a comparison, a Fortran/MPI solver performs the same simulation
on 4 Intel Core i7 running at 2.4 GHz in 62 seconds, which corresponds
to 12.4 seconds per time step. This shows a speedup of nearly 10 against
the parallel Fortran code.

7

J.M. Etancelin, G. H. Cottet, C. Picard, & F. Perignon

0

20

40

60

80

100

256 2
384 2

512 2
768 2

1024 2
1536 2

2048 2
32 3 48 3 64 3 96 3 128 3

192 3
256 3

0.01

0.1

1

T
im

e
di
st
ri
bu

ti
on

T
im

e
pe

r
it
er
at
on

(s
ec
/i
te
)

Code profiling over different problem sizes

Initialisation
Advection kernel
Remeshing kernel

Host code
Total time per iteration

Figure 3. Profiling data on ATI Radeon HD 6770M

To give another comparison, the computational times showed in [4] are
about 0.048 seconds per time step for one million particle for the whole
Navier-Stokes solver in simple precision. In our case, we obtain a com-
puting time of 0.055 for problems of similar size. Note however that the
problems are rather different, since the problems considered in [4] were
two-dimensional and used lower order remeshing schemes but involved
non-local field evaluations (through FFT).

5. Conclusions

In this work we showed implementations of 3D particle methods in
GPUs. A splitting algorithm together with a high order remeshing kernel
were considered for a transport equation discretized on a single GPU with
about 16 million particles.

Ongoing work concerns further optimizations of our code and its Python
implementation on several GPUs to tackle larger problems.

8

PARTICLE METHOD ON GPU

Bibliographie

[1] M. Bergdorf and P. Koumoutsakos. A Lagrangian particle-wavelet me-
thod. Multiscale Models. Simul., 5(3) :980–995, 2006.

[2] A. Magni and G.H. Cottet. Accurate, non-oscillatory, remeshing
schemes for particle methods. J. Comput. Phys., 231(1) :152–172, 2012.

[3] A. Munshi et al. The OpenCL Specification. Khronos OpenCL Working
Group, 2011.

[4] D. Rossinelli, M. Bergdorf, G.H. Cottet, and P. Koumoutsakos. GPU
accelerated simulations of bluff body flows using vortex methods. J.
Comput. Phys., 229(9) :3316–3333, 2010.

Jean-Matthieu Etancelin
Laboratoire Jean Kuntzmann
Université Joseph Fourier
BP 53
38041, Grenoble Cedex 9
France
Jean-Matthieu.Etancelin@imag.fr

Georges-Henri Cottet
Laboratoire Jean Kuntzmann
Université Joseph Fourier
BP 53
38041, Grenoble Cedex 9
France
Georges-Henri.Cottet@imag.fr

Christophe Picard
Laboratoire Jean Kuntzamnn
Université Joseph Fourier
BP 53
38041, Grenoble Cedex 9
France
Christophe.Picard@imag.fr

Franck Perignon
Laboratoire Jean Kuntzmann
Université Joseph Fourier
BP 53
38041, Grenoble Cedex 9
France
franck.perignon@imag.fr

9

