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The tree automaton completion is an algorithm used for proving safety properties on systems which

can be modeled by a term rewriting system. This representation and verification technique works

well for proving properties on infinite systems like cryptographic protocols or more recently on Java

Bytecode programs. This algorithm computes a tree automaton which represents a (regular) over

approximation of the set of reachable terms by rewriting initial terms. This approach is limited by the

lack of information about rewriting relation between terms. Actually, terms in relation by rewriting

are in the same equivalence class: there are recognized into the same state by the tree automaton.

Our objective is to produce a completed automaton embedding an abstraction of the rewriting

relation sufficient to prove temporal properties on the term rewriting system.

We propose to extend the algorithm to produce a completed automaton having more equivalence

classes to distinguish a term or a subterm from its successors w.r.t. rewriting. While ground transi-

tions are used to recognize equivalence classes of terms, ε-transitions represent the rewriting relation

between terms. From the completed automaton, it is possible to automatically build a Kripke struc-

ture abstracting the rewriting sequence. States of the Kripke structure are states of the tree automaton

and the transition relation is given by the set of ε-transitions. States of the Kripke structure are la-

belled by the set of terms recognized using ground transitions. On this Kripke structure, we define

the Regular Linear Temporal Logic (R-LTL) for expressing properties. Such properties can then be

checked using standard model checking algorithms. The only difference between LTL and R-LTL is

that predicates are replaced by a regular set of acceptable terms.

1 Introduction

Our main objective is to formally verify programs or systems modeled using Term Rewriting Systems.

In a previous work [2], we have shown that is possible to translate a Java bytecode program into a Term

Rewriting System (TRS). In this case, terms model Java Virtual Machine (JVM) states and the execution

of bytecode instructions is represented by rewriting, according to the small-step semantics of Java. An

interesting point of this approach is the possibility to classify rewriting rules. More precisely, there is a

strong relation between the position of rewriting in a term and the semantics of the executed transition

on the corresponding state. For the case of Java bytecode, since a term represents a JVM state, rewriting

at the top-most position corresponds to manipulations of the call stack, i.e. it simulates a method call or

method return. On other hand, since the left-most subterm represents the execution context of the current

method (so called frame), rewriting at this position simulates the execution of the code of this method.

Hence, by focusion on rewriting at a particular position, it is possible to analyse a Java program at the

method call level (inter procedural control flow) or at the instruction level (local control flow).

The verification technique used in [2], called Tree Automata Completion [4], is abble to finitely

over-approximate the set of reachable terms, i.e. the set of all reachable states of the JVM. However,

this technique lacks precision in the sense that it makes no difference between all those reachable terms.

Due to the approximation algorithm, all reachable terms are considered as equivalent and the execution
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ordering is lost. This prevents, in particular, to prove temporal properties on such models. However,

using approximations make it possible to prove unreachability properties on infinite state systems.

In this preliminary work, we propose to improve the Tree Automata Completion method so as to

prove temporal properties on TRS representing a finite state system. The first step is to refine the al-

gorithm so as to produce a tree automaton keeping an approximation of the rewriting relation between

terms. Then, in a second step, we propose a way to check LTL-like formulas on this tree automaton.

2 Preliminaries

Comprehensive surveys can be found in [1] for rewriting, and in [3, 6] for tree automata and tree language

theory.

Let F be a finite set of symbols, each associated with an arity function, and let X be a countable

set of variables. T (F ,X ) denotes the set of terms, and T (F ) denotes the set of ground terms (terms

without variables). The set of variables of a term t is denoted by V ar(t). A substitution is a function

σ from X into T (F ,X ), which can be extended uniquely to an endomorphism of T (F ,X ). A

position p for a term t is a word over N. The empty sequence λ denotes the top-most position. The set

Pos(t) of positions of a term t is inductively defined by:

• Pos(t) = {λ} if t ∈X

• Pos( f (t1, . . . , tn)) = {λ}∪{i.p | 1≤ i≤ n and p ∈Pos(ti)}

If p ∈Pos(t), then t|p denotes the subterm of t at position p and t[s]p denotes the term obtained by

replacement of the subterm t|p at position p by the term s. A term rewriting system (TRS) R is a set

of rewrite rules l → r, where l,r ∈ T (F ,X ), l 6∈X , and V ar(l) ⊇ V ar(r). The TRS R induces a

rewriting relation →R on terms as follows. Let s, t ∈ T (F ,X ) and l → r ∈ R, s→p

R
t denotes that

there exists a position p ∈Pos(t) and a substitution σ such that s|p = lσ and r = s[rσ ]p. Note that

the rewriting position p can generally be omitted, i.e. we write generally write s→R t. The reflexive

transitive closure of →R is denoted by →⋆

R
. The set of R-descendants of a set of ground terms E is

R∗(E) = {t ∈T (F ) | ∃s ∈ E s.t. s→⋆

R
t}.

The verification technique defined in [5, 4] is based on the approximation of R∗(E). Note that

R∗(E) is possibly infinite: R may not terminate and/or E may be infinite. The set R∗(E) is generally

not computable [6]. However, it is possible to over-approximate it [5, 4, 7] using tree automata, i.e. a

finite representation of infinite (regular) sets of terms. In this verification setting, the TRS R represents

the system to verify, sets of terms E and Bad represent respectively the set of initial configurations and

the set of “bad” configurations that should not be reached. Then, using tree automata completion, we

construct a tree automaton B whose language L(B) is such that L(B)⊇R∗(E). Then if L(B)∩Bad = /0

then this proves that R∗(E)∩Bad = /0, and thus that none of the “bad” configurations is reachable. We

now define tree automata.

Let Q be a finite set of symbols, with arity 0, called states such that Q∩F = /0. T (F ∪Q) is called

the set of configurations.

Definition 1 (Transition, normalized transition, ε-transition) A transition is a rewrite rule c → q,

where c is a configuration i.e. c ∈ T (F ∪Q) and q ∈ Q. A normalized transition is a transition c→ q

where c = f (q1, . . . ,qn), f ∈F whose arity is n, and q1, . . . ,qn ∈Q. An ε-transition is a transition of the

form q→ q′ where q and q′ are states.

Definition 2 (Bottom-up nondeterministic finite tree automaton) A bottom-up nondeterministic finite

tree automaton (tree automaton for short) is a quadruple A = 〈F ,Q,QF ,∆∪∆ε〉, where QF ⊆ Q, ∆ is a

set of normalized transitions and ∆ε is a set of ε-transitions.
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The rewriting relation on T (F ∪Q) induced by the transitions of A (the set ∆∪∆ε ) is denoted by

→∆∪∆ε
. When ∆ is clear from the context, →∆∪∆ε

will also be denoted by→A. We also introduce→6εA
the relation which is induced by the set ∆ alone.

Definition 3 (Recognized language, canonical term) The tree language recognized by A in a state q

is L(A,q) = {t ∈ T (F ) | t →⋆

A q}. The language recognized by A is L(A) =
⋃

q∈QF
L(A,q). A tree

language is regular if and only if it can be recognized by a tree automaton. A term t is a canonical term

of the state q, if t→6εA q.

Example 1 Let A be the tree automaton 〈F ,Q,QF ,∆〉 such that F = { f ,g,a}, Q = {q0,q1,q2}, QF =
{q0}, ∆ = { f (q0) → q0,g(q1) → q0,a → q1,b → q2} and ∆ε = {q2 → q1}. In ∆, transitions are

normalized. A transition of the form f (g(q1))→ q0 is not normalized. The term g(a) is a term of

T (F ∪Q) (and of T (F )) and can be rewritten by ∆ in the following way: g(a)→6εA g(q1)→
6ε
A q0.

Hence g(a) is a canonical term of q1. Note also that b→A q2 →A q1. Hence, L(A,q1) = {a,b} and

L(A) = L(A,q0) = {g(a),g(b), f (g(a)), f ( f (g(b))), . . .}= { f ⋆(g([a|b]))}.

3 The Tree Automata Completion with ε-transitions

Given a tree automaton A and a TRS R, the tree automata completion algorithm, proposed in [5, 4],

computes a tree automaton A∗
R

such that L(A∗
R

) = R∗(L(A)) when it is possible (for some of the

classes of TRSs where an exact computation is possible, see [4]) and such that L(A∗
R

) ⊇ R∗(L(A))
otherwise. In this paper, we just consider the exact case.

The tree automata completion with ε-transtions works as follows. From A = A0
R

completion builds

a sequence A0
R

.A1
R

. . .Ak
R

of automata such that if s ∈L(Ai
R

) and s→R t then t ∈L(Ai+1
R

). Transitions

of Ai
R

are denoted by the set ∆
i ∪∆

i
ε . Since for every tree automaton, there exists a deterministic tree

automaton recognizing the same language, we can assume that initially A has the following property:

Property 1 If ∆ contains two normalized transitions of the form f (q1, . . . ,qn)→ q and f (q1, . . . ,qn)→
q′, it means q = q′. This ensures that the rewriting relation→6ε is deterministic.

If we find a fixpoint automaton Ak
R

such that R∗(L(Ak
R

)) = L(Ak
R

), then we note A∗
R

= Ak
R

and we

have L(A∗
R

) = R∗(L(A0
R

)) [4]. To build Ai+1
R

from Ai
R

, we achieve a completion step which consists

of finding critical pairs between →R and →Ai
R

. To define the notion of critical pair, we extend the

definition of substitutions to terms of T (F ∪Q). For a substitution σ : X 7→ Q and a rule l→ r ∈R,

a critical pair is an instance lσ of l such that there exists q ∈ Q satisfying lσ →∗
Ai

R

q and lσ →R rσ .

Note that since R, Ai
R

and the set Q of states of Ai
R

are finite, there is only a finite number of critical

pairs. For every critical pair detected between R and Ai
R

such that we do not have a state q’ for which

rσ →6ε
Ai

R

q′ and q′→ q ∈ ∆
i
ε , the tree automaton Ai+1

R
is constructed by adding new transitions rσ →6ε q′

to ∆
i and q′→ q to ∆

i
ε such that Ai+1

R
recognizes rσ in q, i.e. rσ →∗

Ai+1
R

q, see Figure 1. However, the

lσ
R

//

∗Ai
R

��

rσ

6ε Ai+1
R

��

q q′
Ai+1

R

oo

Figure 1: A critical pair solved

transition rσ → q′ is not necessarily a normalized transition of the form f (q1, . . . ,qn)→ q′ and so it has

to be normalized first. Thus, instead of adding rσ → q′ we add ↓ (rσ → q′) to transitions of ∆
i. Here is
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the ↓ function used to normalize transitions. Note that, in this function, transitions are normalized using

new states of Qnew.

Definition 4 (↓) Let A = 〈F ,Q,Q f ,∆∪∆ε〉 be a tree automaton, Qnew a set of new states such that

Q∩Qnew = /0, t ∈ T (F ∪Q) and q ∈ Q. The normalisation of the transition s→ q′ is done in two

steps. We rewrite s by ∆ until rewriting is impossible: we obtain a unique configuration t if ∆ respects

the property 1. The second step ↓′ is inductively defined by:

• ↓′ (t→6ε q′) = /0 if t = q′,

• ↓′ (t→6ε q′) = {c→ q | c→ t ∈ ∆} if t ∈ Q and t 6= q′

• ↓′ ( f (t1, . . . , tn)→
6ε q) =

⋃

i=1...n ↓
′ (ti→

6ε qi)∪{ f (q1, . . . ,qn)→
6ε q} where ∀i = 1 . . .n : (ti ∈Q⇒

qi = ti)∧ (ti ∈T (F ∪Q)\Q⇒ qi ∈ Qnew).

It is very important to remark that the introduction of the transition q′→ q creates an order between

the language recognized by q and the one recognized by q′. More precisely, we know that there exists a

configuration (lσ ) of q which is rewritten by R into a canonical configuration (rσ ) of q′. By duality, the

configuration rσ has a parent (lσ ) in the state q.

In the following, we show that the completion builds an abstraction of the rewriting relation.

Definition 5 (99K) Let R be a TRS. For all terms u v, we have u 99KR v iff there exists w such that

u→∗
R

w, w→λ
R

v and there is not rewriting on top position λ between u and w.

Theorem 1 Let be A∗
R

a complete tree automaton such that q′→ q is a ε-transition of A∗
R

. Then, there

exists two canonical terms u v such we have the following commutative diagram :

u

6εA∗
R

��

R

//___ v

6εA∗
R

��

q q′oo

Example 2 To illustrate this result, we give a completed tree automaton for a small TRS. We define R as
the union of the two sets of rules R1 = {a→ b, b→ c} and R2 = { f (c)→ g(a), g(c)→ h(a), h(c)→
f (a)}. We define initial set E = f (a). We obtain the following tree automaton fixpoint :

A∗R =

〈

Q f = {q f }, ∆ =































a → qa

b → qb

c → qc

f (qa) → q f

g(qa) → qg

h(qa) → qh































∆ε =































qb → qa

qc → qb

qg → q f

q f → qg

qh → qg

q f → qh































〉

If we consider the transition qh→ qg, and their canonical terms h(a) and g(a) respectively, we can

deduce g(a) 99KR h(a). This is obviously an abstraction since we have g(a)→1
R

g(b)→1
R

g(c)→λ
R

h(a).

4 From Tree Automaton to Kripke Structure

Let A∗
R

= 〈T (F ),Q,QF ,∆∪∆ε〉 be a complete tree automaton, for a given TRS R and an initial lan-

guage recognized by A. A Kripke structure is a four tuple K = (S,S0,R,L) where S is a set of states,

S0 ⊆ S initial states, R⊆ S×S a total transition relation and L a function that labels each state with a set

of predicates which are true in that state. In our case, the set of true predicates is a regular set of terms.
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Definition 6 (Labelling Function) Let AP = 〈T (F ),Q,∆〉 be the tree automaton defined from A∗
R

by

removing ε-transitions. We knowingly omit the set of final states. We define the labelling function L(q) =
〈T (F ),Q,{q},∆〉 as the function which associates to a state q the automaton AP where q is the unique

final state. We obviously have the property for all state state q :

∀t ∈L(L(q)), t→6εA∗
R

q

Now, we can build the Kripke structure for the subset of R on which we want to prove some temporal

properties. In Example 2, R is split : if we want verify properties on R1 or R2, we need to consider a

different subset of ∆ε corresponding to the abstraction of the relation rewriting 99KRi
as shown in figure

2 and 3.

a b c

Figure 2: 99KR1

f(a)

g(a)

h(a)

Figure 3: 99KR2

Commentaire : REFAIRE LES SCHEMAS : REMPLACER LES TERMES PAR DES ETATS COR-

RESPONDANTS OU ETATS (TERMES)? Moi je laisserais les termes sur cet exemple car ca permet

de comprendre mieux ou on va. Quite a mettre les etats dans la suite de l’exemple et expliquer qu’ils

reconnaissent ces termes.

The set S0 of initial states depends of the rewriting relation selected. For example, if we want to

analyze 99KR2
(or 99KR1

), we define S0 = {q f } (resp. S0 = {qa}).

Definition 7 (Construction of the Kripke Structure) We build the 4-tuple (S,S0,R,L) from a tree au-

tomaton such that we have S = Q, S0 ⊂ S is a set of states of considered as initial states, R(q,q′) if

q′→ q ∈ ∆ε and the labelling function L as just defined previously.

Theorem 2 Le be K = (S,S0,R,L) a Kripke structure built from A∗
R

. For any states s, s′ such that

R∗(s,s′) holds, exist two terms u ∈ L(s) and v ∈ L(s′) such that u 99K
∗
Ri

v.

5 Verification of R-LTL properties

To express our properties, we propose to define the Regular Linear Temporal Logic (R-LTL). R-LTL

is LTL where predicates are replaced by a tree automaton. The language of such a tree automaton

characterizes a set of admissible terms. A state q of a Kripke structure validates the atomic property P if

and only if one term recognized by Ap must be recognized by P to satisfy the property. More formally:

K(Q, QF , ∆
←
ε , L), q |= P ⇐⇒ L(L(q))∩L(P) 6= /0

We also add the operators (∧, ∨, ¬, X, F, G, U, R) with their standard semantics as in LTL to keep

the expressiveness of the temporal logic. More information about these operators can be found in [[?]].
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Note that temporal properties do not range over the rewriting relation→R but over its abstraction 99KR .

It means that the semantics of the temporal operators has to be interpreted w.r.t. this specific relation.

For example, the formula G({ f (a)} =⇒ X{g(a)}) has to be interpreted as f (a) 99KR2
g(a).

We use the Büchi automata framework to perform model checking. A survey of this technique can

be found in the chapter 9 of [[?]]. LTL (or R-LTL) formulas and Kripke structures can be translated

into Büchi automata. We construct two Büchi automata : BK obtained form the Kripke structure and

BL defined by the LTL formula. Since the set of behaviors of the Kripke structure is the language of

the automaton BK , the Kripke structure satisfies the R-LTL formula if its all behaviors are recognized

by the automaton BL. It means checking L(BK) ⊆ L(BL). To do it, we construct the automaton BL

that recognizes the language L(BL) and we check the emptiness of the automaton B∩ that accepts the

intersection of languages L(BK) and L(BL). If this intersection is empty, the term rewriting system

satisfies the property.

BM and BK are classically defined as 5-tuples: alphabet, states, initial states, final states and transition

relation. Since we use tree automata to define predicates, the alphabet of BK and BL is a set of tree

automata. Actually, a set of behaviors is a word which describes a sequence of states: if π = s0s1s2s3 . . .

denotes a valid sequence of states in the Kripke structure, then the word π ′ = L(s0)L(s1)L(s2) . . . is

recognized by BK . The algorithms used to build BM and BK can be found in [?].

The automaton intersection B∩ is obtained by computing the product of BK by BL. By construction

all states of BK have to be final. Intuitively any infinite path over the Kripke structure must be recognized

by BK . This case allows to use a simpler version of the general Büchi automata product.

Definition 8 (BK×BL) The product of BK = 〈Q, Qi, ∆, Q〉 by BL = 〈Q′, Q′i, ∆
′
, F〉 is defined as

〈Q×Q′, Qi×Q′i, ∆×, Q×F〉

where ∆× is the set of transitions (qK ,qL)
AK∩AL−→ (q′K ,q′L) such that qK

AK−→ q′K is a transition of BK and

qL
AL−→ q′L is a transition of BL. Moreover, the transition is only valid if the intersection AK ∩AL must be

non empty as expected by the interpretation of the R-LTL atomic formula.

Finally the emptiness of the language L(B∩) can be checked using the standard algorithm based on

depth first search to check if final states are reachable.

6 Conclusion, Discussion

In this paper, we show how to improve the tree automata completion mechanism to keep the ordering

between reachable terms. This ordering is lost in the original algorithm. Another contribution is the

mechanism making it possible to prove LTL-like temporal properties on such abstractions of sets of

reachable terms. In this paper, we only deal with exact tree automata completion results. Future plans

are to extend this result so as to prove temporal properties on over-approximations. A similar objective

has already been tackled in [?]. However, this was done in a pure rewriting framework where abstractions

are more heavily constrained than in tree automata completion [4]. Hence, by extending LTL formula

checking on tree automata over-approximations, we hope to ease the verification of temporal formula on

infinite state systems.
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