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Jérôme Leroux

Laboratoire Bordelais de Recherche en Informatique
CNRS, Talence, France

Abstract—The reachability problem for Vector Addition Sys-
tems (VAS) is a central problem of net theory. The problem is
known to be decidable by inductive invariants definable in the
Presburger arithmetic. When the reachability set is definable in
the Presburger arithmetic, the existence of such an inductive
invariant is immediate. However, in this case, the computation
of a Presburger formula denoting the reachability set is an open
problem. In this paper we close this problem by proving that
if the reachability set of a VAS is definable in the Presburger
arithmetic, then the VAS is flatable, i.e. its reachability set can
be obtained by runs labeled by words in a bounded language. As
a direct consequence, classical algorithms based on acceleration
techniques effectively compute a formula in the Presburger
arithmetic denoting the reachability set.

I. INTRODUCTION

Vector Addition Systems (VAS) or equivalently Petri Nets
are one of the most popular formal methods for the representa-
tion and the analysis of parallel processes [1]. The reachability
problem is central since many computational problems (even
outside the realm of parallel processes) reduce to this problem.
Sacerdote and Tenney provided in [2] a partial proof of
decidability of this problem. The proof was completed in
1981 by Mayr [3] and simplified by Kosaraju [4] from [2],
[3]. Ten years later [5], Lambert provided a further simplified
version based on [4]. This last proof still remains difficult and
the upper-bound complexity of the corresponding algorithm
is just known to be non-primitive recursive. Nowadays, the
exact complexity of the reachability problem for VAS is still
an open-question. Even the existence of an elementary upper-
bound complexity is open.

Recently, in [6], we proved that even if reachability
sets of VAS are not definable in the Presburger arithmetic
FO (Z,+,≤), they are almost semilinear, a class of sets
that extends the class of Presburger sets inspired by the
semilinear sets [7]. An application of this result was provided;
we proved that a final configuration is not reachable from
an initial one if and only if there exists a forward inductive
invariant definable in the Presburger arithmetic that contains
the initial configuration but not the final one. Since we can
decide if a Presburger formula denotes a forward inductive
invariant, we deduce that there exist checkable certificates
of non-reachability in the Presburger arithmetic. In particular,
there exists a simple algorithm for deciding the general VAS
reachability problem based on two semi-algorithms. A first
one that tries to prove the reachability by enumerating finite
sequences of actions and a second one that tries to prove the
non-reachability by enumerating Presburger formulas. Such

an algorithm always terminates in theory but in practice an
enumeration does not provide an efficient way for deciding
the reachability problem. In particular the problem of deciding
efficiently the reachability problem is still an open question.

When the reachability set is definable in the Presburger
arithmetic, the existence of checkable certificates of non-
reachability in the Presburger arithmetic is immediate since
the reachability set is a forward inductive invariant (in fact the
most precise one). The problem of deciding if the reachability
set of a VAS is definable in the Presburger arithmetic was
studied twenty years ago independently by Dirk Hauschildt
during his PhD [8] and and Jean-Luc Lambert. Unfortunately,
the work of Lambert was never published, and experts think
that the proof of Hauschildt is incomplete. Moreover, from
these two works, it is difficult to deduce a simple algorithm
for computing a Presburger formula denoting the reachability
set when such a formula exists.

For the class of flatable vector addition systems, such a
computation can be performed with accelerations techniques.
Let us recall that a VAS is said to be flatable if there exists a
language included in w∗1 . . . w

∗
m for some words w1, . . . , wm

such that that every reachable configuration is reachable by
a run labeled by a word in this language (such a language
is said to be bounded [9]). Acceleration techniques provide
a framework for deciding reachability properties that works
well in practice but without termination guaranty in theory.
Intuitively, acceleration techniques consist in computing with
some symbolic representations transitive closures of sequences
of actions. For vector addition systems, the Presburger arith-
metic is known to be expressive enough for this computation.
As a direct consequence, when the reachability set of a vector
addition system is computable with acceleration techniques,
this set is necessarily definable in the Presburger arithmetic.
In [10], we proved that a VAS is flatable if, and only if, its
reachability set is computable by acceleration.

Recently, we proved that many classes of VAS with known
Presburger reachability sets are flatable [10] and we con-
jectured that VAS with reachability sets definable in the
Presburger arithmetic are flatable. In this paper, we prove
this conjecture. As a direct consequence, classical acceleration
techniques always terminate on the computation of Presburger
formulas denoting reachability sets of VAS when such a
formula exists.

Outline In section III we introduce the acceleration frame-
work and the notion of flatable subreachability sets and
flatable subreachability relations. We also recall why Pres-



burger formulas denoting reachability sets of flatable vector
addition systems are computable with acceleration techniques.
In section IV we recall the definition of well-preorders, the
Dickson’s lemma and the Higman’s lemma. In Section V
we recall some classical elements of linear algebra and we
introduce the central notion of smooth periodic sets defined
as follows.

A periodic set is a set P ⊆ Qd such that 0 ∈ P and
P + P ⊆ P. Let us recall [7] that a set X ⊆ Zd is definable
in the Presburger arithmetic if and only if it is a finite union of
linear sets, sets of the form b + P where b ∈ Nd and P is a
periodic set of the form P = Np1+· · ·+Npk for some vectors
p1, . . . ,pk ∈ Zd. A limit of a periodic set P ⊆ Qd is a vector
v ∈ Qd such that there exist p ∈ P and n ∈ N>0 satisfying
p + nNv ⊆ P. The set of limits is denoted by lim(P). A
periodic set is said to be smooth if lim(P) is definable in
the decidable logic FO (Q,+,≤) and if for every sequence
(pn)n∈N of vectors pn ∈ P there exists an infinite set N ⊆ N
such that pm − pn ∈ lim(P) for every n ≤ m in N .

In Section VI we recall the well-order over the runs first
introduced in [11] central in the analysis of vector addition
systems. Sections VII and VIII provide independent results
that are used in Section IX to prove that reachability sets of
vector additions systems intersected with Presburger sets are
finite unions of sets b + P where b ∈ Nd and P ⊆ Nd is a
smooth periodic set such that for every linear set Y ⊆ b+P
there exists p ∈ P such that p+Y is a flatable subreachability
set (intuitively a subset of the reachability set computable by
acceleration). The last sections show that this decomposition
of the reachability set is sufficient for proving that if the
reachability set of a VAS is definable in the Presburger
arithmetic then it is flatable. Due to space limitation, most
mathematical results are only proved in appendix.

II. VECTORS AND NUMBERS

We denote by N,N>0,Z,Q,Q≥0,Q>0 the set of natural
numbers, positive integers, integers, rational numbers, non
negative rational numbers, and positive rational numbers.
Vectors and sets of vectors are denoted in bold face. The
ith component of a vector v ∈ Qd is denoted by v(i).
We introduce ||v||∞ = max1≤i≤d |v(i)| where |v(i)| is the
absolute value of v(i). A set B ⊆ Qd is said to be bounded if
there exists m ∈ Q≥0 such that ||b||∞ ≤ m for every b ∈ B.
The addition function + is also extended component-wise over
Qd.

The dot product of two vectors x,y ∈ Qd is the rational
number

∑d
i=1 x(i)y(i) denoted by x · y. A linear form is a

totally-defined function f : Qd → Q such that there exists
h ∈ Qd satisfying f(x) = h · x for every x ∈ Qd. A linear
function is a totally-defined function f : Qd → Qp such that
f = (f1, . . . , fp) where fj : Qd → Q is a linear form.

Given two sets V1,V2 ⊆ Qd we denote by V1+V2 the set
{v1 +v2 | (v1,v2) ∈ V1×V2}, and we denote by V1−V2

the set {v1−v2 | (v1,v2) ∈ V1×V2}. In the same way given
T ⊆ Q and V ⊆ Qd we let TV = {tv | (t,v) ∈ T ×V}.
We also denote by v1 +V2 and V1 +v2 the sets {v1}+V2

and V1 + {v2}, and we denote by tV and Tv the sets {t}V
and T{v}. In the sequel, an empty sum of sets included in
Qd denotes the set reduced to the zero vector {0}.

III. FLATABLE VECTOR ADDITION SYSTEMS

A Vector Addition System (VAS) is a pair (cinit,A) where
cinit ∈ Nd is an initial configuration and A ⊆ Zd is a finite
set of actions.

The semantics of vector addition systems is obtained as
follows. A vector c ∈ Nd is called a configuration. We intro-
duce the labeled relation → defined by x

a−→ y if x,y ∈ Nd
are configurations, a ∈ A is an action, and y = x + a.
As expected, a run is a non-empty word ρ = c0 . . . ck of
configurations cj ∈ Nd such that aj = cj − cj−1 is a vector
in A. The word w = a1 . . .ak is called the label of ρ. The
configurations c0 and ck are respectively called the source
and the target and they are denoted by src(ρ) and tgt(ρ). We
also denote by dir(ρ) the couple (src(ρ), tgt(ρ)) called the
direction of ρ. The relation → is extended over the words
w = a1 . . .ak of actions aj ∈ A by x

w−→ y if there exists a
run from x to y labeled by w. Given a language W ⊆ A∗,
we denote by W−→ the relation

⋃
w∈W

w−→. The relation A∗−−→
is called the reachability relation and it is denoted by ∗−→. A
subreachability relation is a relation included in ∗−→.

x

y

x−−→(1,3)−−→(2,4)−−→(3,5)−−→(4,6)−−→(3,4)−−→(2,2)−−→y

Figure 1. The run ρ labeled by (1, 1)4(−1,−2)3 with dir(ρ) = (x,y).

Given a configuration c ∈ Nd and a language W ⊆ A∗

we denote by post(c,W ) the set of configurations y ∈ Nd

such that c
W−→ y. Given a set of configurations C ⊆ Nd

and a language W ⊆ (Zd)∗ we denote by post(C,W ) the set
of configurations

⋃
c∈C post(c,W ). The set post(cinit,A

∗) is
called the reachability set. A subset of this set if called a
subreachability set.

Flatability properties are defined thanks to bounded lan-
guages. A language W ⊆ A∗ is said to be bounded if there
exists a finite sequence w1, . . . wm of words wj ∈ A∗ such
that W ⊆ w∗1 . . . w

∗
m. Let us recall that bounded languages

are stable by concatenation, union, intersection, and subset. A
subreachability relation is said to be flatable if it is included in
W−→ where W ⊆ A∗ is a bounded language. A subreachability

set is said to be flatable if it is included in post(cinit,W ) where
W ⊆ A∗ is a bounded language.



Definition III.1. A VAS is said to be flatable if its reachability
set is flatable. A VAS is said to be Presburger if its reachability
set is definable in the Presburger arithmetic.

In this paper we show that the class of Presburger VAS
coincides with the class of flatable VAS. In the remainder of
this section we recall elements of acceleration techniques that
explain why flatable VAS are Presburger. We also explain why
a Presburger formula denoting the reachability set is effectively
computable in this case.

The displacement of a word w = a1 . . .ak of actions aj ∈
A is the vector ∆(w) =

∑k
j=1 aj . Observe that x

w−→ y
implies x+ ∆(w) = y but the converse is not true in general.
The converse property can be obtained by associating to every
word w = a1 . . .ak the configuration cw defined for every
i ∈ {1, . . . , d} by:

cw(i) = max{−(a1 + · · ·+ aj)(i) | 0 ≤ j ≤ k}

The following lemma shows that cw is the minimal for ≤
configuration from which there exists a run labeled by w.

Lemma III.2. There exists a run from a configuration x ∈ Nd
labeled by a word w ∈ A∗ if, and only if, x ≥ cw.

Proof: We assume that w = a1 . . .ak where aj ∈ A.
Assume first that there exists a run ρ = c0 . . . ck labeled by
w from c0 = x. Since aj = cj − cj−1 we deduce that cj =
x+a1 + · · ·+aj . Since cj ≥ 0 we get x ≥ −(a1 + · · ·+aj).
We have proved that x ≥ cw. Conversely, let us assume that
x ≥ cw and let us prove that there exists a run from x labeled
by w. We introduce the vectors cj = x+a1 + · · ·+aj . Since
x ≥ cw we deduce that cj ∈ Nd. Therefore ρ = c0 . . . ck is a
run. Just observe that c0 = x and ρ is labeled by w.

The following lemma shows that the set of triples
(x, n,y) ∈ Nd × N × Nd such that x

wn−−→ y is effectively
definable in the Presburger arithmetic. In particular with an
existential quantification of the variable n, we deduce that
the relation w∗−−→ is effectively definable in the Presburger
arithmetic. Hence if a set of configurations C ⊆ Nd is
denoted by a Presburger formula then for every word w ∈ A∗

we can effectively compute a Presburger formula denoting
post(C, w∗).

Lemma III.3. A pair (x,y) ∈ Nd × Nd of configurations
satisfies x

wn−−→ y where w ∈ A∗ and n ∈ N>0 if and only if:

x ≥ cw ∧ x + n∆(w) = y ∧ y −∆(w) ≥ cw

Proof: Assume first that we have a run x
wn−−→ y. Since

n ≥ 1, a prefix and a suffix of this run show that x
w−→

x+∆(w) and y−∆(w)
w−→ y. Lemma III.2 shows that x ≥ cw

and y − ∆(w) ≥ cw. Moreover, since x + n∆(w) = y we
have proved one way of the lemma. For the other way, let us
assume that x ≥ cw, x + n∆(w) = y, and y −∆(w) ≥ cw.
We introduce the sequence c0, . . . , cn defined by cj = x +
j∆(w). Let us prove that cj−1 ≥ cw for every 1 ≤ j ≤ n.

Let i ∈ {1, . . . , d}. If ∆(w)(i) ≥ 0 then cj−1(i) ≥ x(i) ≥
cw(i). Next, assume that ∆(w)(i) < 0. In this case, since
x + n∆(w) = y we deduce that cj−1 = y − ∆(w) + (n −
j)(−∆(w)). Thus cj−1(i) ≥ y(i) − ∆(w)(i) ≥ cw(i). We
have proved that cj−1 ≥ cw. Lemma III.2 shows that cj−1

w−→
cj . We have proved that c0

wn−−→ cn. Since c0 = x and cn = y
we have proved the other way.

We deduce the following theorem also proved in [12] in a
more general context. This theorem shows that we can effec-
tively compute a Presburger formula denoting the reachability
set of flatable VAS.

Theorem III.4 ( [12]). There exists an algorithm computing
for any flatable VAS (cinit,A) a sequence w1, . . . , wm ∈ A∗

such that:

post(cinit,A
∗) = post(cinit, w

∗
1 . . . w

∗
m)

Proof: Let us consider an algorithm that takes as input
a VAS (cinit,A) and it computes inductively a sequence
(wm)m≥1 of words wm ∈ A∗ such that every finite sequence
(σj)1≤j≤n of words σj ∈ A∗ is a sub-sequence. Note
that such an algorithm exists. From this sequence, another
algorithm computes inductively Presburger formulas denoting
sets of configurations Cm ⊆ Nd satisfying C0 = {cinit} and
Cm = post(Cm−1, w

∗
m) for every m ∈ N>0. The algorithm

stops and it returns w1, . . . , wm when post(Cm,A) ⊆ Cm.
Note that such a test is implementable since Cm is denoted by
a Presburger formula and the Presburger arithmetic is a decid-
able logic. When the algorithm stops the set Cm is included
in the reachability set and it satisfies post(Cm,A) ⊆ Cm. We
deduce that Cm is equal to the reachability set. In particular
the reachability set if equal to post(cinit, w

∗
1 . . . w

∗
m) and the

algorithm is correct.
For the termination, since the VAS is flatable, there exists a

bounded language W ⊆ A∗ such that the reachability set is in-
cluded in post(cinit,W ). As W is bounded, there exists a finite
sequence σ1, . . . , σn ∈ A∗ such that W ⊆ σ∗1 . . . σ

∗
n. There

exists m ∈ N such that this sequence is a sub-sequence of
w1, . . . , wm. Let us observe that W ⊆ σ∗1 . . . σ∗n ⊆ w∗1 . . . w∗m.
From the following inclusions we deduce that Cm is equal to
the reachability set:

post(cinit,A
∗) ⊆ post(cinit,W )

⊆ post(cinit, w
∗
1 . . . w

∗
m)

= Cm

⊆ post(cinit,A
∗)

In particular post(Cm,A) ⊆ Cm and the algorithm termi-
nates before the mth iteration.

Corollary III.5. Reachability sets of flatable VAS are effec-
tively definable in the Presburger arithmetic.

In the remainder of this paper, we proved that Presburger
VAS are flatable. As a direct consequence a Presburger formula



denoting the reachability set of a Presburger VAS is effectively
computable using classical acceleration techniques.

IV. WELL-PREORDERS

A relation R over a set S is a subset R ⊆ S × S. The
composition of two relations R1, R2 over S is the relation over
S denoted by R1 ◦ R2 and defined as the set

⋃
i∈S{(s, t) ∈

S × S | (s, i) ∈ R1 ∧ (i, t) ∈ R2}. A relation R over S is
said to be reflexive if (s, s) ∈ R for every s ∈ S, transitive if
R ◦R ⊆ R, antisymmetric if (s, t), (t, s) ∈ R implies s = t, a
preorder if R is reflexive and transitive, and an order if R is
an antisymmetric preorder. The composition of R by itself n
times where n ∈ N>0 is denoted by Rn. The transitive closure
of a relation R is the relation

⋃
n≥1R

n denoted by R+.
A preorder v over a set S is said to be well if for every

sequence (sn)n∈N of elements sn ∈ S there exist an infinite
set N ⊆ N such that sn v sm for every n ≤ m in N . Observe
that (N,≤) is a well-ordered set whereas (Z,≤) is not well-
ordered. As another example, the pigeonhole principle shows
that a set S is well-ordered by the equality relation if, and only
if, S is finite. Well-preorders can be easily defined thanks to
Dickson’s lemma and Higman’s lemma as follows.

Dickson’s lemma: Dickson’s lemma shows that the carte-
sian product of two well-preordered sets is well-preordered.
More formally, given two preordered sets (S1,v1) and
(S2,v2) we denote by v1 × v2 the preorder defined
component-wise over the cartesian product S1 × S2 by
(s1, s2) v1 × v2 (s′1, s

′
2) if s1 v1 s

′
1 and s2 v2 s

′
2. Dickson’s

lemma says that (S1 × S2,v1 × v2) is well-preordered for
every well-preordered sets (S1,v1) and (S2,v2). As a direct
application, the set Nd equipped with the component-wise
extension of ≤ is well-ordered.

Higman’s lemma: Higman’s lemma shows that words
over well-preordered alphabets can be well-preordered. More
formally, given a preordered set (S,v), we introduce the set
S∗ of words over S equipped with the preorder v∗ defined by
w v∗ w′ if w and w′ can be decomposed into w = s1 . . . sk
and w′ ∈ S∗s′1S∗ . . . s′kS∗ where sj v s′j are in S for every
j ∈ {1, . . . , k}. Higman’s lemma says that (S∗,v∗) is well-
preordered for every well-preordered set (S,v). As a classical
application, the set of words over a finite alphabet S is well-
ordered by the sub-word relation =∗.

V. VECTOR SPACES, CONIC SETS, PERIODIC SETS, AND
LATTICES

In this section we recall some elements of linear algebra.
We also introduce the central notions of definable conic sets
and smooth periodic sets.

A vector space is a set V ⊆ Qd such that 0 ∈ V, V+V ⊆
V, and QV ⊆ V. The following set is a vector space called
the vector space generated by X ⊆ Qd:

k∑
j=1

λjxj | k ∈ N and (λj ,xj) ∈ Q×X



Figure 2. The finitely generated conic set Q≥0(1, 1) + Q≥0(1, 0) and the
definable conic set {(0, 0)} ∪ {(c1, c2) ∈ Q2

>0 | c2 < c1}

This vector space is the minimal for the inclusion among the
vector spaces that contain X. Let us recall that every vector
space V is generated by a finite set. The rank rank(V) of a
vector space V is the minimal natural number r ∈ N such that
there exists a finite set B with r vectors that generates V. Let
us recall that rank(V) ≤ rank(W) for every pair of vector
spaces V ⊆ W. Moreover, if V is strictly included in W
then rank(V) < rank(W). Vectors spaces are geometrically
characterized as follows:

Lemma V.1 ( [13]). A set V ⊆ Qd is a vector space if and
only if there exists a finite set H ⊆ Qd such that:

V =

{
v ∈ Qd |

∧
h∈H

h · v = 0

}

A conic set is a set C ⊆ Qd such that 0 ∈ C, C+ C ⊆ C
and Q≥0C ⊆ C. The following set is a conic set called the
conic set generated by X ⊆ Qd:

k∑
j=1

λjxj | k ∈ N and (λj ,xj) ∈ Q≥0 ×X


This conic set is the minimal for the inclusion among the
conic sets that contain X. Contrary to the vector spaces, some
conic sets are not finitely generated. Fig. 2 depicts examples
of finitely generated conic sets and (non finitely generated)
conic sets. Finitely generated conic sets are geometrically
characterized by the following lemma.

Lemma V.2 ( [13]). A set C ⊆ Qd is a finitely generated
conic set if and only if there exists a finite set H ⊆ Qd such
that:

C =

{
c ∈ Qd |

∧
h∈H

h · c ≥ 0

}
Definition V.3. A conic set is said to be definable if it can be
denoted by a formula in FO (Q,+,≤).

A periodic set is a set P ⊆ Qd such that 0 ∈ P, and
P + P ⊆ P. The following set is a periodic set called the
periodic set generated by X ⊆ Qd:

k∑
j=1

njxj | k ∈ N and (nj ,xj) ∈ N×X





This periodic set is the minimal for the inclusion among the
periodic sets that contains X. Observe that the conic set C
generated by a periodic set P is C = Q≥0P. The finitely
generated periodic sets are characterized as follows. Given a
periodic set P we denote by ≤P the preorder over P defined
by p ≤P q if q ∈ p + P. A periodic set P ⊆ Qd is said
to be discrete if there exists n ∈ N>0 such that P ⊆ 1

nZ
d.

Observe that finitely generated periodic sets are discrete. The
following lemma characterizes the discrete periodic sets that
are finitely generated. The proof is given in appendix.

Lemma V.4. Let P be discrete periodic set. The following
conditions are equivalent:
• P is finitely generated as a periodic set.
• (P,≤P) is well-preordered.
• Q≥0P is finitely generated as a conic set.

Remark V.5. A set X ⊆ Zd is definable in the Presburger
arithmetic FO (Z,+,≤) if, and only if, it is a finite union of
linear set b + P where b ∈ Zd and P ⊆ Zd is a finitely
generated periodic set [7].

A limit of a periodic set P ⊆ Qd is a vector v ∈ Qd such
that there exists p ∈ P and n ∈ N>0 satisfying p+nNv ⊆ P.
The set of limits of P is denoted by lim(P).

Lemma V.6. lim(P) is a conic set.

Proof: Let C = lim(P). Let v1,v2 ∈ C. There exist
p1,p2 ∈ P and n1, n2 ∈ N>0 such that p1 + n1Nv1 and
p2 + n2Nv2 are included in P. Let n = n1n2. Since nN is
included in n1N and n2N we deduce that p1 + nNv1 and
p2 + nNv2 are included in P. As P is periodic we deduce
that p + nNv ⊆ P where p = p1 + p2 and v = v1 + v2.
As p ∈ P we get v ∈ C. We deduce that C + C ⊆ C. Since
0 ∈ C and Q≥0C ⊆ C are immediate, we have proved that
C is a conic set.

A periodic set P is said to be well-limit if for every
sequence (pn)n∈N of vectors pn ∈ P there exists an infinite
set N ⊆ N such that pm − pn ∈ lim(P) for every n ≤ m
in N . The periodic set P is said to be smooth if lim(P) is a
definable conic set and P is well-limit.

Example V.7. Let us consider the periodic set P ⊆ N2 gener-
ated by (0, 1) and the pairs (2m, 1) where m ∈ N. The limit of
P is the definable conic set C = {(0, 0)}∪(Q≥0×Q>0). Note
that P is not well-limit since the sequence (pn)n∈N defined
by pn = (2n, 1) is such that pm − pn = (2m − 2n, 0) 6∈ C
for every n < m.

A lattice is a set L ⊆ Qd such that 0 ∈ L, L + L ⊆ L
and −L ⊆ L. The following set is a lattice called the lattice
generated by X ⊆ Qd:

k∑
j=1

zjxj | k ∈ N and (zj ,xj) ∈ Z×X



This lattice is the minimal for the inclusion among the lattices
that contain X. Observe that the conic set generated by a
lattice L is equal to the vector space V = Q≥0L. Since vector
spaces are finitely generated, the previous Lemma V.4 shows
that discrete lattices are finitely generated.

Remark V.8. The following inclusions hold:

conic
sets ⊆ periodic

sets ⊇
discrete
periodic

sets
⊇

finitely gen.
periodic

sets

⊆ ⊆ ⊆ ⊆

vector
spaces ⊆ lattices ⊇ discrete

lattices =
finitely gen.

lattices

VI. WELL-ORDER OVER THE RUNS

We define a well-order over the runs as follows. We intro-
duce the relation � over the runs defined by ρ � ρ′ if ρ is
a run of the form ρ = c0 . . . ck where cj ∈ Nd and if there
exists a sequence (vj)0≤j≤k+1 of vectors vj ∈ Nd such that
ρ′ is a run of the form ρ′ = ρ0 . . . ρk where ρj is a run from
cj + vj to cj + vj+1.

(3, 3) (2, 1) (3, 2) (2, 0) (3, 1)

(1, 0) (2, 1)
≥

≤ ≥ ≤

Figure 3. (1, 0)(2, 1) � (3, 3)(2, 1)(3, 2)(2, 0)(3, 1)

Example VI.1. This example is depicted on Figure 3. Let ρ =
(1, 0)(2, 1) and observe that ρ� ρ1ρ2 where ρ1 = (3, 3)(2, 1)
and ρ2 = (3, 2)(2, 0)(3, 1).

Let us recall the following lemma based on the Higman’s
Lemma.

Lemma VI.2 ( [11], [14]). The relation � is a well-order.

Lemma VI.3. For every runs ρ�ρ′, the pair (e, f) = dir(ρ′)−
dir(ρ) satisfies dir(ρ) + N(e, f) is a flatable subreachability
relation.

Proof: Assume that ρ � ρ′. In this case ρ = c0 . . . ck
where cj ∈ Nd and there exists a sequence v0, . . . ,vk+1 ∈ Nd
such that ρ′ = ρ0 . . . ρk where ρj is a run from cj + vj to
cj + vj+1 labeled by a word σj . We introduce the actions
a1, . . . ,ak defined by aj = cj − cj−1. By monotony we
deduce that for every r ∈ N we have a run from cj + rvj
to cj + rvj+1 labeled by σrj . We also have cj + rvj+1

aj−→
cj+1 + rvj+1. We obtain from these runs, a run ρr from
c0 + rv0 to ck + rvk+1 labeled by σr0a1σ

r
1 . . .akσ

r
k. Since

(e, f) = dir(ρ′) − dir(ρ) is the pair (v0,vk+1) we de-
duce that dir(ρ) + N(e, f) is included in W−→ where W =
σ∗0a1σ

∗
1 . . .akσ

∗
k.

Based on the definition of the well-order �, we introduce
the transformer relations with capacity c ∈ Nd as the relation



cy over Nd defined by x
cy y if there exists a run from c+x

to c + y. By monotony, let us observe that
cy is a periodic

relation.

Remark VI.4. In [14], the conic set Q≥0
cy is shown to be

definable.

VII. REFLEXIVE DEFINABLE CONIC RELATIONS

The class of finite unions of reflexive definable conic
relations over Qd≥0 are clearly stable by composition, sum,
intersection, and union. In the appendix we prove the following
theorem:

Theorem VII.1. Transitive closures of finite unions of reflex-
ive definable conic relations over Qd≥0 are reflexive definable
conic relations.

Example VII.2. Let us consider the reflexive definable conic
relation R = {(x, x′) ∈ Q2

≥0 | x ≤ x′ ≤ 2x}. Observe
that Rn where n ≥ 1 is the reflexive definable conic relation
{(x, x′) ∈ Q2

≥0 | x ≤ x′ ≤ 2nx}. Thus R+ = {(0, 0)} ∪
{(x, x′) | 0 < x ≤ x′}. Observe that Rn is strictly included
in R+ for every n ≥ 1. Hence R+ cannot be computed with
a finite Kleene iteration R1 ∪ . . . ∪Rn.

VIII. TRANSFORMER RELATIONS

In this section, we prove the following theorem. All other
results are not used in the sequel.

Theorem VIII.1. For every capacity c ∈ Nd and for every
periodic relation P included in

cy, there exists a definable
conic relation R ⊆ Qd≥0 × Qd≥0 such that lim(P ) ⊆ R and
such that for every (e, f) ∈ R there exists (x,y) ∈ P and
n ∈ N>0 such that

(c, c) + (x,y) + nN(e, f)

is a flatable subreachability relation.

Theorem VIII.1 is obtained by following the approach
introduced in [14]. Note that even if some lemmas are very
similar to the ones given in that paper, proofs must be adapted
to our context. In the remainder of the section, γ denotes
a triple (c, P ) where c ∈ Nd is a capacity, and P ⊆ cy
is a periodic relation. We introduce the set Ωγ of runs ρ
such that dir(ρ) ∈ (c, c) + P . Note that Ωγ is non empty
since it contains the run reduced to the single configuration
c. We denote by Qγ the set of configurations q ∈ Nd such
that there exists a run ρ ∈ Ωγ in which q occurs. We
denote by Iγ the set of indexes i ∈ {1, . . . , d} such that
{q(i) | q ∈ Qγ} is finite. We consider the projection function
πγ : Qγ → NIγ defined by πγ(q)(i) = q(i). We introduce the
finite set of states Sγ = πγ(Qγ) and the set Tγ of transitions
(πγ(q),q′ − q, πγ(q′)) where qq′ is a factor of a run in Ωγ .
We introduce sγ = πγ(c). Since Tγ ⊆ Sγ×A×Sγ we deduce
that Tγ is finite. We introduce the graph Gγ = (Sγ , Tγ).

An intraproduction for γ is a vector h ∈ Nd such that
c + h ∈ Qγ . We denote by Hγ the set of intraproduction

for γ. Since c ∈ Qγ , the following Lemma VIII.2 shows that
this set is periodic. In particular for every h ∈ Hγ , from
c + Nh ⊆ Qγ we deduce that h(i) = 0 for every i ∈ Iγ .

Lemma VIII.2. We have Qγ + Hγ ⊆ Qγ .

Proof: Let q ∈ Qγ and h ∈ Hγ . As q ∈ Qγ , there exist
(x,y) ∈ P and words u, v ∈ A∗ such that c+x

u−→ q
v−→ c+y.

Since h ∈ Hγ there exist (x′,y′) ∈ P and words u′, v′ ∈ A∗

such that c+x′+n′e
u′−→ c+h

v′−→ c+y′+n′f . By monotony,
we have c + (x + x′)

u′u−−→ q + h
vv′−−→ c + (y + y′). As P is

periodic, we deduce that q + h ∈ Qγ .

Corollary VIII.3. We have πγ(src(ρ)) = sγ = πγ(tgt(ρ))
for every run ρ ∈ Ωγ .

Proof: Since ρ ∈ Ωγ there exists (x,y) ∈ P such that ρ
is a run from c + x to c + y. In particular x and y are two
intraproductions for γ. We deduce that x(i) = 0 = y(i) for
every i ∈ Iγ . Hence πγ(src(ρ)) = πγ(c) = πγ(tgt(ρ)).

A path in Gγ is a word p = (s0,a1, s1) . . . (sk−1,ak, sk)
of transitions (sj−1,aj , sj) in Tγ . Such a path is called a path
from s0 to sk labeled by w = a1 . . .ak. When s0 = sk the
path is called a cycle. The previous corollary shows that every
run ρ = c0 . . . ck in Ωγ labeled by a word w = a1 . . .ak
provides the cycle t1 . . . tk in Gγ on sγ labeled by w where
tj = (πγ(cj−1),aj , πγ(cj)). We deduce that Gγ is strongly
connected.

Lemma VIII.4. For every q ≤ q′ in Qγ there exists an
intraproduction h ∈ Hγ such that q′ ≤ q + h.

Proof: As q,q′ ∈ Qγ there exist (x,y), (x′,y′) ∈ P ,
and there exist u, v, u′, v′ ∈ A∗ such that:

c+x
u−→ q

v−→ c+y and c+x′
u′−→ q′

v′−→ c+y′

Let us introduce z = q′ − q. By monotony:

c + x + x′
u′−→ q′ + x

q + z + x
v−→ c + y + z + x

c + x + z + y
u−→ q + z + y

q′ + y
v′−→ c + y + y′

Since q′ + x = q + z + x and q + z + y = q′ + y, we
have proved that c + x + x′

u′v−−→ c + h
uv′−−→ c + y + y′

with h = z + x. Thus h is an intraproduction. Observe that
q + h = q′ + x + y ≥ q′.

Lemma VIII.5. There exist intraproductions h ∈ Hγ such
that Iγ = {i | h(i) = 0}.

Proof: Let i 6∈ Iγ . There exists a sequence (qk)k∈N
of configurations qk ∈ Qγ such that (qk(i))k∈N is strictly
increasing. Since (Nd,≤) is well-ordered there exists k < k′

such that qk ≤ qk′ . Lemma VIII.4 shows that there exists
an intraproduction hi for γ such that qk′ ≤ qk + hi. In
particular hi(i) > 0. As the set of intraproductions Hγ is
periodic we deduce that h =

∑
i6∈I hi is an intraproduction

for γ. By construction we have h(i) > 0 for every i 6∈ Iγ .



Since h ∈ Hγ we deduce that h(i) = 0 for every i ∈ Iγ .
Therefore Iγ = {i | h(i) = 0}.

Given s ∈ Sγ we introduce the relation Rγ,s of couples
(e, f) ∈ Qd≥0 × Qd≥0 such that f − e ∈ Q≥0∆(σ) where
σ is the label of a cycle on s in Gγ . Observe that Rγ,s is
a reflexive definable conic relation. From Theorem VII.1 we
deduce that the transitive closure Rγ = (

⋃
s∈Sγ Rγ,s)

+ is a
reflexive definable conic relation.

Lemma VIII.6. For every s1, . . . , sk ∈ Sγ there exists
(x,y) ∈ P and q1, . . . ,qk ∈ Qγ such that sj = πγ(qj)
for every 1 ≤ j ≤ k and such that:

c + x
∗−→ q1 · · ·

∗−→ qk
∗−→ c + y

Proof: Since sj ∈ Sγ there exists pj ∈ Qγ and
(xj ,yj) ∈ P such that c+xj

∗−→ pj
∗−→ c+yj . Let us introduce

(x,y) =
∑k
j=1(xj ,yj). Since P is periodic this pair is in P .

Let us introduce hj = y1 + · · · + yj−1 + xj + · · · + xk. By
monotony, since c + xj

∗−→ pj
∗−→ c + yj , we deduce that

c+hj
∗−→ qj

∗−→ c+hj+1 where qj = pj + (hj − xj). Since
hj −xj is a sum of intraproductions, we deduce that hj −xj
is an intraproduction. In particular πγ(qj) = πγ(pj) = sj .
We have proved the lemma.

Lemma VIII.7. For every (e, f) ∈ Rγ there exists (x,y) ∈ P
and n ∈ N>0 such that:

(c, c) + (x,y) + nN(e, f)

is a flatable subreachability relation.

Proof: Let us consider (e, f) ∈ Rγ . There exists a non-
empty sequence s1, . . . , sk of states sj ∈ Sγ such that (e, f) ∈
Rγ,s1 ◦ · · · ◦Rγ,sk . We introduce s0, sk+1 equal to sγ . Let us
consider the sequence (vj)0≤j≤k such that v0 = e, vk = f
and such that (vj−1,vj) ∈ Rγ,sj for every j ∈ {1, . . . , k}. By
definition of Rγ,sj , there exists λj ∈ Q≥0 and a cycle in Gγ
on sj labeled by a word σj such that vj − vj−1 = λj∆(σj).
By multiplying (e, f) by a positive natural number, we can
assume without loss of generality that λj ∈ N for every j ∈
{1, . . . , k}, and vj ∈ Nd for every j ∈ {0, . . . , k}. Moreover,
by replacing σj by σ

λj
j we can assume that vj − vj−1 =

∆(σj).
Lemma VIII.6 shows that there exists (x,y) ∈ P and words

w0, . . . , wk ∈ A∗ q1, . . . ,qk ∈ Qγ such that sj = πγ(qj) for
every 1 ≤ j ≤ k and such that:

c + x
w0−−→ q1 · · ·

wk−1−−−→ qk
wk−−→ c + y

Note that w = w0σ1w1 . . . σkwk is the label of a cycle on sγ .
Lemma VIII.5 shows that there exist intraproductions h ∈ Hγ

such that Iγ = {i | h(i) = 0}. Since the set of intraproductions
is periodic, by multiplying h by a large positive natural number
we can assume without loss of generality that there exists a run
from c+h labeled by w. As h is an intraproduction there exist
(x′,y′) ∈ P and u, v ∈ A∗ such that c+x′

u−→ c+h
v−→ c+y′.

By monotony, we deduce that for every r ∈ N we have:

c + x + x′ + re
uw0σ

r
1w1...σ

r
kwkv−−−−−−−−−−−→ c + y + y′ + rf

Since P is periodic we deduce that (x + x′,y + y′) ∈ P .
We have proved the lemma with the bounded language W =
uw0σ

∗
1w1 . . . σ

∗
kwkv.

Lemma VIII.8. States in Sγ are incomparable.

Proof: Let us consider s ≤ s′ in Sγ . There exists q,q′ ∈
Qγ such that s = πγ(q) and s′ = πγ(q′). Lemma VIII.5
shows that there exists an intraproduction h′ ∈ Hγ such that
Iγ = {i | h′(i) = 0}. By replacing h′ by a vector in N>0h

′

we can assume without loss of generality that q(i) ≤ q′(i) +
h′(i) for every i 6∈ Iγ . As q(i) = s(i) ≤ s′(i) = q′(i) =
q′(i) + h′(i) for every i ∈ Iγ we deduce that q ≤ q′ + h′.
Lemma VIII.2 shows that q′+h′ ∈ Qγ . Lemma VIII.4 shows
that there exists an intraproduction h ∈ Hγ such that q′+h′ ≤
q+h. As h ∈ Hγ we deduce that h(i) = 0 for every i ∈ Iγ .
In particular q′(i) ≤ q(i) for every i ∈ Iγ . Hence s′ ≤ s and
we get s = s′.

Lemma VIII.9. We have lim(P ) ⊆ Rγ .

Proof: Let (e, f) ∈ lim(P ). By multiplying this pair by
a positive integer, we can assume that there exists (x,y) ∈ P
such that (x,y) + N(e, f) ⊆ P. Thus for every n ∈ N there
exists a run ρn labeled by a word in A∗ such that dir(ρn) =
(c, c) + (x,y) + n(e, f). Lemma VI.2 shows that there exists
n < m such that ρn�ρm. Assume that ρn is the run c0 . . . ck
where cj ∈ Nd. There exists a sequence v0, . . . ,vk+1 ∈ Nd
such that ρm = ρ′0 . . . ρ

′
k where ρ′j is a run from cj + vj to

cj + vj+1 labeled by a word σj . Observe that sj = πγ(cj)
is in Sγ . Since sj ≤ πγ(cj + vj), Lemma VIII.8 shows that
sj = πγ(cj +vj). Since sj ≤ πγ(cj +vj+1), we also deduce
that sj = πγ(cj +vj+1). Thus σj is the label of a cycle on sj
in Gγ . We deduce that (vj ,vj+1) ∈ Rγ,sj . Thus (v0,vk+1) ∈
Rγ . Since this pair is equal to (e, f), we are done.

We have proved Theorem VIII.1.

IX. REACHABILITY DECOMPOSITION

In this section, we prove the following theorem. All other
results are not used in the sequel.

Theorem IX.1. For every Presburger set X ⊆ Nd, the set
post(cinit,A

∗)∩X is a finite union of sets b+P where b ∈ Nd
and P ⊆ Nd is a smooth periodic set such that for every linear
set Y ⊆ b+P there exists p ∈ P such that p+Y is flatable.

The proof of the previous theorem is based on the following
simple lemma.

Lemma IX.2. For every relations R1, R2 ⊆ Nd×Nd and for
every capacity c ∈ Nd such that (c, c) +R1 and (c, c) +R2

are flatable subreachability relations, then (c, c) + R1 + R2

is a flatable subreachability relation.

Proof: There exist bounded languages W1,W2 ⊆ A∗

such that (c, c)+R1 and (c, c)+R2 are included respectively
in W1−−→ and W2−−→. By monotony, we deduce that (c, c) +R1 +

R2 is included in W1W2−−−−→.



Since Presburger sets are finite union of linear sets, we can
assume that X is a linear set in the previous Theorem IX.1.
Hence, we can assume that there exists a configuration x ∈
Nd and a finitely generated periodic set M ⊆ Nd such that
X = x + M. We introduce the set Ω of runs ρ from the
initial configuration cinit to a configuration in X. Lemma VI.2
shows that � is a well-order over Ω and Lemma V.4 shows
that ≤M is a well-order over M. We deduce that Ω is well-
ordered by the relation v defined by ρ v ρ′ if ρ � ρ′ and
tgt(ρ)− x ≤M tgt(ρ′)− x. In particular Ω0 = minv(Ω) is a
finite set. Let us observe that we have the following equality:

X =
⋃
ρ∈Ω0

tgt(ρ) + Mρ

Where Mρ is the following periodic set:

Mρ = {m ∈M | 0 c0y ◦ · · · ◦ cky m}

So, the proof of Theorem IX.1 reduces to show that Mρ is a
smooth periodic set such that for every y ∈ Nd and for every
finitely generated periodic set Q ⊆ Nd such that y + Q ⊆
tgt(ρ) + Mρ, there exists m ∈Mρ such that y + m + Q is
flatable.

In the sequel ρ is a run in Ω of the form ρ = c0 . . . ck.
We introduce the periodic set P of tuples (x0, . . . ,xk+1) ∈
(Nd)k+2 such that x0 = 0, xk+1 ∈ M and xj

cjy xj+1 for
every j. We consider the projection function πj : (Nd)k+2 →
Nd ×Nd defined by πj(x0, . . . ,xk+1) = (xj ,xj+1). We also
introduce the periodic set Pj = πj(P ). Theorem VIII.1 shows
that there exists a definable conic relation Rj ⊆ Qd≥0 × Qd≥0

such that lim(Pj) ⊆ Rj and such that for every rj ∈ Rj , there
exists pj ∈ P and nj ∈ N>0 such that (cj , cj) + πj(pj) +
njNrj is a flatable subreachability relation.

We introduce the following definable conic set:

C = {c ∈ Qd≥0 | 0 R0 ◦ · · · ◦Rk c}

Lemma IX.3. The periodic set Mρ is well-limit and its limit
is included in C ∩Q≥0M .

Proof: Let us consider a sequence (mn)n∈N of vec-
tors mn ∈ Mρ,A. For every n, there exists a sequence
(x0,n, . . . ,xk+1,n) in P such that xk+1,n = mn. So, there
exists a run ρj,n from cj + xj,n to cj + xj+1,n labeled by
a word in A∗. Lemma VI.2 shows that � is a well-order
over the runs and Lemma V.4 shows that ≤M is a well-order
over M. We deduce that there exists an infinite set N ⊆ N
such that ρj,n � ρj,m and mn ≤M mm for every n ≤ m
in N and for every 0 ≤ j ≤ k. Lemma VI.3 shows that
for every r ∈ N there exists a run labeled by A∗ with a
direction equals to dir(ρj,n) + r(dir(ρj,m) − dir(ρj,n)). Let
us introduce zj,r = xj,n + r(xj,m − xj,n) and observe that
the previous direction is equal to (cj , cj) + (zj,r, zj+1,r).
Thus zj,r

cjy zj+1,r. Since z0,r = 0 and zk+1,r = mn +
r(mm − mn) ∈ M from mn ≤M mm, we deduce that
(z0,r, . . . , zk+1,r) ∈ P . Thus mn + r(mm −mn) ∈Mρ. We

deduce that mm−mn ∈ lim(Mρ). Therefore Mρ is well-limit
periodic.

Now, let us consider v ∈ lim(Mρ). By multiplying this
vector by a positive integer, we can assume that that there
exists m ∈ M such that mn = m + nv is in Mρ for every
n ∈ N. We can then apply the previous paragraph on this
sequence. Let n < m in N. Since (z0,r, . . . , zk+1,r) ∈ P
we deduce that (zj,r, zj,r+1) ∈ Pj . Thus (xj,n,xj+1,n) +
N((xj,m,xj+1,m)− (xj,n,xj+1,n)) is included in Pj and we
deduce that (xj,m,xj+1,m)−(xj,n,xj+1,n) ∈ lim(Pj). Hence
(xj,m,xj+1,m)−(xj,n,xj+1,n) ∈ Rj . We deduce that (x0,m−
x0,n,xk+1,m−xk+1,n) ∈ R0◦· · ·◦Rk. From x0,m−x0,n = 0
and xk+1,m−xk+1,n = mm−mn = (m−n)v, we deduce that
v ∈ C. Moreover, from mn ≤M mn we get (m− n)v ∈M.
We have proved that v ∈ C ∩Q≥0M.

Lemma IX.4. For every v ∈ C, there exist relations
R̃0, . . . , R̃k ⊆ Nd × Nd such that (cj , cj) + R̃j is a flatable
subreachability relation, m ∈M, and n ∈ N>0 such that for
every r ∈ N:

0 R̃0 ◦ · · · ◦ R̃k m + rnv

Proof: Let us consider v ∈ C. There exists a sequence
(v0, . . . ,vk+1) ∈ (Qd≥0)k+1 such that v0 = 0, vk+1 = v and
(vj ,vj+1) ∈ Rj for every j. There exist nj ∈ N>0, pj ∈ P ,
such that (cj , cj) + πj(pj) + njN(vj ,vj+1) is a flatable
subreachability relation. Let n =

∏k
j=0 nj . Since nN ⊆ njN

we deduce that (cj , cj) + πj(pj) + nN(vj ,vj+1) is a flatable
subreachability relation. Let us consider p =

∑k
j=1 pj . Note

that p−pj ∈ P and in particular (cj , cj)+πj(p−pj) is in the
reachability relation. Lemma IX.2 shows that (cj , cj) + R̃j
is a flatable subreachability relation where R̃j = πj(p) +
nN(vj ,vj+1). Assume that p = (x0, . . . ,xk+1). We have
proved that for every r ∈ N we have xj + nrvj R̃j xj+1 +
nrvj+1. Since p ∈ P we deduce that x0 = 0 and m = xk+1

is a vector in M. Since v0 = 0 and vk+1 = v, we have
proved the lemma.

The previous Lemma IX.4 shows that C ∩ Q≥0M is
included in lim(Mρ). Hence, with Lemma IX.3 we deduce
that lim(Mρ) is equal to the definable conic set C ∩Q≥0M.

Lemma IX.5. For every y ∈ Nd and for every finitely gener-
ated periodic set Q ⊆ Nd such that y + Q ⊆ tgt(ρ) + Mρ,
there exists m ∈Mρ such that y + m + Q is flatable.

Proof: Since Q is finitely generated, there exists a finite
set V ⊆ Q that generates Q. Observe that x− tgt(ρ)+Nv ⊆
Mρ for every v ∈ V. Thus v ∈ lim(Mρ). As lim(Mρ) ⊆ C∩
Q≥0M, we deduce that there exist relations R̃0,v, . . . , R̃k,v ⊆
Nd×Nd such that (cj , cj) + R̃j,v is a flatable subreachability
relation, mv ∈M, and nv ∈ N>0 such that for every r ∈ N:

0 R̃0,v ◦ · · · ◦ R̃k,v mv + rnvv

Let us consider n =
∏

v∈V nv, m =
∑

v∈V mv and R̃j =∑
v∈V R̃j,v. Lemma IX.2 shows (cj , cj) + R̃j is a flatable



subreachability relation. Moreover, since Q is generated by
V we deduce that for every q ∈ Q we have:

0 R̃0 ◦ · · · ◦ R̃k m + nq

Now, let us consider the set Z =
∑

v∈V{0, . . . , n − 1}v.
Observe that Z is finite and since Z ⊆Mρ, we deduce that for
every z ∈Mρ, there exists pz = (x0,z, . . . ,xk+1,z) ∈ P such
that xk+1,z = z. Let us consider the relation R̃′j =

⋃
z∈Z(R̃j+

πj(pz)). Lemma IX.2 shows that (cj , cj)+R̃
′
j is flatable. Since

Q = Z + nQ we deduce that for every q ∈ Q we have:

0 R̃′0 ◦ · · · ◦ R̃′k m + q

Finally, since y−tgt(ρ) ∈Mρ we deduce that there exists p =
(x0, . . . ,xk+1) in P such that xk+1 = y−tgt(ρ). Lemma IX.2
shows that R̃′′j = R̃′j + πj(p) is such that (cj , cj) + R̃′′j is

flatable. Hence, this relation is included in
Wj−−→ where Wj ⊆

A∗ is a bounded language.
Let us introduce the actions aj = cj − cj−1 and the

bounded language W = W0a1W1 . . .akWk. We have proved
that post(cinit,W ) contains y+m+Q. Thus this set is flatable.

We have proved Theorem IX.1.

X. DIMENSION

The dimension of a set X ⊆ Qd is the minimal integer
r ∈ {−1, . . . , d} such that X ⊆

⋃k
j=1 Bj + Vj where Bj

is a bounded subset of Qd and Vj ⊆ Qd is a vector space
satisfying rank(Vj) ≤ r for every j. We denote by dim(X)
the dimension of X. Observe that dim(v+X) = dim(X) for
every X ⊆ Qd and for every v ∈ Qd. Observe that dim(X) =
−1 if and only if X is empty. Note that dim(X ∪ Y) =
max{dim(X),dim(Y)} for every subsets X,Y ⊆ Qd.

Example X.1. dim(N) = 1, dim(Q) = 1, dim(N(1, 0) +
N(1, 1)) = 2, dim(N(1, 0) ∪ N(1, 1)) = 1.

The dimension of a periodic set is obtained as follows.

Lemma X.2. We have dim(P) = rank(V) for every periodic
set P where V is the vector space generated by P.

XI. EQUIVALENT SETS

Given a natural number r ∈ {0, . . . , d}, we introduce the
equivalence relation ≡r over the subsets of Qd by X ≡r Y if
dim(X∆Y) < r. Note that ≡r is distributive over ∪ and ∩.

Lemma XI.1. Let V be a vector space and r = rank(V).
For every h ∈ Qd such that h ·v 6= 0 for at least one v ∈ V,
for every c ∈ Q and for every # ∈ {>,≥}, we have:

{x ∈ V | h · x ≥ 0} ≡r {x ∈ V | h · x#c}

Proof: Let us introduce a vector v ∈ V such that h ·v 6=
0. By replacing v by −v we can assume that h · v > 0.
We introduce the set B = {λv | |λ| ≤ |c|

h·v} and the vector
space W = {w ∈ V | h · w = 0}. Since W is included
in V\{v} we deduce that rank(W) < rank(V) = r. Let us

prove that the symmetrical difference of {x ∈ V | h · x ≥ 0}
and {x ∈ V | h · x#c} is included in B + W. Let x be a
vector in this difference. Then x ∈ V and either h ·x ≥ 0 and
h · x ≤ c or we have h · x < 0 and h · x ≥ c. In any case we
deduce that −|c| ≤ h ·x ≤ |c|. Let us consider λ = h·x

h·v . Note
that b = λv is a vector in B and w = x− λv is a vector in
W. Thus x ∈ B + W.

We deduce the following two corollaries:

Corollary XI.2. Let V be a vector space and r = rank(V).
For every X ⊆ V definable in FO (Q,+,≤, 0, 1) and for
every v ∈ V we have X ≡r v + X.

Proof: Since FO (Q,+,≤, 0, 1) admits quantifier elimi-
nation we deduce that X is a Boolean (union and intersection)
combination of sets of the form S = {s ∈ V | h · s#c}
where h ∈ Qd, # ∈ {>,≥}, and c ∈ Q. Note that
v + S = {s ∈ V | h · s#h · v}. In particular if h · v = 0
then S = S + v and if h · v 6= 0 Lemma XI.1 shows that
S ≡r v + S. We deduce that S ≡r v + S is both case. Since
≡r is distributive over ∪ and ∩ we get the corollary.

Corollary XI.3. Let P ⊆ Zd be a finitely generated periodic
set, L = P−P the lattice generated by P, and C = Q≥0P
be the conic set generated by P. For every x ∈ L we have
x + P ≡r L ∩C where r = dim(P).

Proof: Since P is finitely generated, there exists
p1, . . . ,pk ∈ P such that P = Np1 + · · · + Npk. We
introduce the set B of vectors b ∈ L such that b ∈
[0, 1]p1 + · · · + [0, 1]pk. Note that B is a bounded finite
subset of Zd. Thus B is finite. Since B ⊆ P−P we deduce
that there exists p ∈ P such that p + b ∈ P for every
b ∈ B. Let us prove that p + (L ∩C) ⊆ P. Let us consider
v ∈ L ∩ C. There exists a sequence µ1, . . . , µk ∈ Q≥0

such that v = µ1p1 + · · · + µkvk. Let nj ∈ N such that
µj − nj ∈ [0, 1] and let q = n1p1 + · · · + nkpk. Note
that q ∈ P and v − q ∈ B. Thus p + v − q ∈ P. In
particular p + v ∈ P and we have proved the inclusion
p + (L ∩ C) ⊆ P. Since p ∈ L we get p + L = L. Thus
p + (L ∩ C) = L ∩ (p + C). Corollary XI.2 shows that
C ≡r p+C. Since ≡r is distributive over the intersection, we
get L∩(p+C) ≡r L∩C. Moreover, from L∩(p+C) ⊆ P ⊆
L∩C we deduce that P ≡r L∩C. Note that for every x ∈ L
we have −x + (L ∩ C) = L ∩ (−x + C) ≡r L ∩ C thanks
to corollary XI.2. We have proved that x+P ≡r L∩C for
every x ∈ L.

XII. EQUIVALENT PRESBURGER SETS

In appendix we prove the following Theorem XII.1.

Theorem XII.1. Let X =
⋃k
j=1 bj +Pj where bj ∈ Zd and

Pj ⊆ Zd is a smooth periodic set. We assume that X is non
empty and we introduce r = dim(X). If X is equivalent for
≡r to a Presburger set then there exists a sequence (Yj)1≤j≤k
of linear sets Yj ⊆ bj + Pj such that X ≡r

⋃k
j=1 pj + Yj

for every sequence (pj)1≤j≤k of vectors pj ∈ Pj .



XIII. PRESBURGER REACHABILITY SETS

In this section we prove that Presburger subreachability
sets are flatable. As a direct consequence, we deduce that
Presburger VAS are flatable.

Lemma XIII.1. Presburger subreachability sets are flatable.

Proof: We prove by induction over r ∈ {−1, . . . , d}
that Presburger subreachability sets X with dim(X) ≤ r
are flatable. Note that if dim(X) = −1 then X is empty
and the proof is immediate. Let us assume that the lemma is
proved in dimension r ∈ {−1, . . . , d} and let us consider a
Presburger subreachability set X ⊆ post(cinit,A

∗) such that
dim(X) = r+ 1. In particular X is non empty. Theorem IX.1
shows post(cinit,A

∗)∩X is a finite union of sets
⋃k
j=1 bj+Pj

where bj ∈ Nd and Pj ⊆ Nd is a smooth periodic set such
that for every linear set Yj ⊆ bj + Pj there exists pj ∈ Pj
such that pj + Yj is flatable.

Since post(cinit,A
∗) ∩ X is equal to X which is a Pres-

burger set, Theorem XII.1 shows that there exists a sequence
(Yj)1≤j≤k of linear sets Yj ⊆ bj + Pj such that X ≡r⋃k
j=1 pj + Yj for every sequence (pj)1≤j≤k of vectors

pj ∈ Pj .
Let us consider a sequence (pj)1≤j≤k of vectors pj ∈ Pj

such that pj +Yj is flatable. We deduce that Y =
⋃k
j=1 pj +

Pj is flatable. Since X ≡r Y we deduce that dim(X\Y) < r.
Since X\Y is a Presburger subreachability set, by induction,
this set is flatable. From X ⊆ (X\Y)∪Y, we deduce that X
is flatable. We have proved the rank r + 1.

Theorem XIII.2. The class of flatable VAS coincides with the
class of Presburger VAS.

Proof: Assume first that the VAS is Presburger. Then
X = post(cinit,A

∗) is a Presburger set. The previous lemma
shows that X is flatable. Hence the VAS is flatable. Conversely,
if the VAS is flatable, Theorem III.4 shows that the VAS is
Presburger.

Corollary XIII.3. Presburger subreachability relations are
flatable.

Proof: Let A ⊆ Zd be a finite set of actions. We consider
the VAS ((0,0), A′) in dimension 2d where A′ is the set {0}×
A and the vectors (ui,ui) where ui ∈ Zd satisfies ui(j) = 0
if j 6= i and ui(i) = 1. Observe that the reachability set of this
VAS is A∗−−→. Hence, if a subreachability relation R of A∗−−→ is
Presburger, we deduce that there exists a bounded language
W ′ ⊆ (A′)∗ such that R ⊆ post((0,0),W ′). Let us consider
the word morphism φ : (A′)∗ → A∗ defined by φ(0,a) = a
and φ(ui,ui) = ε. Observe that W = φ(W ′) is a bounded
language and post((0,0),W ′) is included in W−→. We deduce
that R is flatable.

XIV. CONCLUSION

We have proved that acceleration techniques are complete
for the computation of Presburger formulas denoting the

reachability sets of Presburger vector addition systems. Since
there exist vector addition systems with finite reachability sets
of Ackermann cardinals [15], acceleration-based algorithms
have an Ackermann lower bound of complexity. In the future,
we are interested in improving acceleration techniques to
avoid this bound thanks to over-approximation techniques.
More generally, we are interested in characterizing vector
addition systems with reachability sets not definable in the
Presburger arithmetic. These vector addition systems are in-
teresting since we know that there exist inductive invari-
ants definable in the Presburger arithmetic obtained by over-
approximating the reachability set. The main objective is an
algorithm for deciding the general reachability problem for
vector addition systems based on accelerations and on-demand
over-approximations that works well in practice.
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APPENDIX A
PROOF OF LEMMA V.4

Lemma V.4. Let P be discrete periodic set. The following
conditions are equivalent:
• P is finitely generated as a periodic set.
• (P,≤P) is well-preordered.
• Q≥0P is finitely generated as a conic set.

Proof: Let us consider a discrete periodic set P ⊆ Qd.
By replacing P by nP for some n ∈ N>0 we can assume in
the sequel that P ⊆ Zd.

Assume first that (P,≤P) is well-preordered and let us
prove that P is finitely generated as a periodic set. We
introduce the relation v over P defined by p v q if
p ≤P q and if |p(i)| ≤ |q(i)| and p(i)q(i) ≥ 0 for every
i ∈ {1, . . . , d}. Since ≤ is a well-order over Nd we deduce
that v is a well-order over P. The set M of minimal elements
of P\{0} for this order is finite. We denote by Q be the
periodic set generated by M. Observe that Q ⊆ P. Assume
by contradiction that P\Q is non empty and let us consider an
element p in this set minimal for v. Since 0 ∈ Q we deduce
that p ∈ P\{0}. Thus there exists m ∈M such that m v p.
Let q = p −m. Since m ≤P p we get q ∈ P. Moreover,
q v p. Thus, if q 6∈ Q, by minimality of p we get q = p and
m = 0 which is impossible since M ⊆ P\{0}. Thus q ∈ Q.
From p = q + m we get p ∈ Q and we get a contradiction.
Thus P\Q is empty and we get P = Q. In particular P is
finitely generated as a periodic set.

Now, assume that P is finitely generated as a periodic set
and let us prove that C = Q≥0P is finitely generated as a
conic set. We have P = Np1 + · · · + Npk for some vectors
p1, . . . ,pk ∈ P. In particular C = Q≥0p1 + · · ·+Q≥0pk and
we deduce that C is finitely generated as a conic set.

Finally assume that C = Q≥0P is finitely generated as a
conic set and let us prove that (P,≤P) is well-preordered.
There exists some vectors q1, . . . ,qk ∈ C such that C =
Q≥0q1 + · · · + Q≥0qk. Since C = Q≥0P by multiplying
vectors qj by a positive natural number, we can assume that
qj ∈ P. We denote by Q the periodic set generated by
q1, . . . ,qk. Let us introduce the following set:

B = (P−P) ∩ ([0, 1]p1 + · · ·+ [0, 1]pk)

Note that B is bounded and vectors in this set are in Zd.
Thus B is finite. Let us prove that P ⊆ B + Q. Note that
for every p ∈ P from P ⊆ C, we deduce that there exists
λ1, . . . , λk ∈ Q≥0 such that p =

∑k
j=1 λjqj . There exists

µj ∈ [0, 1] and nj ∈ N such that λj = µj + nj . In particular
p = b+q where b =

∑k
j=1 µjqj and q =

∑k
j=1 njqj . Note

that q ∈ Q and b ∈ B.
Now, let us consider an infinite sequence (pn)n∈N of vectors

in P. For every n ∈ N there exists bn ∈ B and qn ∈ Q
such that pn = bn + qn. Since (B,=) and (Q,≤Q) are two
well-ordered sets, Dickson’s Lemma show that there exists an
infinite set N ⊆ N such that bn = bm and qn ≤Q qm for
every n ≤ m in N . Thus pn ≤P pm for every n ≤ m in N .
We have proved that (P,≤P) is well-preordered.



APPENDIX B
PROOF OF THEOREM VII.1

In this section we prove the following theorem.

Theorem VII.1. Transitive closures of finite unions of reflex-
ive definable conic relations over Qd≥0 are reflexive definable
conic relations.

The following lemma shows that the transitive closure of
R1∪. . .∪Rk where Rj is a definable conic relation for every j
is equal to the transitive closure of the reflexive definable conic
relation R = R1◦· · ·◦Rk. That means Theorem VII.1 reduces
to show that the class of reflexive definable conic relation over
Qd≥0 is stable by transitive closure.

Lemma B.1. For every reflexive conic relations R1, . . . , Rk
over Qd≥0, we have:

R1 ∪ . . . ∪Rk ⊆ R1 + · · ·+Rk ⊆ R1 ◦ · · · ◦Rk

Proof: Since (0,0) ∈ Rj for every j we deduce that
R1 ∪ . . . ∪ Rk ⊆ R1 + · · · + Rk. Let us consider a sequence
(xj ,yj)1≤j≤k of couples (xj ,yj) ∈ Rj . We introduce zj =
y1 + · · · + yj + xj+1 + · · · + xk. Let j ∈ {1, . . . k}. Since
zj−1−xj ∈ Qd≥0 and Rj is a reflexive relation we get (zj−1−
xj , zj−1 − xj) ∈ Rj . Moreover, as (xj ,yj) ∈ Rj and Rj is
conic we get (zj−1 − xj , zj−1 − xj) + (xj ,yj) ∈ Rj . This
couple is equal to (zj−1, zj). We have proved that (z0, zk) ∈
R1 ◦· · ·◦Rk. Now just observe that (z0, zk) =

∑k
j=1(xj ,yj).

Transitive closures of reflexive conic relations can be char-
acterized as follows. We introduce the function ∇ : Qd≥0 ×
Qd≥0 → Qd defined by ∇(x,y) = y − x. Given a set
I ⊆ {1, . . . , d} we introduce QdI = {x ∈ Qd≥0 | x(i) >

0 ⇐⇒ i ∈ I} and the function ∇I : Qd≥0 × Qd≥0 → Qd
partially defined over QdI × QdI by ∇I(r) = ∇(r) for every
r ∈ QdI ×QdI .

Lemma B.2. We have ∇−1
I (∇I(R)) ⊆ R+ for every I ⊆

{1, . . . , d} and for every reflexive conic relation R over Qd≥0.

Proof: Let (x,y) ∈ ∇−1
I (∇I(R)). Then x,y ∈ QdI .

We introduce the vector z ∈ QdI defined by z(i) =
min{x(i),y(i)}. We also introduce v = y − x. Since
v ∈ ∇I(R), there exists (a,b) ∈ (QdI × QdI) ∩ R such that
v = b − a. Since z,a ∈ QdI there exists n ∈ N>0 such that
1
na ≤ z. Hence there exists e ∈ Qd≥0 such that z = e+ 1

na. As
R is reflexive we get (e, e) ∈ R and since R is conic we have
(e, e) + 1

n (a,b) ∈ R. This couple is equal to (z, z+ 1
nv). Let

k ∈ {0, . . . , n} and let us prove that ek = x+ k
nv−z is in Qd≥0.

Let i ∈ {1, . . . , d}. If v(i) ≥ 0 then ek(i) ≥ x(i)− z(i) ≥ 0.
If v(i) ≤ 0 since ek = y − n−k

n v − z we deduce that
ek(i) = y(i) − n−k

n v(i) − z(i) ≥ y(i) − z(i) ≥ 0. Thus
ek ∈ Qd≥0. Since R is reflexive we get (ek, ek) ∈ R. As R
is conic we deduce that (ek, ek) + (z, z+ 1

nv) is in R. Since
this couple is equal to (x + k

nv,x + k+1
n v) we have proved

that (x,y) ∈ Rn.

Lemma B.3. Let R be reflexive conic relation over Qd, let
v0, . . . ,vk ∈ Qd such that v0 R v1 · · · R vk and let
µ1, . . . , µk ∈ Q≥0 such that the following vector xj is in
Qd≥0 for every 1 ≤ j ≤ k:

xj = (µ0 − µ1)v0 + · · ·+ (µj − µj+1)vj

where µ0 = 1 and µk+1 = 0. Then v0 R
n xk where n is the

cardinal of {j ∈ {1, . . . , k} | µj > 0}.

Proof: Let us consider the vector zj = xj + µj+1vj . As
R is reflexive, we deduce that (xj−1,xj−1) ∈ R. Since R is
conic, we get (xj−1,xj−1) + µj(vj−1,vj) ∈ R. This pair is
equal to (zj−1, zj). Thus (zj−1, zj) ∈ R. Since zj−1 = zj if
µj = 0 we deduce that z0 R

n zk. Observe that z0 = x0 +
µ1v0 = µ0v0 = v0 and zk = xk + µk+1vk = xk.

Lemma B.4. Let v0, . . . ,vk ∈ Qd≥0 and let us consider the
sets Ij = {i ∈ {1, . . . , k} | v0(i) > 0∨. . .∨vj(i) > 0}. There
exist non-negative rational numbers µ1, . . . , µk ≥ 0 such that
µj = 0 if Ij = Ij−1 and such that for every 0 ≤ j ≤ k:

(µ0 − µ1)v0 + · · ·+ (µj − µj+1)vj ∈ QdIj
where µ0 = 1 and µk+1 = 0.

Proof: The lemma is immediate with k = 0. As-
sume the lemma proved for k and let us consider a se-
quence v0, . . . ,vk+1 ∈ Qd≥0 and let us introduce a sequence
µ1, . . . , µk ≥ 0 such that µj = 0 if Ij = Ij−1 and such that:

(µ0 − µ1)v0 + · · ·+ (µj − µj+1)vj ∈ QdIj
where µ0 = 1 and µk+1 = 0. Let us consider x =
(µ0 − µ1)v0 + · · ·+ (µk − µk+1)vk. Note that if Ik+1 = Ik,
by considering µk+2 = 0 we are done. So, let us assume
that Ik+1 6= Ik. Since x ∈ QdIk there exists ε > 0 such
that x(i) > εvk(i) for every i ∈ Ik. Let us consider
the sequence (µ′0, . . . , µ

′
k+2) = (µ0, . . . , µk, ε, 0). Observe

that (µ′0 − µ′1)v0 + · · · + (µ′j − µ′j+1)vj ∈ QdIj for every
1 ≤ j ≤ k + 1. We have proved the lemma by induction.

Corollary B.5. Let R be reflexive conic relation over Qd,
let v0, . . . ,vk ∈ Qd such that v0 R v1 · · · R vk, and let
I = {i |

∨k
j=0 vj(i) > 0}. There exist non-negative rational

numbers µ1, . . . , µk ≥ 0 such that the following vector e is in
QdI and such that v0 R

d e:

e = v0 +

k∑
j=1

µj(vj − vj−1)

Proof: Let us consider the sets Ij = {i ∈ {1, . . . , k} |
v0(i) > 0 ∨ . . . ∨ vj(i) > 0}. Lemma B.4 shows that there
exist non-negative rational numbers µ1, . . . , µk ≥ 0 such that
µj = 0 if Ij = Ij−1 and such that the following vector xj is
in QdIj for every 0 ≤ j ≤ k:

xj = (µ0 − µ1)v0 + · · ·+ (µj − µj+1)vj

where µ0 = 1 and µk+1 = 0. Lemma B.3 shows that v0 R
n xk

where n is the cardinal of {j ∈ {1, . . . , k} | µj > 0}. Since



n ≤ d and R is reflexive, we deduce that Rn ⊆ Rd. Note that
e = xk is in QdIk . Since Ik = I , we are done.

Lemma B.6. For every reflexive conic relation R over Qd≥0

we have:

R+ = Rd ◦

 ∑
I⊆{1,...,d}

∇−1
I (∇I(R))

 ◦Rd
Proof: From Lemma B.2 we deduce that ∇−1

I (∇I(R)) ⊆
R+ for every I ⊆ {1, . . . , d}. With Lemma B.1 we deduce
that

∑
I⊆{1,...,d}∇

−1
I (∇I(R)) is included in R+. We have

proved the inclusion ⊇. Let us now prove the inclusion ⊆.
Let us consider (x,y) ∈ R+. There exists a sequence

(vj)0≤j≤k with k ≥ 1 of vectors vj ∈ Qd≥0 such that v0 = x,
vk = y and (vj−1,vj) ∈ R for every j ∈ {1, . . . , k}. We
introduce the set I = {i | v0(i) > 0 ∨ . . . ∨ vk(i) > 0}.

Corollary B.5 shows that there exist µ1, . . . , µk ≥ 0 such
that x Rd e where e = x +

∑k
j=1 µj(vj − vj−1) is a

vector in QdI . The inverse of R and Corollary B.5 show
that there exist µ′1, . . . , µ

′
k ≥ 0 such that f Rd y where

f = y +
∑k
j=1 µ

′
j(vj−1 − vj) is a vector in QdI .

Let us consider µ ≥ 0 such that µ− µj − µ′j ≥ 0 for every
j. Let a =

∑k
j=1(1 + µ − µj − µ′j)(vj − vj−1) and let us

prove that a ∈ ∇I(R). Let us introduce the vector e ∈ QdI
defined by e(i) = 1 if i ∈ I and e(i) = 0 otherwise. Since
R is reflexive we get (e, e) ∈ R and since R is conic then
rj = (e + vj−1, e + vj) is in R. Observe that e + vj−1 and
e+vj are both in QdI . We deduce that ∇(rj) ∈ ∇I(R). Then
vj − vj−1 ∈ ∇I(R). Since ∇I(R) is a conic set we deduce
that a ∈ ∇I(R).

We have:

(f + µy)− (e + µx)

= (1 + µ)y − (1 + µ)x−
k∑
j=1

(µj + µ′j)(vj − vj−1)

= (1 + µ)

k∑
j=1

(vj − vj−1)−
k∑
j=1

(µj + µ′j)(vj − vj−1)

=

k∑
j=1

(1 + µ− µj − µ′j)(vj − vj−1)

= a

As a ∈ ∇I(R) and e + µx, f + µy ∈ QdI we deduce that
e+µx ∇−1

I (∇I(R)) f +µy. From (x, e) ∈ Rd and (x,x) ∈
Rd and since Rd is conic, we deduce that (1+µ)x Rd e+µx.
Symmetrically we get f+µy Rd(1+µ)f . We have proved that
the relation Rd ◦ ∇−1

I (∇I(R)) ◦ Rd contains (1 + µ)(x,y).
Since this relation is conic we deduce that it contains (x,y).

We deduce the proof of Theorem VII.1.



APPENDIX C
PROOF OF LEMMA X.2

Lemma C.1. Let P ⊆ Qd be a periodic set included in⋃k
j=1 Bj + Vj where k ∈ N>0, Bj ⊆ Qd is a bounded set

and Vj ⊆ Qd is a vector space. There exists j ∈ {1, . . . , k}
such that P ⊆ Vj ⊆ Bj + Vj .

Proof: Let us first prove by induction over k ∈ N>0 that
for every periodic set P ⊆ Qd included in

⋃k
j=1 Vj where

Vj ⊆ Qd is a vector space, there exists j ∈ {1, . . . , k} such
that P ⊆ Vj . The rank k = 1 is immediate. Let us prove
the rank k+ 1 and assume that P is included in

⋃k+1
j=1 Vj . If

P ⊆ Vk+1 the induction is proved. So we can assume that
there exists p ∈ P\Vk+1. Let x ∈ P. Since np + x ∈ P
for every n ∈ N there exists j ∈ {1, . . . , k + 1} such that
np + x ∈ Vj . As {1, . . . , k + 1} is finite, there exists j in
this set and n < n′ such that np + x and n′p + x are both
in Vj . In particular the difference of this two vectors is in
Vj . Since this difference is (n′ − n)p and p 6∈ Vk+1 we get
j ∈ {1, . . . , k}. Observe that n(n′p + x)− n′(np + x) is the
difference of two vectors in Vj . Thus this vector is in Vj and
we deduce that x ∈ Vj . We have shown that P ⊆

⋃k
j=1 Vj .

By induction there exists j ∈ {1, . . . , k} such that P ⊆ Vj .
We have proved the induction.

Finally, let P ⊆ Qd be a periodic set included in
⋃k
j=1 Bj+

Vj where k ∈ N>0, Bj ⊆ Qd is a bounded set and Vj ⊆ Qd
is a vector space. Let us consider the set J of j ∈ {1, . . . , k}
such that Vj ⊆ Bj + Vj . Let us prove that P ⊆

⋃
j∈J Vj .

Let us consider p ∈ P. Since np ∈ P for every n ∈ N, the
pigeon-hole principle shows that there exists j ∈ {1, . . . , k}
and an infinite set N ⊆ N such that np ∈ Bj + Vj for every
n ∈ N . We deduce that for every n ∈ N there exists bn ∈ Bj

such that np−bn ∈ Vj . Lemma V.1 shows that there exists a
finite set H ⊆ Qd such that Vj = {v ∈ Qd |

∧
h∈H h·v = 0}.

Let h ∈ H. Since np− bn ∈ Vj we get nh · p = h · bn for
every n ∈ N . Since Bj is bounded, there exists c ∈ Q≥0 such
that |h · bn| ≤ c for every n ∈ N . Thus h · p = 0 and we
have proved that p ∈ Vj . From np + bn ∈ Vj and p ∈ Vj

we deduce that bn ∈ Vj . Thus Vj = bn + Vj ⊆ Bj + Vj

and we have proved that j ∈ J . We deduce that P is included
in

⋃
j∈J Vj . From the previous paragraph, there exists j ∈ J

such that P ⊆ Vj .

Lemma X.2. We have dim(P) = rank(V) for every periodic
set P where V is the vector space generated by P.

Proof: Since P ⊆ V we deduce that dim(P) ≤ rank(V).
For the converse inequality, there exist k ∈ N, (Bj)1≤j≤k
a sequence of bounded subsets Bj ⊆ Qd and a sequence
Vj ⊆ Qd of vector spaces such that P ⊆

⋃k
j=1 bj + Vj

and such that rank(Vj) ≤ dim(P) for every j. Since P is
non empty we deduce that k ∈ N>0. Lemma C.1 proves that
there exists j ∈ {1, . . . , k} such that P ⊆ Vj . By minimality
of the vector space generated by P we get V ⊆ Vj . Hence
rank(V) ≤ rank(Vj). From rank(Vj) ≤ dim(P) we get
rank(V) ≤ dim(P).



APPENDIX D
COMPLETE EXTRACTIONS

Let K be a finite class of definable conic sets of Qd. We
denote by Σ(K) the set

⋃
K∈KK. An extraction of K is a

finite class C of finitely generated conic sets of Qd such that
for every C ∈ C there exists K ∈ K such that C ⊆ K. An
extraction C of K is said to be complete if Σ(C) = Σ(K).

Example D.1. Let us consider the class K = {K1,K2} with
K1 = {0} ∪ (Q × Q>0) and K2 = Q × Q≤0. Observe that
Σ(K) is equal to Q2. We show that there does not exist a
complete extraction of K as follow. We first consider a finitely
generated conic set C included in K1. Such a conic set is
generated by a finite set of vectors in K1\{0} = Q×Q>0. So
there exists ε ∈ Q>0 such that C ⊆ Q≥0(1, ε) + Q≥0(−1, ε).
Now, let us consider an extraction C of K. We have proved
that there exists ε ∈ Q>0 such that Σ(C) ⊆ (Q≥0(1, ε) +
Q≥0(−1, ε)) ∪ (Q × Q≤0) which is strictly included in Q2

(for instance (1, ε2 ) is not in this set).

In this section finite classes K of definable conic sets of Qd
having a complete extraction are topologically characterized
thanks to the overlapping property1. The class K is said to
have the overlapping property if for every K ∈ K and for
every finite sequence v1, . . . ,vk of vectors vj ∈ Qd satisfying
Q>0v1 + · · · + Q>0vk ⊆ K there exists K′ ∈ K such that
K′ ∩ (Q>0v1 + · · · + Q>0vj) is non empty for every j ∈
{1, . . . , k}. We are going to prove the following result:

Theorem D.2. A finite class K of definable conic sets of Qd
has the overlapping property if and only if it has the complete
extraction property.

Example D.3. Let us come back to the class K = {K1,K2}
with K1 = {0} ∪ (Q × Q>0) and K2 = Q × Q≤0

introduced in Example D.1. We show that K does not sat-
isfy the overlapping property by considering the sequence
v1,v2 defined by v1 = (1, 0) and v2 = (1, 1). Now, just
observe that Q>0v1 + Q>0v2 ⊆ K1 but K1 ∩ (Q>0v1) and
K2 ∩ (Q>0v1 + Q>0v2) are empty.

We observe that if a finite class K of definable conic sets
of Qd has a complete extraction C, then for every K ∈ K and
for every sequence v1, . . . ,vk of vectors vj ∈ Qd such that
Q>0v1+· · ·+Q>0vk ⊆ K, from K ⊆

⋃
C∈C C, the following

lemma shows that there exists C ∈ C such that C∩ (Q>0v1 +
· · · + Q>0vj) 6= ∅ for every j ∈ {1, . . . , k}. Since C is an
extraction of K we deduce that there exists K′ ∈ K such that
C ⊆ K′. Therefore K′∩(Q>0v1+· · ·+Q>0vj) 6= ∅ for every
j ∈ {1, . . . , k}. We have proved that K has the overlapping
property.

Lemma D.4. For every sequence v1, . . . ,vk of vectors vj ∈
Qd and for every finite class C of finitely generated conic sets
of Qd such that Q>0v1+· · ·+Q>0vk ⊆

⋃
C∈C C, there exists

1The term “overlapping” comes from a topological property introduced by
Lambert in an unpublished work similar to the one we consider in this paper.

C ∈ C such that C ∩ (Q>0v1 + · · ·+ Q>0vj) 6= ∅ for every
j ∈ {1, . . . , k}.

Proof: We prove the lemma by induction over k ∈ N>0.
The rank k = 1 is immediate since from Q>0v1 ⊆

⋃
C∈C C

we deduce that there exists C ∈ C such that C ∩ (Q>0v1)
is non empty. Let us assume the induction proved for a rank
k ∈ N>0 and let us consider a sequence v0, . . . ,vk of vectors
in Qd and a finite class C of finitely generated conic sets of Qd
such that Q>0v0 + · · ·+Q>0vk ⊆

⋃
C∈C C. We introduce the

finite class C0 = {C ∈ C | v0 ∈ C}. We are going to prove
that there exists a sequence (λj)1≤j≤k of rational numbers
λj ∈ Q>0 such that Q>0(v1+λ1v0)+· · ·+Q>0(vk+λkv0) ⊆⋃

C∈C0 C.

Since every C ∈ C is a finitely generated conic set,
Lemma V.2 shows that there exists a finite set HC ⊆ Qd
such that:

C =
⋂

h∈HC

{v ∈ Qd | h · v ≥ 0}

We introduce the set H =
⋃

C∈CHC and the set H0 = {h ∈
H | h · v0 > 0}.

We build up a sequence (λj)1≤j≤k of rational numbers λj ∈
Q>0 such that h · (vj + λjv0) ≥ 0 for every h ∈ H0 as
follows. Let h ∈ H0 and j ∈ {1, . . . , k}. Since h · v0 > 0
we deduce that there exists λh,j ∈ Q≥0 such that h · (vj +
λh,jv0) ≥ 0. We introduce a rational number λj ∈ Q>0 such
that λj ≥ λh,j for every h ∈ H0. By construction observe
that h · (vj + λjv0) ≥ 0 for every h ∈ H0 and for every
j ∈ {1, . . . , k}.

We introduce the sequence (wj)1≤j≤k of vectors wj =
vj + λjv0. Now, let us consider x ∈ Q>0w1 + · · ·+ Q>0wk

and let us prove that x ∈
⋃

C∈C0 C. Observe that for every
n ∈ N we have nv0 +x ∈ Q>0v0 + · · ·+Q>0vk ⊆

⋃
C∈C C.

Hence there exists Cn ∈ C such that nv0 + x ∈ Cn. Since C
is finite, there exists C ∈ C such that Cn = C for an infinite
number of n ∈ N. Let h ∈ HC. Since nv0 + x ∈ C we get
nh · v0 + h · x ≥ 0. As this inequality holds for an infinite
number of n ∈ N we deduce that h · v0 ≥ 0. In particular
v0 ∈ C and we deduce that C ∈ C0. Note that if h · v0 = 0
then h · x ≥ 0. Otherwise, if h · v0 > 0 then h ∈ H0. In this
case h ·wj ≥ 0 for every j. From x ∈ Q>0w1 + · · ·+Q>0wk

we get h · x ≥ 0. We have proved that h · x ≥ 0 for every
h ∈ HC. Therefore x ∈ C and we have proved the inclusion
Q>0w1 + · · ·+ Q>0wk ⊆

⋃
C∈C0 C.

By induction, there exists C ∈ C0 such that C∩ (Q>0w1 +
· · · + Q>0wj) is non empty for every j ∈ {1, . . . , k}. Since
Q>0w1 + · · ·+ Q>0wk ⊆ Q>0v0 + · · ·+ Q>0vj we deduce
that C ∩ (Q>0v0 + · · · + Q>0vj) is non empty for every
j ∈ {1, . . . , k}. As C ∩ (Q>0v0) contains v0, this set is also
non empty. Therefore, we have proved the induction at rank
k + 1.

Given a finitely generated conic set C ⊆ Qd and a finite
class K of definable conic sets, we denote by C∩K the finite
class {C ∩K | K ∈ K}.



Lemma D.5. For every finite class K of definable conic sets
of Qd with the overlapping property and for every finitely
generated conic set C ⊆ Qd, the class C ∩ K has the
overlapping property.

Proof: Let us consider K ∈ K and a sequence c1, . . . , ck
of vector cj ∈ Qd such that Q>0c1 + · · · + Q>0ck ⊆ C ∩
K. Since K has the overlapping property, there exists K′ ∈
K such that K′ ∩ (Q>0c1 + · · · + Q>0cj) is non empty for
every j ∈ {1, . . . , k}. As C is a finitely generated conic set,
Lemma V.2 shows that there exists a finite set H ⊆ Qd such
that:

C = {c ∈ Qd |
∧
h∈H

h · v ≥ 0}

Let c =
∑k
j=1 cj . As Q>0c1 + · · ·+ Q>0ck ⊆ C we deduce

that c + Q≥0cj ⊆ C. In particular h · c + λh · cj ≥ 0 for
every λ ∈ Q≥0. Thus h · cj ≥ 0. We deduce that cj ∈ C.
Hence Q>0c1 + · · · + Q>0cj ⊆ C for every j ∈ {1, . . . , k}.
In particular C ∩K′ ∩ (Q>0c1 + · · ·+ Q>0cj) is non empty
for every j ∈ {1, . . . , k}. We have proved that the class C∩K
has the overlapping property.

Lemma D.6. Let K be a finite class of definable conic sets
of Qd with the overlapping property then K has the complete
extraction property.

Proof: We prove by induction over r ∈ N that for every
vector space V ⊆ Qd with rank(V) ≤ r and for every
finite class K of definable conic subsets of V, if K has
the overlapping property then it has the complete extraction
property. The rank r = 0 is immediate since in this case
V = {0}. So, let us assume the induction proved for a rank
r ∈ N and let us consider a vector space V ⊆ Qd with
rank(V) ≤ r + 1 and a finite class K of definable conic
subsets of V. We assume that K has the overlapping property.

Since K is a finite class of sets definable in FO (Q,+,≤, 0),
and this logic admits a quantifier elimination algorithm, we
deduce that there exists a finite set H ⊆ Qd such that every
K ∈ K is the set of vectors v ∈ V satisfying a boolean
combination of constraints of the form h · x#0 where # ∈
{<,≤,≥, >}. Note that if a vector h ∈ H satisfies h · v = 0
for every v ∈ V then the constraints h · x#0 is useless. So,
we can assume without loss of generality that for every h ∈ H
there exists v ∈ V such that h · v 6= 0.

Let us consider for every s : H → {−1, 1} the finitely
generated conic set Cs = {v ∈ V | s(h)h · v ≥ 0}. Since
K has the overlapping property, LemmaD.5 shows that Ks =
Cs ∩ K has the overlapping property. From V =

⋃
sCs we

deduce that Σ(K) =
⋃
s Σ(Ks). So, it is sufficient to prove

that Ks has the complete extraction property. By replacing K
by Ks and H by {s(h)h | h ∈ H}, we can assume without
loss of generality that h · v ≥ 0 for every v ∈ Σ(K).

We introduce the following finitely generated conic set C
and the following set X:

C =
⋂

h∈H0

{c ∈ V | h · c ≥ 0}

X =
⋂

h∈H0

{x ∈ V | h · x > 0}

We also introduce for every h ∈ H the vector space Vh =
{v ∈ V | h · v = 0}. Since for every h ∈ H there exists
a vector v ∈ V such that h · v 6= 0 we deduce that Vh

is strictly included in V and in particular rank(Vh) ≤ r.
Lemma D.5 shows that Vh ∩K has the overlapping property
and by induction we deduce that this class has the complete
extraction property. We introduce the set K′ = {K ∈ K |
K∩X 6= ∅}. Since C\X is included in

⋃
h∈H Vh we deduce

that Σ(K) is equal to the union of the sets Σ(Vh∩K) indexed
by h ∈ H and Σ(K′). Therefore, in order to prove that K has
the complete extraction property it is sufficient to prove that
K′ has the complete extraction property is immediate.

Let us prove that X ⊆ K for every K ∈ K′. Recall that K is
the set of vectors v ∈ V satisfying a boolean combination of
constraints of the form h · x#0 where # ∈ {<,≤,≥, >}. As
K∩X is non empty we deduce that this boolean combination
is true when the predicates h · x#0 with # ∈ {≥, >} are
evaluated to true. We deduce that X ⊆ K.

Let us prove that K′ has the overlapping property. Let us
consider K ∈ K′ and a sequence v1, . . . ,vk of vectors in Qd
such that Q>0v1 + · · · + Q>0vk ⊆ K. Since K ∩X is non
empty, there exists a vector x in this intersection. As X ⊆ K
we deduce that Q>0v1 + · · · + Q>0vk + Q>0x ⊆ X ⊆ K.
As K has the overlapping property we deduce that there exists
K′ ∈ K such that K′ ∩ (Q>0v1 + · · · + Q>0vk + Q>0x) is
non empty and such that K′ ∩ (Q>0v1 + · · ·+Q>0vj) is non
empty for every j ∈ {1, . . . , k}. Since Q>0v1+· · ·+Q>0vk+
Q>0xs ⊆ Xs we deduce that K′ ∈ K′. Therefore K′ has the
overlapping property.

Note that if X is empty then K′ has a complete extraction.
So, we can assume that X is non empty. We fix x ∈ X.
Lemma D.5 shows that Vh ∩K′ has the overlapping property
for every h ∈ H. By induction we deduce that this class has
the complete extraction property. We denote by Ch a complete
extraction of Vh ∩K′ and we consider the following class C:

C = {C + Q≥0x | C ∈
⋃
h∈H

Ch}

Let us first prove that C is an extraction of K′. Let h ∈ H
and C ∈ Ch. Since Ch is an extraction of Vh∩Ks we deduce
that there exists K ∈ K′ such that C ⊆ Vh∩K. Let λ ∈ Q>0

and observe that C + λx ⊆ X ⊆ K. Hence C + Q≥0x ⊆ K.
We have proved that C is an extraction of K′.

Let us prove that the completeness of the extraction C of
K′. We consider y ∈ Σ(K′). Since x ∈ X we deduce that
h ·x > 0 and since y ∈ C we get h ·y ≥ 0. Let us introduce
λ = minh∈H

h·y
h·x and observe that c = y − λxs satisfies

h · c ≥ 0 for every h ∈ H. Hence c ∈ C. In particular
Q>0c + Q>0x ⊆ X. Let K ∈ K′. Since X ⊆ K, we get
Q>0c + Q>0x ⊆ K. As K′ has the overlapping property we
deduce that there exists K′ ∈ K such that K′∩ (Q>0c) is non



empty. Hence there exists µ ∈ Q>0 such that µc ∈ K′. Since
K′ is a conic set we deduce that 1

µ (µc) ∈ K′. Therefore c ∈
Σ(K′). Moreover by definition of λ we deduce that there exists
h ∈ H such that c ∈ Vh. We deduce that c ∈ Σ(Vh ∩ Ks).
Therefore, there exists C ∈ Ch such that c ∈ C. We have
proved that y ∈ Σ(C). Therefore C is a complete extraction
of K′.

The induction is proved.
We have proved Theorem D.2.



APPENDIX E
PROOF OF THEOREM XII.1

In this section, we prove the following theorem.

Theorem XII.1. Let X =
⋃k
j=1 bj +Pj where bj ∈ Zd and

Pj ⊆ Zd is a smooth periodic set. We assume that X is non
empty and we introduce r = dim(X). If X is equivalent for
≡r to a Presburger set then there exists a sequence (Yj)1≤j≤k
of linear sets Yj ⊆ bj + Pj such that X ≡r

⋃k
j=1 pj + Yj

for every sequence (pj)1≤j≤k of vectors pj ∈ Pj .

We first prove the following three lemmas.

Lemma E.1. For every periodic set P ⊆ Qd and for every
vector v ∈ Qd, we have v ∈ (P − P) ∩ lim(P) if, and only
if there exists p ∈ P such that p + Nv ⊆ P.

Proof: Let v ∈ Qd and assume first that p + Nv ⊆ P
for some p ∈ P. In this case v ∈ lim(P) and from v =
(p+v)−p we deduce that v ∈ P−P. Thus v ∈ (P−P)∩
lim(P). Conversely, let us consider v ∈ (P − P) ∩ lim(P).
There exists p+,p− such that v = p+ −p−. Moreover there
exists q ∈ P and n ∈ N>0 such that q + nNv ⊆ P. Let
us consider p = q + nv + (n − 1)p− and let us prove that
p+Nv ⊆ P. Let us consider k ∈ N. The Euclidean divisor of
k by n shows that there exists q ∈ N and r ∈ {0, . . . , n− 1}
such that k = qn + r. Note that rp− + rv = rp+. Thus
(n − 1)p− + rv = rp+ + (n − 1 − r)p− ∈ P. We deduce
that p+ kv = (q+ n(q+ 1)v) + ((n− 1)p− + rv) ∈ P. We
have proved that p + Nv ⊆ P. In particular p ∈ P.

Lemma E.2. Let P be a periodic set included in a Presburger
set S ⊆ Zd. We have:

dim((P−P) ∩ lim(P)\S) < dim(S)

Proof: Let V be the vector space generated by P.
Lemma X.2 shows that dim(P) = rank(V). By replacing S
by S∩V we can assume without loss of generality that S ⊆ V.
Since the Presburger arithmetic admits a quantifier elimination
algorithm, a quantifier free formula in disjunctive normal
form shows that S can be decomposed into a finite union⋃k
j=1(Rj ∩Xj) where Rj is the set of vectors z ∈ Zd ∩V

satisfying a conjunction of formulas of the form h·z ∈ c+mZ
with h ∈ Zd, c ∈ Z and m ∈ N>0, and where Xj is a subset
of V such that there exists a finite set Aj ⊆ Qd×{>,≥}×Q
such that:

Xj = {v ∈ V |
∧

(h,#,c)∈Aj

h · v#c}

We can assume that for every (h,#, c) ∈ Aj there exists a
vector v ∈ V such that h·v 6= 0 since otherwise the constraint
h · v#c reduces to 0#c. Without loss of generality we can
also assume that Rj is non empty. Let rj ∈ Rj and observe
that Lj = Rj − rj is a lattice that generates V since for
every v ∈ V there exists m ∈ N>0 such that nv ∈ Lj . We
introduce the lattice L =

⋂k
j=1 Lj . By considering a product

of the natural numbers m ∈ N>0 (one for each j), we deduce
that for every v ∈ V there exists m ∈ N>0 such that mv ∈ L.

Let v ∈ (P − P) ∩ lim(P). Lemma E.1 shows that there
exists p ∈ P such that p+Nv ⊆ P. By replacing p by a vector
in N>0p we can assume that p ∈ L. Since v ∈ P−P ⊆ V,
we deduce that there exists m ∈ N>0 such that mv ∈ L. Since
p + v + mNv ⊆ P ⊆ S, there exists j ∈ {1, . . . , k} and an
infinite subset N ⊆ N such that p + v + mNv ⊆ Rj ∩Xj .
Let n ∈ N and observe that p + v + mnv ∈ rj + Lj and
from p, nmv ∈ L ⊆ Lj we get v ∈ rj +Lj = Rj . Moreover,
since N is infinite and p + v + mNv ⊆ Xj we deduce that
v is in the following set X̃j :

X̃j = {v ∈ V |
∧

(h,#,c)∈Aj

h · v ≥ 0}

We have proved that (P − P) ∩ lim(P) ⊆ S̃ where S̃ =⋃k
j=1(Rj∩X̃j). Thus dim((P−P)∩lim(P)\S) ≤ dim(S̃\S).

From Lemma XI.1 since ≡r is distributive over ∪ and ∩, we
get S ≡r S̃. Thus dim((P−P) ∩ lim(P)\S) < r.

Lemma E.3. Let (mr)1≤r≤n be a sequence of vectors mr ∈
Zd and let Mr = Nm1 + · · ·+Nmr for every r ∈ {1, . . . , n}.
If Mn is included in

⋃k
j=1 bj +Pj where bj ∈ Zd and Pj ⊆

Zd is a well-limit periodic set then there exists j ∈ {1, . . . , k}
such that Mn ∩ (bj +Pj) is non empty and such that (mr +
Mr) ∩ lim(Pj) is non empty for every r ∈ {1, . . . , n}.

Proof: We prove the lemma by induction over n ∈ N. The
rank n = 0 is immediate. Assume the rank n ∈ N proved and
let us consider a sequence (mr)1≤r≤n+1 of vectors mr ∈ Zd
and let Mr = Nm1 + · · ·+Nmr for every r ∈ {1, . . . , n+1}.
Assume Mn+1 is included in

⋃k
j=1 bj + Pj where bj ∈ Zd

and Pj ⊆ Zd is a well-limit periodic set. Let t ∈ N and
observe that Mn ⊆

⋃k
j=1 bj − tmn+1 + Pj . By induction

there exists j ∈ {1, . . . , k} such that Mn ∩ (bj − tmn+1 +
Pj) is non empty and such that (mr + Mr) ∩ lim(Pj) is
non empty for every r ∈ {1, . . . , n}. We deduce that there
exists j ∈ {1, . . . , k} and an infinite subset T ⊆ N such that
(mr +Mr)∩ lim(Pj) is non empty for every r ∈ {1, . . . , n}
and such that Mn ∩ (bj − tmn+1 + Pj) is non empty for
every t ∈ T . Since Mn + tmn+1 ⊆ Mn+1 we deduce that
Mn+1∩ (bj +Pj) is non empty. For every t ∈ T there exists
kt ∈Mn such that vt = kt − bj + tmn+1 in in Pj . As Mn

is finitely generated and Pj is a well-limit periodic set, we
deduce that there exists t < t′ such that kt′ − kt ∈Mn and
vt′ − vt ∈ lim(Pj). Observe that this last vector is equal to
kt′ − kt + (t′ − t)mn+1 which is in mn+1 + Mn+1. So we
have proved the rank n + 1. Therefore, the lemma is proved
by induction.

Now, let us prove Theorem XII.1. We consider a non-empty
set X =

⋃k
j=1 bj + Pj where bj ∈ Zd and Pj ⊆ Zd is

a smooth periodic set. We introduce the definable conic set
Kj = lim(Pj). We denote by r the dimension of X. Note that
k > 0 and r ∈ {1, . . . , d} since X is non empty. We introduce
the lattices Lj = Pj −Pj . We denote by Vj the vector space
generated by Pj . We introduce the set J = {j ∈ {1, . . . , k} |



rank(Vj) = r}, the class V = {Vj | j ∈ J}. For every vector
space V ∈ V we introduce the set JV = {j ∈ J | V = Vj},
the lattice LV =

⋂
j∈JV Lj . For every V ∈ V and for every

z ∈ Zd we introduce the set JV,z = {j ∈ JV | z ∈ bj + Lj}
and the finite class KV,z = {Kj | j ∈ JV,z}.

Lemma E.4. For every V ∈ V and for every z ∈ Zd, we
have:

LV ∩ (X− z) ≡r LV ∩
⋃

j∈JV,z

bj − z + Pj

Proof: Let us consider j ∈ {1, . . . , k} such that the
dimension of the intersection LV ∩ (bj − z + Pj) is greater
or equal to r and let us prove that j ∈ JV,z. In that case, this
intersection is non empty and thus it contains a vector x. We
deduce that the intersection is included in x+(V∩Vj). Hence
rank(V ∩ Vj) ≥ r. From V ∩ Vj ⊆ V and rank(V) = r
we get V ∩ Vj = V. Hence V ⊆ Vj . As rank(V) = r
and rank(Vj) ≤ r we deduce that V = Vj . Thus j ∈ JV.
Moreover, since x ∈ LV ∩ (bj − z + Pj) we deduce that
bj − z ∈ x + Lj ⊆ Lj as x ∈ LV ⊆ Lj . Thus j ∈ JV,z. We
deduce the relations:

LV ∩ (X− z) = LV ∩
k⋃
j=1

(bj − z + Pj)

=

k⋃
j=1

LV ∩ (bj − z + Pj)

≡r
⋃

j∈JV,z

LV ∩ (bj − z + Pj)

= LV ∩
⋃

j∈JV,z

(bj − z + Pj)

We have proved the lemma.

Lemma E.5. If there exists a Presburger set S ⊆ Zd such
that X ≡r S then for every V ∈ V and for every z ∈ Zd we
have:

LV ∩ Σ(KV,z) ≡r LV ∩
⋃

j∈JV,z

bj − z + Pj

Proof: Assume that there exists a Presburger set S ⊆ Zd
such that X ≡r S. Lemma E.4 shows the following relation:

LV ∩ (S− z) ≡r LV ∩
⋃

j∈JV,z

bj − z + Pj

Hence, there exists a Presburger set D ⊆ Zd such that
dim(D) < r and such that the Presburger set R = LV∩(S−z)
satisfies R\D ⊆ LV ∩

⋃
j∈JV,z bj − z + Pj ⊆ D ∪ R.

Lemma E.2 shows that for every j ∈ JV,z there exists a
Presburger set Dj ⊆ Zd such that dim(Dj) < dim(Pj) and
such that bj − z + (Lj ∩ Kj) ⊆ Dj ∪ D ∪ R. Therefore
LV ∩

⋃
j∈JV,z bj − z+ (Lj ∩Kj) is included in the union of

Z = D∪
⋃
j∈JV,z Dj and R. We get the following inclusions:

R\Z ⊆ LV ∩
⋃

j∈JV,z

bj − z + (Lj ∩Kj) ⊆ R ∪ Z

Since dim(Z) < r we deduce the following relation:

LV ∩
⋃

j∈JV,z

bj − z+ (Lj ∩Kj) ≡r LV ∩
⋃

j∈JV,z

bj − z+Pj

Finally observe that for every j ∈ JV,z, since bj−z ∈ Lj , we
have bj−z+(Lj∩Kj) = Lj∩(bj−z+Kj). Corollary XI.2
shows that Lj ∩ (bj − z + Kj) ≡r Lj ∩Kj .

Lemma E.6. Let V ∈ V and z ∈ Zd such that:

LV ∩ Σ(KV,z) ≡r LV ∩
⋃

j∈JV,z

bj − z + Pj

Then the class Σ(KV,z) has the overlapping property.

Proof: There exists a Presburger set D ⊆ Zd such that
dim(D) < r and such that the Presburger set S = LV ∩
Σ(KV,z) and the set R = LV ∩

⋃
j∈JV,z bj − z + Pj satisfy

R\D ⊆ S ⊆ R ∪D.
Let us consider j0 ∈ JV,z and a sequence v1, . . . ,vn of

vectors vn ∈ Qd such that Q>0v1 + · · · + Q>0vn ⊆ Kj0

and let us prove that there exists K ∈ KV,z such that
K ∩ (Q>0v1 + · · · + Q>0vr) 6= ∅ for every r ∈ {1, . . . , n}.
By extending the sequence we can assume that v1, . . . ,vn
generates V. Moreover, by replacing vectors vr by vec-
tors in N>0vr we can assume without loss of generality
that vr ∈ LV. Therefore v = v1 + · · · + vn satisfies
v + Nv1 + · · · + Nvn ⊆ LV ∩ Kj0 ⊆ S ⊆ R ∪ D. By
decomposing D into linear sets, since v1, . . . ,vn generates
V, Lemma E.3 shows that there exists j ∈ JV,z such that
(v + Nv1 + · · · + Nvn) ∩ (bj − z + Pj) 6= ∅ and such that
(N>0v1 + · · ·+ N>0vr) ∩Kj 6= ∅ for every r ∈ {1, . . . , n}.
We have proved that KV,z has the overlapping property.

Lemma E.7. For every V ∈ V and for every z ∈ Zd we have:

LV ∩
⋃

j∈JV,z

bj − z + (Lj ∩Kj) ≡r LV ∩ Σ(KV,z)

Proof: We observe that for every j ∈ JV, the intersection
LV ∩ (bj − z+Lj) is equal to LV. We deduce the following
equality:

LV ∩
⋃

j∈JV,z

bj − z + (Lj ∩Kj)

=
⋃

j∈JV,z

LV ∩ (bj − z + (Lj ∩Kj))

Since bj−z ∈ Lj we get bj−z+(Lj∩Kj) = Lj∩(bj−z+
Kj). Corollary XI.1 shows that Lj∩(bj−z+Kj) ≡r Lj∩Kj .
Hence LV ∩ (bj − z + (Lj ∩Kj)) ≡r LV ∩Kj . We have
proved: ⋃

j∈JV,z

LV ∩ (bj − z + (Lj ∩Kj))

≡r
⋃

j∈JV,z

LV ∩Kj = LV ∩ Σ(KV,z)

We deduce the lemma.



Lemma E.8. If KV,z has a complete extraction for every V ∈
V and for every z ∈ Zd then there exists a finite sequence
(Cj)1≤j≤k of finitely generated conic sets Cj ⊆ Kj such
that

⋃k
j=1 bj + Lj ∩Kj ≡

⋃k
j=1 bj + Lj ∩Cj .

Proof: Let V ∈ V and z ∈ Zd. From Lemma E.7 we
deduce the following relation:

LV ∩
⋃

j∈JV,z

bj − z + (Lj ∩Kj) ≡r LV ∩ Σ(KV,z)

Since KV,z has a complete extraction, there exists a
sequence (CV,z,j)j∈JV,z of finitely generated conic sets
CV,z,j ⊆ Kj such that

⋃
j∈JV,z CV,z,j = Σ(KV,z). Since

for every j ∈ JV,z we have LV ∩ (bj − z + Lj) = LV, we
deduce:

LV ∩ Σ(KV,z) =
⋃

j∈JV,z

LV ∩CV,z,j

= LV ∩ (
⋃

j∈JV,z

(bj − z + Lj) ∩CV,z,j)

Lemma XI.1 shows that (bj − z+Lj)∩CV,z,j ≡r bj − z+
(Lj ∩CV,z,j) for every j ∈ JV,z. We have proved:

LV ∩ Σ(KV,z) ≡r LV ∩
⋃

j∈JV,z

bj − z + (Lj ∩CV,z,j)

Let us introduce a finite set ZV ⊆ Zd such that
∑
j∈JV bj+

Lj = ZV + LV. We consider the sequence (Cj)1≤j≤k of
finitely generated conic sets defined by Cj = {0} if j 6∈ J
and defined for every j ∈ J by:

Cj =
∑

z∈ZVj

CVj ,z,j

Observe that Cj ⊆ Kj for every j ∈ {1, . . . , k}. In particular
Lj ∩ Cj ⊆ Lj ∩Kj . We consider the sequence (Mj)1≤j≤k
of sets Mj = Lj ∩Cj . Since LV ∩ (bj − z + Mj) is empty
for every j ∈ JV\JV,z we deduce:

LV ∩ (
⋃
j∈JV

bj − z + (Lj ∩Kj))

≡r LV ∩
⋃

j∈JV,z

bj − z + Mj

= LV ∩
⋃
j∈JV

bj − z + Mj

Since
∑
j∈JV bj + Lj = ZV + LV, we deduce the relation⋃

j∈JV bj + (Lj ∩ Kj) ≡r
⋃
j∈JV bj + Mj . Therefore⋃

j∈J bj+(Lj∩Kj) ≡r
⋃
j∈J bj+Mj . Since dim(bj+(Lj∩

Kj)) < r and dim(bj +Mj) < r for every j ∈ {1, . . . , k}\J
we deduce that bj + (Lj ∩Kj) ≡r ∅ and bj +Mj ≡r ∅. We
have proved the following relation:

k⋃
j=1

bj + (Lj ∩Kj) ≡r
k⋃
j=1

bj + Mj

In the previous relation, the relation ≡r can be replaced by ≡
since the set Y =

⋃k
j=1 bj+(Lj∩Kj) satisfies dim(Y) = r.

Now let us prove Theorem XII.1. Assume that X is equiv-
alent for ≡r to a Presburger set. We deduce that there exists
a finite sequence (Cj)1≤j≤k of finitely generated conic sets
Cj ⊆ Kj such that X ≡r

⋃k
j=1 bj + (Lj ∩Cj).

Let us introduce the periodic set Qj = Lj ∩Cj . Since the
conic set generated by Qj is Cj which is finitely generated,
Lemma V.4 shows that Qj is finitely generated. Lemma E.1
shows that for every v ∈ Qj there exists p ∈ Pj such that
p + Nv ⊆ Pj . Since Qj is finitely generated, there exists
yj ∈ bj + Pj such that the linear set Yj = yj + Qj is
included in bj + Pj .

Now, let us consider a sequence (pj)1≤j≤k of vectors pj ∈
Pj . Note that pj +Yj = yj +(Lj ∩(pj +Cj)). Note that the
vector space Wj generated by Cj is included in Vj . If the
inclusion is strict then rank(Wj) < r and we get pj+Yj ≡r
∅ ≡r bj + Qj . Otherwise, if Wj = Vj then Corollary XI.2
shows that pj + (yj − bj) + Cj ≡r Cj . Thus pj + Yj ≡r
bj + Qj . We have proved that X ≡r

⋃k
j=1 pj + Yj .


