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Presburger Vector Addition Systems

Jérome Leroux
Laboratoire Bordelais de Recherche en Informatique
CNRS, Talence, France

Abstract—The reachability problem for Vector Addition Sys-
tems (VAS) is a central problem of net theory. The problem is
known to be decidable by inductive invariants definable in the
Presburger arithmetic. When the reachability set is definable in
the Presburger arithmetic, the existence of such an inductive
invariant is immediate. However, in this case, the computation
of a Presburger formula denoting the reachability set is an open
problem. In this paper we close this problem by proving that
if the reachability set of a VAS is definable in the Presburger
arithmetic, then the VAS is flatable, i.e. its reachability set can
be obtained by runs labeled by words in a bounded language. As
a direct consequence, classical algorithms based on acceleration
techniques effectively compute a formula in the Presburger
arithmetic denoting the reachability set.

I. INTRODUCTION

Vector Addition Systems (VAS) or equivalently Petri Nets
are one of the most popular formal methods for the representa-
tion and the analysis of parallel processes [1]. The reachability
problem is central since many computational problems (even
outside the realm of parallel processes) reduce to this problem.
Sacerdote and Tenney provided in [2] a partial proof of
decidability of this problem. The proof was completed in
1981 by Mayr [3] and simplified by Kosaraju [4] from [2],
[3]. Ten years later [5], Lambert provided a further simplified
version based on [4]. This last proof still remains difficult and
the upper-bound complexity of the corresponding algorithm
is just known to be non-primitive recursive. Nowadays, the
exact complexity of the reachability problem for VAS is still
an open-question. Even the existence of an elementary upper-
bound complexity is open.

Recently, in [6], we proved that even if reachability
sets of VAS are not definable in the Presburger arithmetic
FO(Z,+,<), they are almost semilinear, a class of sets
that extends the class of Presburger sets inspired by the
semilinear sets [7]. An application of this result was provided;
we proved that a final configuration is not reachable from
an initial one if and only if there exists a forward inductive
invariant definable in the Presburger arithmetic that contains
the initial configuration but not the final one. Since we can
decide if a Presburger formula denotes a forward inductive
invariant, we deduce that there exist checkable certificates
of non-reachability in the Presburger arithmetic. In particular,
there exists a simple algorithm for deciding the general VAS
reachability problem based on two semi-algorithms. A first
one that tries to prove the reachability by enumerating finite
sequences of actions and a second one that tries to prove the
non-reachability by enumerating Presburger formulas. Such

an algorithm always terminates in theory but in practice an
enumeration does not provide an efficient way for deciding
the reachability problem. In particular the problem of deciding
efficiently the reachability problem is still an open question.

When the reachability set is definable in the Presburger
arithmetic, the existence of checkable certificates of non-
reachability in the Presburger arithmetic is immediate since
the reachability set is a forward inductive invariant (in fact the
most precise one). The problem of deciding if the reachability
set of a VAS is definable in the Presburger arithmetic was
studied twenty years ago independently by Dirk Hauschildt
during his PhD [8] and and Jean-Luc Lambert. Unfortunately,
the work of Lambert was never published, and experts think
that the proof of Hauschildt is incomplete. Moreover, from
these two works, it is difficult to deduce a simple algorithm
for computing a Presburger formula denoting the reachability
set when such a formula exists.

For the class of flatable vector addition systems, such a
computation can be performed with accelerations techniques.
Let us recall that a VAS is said to be flatable if there exists a
language included in wy ...w;, for some words wy, ..., W
such that that every reachable configuration is reachable by
a run labeled by a word in this language (such a language
is said to be bounded [9]). Acceleration techniques provide
a framework for deciding reachability properties that works
well in practice but without termination guaranty in theory.
Intuitively, acceleration techniques consist in computing with
some symbolic representations transitive closures of sequences
of actions. For vector addition systems, the Presburger arith-
metic is known to be expressive enough for this computation.
As a direct consequence, when the reachability set of a vector
addition system is computable with acceleration techniques,
this set is necessarily definable in the Presburger arithmetic.
In [10], we proved that a VAS is flatable if, and only if, its
reachability set is computable by acceleration.

Recently, we proved that many classes of VAS with known
Presburger reachability sets are flatable [10] and we con-
jectured that VAS with reachability sets definable in the
Presburger arithmetic are flatable. In this paper, we prove
this conjecture. As a direct consequence, classical acceleration
techniques always terminate on the computation of Presburger
formulas denoting reachability sets of VAS when such a
formula exists.

Outline In section III we introduce the acceleration frame-
work and the notion of flatable subreachability sets and
flatable subreachability relations. We also recall why Pres-



burger formulas denoting reachability sets of flatable vector
addition systems are computable with acceleration techniques.
In section IV we recall the definition of well-preorders, the
Dickson’s lemma and the Higman’s lemma. In Section V
we recall some classical elements of linear algebra and we
introduce the central notion of smooth periodic sets defined
as follows.

A periodic set is a set P C Q7 such that 0 € P and
P + P C P. Let us recall [7] that a set X C Z¢ is definable
in the Presburger arithmetic if and only if it is a finite union of
linear sets, sets of the form b+ P where b € N and P is a
periodic set of the form P = Np; +- - -+Npy, for some vectors
Pis---,Pr € Z%. A limit of a periodic set P C Q% is a vector
v € Q7 such that there exist p € P and n € Ny satisfying
p + nNv C P. The set of limits is denoted by lim(P). A
periodic set is said to be smooth if lim(P) is definable in
the decidable logic FO (Q,+, <) and if for every sequence
(Pn)nen of vectors p,, € P there exists an infinite set N C N
such that p,,, — p,, € lim(P) for every n < m in N.

In Section VI we recall the well-order over the runs first
introduced in [11] central in the analysis of vector addition
systems. Sections VII and VIII provide independent results
that are used in Section IX to prove that reachability sets of
vector additions systems intersected with Presburger sets are
finite unions of sets b +P where b € N? and P C N? is a
smooth periodic set such that for every linear set Y C b+ P
there exists p € P such that p+Y is a flatable subreachability
set (intuitively a subset of the reachability set computable by
acceleration). The last sections show that this decomposition
of the reachability set is sufficient for proving that if the
reachability set of a VAS is definable in the Presburger
arithmetic then it is flatable. Due to space limitation, most
mathematical results are only proved in appendix.

II. VECTORS AND NUMBERS

We denote by N,N+¢,Z,Q,Q>0,Qs0 the set of natural
numbers, positive integers, integers, rational numbers, non
negative rational numbers, and positive rational numbers.
Vectors and sets of vectors are denoted in bold face. The
ith component of a vector v. € Q7 is denoted by v(i).
We introduce ||v]|co = maxi<i<q|v(i)| where |v(i)| is the
absolute value of v(i). A set B C Q% is said to be bounded if
there exists m € Qx> such that ||b||c < m for every b € B.
The addition function + is also extended component-wise over
Q.

The dot gmduct of two vectors x,y € Q¢ is the rational
number ) ._, x(4)y(¢) denoted by x - y. A linear form is a
totally-defined function f : Q? — Q such that there exists
h € Q4 satisfying f(x) = h - x for every x € Q%. A linear
function is a totally-defined function f : Q¢ — QP such that
f=(f1,-.., fp) where f; : Q% — Q is a linear form.

Given two sets V1, Vo C Q% we denote by V4V, the set
{vi+va](vi,v2) € Vi x V3}, and we denote by V; —V,
the set {vi—va | (v1,v2) € V1 xV3}. In the same way given
TCQand VCQwelet TV = {tv | (t,v) € T x V}.
We also denote by v + V3 and V1 + vy the sets {v1} + V3,

and Vi + {v2}, and we denote by ¢V and T'v the sets {t}V
and T{v}. In the sequel, an empty sum of sets included in
Q7 denotes the set reduced to the zero vector {0}.

III. FLATABLE VECTOR ADDITION SYSTEMS

A Vector Addition System (VAS) is a pair (cini, A) where
cinic € N? is an initial configuration and A C Z% is a finite
set of actions.

The semantics of vector addition systems is obtained as
follows. A vector ¢ € N¢ is called a configuration. We intro-
duce the labeled relation — defined by x 2 yifx,y € N¢
are configurations, a € A is an action, and y = x + a.
As expected, a run is a non-empty word p = cg...cy of
configurations ¢; € N? such that a; = ¢; — ¢;_1 is a vector
in A. The word w = aj ...aj is called the label of p. The
configurations ¢y and cj are respectively called the source
and the rarger and they are denoted by src(p) and tgt(p). We
also denote by dir(p) the couple (src(p),tgt(p)) called the
direction of p. The relation — is extended over the words
w = aj ...ay of actions a; € A by x 2 y if there exists a
run from x to y labeled by w. Given a language W C A*,
we denote by Y, the relation Uwew 2, The relation 2
is called the reachability relation and it is denoted by —. A
subreachability relation is a relation included in .

2 2 2 2 \/ \/ \/

x—>(1,3)—>(2,4)—>(3,5) —>(4,6) —>(3,4) —>(2,2) —>y

Figure 1. The run p labeled by (1,1)*(—1,—2)3 with dir(p) = (x,y).

Given a configuration ¢ € N? and a language W C A*
we denote by post(c, W) the set of configurations y € N¢
such that ¢ 2 y. Given a set of configurations C C N¢
and a language W C (Z%)* we denote by post(C, W) the set
of configurations (J . post(c, W). The set post(Cinit, A¥) is
called the reachability set. A subset of this set if called a
subreachability set.

Flatability properties are defined thanks to bounded lan-
guages. A language W C A* is said to be bounded if there
exists a finite sequence w, ... w,, of words w; € A* such
that W C wj...w},. Let us recall that bounded languages
are stable by concatenation, union, intersection, and subset. A
subreachability relation is said to be flatable if it is included in
W, where W C A* is a bounded language. A subreachability
set is said to be flatable if it is included in post(cini, W) where
W C A* is a bounded language.



Definition II1.1. A VAS is said to be flatable if its reachability
set is flatable. A VAS is said to be Presburger if its reachability
set is definable in the Presburger arithmetic.

In this paper we show that the class of Presburger VAS
coincides with the class of flatable VAS. In the remainder of
this section we recall elements of acceleration techniques that
explain why flatable VAS are Presburger. We also explain why
a Presburger formula denoting the reachability set is effectively
computable in this case.

The displacement of a word w = a; ...ay of actions a; €
A is the vector A(w) = Z’;zl a;. Observe that x — y
implies x + A(w) = y but the converse is not true in general.
The converse property can be obtained by associating to every
word w = a;...a the configuration c,, defined for every

ie{l,...,d} by:
ey (i) = max{—(a + - +a;)(i) | 0 < j < k}

The following lemma shows that c,, is the minimal for <
configuration from which there exists a run labeled by w.

Lemma IIL2. There exists a run from a configuration x € N¢
labeled by a word w € A* if, and only if, X > cy,.

Proof: We assume that w = a;...a, where a; € A.
Assume first that there exists a run p = cq...cy labeled by
w from ¢y = x. Since a; = ¢; — ¢;_1 we deduce that c; =
x+a;+---+a;. Since ¢c; > 0 we get x > —(a; +---+a;).
We have proved that x > c,,. Conversely, let us assume that
X > ¢, and let us prove that there exists a run from x labeled
by w. We introduce the vectors ¢c; = x+a; +---+a;. Since
x > ¢, we deduce that c; € N%. Therefore p =cg...cy is a
run. Just observe that cp = x and p is labeled by w. [ |

The following lemma shows that the set of triples
(x,m,y) € N® x N x N¢ such that x —— 7y is effectively
definable in the Presburger arithmetic. In particular with an
existential quantification of the variable n, we deduce that

the relation — is effectively definable in the Presburger
arithmetic. Hence if a set of configurations C C N9 is
denoted by a Presburger formula then for every word w € A*
we can effectively compute a Presburger formula denoting
post(C, w*).

Lemma IIL3. A pair (x,y) € N? x N? of configurations
satisfies X —— y where w € A* and n € Nwq if and only if:

X>cy N x+nAw)=y A y—A(w)>cy

Proof: Assume first that we have a run x wr, y. Since
n > 1, a prefix and a suffix of this run show that x N
x+A(w) and y—A(w) = y. Lemma ITL.2 shows that x > c,,
and y — A(w) > c,,. Moreover, since x + nA(w) =y we
have proved one way of the lemma. For the other way, let us
assume that X > ¢, X + nA(w) =y, and y — A(w) > ¢y
We introduce the sequence cy,...,c, defined by c; = x +
jA(w). Let us prove that ¢;_; > ¢, for every 1 < j < n.

Let i € {1,...,d}. If A(w)(¢) > 0 then c;_1(3) > x(i) >
¢y (4). Next, assume that A(w)(z) < 0. In this case, since
x + nA(w) = y we deduce that ¢c;_; =y — A(w) + (n —
(=Aw)). Thus ¢;1(i) = y(i) — A(w)(i) = cu(i). We
have proved that ¢;_; > c,,. Lemma IIL.2 shows that c;_; —
c;j. We have proved that cg w—L> c,.Sincecp =xandc, =y
we have proved the other way. [ ]

We deduce the following theorem also proved in [12] in a
more general context. This theorem shows that we can effec-
tively compute a Presburger formula denoting the reachability
set of flatable VAS.

Theorem II1.4 ( [12]). There exists an algorithm computing
for any flatable VAS (ciis, A) a sequence wy, ..., wy, € A*
such that:

post(Cinir, A*) = post(Cipir, w7 ... w},)

Proof: Let us consider an algorithm that takes as input
a VAS (cinir, A) and it computes inductively a sequence
(Wm)m>1 of words w,, € A* such that every finite sequence
(0j)1<j<n of words o; € A* is a sub-sequence. Note
that such an algorithm exists. From this sequence, another
algorithm computes inductively Presburger formulas denoting
sets of configurations C,, C N satisfying Cy = {cini} and
C,, = post(C,,—1,w},) for every m € Ny g. The algorithm
stops and it returns wy, ..., w,, when post(C,,, A) C C,,.
Note that such a test is implementable since C,,, is denoted by
a Presburger formula and the Presburger arithmetic is a decid-
able logic. When the algorithm stops the set C,, is included
in the reachability set and it satisfies post(C,,,, A) C C,,,. We
deduce that C,, is equal to the reachability set. In particular
the reachability set if equal to post(ciny, w7 ... w,) and the
algorithm is correct.

For the termination, since the VAS is flatable, there exists a
bounded language W C A* such that the reachability set is in-
cluded in post(ciyi, W). As W is bounded, there exists a finite
sequence 01, ...,0, € A* such that W C o7 ...0}. There
exists m € N such that this sequence is a sub-sequence of
Wi, ..., Wn. Letus observe that W C o7 ...0) Cwi...w},.
From the following inclusions we deduce that C,,, is equal to
the reachability set:

post(Cinit, A*) € post(Cinit, W)
C post(Cinit, Wi ... W)
=C,,
C post(cinit, A™)

In particular post(C,,,A) C C,, and the algorithm termi-
nates before the mth iteration. [ ]

Corollary IIL.5. Reachability sets of flatable VAS are effec-
tively definable in the Presburger arithmetic.

In the remainder of this paper, we proved that Presburger
VAS are flatable. As a direct consequence a Presburger formula



denoting the reachability set of a Presburger VAS is effectively
computable using classical acceleration techniques.

IV. WELL-PREORDERS

A relation R over a set S is a subset R C S x S. The
composition of two relations Ry, R over S is the relation over
S denoted by R; o Ry and defined as the set |J;,cg{(s,t) €
S xS (s,i) € Ri A (i,t) € Ry}. A relation R over S is
said to be reflexive if (s,s) € R for every s € S, transitive if
Ro R C R, antisymmetric if (s,t),(t,s) € R implies s =¢, a
preorder if R is reflexive and transitive, and an order if R is
an antisymmetric preorder. The composition of R by itself n
times where n € N is denoted by R". The transitive closure
of a relation R is the relation | J,,~, R" denoted by R™.

A preorder C over a set S is said to be well if for every
sequence (s, )nen Of elements s,, € S there exist an infinite
set N C N such that s,, C s,, for every n < m in N. Observe
that (N, <) is a well-ordered set whereas (Z, <) is not well-
ordered. As another example, the pigeonhole principle shows
that a set S is well-ordered by the equality relation if, and only
if, S is finite. Well-preorders can be easily defined thanks to
Dickson’s lemma and Higman’s lemma as follows.

Dickson’s lemma: Dickson’s lemma shows that the carte-
sian product of two well-preordered sets is well-preordered.
More formally, given two preordered sets (S7,C;) and
(S2,C2) we denote by C; Xx Lo the preorder defined
component-wise over the cartesian product S; x Sy by
(81,82) E1 X Co (8], 55) if s1 T s} and s Co sh. Dickson’s
lemma says that (S7 x So,C1 x L) is well-preordered for
every well-preordered sets (S7, 1) and (S, o). As a direct
application, the set N? equipped with the component-wise
extension of < is well-ordered.

Higman’s lemma: Higman’s lemma shows that words
over well-preordered alphabets can be well-preordered. More
formally, given a preordered set (S, C), we introduce the set
S* of words over S equipped with the preorder C=* defined by
w C* w’ if w and w’ can be decomposed into w = s1 ... s
and w’' € S*s).5* ... 58" where s; C s’ are in S for every
j€A{1,...,k}. Higman’s lemma says that (S*,C*) is well-
preordered for every well-preordered set (S,C). As a classical
application, the set of words over a finite alphabet S is well-
ordered by the sub-word relation =*.

V. VECTOR SPACES, CONIC SETS, PERIODIC SETS, AND
LATTICES

In this section we recall some elements of linear algebra.
We also introduce the central notions of definable conic sets
and smooth periodic sets.

A vector space isaset V.C Q% such that 0 e V, V4+V C
V, and QV C V. The following set is a vector space called
the vector space generated by X C Q:

k
> Ax; [ keNand (A,%x;) € Qx X
j=1

Figure 2. The finitely generated conic set Q>o(1,1) +Q>¢(1,0) and the
definable conic set {(0,0)} U {(c1,c2) € Q% | c2 < c1}

This vector space is the minimal for the inclusion among the
vector spaces that contain X. Let us recall that every vector
space V is generated by a finite set. The rank rank(V) of a
vector space V is the minimal natural number r € N such that
there exists a finite set B with r vectors that generates V. Let
us recall that rank(V) < rank(W) for every pair of vector
spaces V. C W. Moreover, if V is strictly included in W
then rank(V) < rank(W). Vectors spaces are geometrically
characterized as follows:

Lemma V.1 ( [13]). A set V. C Q% is a vector space if and
only if there exists a finite set H C Q% such that:

V{ve@d| A h~v0}

heH

A conic set is a set C C Q¢ such that 0 € C,C+C C C
and Q>oC C C. The following set is a conic set called the
conic set generated by X C Q:

k
Z)\ij ‘ k € N and ()\j,Xj) S QZO x X

Jj=1

This conic set is the minimal for the inclusion among the
conic sets that contain X. Contrary to the vector spaces, some
conic sets are not finitely generated. Fig. 2 depicts examples
of finitely generated conic sets and (non finitely generated)
conic sets. Finitely generated conic sets are geometrically
characterized by the following lemma.

Lemma V.2 ( [13]). A set C C Q7 is a finitely generated
conic set if and only if there exists a finite set H C Q% such

that:
C:{ceQd| A h-czo}

hcH

Definition V.3. A conic set is said to be definable if it can be
denoted by a formula in FO (Q, +, <).

A periodic set is a set P C Q¢ such that 0 € P, and
P + P C P. The following set is a periodic set called the
periodic set generated by X C Q:

k
anxj | ke Nand (nj,x;) e NxX

Jj=1



This periodic set is the minimal for the inclusion among the
periodic sets that contains X. Observe that the conic set C
generated by a periodic set P is C = Qx(oP. The finitely
generated periodic sets are characterized as follows. Given a
periodic set P we denote by <p the preorder over P defined
by p <p q if q € p + P. A periodic set P C Q% is said
to be discrete if there exists n € Ny such that P C %Zd.
Observe that finitely generated periodic sets are discrete. The
following lemma characterizes the discrete periodic sets that
are finitely generated. The proof is given in appendix.

Lemma V4. Let P be discrete periodic set. The following
conditions are equivalent:

o P is finitely generated as a periodic set.
o (P,<p) is well-preordered.
o Qx>oP is finitely generated as a conic set.

Remark V.5. A set X C 7% is definable in the Presburger
arithmetic FO (Z,+, <) if, and only if, it is a finite union of
linear set b + P where b € Z% and P C Z¢ is a finitely
generated periodic set [7].

A limit of a periodic set P C Q is a vector v € Q¢ such
that there exists p € P and n € Ny satisfying p+nNv C P.
The set of limits of P is denoted by lim(P).

Lemma V.6. lim(P) is a conic set.

Proof: Let C = lim(P). Let vy,vy € C. There exist
P1,pP2 € P and ni,ny € Ny such that p; + n1Nvy; and
P2 + n2Nvy are included in P. Let n = nins. Since nN is
included in n1N and noN we deduce that p; + nNv; and
p2 + nNvy are included in P. As P is periodic we deduce
that p + nNv C P where p = p; + p2 and v = vy + va.
As p € P we get v € C. We deduce that C + C C C. Since
0 € C and Q>(C C C are immediate, we have proved that
C is a conic set. [ |

A periodic set P is said to be well-limit if for every
sequence (py)nen Of vectors p,, € P there exists an infinite
set N C N such that p,,, — p, € lim(P) for every n < m
in N. The periodic set P is said to be smooth if lim(P) is a
definable conic set and P is well-limit.

Example V.7. Let us consider the periodic set P C N? gener-
ated by (0, 1) and the pairs (2™,1) where m € N. The limit of
P is the definable conic set C = {(0,0)}U(Q>0 X Qx0). Note
that P is not well-limit since the sequence (Pn)nen defined
by pn, = (2",1) is such that p,, — p, = (2™ —2",0) ¢ C
for every n < m.

A lattice is a set L C Q% suchthat 0 e L, L+ L C L
and —L C L. The following set is a lattice called the lattice
generated by X C Q%:

k
szxj | ke Nand (z,%x,;) € Zx X

Jj=1

This lattice is the minimal for the inclusion among the lattices
that contain X. Observe that the conic set generated by a
lattice L is equal to the vector space V = QL. Since vector
spaces are finitely generated, the previous Lemma V.4 shows
that discrete lattices are finitely generated.

Remark V.8. The following inclusions hold:

. .. discrete nitely gen.
conic periodic .o f v &
D periodic DO  periodic
sets sets
sets sets
Ul Ul Ul Ul
vector . discrete nitely gen.
C lattices D . _ ).)g
spaces lattices lattices

VI. WELL-ORDER OVER THE RUNS

We define a well-order over the runs as follows. We intro-
duce the relation <0 over the runs defined by p < p’ if p is
a run of the form p = cg...c; where ¢; € N? and if there
exists a sequence (v;)o<;j<kt+1 of vectors v; € N such that
p' is a run of the form p’ = py ... pyr Where p; is a run from
Cj =+ Vj to Cj + Vj+1.

2
(1,0 (2,1)

R DR
CEL w CEH O Tw
(3,3) (2,1) (3,2) (2,0) 3.1
Figure 3. (1,0)(2,1) < (3,3)(2,1)(3,2)(2,0)(3,1)

Example VI.1. This example is depicted on Figure 3. Let p =
(1,0)(2,1) and observe that p < pyps where py = (3,3)(2,1)
and P2 = (35 2)(27 O)(37 1)

Let us recall the following lemma based on the Higman’s
Lemma.

Lemma VL2 ( [11], [14]). The relation < is a well-order.

Lemma V1.3. For every runs p<p/, the pair (e, f) = dir(p’)—
dir(p) satisfies dir(p) + N(e, f) is a flatable subreachability
relation.

Proof: Assume that p < p’. In this case p = c¢g...cg
where ¢; € N9 and there exists a sequence vy, ..., Vigy1 € N
such that p’ = pg...pr where p; is a run from c; + v, to
cj + vy labeled by a word o;. We introduce the actions
ai,...,a defined by a; = c; — c¢;_;. By monotony we
deduce that for every 7 € N we have a run from c; + rv;
to ¢; + v, labeled by o7. We also have ¢; + rv;qq 2,
Cjt+1 + rvjy1. We obtain from these runs, a run p, from
co + rvg to ¢ + vy labeled by ogajof ... ago;. Since
(e,f) = dir(p’) — dir(p) is the pair (vg,vis+1) we de-
duce that dir(p) + N(e,f) is included in W, Where W =
opaLoy ... agoy. |

Based on the definition of the well-order <, we introduce
the transformer relations with capacity ¢ € N as the relation



A over N defined by x A y if there exists a run from ¢+ x
to ¢ + y. By monotony, let us observe that A s a periodic
relation.

Remark VI1.4. In [14], the conic set Q>q A is shown to be
definable.

VII. REFLEXIVE DEFINABLE CONIC RELATIONS

The class of finite unions of reflexive definable conic
relations over Q‘io are clearly stable by composition, sum,
intersection, and union. In the appendix we prove the following
theorem:

Theorem VIL.1. Transitive closures of finite unions of reflex-
ive definable conic relations over Q‘io are reflexive definable
conic relations.

Example VIL.2. Let us consider the reflexive definable conic
relation R = {(z,2’) € Q%, | = < 2’ < 2z}. Observe
that R™ where n > 1 is the reflexive definable conic relation
{(z,2") € Q%, | * < 2’ < 2"z}, Thus R = {(0,0)} U
{(z,2") | 0 < & < 2'}. Observe that R™ is strictly included
in RY for every n > 1. Hence R cannot be computed with
a finite Kleene iteration R' U ... U R™

VIII. TRANSFORMER RELATIONS

In this section, we prove the following theorem. All other
results are not used in the sequel.

Theorem VIIL1. For every capacity ¢ € N% and for every
periodic relation P included in A, there exists a definable
conic relation R C Q% x Q% such that lim(P) C R and
such that for every (e,f) € R there exists (x,y) € P and
n € Nyg such that

(c,c) + (x,y) + nN(e, f)

is a flatable subreachability relation.

Theorem VIII.1 is obtained by following the approach
introduced in [14]. Note that even if some lemmas are very
similar to the ones given in that paper, proofs must be adapted
to our context. In the remainder of the section, v denotes
a triple (c, P) where ¢ € N? is a capacity, and P C ~
is a periodic relation. We introduce the set €, of runs p
such that dir(p) € (c,c) + P. Note that €2, is non empty
since it contains the run reduced to the single configuration
c. We denote by Q. the set of configurations q € N¢ such
that there exists a run p € (), in which q occurs. We
denote by I, the set of indexes i € {1,...,d} such that
{a(?) | g € Q,} is finite. We consider the projection function
7, + Qy — NIv defined by . (q)(i) = q(i). We introduce the
finite set of states S, = m,(Q~) and the set T, of transitions
(my(a),d’ —q,m,(q’)) where qq’ is a factor of a run in .
We introduce s, = m.,(c). Since T, C S, x A x .S, we deduce
that 7', is finite. We introduce the graph G, = (S, T5).

An intraproduction for v is a vector h € N7 such that
c+h € Q,. We denote by H,, the set of intraproduction

for . Since ¢ € Q,, the following Lemma VIIL.2 shows that
this set is periodic. In particular for every h € H,, from
c+ Nh C Q, we deduce that h(i) =0 for every i € I,.

Lemma VIIL2. We have Q., +H, C Q,.

Proof: Let q € Q and h € H,. As q € Q,, there exist
(x,y) € P and words u,v € A* such that c+x % q — c+y.
Since h € H,, there exist (x’,y’) € P and words u/,v" € A*

such that c+x’+n'e = c+h - c+y’+n'f. By monotony,

we have ¢ + (x + x') u,—u>q+hv—v/>c+(y+y’). As P is
periodic, we deduce that q +h € Q,. [ |

Corollary VIIL3. We have m.,(src(p)) = s, = my(tgt(p))
for every run p € Q..

Proof: Since p € Q) there exists (x,y) € P such that p
is a run from ¢ + x to ¢ +y. In particular x and y are two
intraproductions for . We deduce that x(i) = 0 = y(¢) for
every ¢ € I,. Hence 7, (src(p)) = my(c) = m,(tgt(p)). M

A path in G is a word p = (sg,a1,51) ... (Sk—1,ak, Sk)
of transitions (s;_1,a;, s;) in T. Such a path is called a path
from sp to s; labeled by w = aj...a;. When sg = sj the
path is called a cycle. The previous corollary shows that every
run p = cg...cy in ), labeled by a word w = a;...a,
provides the cycle ¢; ... in G, on s, labeled by w where
t; = (my(cj—1),a;,my(c;)). We deduce that G, is strongly
connected.

Lemma VIIL4. For every q < ' in Q. there exists an
intraproduction h € H,, such that @' < q+ h.

Proof: As q,q' € Q, there exist (x,y), (x',y’) € P,
and there exist u,v,u’,v’ € A* such that:
c+x' L q Sty

c+x 5 q S cty and

Let us introduce z = q’ — q. By monotony:

c+x+x 5q +x
q+z+x1>c+y+z+x
c—|—x—|—z—|—yi>q—|—z—|—y

d+y Sct+y+y

Sinceq +x =q+z+xandq+z+y=4q +y, we
have proved that ¢ + x + x’ AN c+h w c+y—+y
with h = z + x. Thus h is an intraproduction. Observe that
q+h=qd+x+y>q. ]

Lemma VIILS. There exist intraproductions h € H, such
that I, = {i | h(i) = 0}.

Proof: Let i ¢ I,. There exists a sequence (qx)ken
of configurations q; € Q, such that (q())ren is strictly
increasing. Since (N9, <) is well-ordered there exists k < k'
such that q; < qi/. Lemma VIII.4 shows that there exists
an intraproduction h; for v such that qx» < qi + h;. In
particular h;(¢) > 0. As the set of intraproductions H, is
periodic we deduce that h = Zig 7 h; is an intraproduction
for v. By construction we have h(i) > 0 for every i ¢ I,.



Since h € H, we deduce that h(i) = 0 for every i € I,.
Therefore I, = {i | h(i) = 0}. [

Given s € S, we introduce the relation R, of couples
(e,f) € Q¢, x Q¢, such that f — e € Q>oA(c) where
o is the label of a cycle on s in G,. Observe that R, s is
a reflexive definable conic relation. From Theorem VII.1 we
deduce that the transitive closure Ry = (U,eg 1y,5)" is a
reflexive definable conic relation.

Lemma VIIL6. For every si,...,s, € S, there exists
(x,y) € Pand qu,...,qr € Qy such that s; = m,(q;)
for every 1 < j <k and such that:

c+xi>q1~'i>qki>c+y

Proof: Since s; € S, there exists p; € Q, and
(xj,¥;j) € P such that c+x; = p; - c+y;. Let us introduce
(x,y) = Zle(xj, ¥;). Since P is periodic this pair is in P.
Let us introduce h; = y; +---+y;—1 +%x; +--- + x3. By
monotony, since ¢ + X; 5 P; 5 c+ Yy, we deduce that
c+h; 5 q; = c+h;; 1 where q; = p; + (h; —x;). Since
h; —x; is a sum of intraproductions, we deduce that h; — x;
is an intraproduction. In particular 7 (q;) = 7, (p;) = s;.
We have proved the lemma. ]

Lemma VIIL7. For every (e,f) € R, there exists (x,y) € P
and n € N such that:

(c,¢) + (x,y) + nN(e, )
is a flatable subreachability relation.

Proof: Let us consider (e,f) € R,. There exists a non-
empty sequence si, ..., S of states s; € S, such that (e, f) €
R,s 0---0Ry, . Weintroduce sg, sp+1 equal to s,. Let us
consider the sequence (v;)o<;j<x such that vo = e, vi = f
and such that (v;_1,v;) € R, forevery j € {1,...,k}. By
definition of R, ., there exists A\; € Q>0 and a cycle in G
on s; labeled by a word ¢; such that v; —v;_1 = \;A(0;).
By multiplying (e, f) by a positive natural number, we can
assume without loss of generality that A\; € N for every j €
{1,...,k}, and v; € N? for every j € {0,..., k}. Moreover,
by replacing o; by ajj we can assume that v; — v;_1 =
A(Uj).

Lemma VIIL6 shows that there exists (x,y) € P and words
Wo, ..., Wk € A* q1,...,q, € Q, such that s; = 7,(q;) for
every 1 < j <k and such that:

Wi —
C+XE>Q1L>QIE&>C+Y

Note that w = wgoiwy ... opwy is the label of a cycle on s,,.
Lemma VIIL5 shows that there exist intraproductions h € H.,
such that I, = {i | h(¢) = 0}. Since the set of intraproductions
is periodic, by multiplying h by a large positive natural number
we can assume without loss of generality that there exists a run
from c+h labeled by w. As h is an intraproduction there exist
(x',y') € Pand u,v € A* such that c+x’ % c+h 5 c+y’.
By monotony, we deduce that for every » € N we have:

UWQO W ...0 L WV

ct+x+x +re cty+y +rf

Since P is periodic we deduce that (x + x',y +y’) € P.
We have proved the lemma with the bounded language W =
UWOTW - . . OLWED. |

Lemma VIIL8. States in S., are incomparable.

Proof: Let us consider s < s’ in S,. There exists q,q’ €
Q, such that s = m,(q) and s’ = m,(q’). Lemma VIIL5
shows that there exists an intraproduction h’ € H., such that
I, = {i | h'(i) = 0}. By replacing h’ by a vector in N5 oh’
we can assume without loss of generality that q(¢) < q'(z) +
h'(z) for every ¢ ¢ I,. As q(i) = s(i) < s'(¢) = q'(i) =
q'(z) + h'(z) for every i € I, we deduce that g < g’ + h'.
Lemma VIII.2 shows that g’ +h’ € Q,. Lemma VIIL.4 shows
that there exists an intraproduction h € H,, such that ¢'+h’ <
q+h. As h € H, we deduce that h(i) = 0 for every i € I,.
In particular q'(¢) < q(¢) for every ¢ € I,. Hence s’ < s and
we get s = s’ [ |

Lemma VIIL9. We have lim(P) C R,

Proof: Let (e,f) € lim(P). By multiplying this pair by
a positive integer, we can assume that there exists (x,y) € P
such that (x,y) + N(e,f) C P. Thus for every n € N there
exists a run p,, labeled by a word in A* such that dir(p,,) =
(c,c) + (x,y) + n(e,f). Lemma VI.2 shows that there exists
n < m such that p,, <p,,. Assume that p,, is the run ¢ ... cy
where c; ¢ N, There exists a sequence vy, ..., Vi1 € N?
such that p,, = pj ... p; where p) is a run from c; + v; to
c; + vjy1 labeled by a word ;. Observe that s; = 7,(c;)
is in S,. Since s; < m,(c; + v;), Lemma VIIL8 shows that
s; = my(c; +v;). Since s; < m(c; +Vj41), we also deduce
that s; = m(c; +v;41). Thus o, is the label of a cycle on s,
in G,. We deduce that (v;,v;11) € Ry ;. Thus (vo, vii1) €
R,. Since this pair is equal to (e, f), we are done. [ |

We have proved Theorem VIII.1.

IX. REACHABILITY DECOMPOSITION

In this section, we prove the following theorem. All other
results are not used in the sequel.

Theorem IX.1. For every Presburger set X C N the set
post(Cinir, A*)NX is a finite union of sets b+P where b € N¢
and P C N% is a smooth periodic set such that for every linear
set Y C b+ P there exists p € P such that p+Y is flatable.

The proof of the previous theorem is based on the following
simple lemma.

Lemma IX.2. For every relations R, Ry C N¢ x N¢ and for
every capacity ¢ € N¢ such that (c,c) + Ry and (c,c) + R
are flatable subreachability relations, then (c,c) + Ry + Ra
is a flatable subreachability relation.

Proof: There exist bounded languages Wi, W, C A*
such that (c,c)+ Ry and (c, ¢) + Ry are included respectively

in Y4 and 2, By monotony, we deduce that (c,c) + Ry +

. . WLW
R is included in ——3». [ ]



Since Presburger sets are finite union of linear sets, we can
assume that X is a linear set in the previous Theorem IX.1.
Hence, we can assume that there exists a configuration x €
N? and a finitely generated periodic set M C N¢ such that
X = x + M. We introduce the set 2 of runs p from the
initial configuration cjy; to a configuration in X. Lemma VI.2
shows that < is a well-order over €2 and Lemma V.4 shows
that <y is a well-order over M. We deduce that 2 is well-
ordered by the relation C defined by p C p' if p < p’ and
tgt(p) — x <m tgt(p’) — x. In particular Qy = min(Q) is a
finite set. Let us observe that we have the following equality:

X = tgtlp) + M,
PEQo

Where M, is the following periodic set:
M,={meM|0Ro---0A m}

So, the proof of Theorem IX.1 reduces to show that M, is a
smooth periodic set such that for every y € N¢ and for every
finitely generated periodic set Q C N? such that y + Q C
tgt(p) + M, there exists m € M, such that y + m + Q is
flatable.

In the sequel p is a run in §2 of the form p = cg...cy.
We introduce the periodic set P of tuples (xg,...,Xkt+1) €
(N4)k+2 such that xg = 0, Xx4+1 € M and x; A x;j41 for
every j. We consider the projection function 7; : (N9)*+2 —
N4 x N¢ defined by 7;(Xo, - - ., Xk41) = (X;,X;+1). We also
introduce the periodic set P; = 7;(P). Theorem VIII.1 shows
that there exists a definable conic relation R; C Q%, x Q<
such that lim(P;) C R; and such that for every r; € R, there
exists p; € P and n; € N5 such that (c;,c;) + m;(p;) +
n;Nr; is a flatable subreachability relation.

We introduce the following definable conic set:
CZ{CGQ%O|0ROO”~OR1€ c}

Lemma IX.3. The periodic set M, is well-limit and its limit
is included in C N QoM.

Proof: Let us consider a sequence (m,)pen of vec-
tors m, € M, a. For every n, there exists a sequence
(X0,ns---»Xk41,n) in P such that xz4q1, = m,. So, there
exists a run p;, from c; + x;, to c; + X;11,, labeled by
a word in A*. Lemma VI.2 shows that < is a well-order
over the runs and Lemma V.4 shows that <pj is a well-order
over M. We deduce that there exists an infinite set N C N
such that p; , < p; ., and m, <p m,, for every n < m
in N and for every 0 < j < k. Lemma VI.3 shows that
for every » € N there exists a run labeled by A* with a
direction equals to dir(p; ) + r(dir(p;m) — dir(p;n»)). Let
us introduce z;, = X;, + 7(X;m — X;) and observe that
the previous direction is equal to (cj,c;) + (2j,,2Zj+1,r)-
Thus z;, ﬁ{ Zjt1,0- Since zg, = 0 and zp41, = m, +
r(m, — m,) € M from m, <y m,,, we deduce that
(Zo,r, -+, 2Zkt1,r) € P. Thus my, +r(m,, —m,;) € M,. We

deduce that m,,, —m,, € lim(M,). Therefore M, is well-limit
periodic.

Now, let us consider v € lim(M,). By multiplying this
vector by a positive integer, we can assume that that there
exists m € M such that m,, = m + nv is in M, for every
n € N. We can then apply the previous paragraph on this
sequence. Let n < m in N. Since (zo,,...,2Z54+1,r) € P
we deduce that (zj,,2;,4+1) € Pj. Thus (X;,,Xj11,) +
N((%Xj,m,Xj+1,m) — (Xjn,Xj+1,)) is included in P; and we
deduce that (X, Xj+1,m) — (Xj,n, Xj+1,n) € lim(P;). Hence
(ijm, Xj+1’m)_(xj’n7 Xj+1,n) € Rj. We deduce that (X()’m—
Xo,n,Xk+1’m—X}g+1’n) € Ryo---oR;. From X0,m —X0,n = 0
and Xp41,m —Xgt+1,n, = My, —m,, = (m—n)v, we deduce that
v € C. Moreover, from m,, <y m,, we get (m —n)v € M.
We have proved that v € C N QxoM. [ |

Lemma IX.4. For every v € C, there exist relations
Ry, ..., Ry € N x N? such that (c;,c;) + R; is a flatable
subreachability relation, m € M, and n € N~ such that for
every r € N:

OROO---ORk m + rnv

Proof: Let us consider v € C. There exists a sequence
(Vo, -+ Vit1) € (QL)FT! such that vo = 0, vi41 = v and
(vj,vjt1) € R; for every j. There exist n; € Nxo, pj € P,
such that (cj,c;) + m;(p;) + niN(vj,vjy1) is a flatable
subreachability relation. Let n = [[;_,n;. Since nN C n;N
we deduce that (cj, c;) +7;(p;) +nN(v;,v;q1) is a flatable
subreachability relation. Let us consider p = Z§:1 p;. Note
that p—p; € P and in particular (c;, ¢;) +m;(p—p;) is in the
reachability relation. Lemma IX.2 shows that (c;,¢;) + R;
is a flatable subreachability relation where R; = m;(p) +
nN(v;,v,q1). Assume that p = (Xo,...,Xp41). We have
proved that for every 7 € N we have x; +nrv; R Xj11 +
nrv;yi. Since p € P we deduce that xg = 0 and m = x;3, 1
is a vector in M. Since vg = 0 and viy; = Vv, we have
proved the lemma. [ ]

The previous Lemma IX.4 shows that C N Q>oM is
included in lim(M,). Hence, with Lemma IX.3 we deduce
that lim(M,) is equal to the definable conic set C N QxoM.

Lemma IX.5. For every y € N¢ and for every finitely gener-
ated periodic set Q C N? such that y + Q C tgt(p) + M,
there exists m € M, such that y +m + Q is flatable.

Proof: Since Q is finitely generated, there exists a finite
set V C Q that generates Q. Observe that x —tgt(p) + Nv C
M, for every v € V. Thus v € lim(M,). As lim(M,) C CN
Q>oM, we deduce that there exist relations Ro,v, e Rk,v -
N7 x N¢ such that (c;,c;) + R;. is a flatable subreachability
relation, m, € M, and n,, € N+ such that for every r € N:

0 Ryvo---0Rpy my+1rnyv

Let us consider n = [[ oy v, m = Zvev~mv and R; =

> vev Rjv. Lemma IX.2 shows (cj,c;) + R; is a flatable



subreachability relation. Moreover, since Q is generated by
V we deduce that for every q € Q we have:

0 Ryo---oRy m+nq

Now, let us consider the set Z = 3 _{0,...,n — 1}v.
Observe that Z is finite and since Z C M,,, we deduce that for
every z € M, there exists p, = (X0, ..., Xk+1,2) € P such
that X 41, = 2. Let us consider the relation ), = |J, .5 (R;+
7j(pz)). Lemma IX.2 shows that (c;, cj)JrR; is flatable. Since
Q = Z + nQ we deduce that for every q € Q we have:

0Rjo---oR, m+q

Finally, since y —tgt(p) € M, we deduce that there exists p =
(X0; - -+ Xg11) in P such that x5, 1 = y—tgt(p). Lemma IX.2
shows that R} = R’ + 7;(p) is such that (cj,c;) + R} is

flatable. Hence, this relation is included in L where W; C
A* is a bounded language.

Let us introduce the actions a; = c¢; — c¢;_; and the
bounded language W = Wya; Wi ...aWg. We have proved
that post(cinit, W) contains y+m-+Q. Thus this set is flatable.

|

We have proved Theorem IX.1.

X. DIMENSION

The dimension of a set X C Q7 is the minimal integer
r € {—1,...,d} such that X C U§=1 B, + V; where B;
is a bounded subset of Q¢ and V; C Q7 is a vector space
satisfying rank(V;) < r for every j. We denote by dim(X)
the dimension of X. Observe that dim(v + X) = dim(X) for
every X C Q7 and for every v € Q?. Observe that dim(X) =
—1 if and only if X is empty. Note that dim(X UY) =
max{dim(X), dim(Y)} for every subsets X, Y C Q%.

Example X.1. dim(N) = 1, dim(Q) = 1, dim(N(1,0) +
N(1,1)) =2, dim(N(1,0) UN(1,1)) = 1.

The dimension of a periodic set is obtained as follows.

Lemma X.2. We have dim(P) = rank(V) for every periodic
set P where V is the vector space generated by P.

XI. EQUIVALENT SETS

Given a natural number r € {0,...,d}, we introduce the
equivalence relation =, over the subsets of Q¢ by X =, Y if
dim(XAY) < r. Note that =, is distributive over U and N.

Lemma XI.1. Let V be a vector space and v = rank(V).
For every h € Q% such that h-v # 0 for at least one v € V,
for every ¢ € Q and for every # € {>, >}, we have:

{xeV ] h-x>0}=,{xeV|h- x#c}

Proof: Let us introduce a vector v € V such that h-v #
0. By replacing v by —v we can assume that h - v > 0.
We introduce the set B = {A\v | |A\| < %} and the vector
space W = {w € V | h-w = 0}. Since W is included
in V\{v} we deduce that rank(W) < rank(V) = r. Let us

prove that the symmetrical difference of {x € V |h-x > 0}
and {x € V | h-x#c} is included in B + W. Let x be a
vector in this difference. Then x € V and either h-x > 0 and
h-x <corwehave h-x <0 and h-x > c. In any case we
deduce that —|c| < h-x < |c|. Let us consider A = £X. Note
that b = A\v is a vector in B and w = x — Av is a vector in
W.Thus x € B+ W. [ |

We deduce the following two corollaries:

Corollary XI.2. Let V be a vector space and v = rank(V).
For every X C V definable in FO (Q,+,<,0,1) and for
every v €'V we have X =, v+ X.

Proof: Since FO (Q, +,<,0,1) admits quantifier elimi-
nation we deduce that X is a Boolean (union and intersection)
combination of sets of the form S = {s € V | h - s#c}
where h € Q¢ # € {>,>}, and ¢ € Q. Note that
v+S ={s €V |h-s#h- v} In paticular if h-v = 0
then S = S+ v and if h-v # 0 Lemma XI.1 shows that
S =, v+ S. We deduce that S =, v + S is both case. Since
=, is distributive over U and N we get the corollary. [ ]

Corollary XL.3. Let P C Z¢ be a finitely generated periodic
set, L = P — P the lattice generated by P, and C = Q>oP
be the conic set generated by P. For every x € L we have
x+P =, LNC where r = dim(P).

Proof: Since P is finitely generated, there exists
P1,.--,Px € P such that P = Np; + --- + Npi. We
introduce the set B of vectors b € L such that b €
[0,1]p1 + --- + [0,1]pk. Note that B is a bounded finite
subset of Z%. Thus B is finite. Since B C P — P we deduce
that there exists p € P such that p + b € P for every
b € B. Let us prove that p + (L N C) C P. Let us consider
v € LN C. There exists a sequence pi,...,ur € Q¢
such that v = pipy + -+ + pugpvy. Let n; € N such that
i —n; € [0,1] and let q = nip1 + --- + ngpk. Note
that q € Pand v—q € B. Thus p+v —q € P. In
particular p + v € P and we have proved the inclusion
p+(LNC) CP. Since p € L we get p+L = L. Thus
p+(LNC) = LnN(p+ C). Corollary X2 shows that
C =, p+C. Since =, is distributive over the intersection, we
get LN(p+C) =, LNC. Moreover, from LN(p+C) C P C
LN C we deduce that P =,. LN C. Note that for every x € LL
we have —x + (LN C) = LN (—x + C) =, L N C thanks
to corollary XI.2. We have proved that x+P =, LN C for
every x € L. [ ]

XII. EQUIVALENT PRESBURGER SETS

In appendix we prove the following Theorem XII.1.

Theorem XII.1. Let X = U§:1 b; +P; where b; € Z¢ and
P; C 7% is a smooth periodic set. We assume that X is non
empty and we introduce v = dim(X). If X is equivalent for
=, to a Presburger set then there exists a sequence (Y j)1<j<k
of linear sets Y; C b; + P; such that X =, U§:1 p;+Y;
for every sequence (p;)i<;<k of vectors p; € P;.



XIII. PRESBURGER REACHABILITY SETS

In this section we prove that Presburger subreachability
sets are flatable. As a direct consequence, we deduce that
Presburger VAS are flatable.

Lemma XIII.1. Presburger subreachability sets are flatable.

Proof: We prove by induction over » € {-1,...,d}
that Presburger subreachability sets X with dim(X) < r
are flatable. Note that if dim(X) = —1 then X is empty
and the proof is immediate. Let us assume that the lemma is
proved in dimension r € {—1,...,d} and let us consider a
Presburger subreachability set X C post(Cinir, A*) such that
dim(X) = r+ 1. In particular X is non empty. Theorem IX.1
shows post(Cinit, A*)NX is a finite union of sets U?zl b;+P;
where b; € N¢ and P; C N is a smooth periodic set such
that for every linear set Y; C b; + P; there exists p; € P;
such that p; + Y is flatable.

Since post(cini, A*) N X is equal to X which is a Pres-
burger set, Theorem XII.1 shows that there exists a sequence
(Y;)i<j<k of linear sets Y; C b; + P; such that X =,
Ule p; + Y; for every sequence (pj)i<j<r of vectors
pP; € Pj.

Let us consider a sequence (p;)i<j<x of vectors p; € P;
such that p; +7Y; is flatable. We deduce that Y = Ule p;+
P is flatable. Since X =, Y we deduce that dim(X\Y) < r.
Since X\Y is a Presburger subreachability set, by induction,
this set is flatable. From X C (X\Y)UY, we deduce that X
is flatable. We have proved the rank r + 1. ]

Theorem XIIL.2. The class of flatable VAS coincides with the
class of Presburger VAS.

Proof: Assume first that the VAS is Presburger. Then
X = post(Cinit, A*) is a Presburger set. The previous lemma
shows that X is flatable. Hence the VAS is flatable. Conversely,
if the VAS is flatable, Theorem III.4 shows that the VAS is
Presburger. ]

Corollary XIIL3. Presburger subreachability relations are
flatable.

Proof: Let A C 7% be a finite set of actions. We consider
the VAS ((0,0), A) in dimension 2d where A’ is the set {0} x
A and the vectors (u;, u;) where u; € Z9 satisfies u;(j) = 0
if j # i and u; (i) = 1. Observe that the reachability set of this

VAS is A—>. Hence, if a subreachability relation R of A—> is
Presburger, we deduce that there exists a bounded language
W’ C (A")* such that R C post((0,0), W’). Let us consider
the word morphism ¢ : (A’)* — A* defined by ¢(0,a) = a
and ¢(u;,u;) = e. Observe that W = ¢(W’') is a bounded
language and post((0,0), W) is included in W, We deduce
that R is flatable. ]

XIV. CONCLUSION

We have proved that acceleration techniques are complete
for the computation of Presburger formulas denoting the

reachability sets of Presburger vector addition systems. Since
there exist vector addition systems with finite reachability sets
of Ackermann cardinals [15], acceleration-based algorithms
have an Ackermann lower bound of complexity. In the future,
we are interested in improving acceleration techniques to
avoid this bound thanks to over-approximation techniques.
More generally, we are interested in characterizing vector
addition systems with reachability sets not definable in the
Presburger arithmetic. These vector addition systems are in-
teresting since we know that there exist inductive invari-
ants definable in the Presburger arithmetic obtained by over-
approximating the reachability set. The main objective is an
algorithm for deciding the general reachability problem for
vector addition systems based on accelerations and on-demand
over-approximations that works well in practice.
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APPENDIX A
PROOF OF LEMMA V.4

Lemma V4. Let P be discrete periodic set. The following
conditions are equivalent:

o P is finitely generated as a periodic set.

o (P,<p) is well-preordered.

o Qx>oP is finitely generated as a conic set.

Proof: Let us consider a discrete periodic set P C Q<.
By replacing P by nP for some n € N5y we can assume in
the sequel that P C 7.

Assume first that (P, <p) is well-preordered and let us
prove that P is finitely generated as a periodic set. We
introduce the relation T over P defined by p C q if
p <p q and if |p(7)| < |q(¢)| and p(i)q(é) > O for every
i € {1,...,d}. Since < is a well-order over N¢ we deduce
that C is a well-order over P. The set M of minimal elements
of P\{0} for this order is finite. We denote by Q be the
periodic set generated by M. Observe that Q C P. Assume
by contradiction that P\ Q is non empty and let us consider an
element p in this set minimal for C. Since 0 € Q we deduce
that p € P\{0}. Thus there exists m € M such that m C p.
Let = p— m. Since m <p p we get q € P. Moreover,
q C p. Thus, if g € Q, by minimality of p we get q = p and
m = 0 which is impossible since M C P\{0}. Thus q € Q.
From p = q+ m we get p € Q and we get a contradiction.
Thus P\Q is empty and we get P = Q. In particular P is
finitely generated as a periodic set.

Now, assume that P is finitely generated as a periodic set
and let us prove that C = Qx>(P is finitely generated as a
conic set. We have P = Np; + - -- + Np;. for some vectors
Pi;-..,Pr € P.In particular C = Q>op1+---+Q>opx and
we deduce that C is finitely generated as a conic set.

Finally assume that C = QP is finitely generated as a
conic set and let us prove that (P, <p) is well-preordered.
There exists some vectors qi,...,qr € C such that C =
Qs>0q1 + -+ + Q>0qx. Since C = Q>oP by multiplying
vectors q,; by a positive natural number, we can assume that
q; € P. We denote by Q the periodic set generated by
di,--.,qk. Let us introduce the following set:

B=(P—-P)n([0,1]ps+ - +1[0,1]ps)

Note that B is bounded and vectors in this set are in Z¢.
Thus B is finite. Let us prove that P C B 4 Q. Note that
for every p € P from P C C, we deduce that there exists
Aly..3 A € Q> such that p = Z?:l Ajq;. There exists
ij € [0,1] and n; € N such that \; = p; + n;. In particular
p = b+q where b = Zle nja; and g = 5, n;q;. Note
that g € Q and b € B.

Now, let us consider an infinite sequence (py, )nen Of vectors
in P. For every n € N there exists b, € B and q,, € Q
such that p, = b,, + q,. Since (B,=) and (Q, <q) are two
well-ordered sets, Dickson’s Lemma show that there exists an
infinite set N C N such that b,, = b,, and q,, <q q., for
every n < m in N. Thus p,, <p p., for every n < m in N.
We have proved that (P, <p) is well-preordered. [ ]



APPENDIX B
PROOF OF THEOREM VII.1

In this section we prove the following theorem.

Theorem VII.1. Transitive closures of finite unions of reflex-
ive definable conic relations over Qio are reflexive definable
conic relations.

The following lemma shows that the transitive closure of
R1U...URy where R; is a definable conic relation for every j
is equal to the transitive closure of the reflexive definable conic
relation R = Rqo0---0R. That means Theorem VII.1 reduces
to show that the class of reflexive definable conic relation over

%0 is stable by transitive closure.

Lemma B.1. For every reflexive conic relations Ry, . ..
over Q‘io, we have:

7Rk

RlUURk— g R1++Rk g Rlo"'ORk

Proof: Since (0,0) € R; for every j we deduce that
RiU...UR; € Ry +---+ Rg. Let us consider a sequence
(x5,¥j)1<j<k of couples (x;,y;) € R;. We introduce z; =
vi+--4+y;+%xj41 + -+ xp Let j € {1,...k}. Since
zj_1—x; € Q¢ and R; is a reflexive relation we get (z,_1 —
Xj,Zj—1 — X;) € R;. Moreover, as (x;,y;) € R; and R; is
conic we get (z;—1 — X;,2;-1 — X;) + (Xxj,y;) € R;. This
couple is equal to (z;_1,2;). We have proved that (z¢,z) €
Rjo---0Ry. Now just observe that (zg,z;) = Z?Zl(xj,yj).

|
Transitive closures of reflexive conic relations can be char-
acterized as follows. We introduce the function V : Q%, x
4, — Q¢ defined by V(x,y) = y — x. Given a set
I C {1,...,d} we introduce Q¢ = {x ¢ Qy | x(i) >
0 <= i € I} and the function V; : Q¢, x Q%, — Q¢
partially defined over Q¢ x Q¢ by V(r) = V(r) for every
re Q4 x Q4.

Lemma B.2. We have V;'(V[(R)) C R* for every I C
{1,...,d} and for every reflexive conic relation R over Q%o-

Proof: Let (x,y) € V;'(Vi(R)). Then x,y € Q.
We introduce the vector z € Q¢ defined by z(i) =
min{x(4),y(7)}. We also introduce v. = y — x. Since
v € V;(R), there exists (a,b) € (Q¢ x Q%) N R such that
v = b — a. Since z,a € Q‘Ii there exists n € Ny such that
%a < z. Hence there exists e € Q% such that z = e+%a. As
R is reflexive we get (e, e) € R and since R is conic we have
(e,e)+1(a,b) € R. This couple is equal to (z,z+ v). Let
k € {0,...,n} and let us prove that e, = x+~2v—zisin Q%
Leti € {1,...,d}. If v(i) > 0 then ey (i) > x(i) — z(i) > 0.
If v(i) < 0 since e = y — “*v — z we deduce that
er(i) = y(i) — "Ev(i) — 2(i) > y(i) — z(i) > 0. Thus
e, € Q4. Since R is reflexive we get (ey,e;) € R. As R
is conic we deduce that (e, ey) + (2z,z + Lv) is in R. Since
this couple is equal to (x + %v, X + %v) we have proved
that (x,y) € R". [

Lemma B.3. Let R be reflexive conic relation over Q% let
vo,...,vi € Q% such that vo R v; R vy and let
i, pe € Qs such that the following vector x; is in
QL for every 1 < j < k:

x; = (po — p1)vo + -+ (15 — Hj+1)V;y

where po =1 and py1 = 0. Then vo R™ xi, where n is the
cardinal of {j € {1,...,k} | p; > O}.

Proof: Let us consider the vector z; = X; + p;41V;. As
R is reflexive, we deduce that (x;_1,%,_1) € R. Since R is
conic, we get (x;j_1,Xj_1) + ij(vj_1,v;) € R. This pair is
equal to (z;_1,2;). Thus (z;_1,2;) € R. Since z;_, = z; if
p; = 0 we deduce that zg R" z;. Observe that zg = xg +
H1Vo = foVo = Vo and zp = X + Ug 1 Ve = Xk u

Lemma B.4. Let vg,..., vy € Q‘io and let us consider the
sets I; = {i € {1,...,k} | vo(i) > 0V...Vv;(i) > 0}. There
exist non-negative rational numbers i1, . .., i > 0 such that
w; =0 if I; = I;_1 and such that for every 0 < j < k:

(no — pa)vo + -+ (1j — 1) v; € QF,
where (g =1 and pij41 = 0.

Proof: The lemma is immediate with & = 0. As-
sume the lemma proved for k and let us consider a se-
quence Vvq,..., Vi1 € Qio and let us introduce a sequence

M1, ..,k 2> 0 such that p; = 0 if I; = I;_; and such that:
(no = p)vo + -+ (j — pyy1)v; € QF,
where pg = 1 and pry1 = 0. Let us consider x =

(o — p1)vo + -+ (ptk — piry1) V. Note that if Tyyq = I,
by considering pgio = 0 we are done. So, let us assume
that I41 # Ij. Since x € Q?k there exists ¢ > 0 such
that x(i) > evg(i) for every ¢ € I. Let us consider
the sequence (fig,---,Hyyo) = (fos---;Hk,€,0). Observe
that (uy — ph)vo + -+ + (4 — pjpa)v; € QfF, for every
1 < j < k+ 1. We have proved the lemma by induction. W

Corollary B.5. Let R be reflexive conic relation over QY
let vo,...,vi € Q% such that vo R vy --- R vy, and let
I={i] \/?:0 v;(i) > 0}. There exist non-negative rational
numbers [y, ..., 1 > 0 such that the following vector e is in
Q¢ and such that vy R? e:

k
e=vot+ Y wu(vj—vj-1)
j=1

Proof: Let us consider the sets I; = {i € {1,...,k} |
vo(i) > 0V ...V v;(i) > 0}. Lemma B.4 shows that there
exist non-negative rational numbers p, ..., ur > 0 such that
p; = 0if I; = I;_1 and such that the following vector x; is
in Qf, for every 0 < j < k:

Xj = (po = pa)vo + -+ (tj = 1)V,

where po = 1 and p;+1 = 0. Lemma B.3 shows that vo R™ x,
where n is the cardinal of {j € {1,...,k} | p; > 0}. Since



n < d and R is reflexive, we deduce that R C R?. Note that
e =Xy is in Q‘Iik. Since I, = I, we are done. [ |

Lemma B.6. For every reflexive conic relation R over Q%o
we have:

Rt =Rio > ViNVi(R) | o R
1C{1,...,d}

Proof: From Lemma B.2 we deduce that V;*(V(R)) C
R* for every I C {1,...,d}. With Lemma B.1 we deduce
that ey gy Vi (Vi(R)) is included in RT. We have
proved the inclusion O. Let us now prove the inclusion C.

Let us consider (x,y) € R*. There exists a sequence
(v;j)o<j<k with k > 1 of vectors v; € Q< such that vy = x,
v =y and (vj_1,v;) € R for every j € {1,...,k}. We
introduce the set I = {i | vo(¢) > 0V ...V vg(i) > 0}.

Corollary B.5 shows that there exist p1,...,ur > 0 such
that x R? e where e = x + Zleuj(vj —vj_1) is a
vector in Q¢. The inverse of R and Corollary B.5 show
that there exist yf,...,u) > 0 such that f R? y where
f=y+ 35 pi(vjo1 —v;) is a vector in QF.

Let us consider p > 0 such that p1 — p; — u;- > 0 for every
j. Let a = Z?Zl(l +p = pj — py)(vj —vji—1) and let us
prove that a € V;(R). Let us introduce the vector e € Q%
defined by e(i) = 1 if i € I and e(i) = 0 otherwise. Since
R is reflexive we get (e,e) € R and since R is conic then
rj = (e+v;_1,e+v;) is in R. Observe that e + v;_; and
e+ v; are both in Q¢. We deduce that V(r;) € V;(R). Then
vj —v;_1 € V(R). Since V;(R) is a conic set we deduce
that a € V;(R).

We have:

(f + py) — (e + px)

k
= (14 py— (L+mx =Y (1 + @) (vj = vi-1)
Jj=1

k k
1—|—,uz —Vj_1) ZM;"‘NJ —Vj-1)

I
(-
—
+
=
=
)
7;
S
<
u
\“_/

J:

=a
As a € Vi(R) and e + ux, f + py € Q¢ we deduce that
e+ux V1 (Vi(R)) £+ py. From (x,e) € R? and (x,x) €
R? and since R? is conic, we deduce that (1+pu)x R? e+ pux.
Symmetrically we get f+ iy R%(1+u)f. We have proved that
the relation R? o V;(V(R)) o R? contains (1 + p)(x,y).
Since this relation is conic we deduce that it contains (x,y).
|

We deduce the proof of Theorem VII.1.



APPENDIX C
PROOF OF LEMMA X.2

Lemma C.1. Let P C Qd be a periodic set included in
Ule B; + V; where k € N>, B; C Q% is a bounded set
and V; C Q% is a vector space. There exists j € {1,...,k}
such that P CV; C B, +V;.

Proof: Let us first prove by induction over k& € Ny that
for every periodic set P C Q7 included in Ule V,; where
V; C Q% is a vector space, there exists j € {1,...,k} such
that P C V;. The rank k¥ = 1 is immediate. Let us prove
the rank £ 4 1 and assume that P is included in Ufill V;. If
P C Vi, the induction is proved. So we can assume that
there exists p € P\Vy,1. Let x € P. Since np + x € P
for every n € N there exists 7 € {1,...,k + 1} such that
np+x € V;. As {1,...,k + 1} is finite, there exists j in
this set and n < n’ such that np + x and n’p + x are both
in V. In particular the difference of this two vectors is in
V. Since this difference is (n' —n)p and p & V41 we get
je{l,...,k}. Observe that n(n'p + x) — n/(np + x) is the
difference of two vectors in V. Thus this vector is in V; and
we deduce that x € V;. We have shown that P C U?Zl V;.
By induction there exists j € {1,...,k} such that P C V.
We have proved the induction.

Finally, let P C Q¢ be a periodic set included in Ule B;+
V; where k € N>, B; C Q7 is a bounded set and V; C Q¢
is a vector space. Let us consider the set J of j € {1,...,k}
such that V; C B; + V. Let us prove that P C |J;.; V.
Let us consider p € P. Since np € P for every n € N, the
pigeon-hole principle shows that there exists j € {1,...,k}
and an infinite set N C N such that np € B; + V; for every
n € N. We deduce that for every n € N there exists b, € B;
such that np —b,, € V;. Lemma V.1 shows that there exists a
finite set H C Q% such that V; = {v € Q% | Aoy h-v = 0}.
Let h € H. Since np —b,, € V; we get nh-p =h-b,, for
every n € N. Since B; is bounded, there exists ¢ € Q¢ such
that |h - b, | < ¢ for every n € N. Thus h-p = 0 and we
have proved that p € V;. From np +b,, € V; and p € V;
we deduce that b, € V;. Thus V; =b, +V; C B, +V;
and we have proved that j € J. We deduce that P is included
in | ics V. From the previous paragraph, there exists j € J
such that P C V. [ |

Lemma X.2. We have dim(P) = rank(V) for every periodic
set P where V is the vector space generated by P.

Proof: Since P C 'V we deduce that dim(P) < rank(V).
For the converse inequality, there exist k¥ € N, (B;)i<j<&
a sequence of bounded subsets B; C Q% and a sequence
V; C Q7 of vector spaces such that P C Ule b; +V;
and such that rank(V;) < dim(P) for every j. Since P is
non empty we deduce that k¥ € N5 . Lemma C.1 proves that
there exists j € {1,...,k} such that P C V;. By minimality
of the vector space generated by P we get V. C V;. Hence
rank(V) < rank(V;). From rank(V;) < dim(P) we get
rank(V) < dim(P). [ |



APPENDIX D
COMPLETE EXTRACTIONS

Let K be a finite class of definable conic sets of Q. We
denote by X(K) the set [Jxc i K. An extraction of K is a
finite class C of finitely generated conic sets of Q¢ such that
for every C € C there exists K € I such that C C K. An
extraction C of K is said to be complete if ¥(C) = L(K).

Example D.1. Ler us consider the class K = {K1,Ka} with
K; = {0} U (Q x Qs0) and Ky = Q x Q<. Observe that
Y(K) is equal to Q> We show that there does not exist a
complete extraction of K as follow. We first consider a finitely
generated conic set C included in Ky. Such a conic set is
generated by a finite set of vectors in K1\{0} = Q x Qx¢. So
there exists € € Q¢ such that C C Q>o(1,¢€) + Q>o(—1,¢).
Now, let us consider an extraction C of K. We have proved
that there exists € € Qs such that £(C) C (Qxo(1,¢) +
Q>0(—1,€)) U (Q x Q<o) which is strictly included in Q?
(for instance (1, ) is not in this set).

In this section finite classes C of definable conic sets of Q¢
having a complete extraction are topologically characterized
thanks to the overlapping property'. The class K is said to
have the overlapping property if for every K € K and for
every finite sequence vi, ..., vy of vectors v; € Q4 satisfying
Qsovi + -+ + Qsovi C K there exists K/ € K such that
K' N (Qsov1 + -+ + Qsov;) is non empty for every j €
{1,...,k}. We are going to prove the following result:

Theorem D.2. A finite class K of definable conic sets of Q%
has the overlapping property if and only if it has the complete
extraction property.

Example D.3. Let us come back to the class K = {K1,Ka}
with K; = {0} U(@Q x Qsp) and Ko = Q x QSQ
introduced in Example D.1. We show that K does not sat-
isfy the overlapping property by considering the sequence
v1, Ve defined by vi = (1,0) and vo = (1,1). Now, just
observe that Q~ovi + Qsove C Ky but K1 N (Qsovy) and
K> N (Qsovi + Qsova) are empty.

We observe that if a finite class K of definable conic sets
of Q% has a complete extraction C, then for every K € K and
for every sequence vy, ..., vy of vectors v; € Q7 such that
Qsovit: - +Qsovi C K, from K C (i C, the following
lemma shows that there exists C € C such that CN (Qsovi+
-+ Qsovy) # 0 for every j € {1,...,k}. Since C is an
extraction of K we deduce that there exists K’ € K such that
C C K'. Therefore K'N(Qxovi+---+Qxsov;) # 0 for every
j € {l,...,k}. We have proved that KC has the overlapping
property.

Lemma D.4. For every sequence V1, ...,Vv} of vectors v €
Q< and for every finite class C of finitely generated conic sets
of Q¢ such that Qsgvi+- - -+Qsgvy C UCeC C, there exists

IThe term “overlapping” comes from a topological property introduced by
Lambert in an unpublished work similar to the one we consider in this paper.

C € C such that CN (Qsovi + -+ 4+ Qsov;) # 0 for every
jed{l,... .k}

Proof: We prove the lemma by induction over k € Ny .
The rank k£ = 1 is immediate since from Qsov; C Ucec C
we deduce that there exists C € C such that C N (Qsov1)
is non empty. Let us assume the induction proved for a rank
k € N5 and let us consider a sequence vy, ..., v of vectors
in Q7 and a finite class C of finitely generated conic sets of Q%
such that Qovo+---+Qxovi € Jgee C. We introduce the
finite class Cp = {C € C | vo € C}. We are going to prove
that there exists a sequence (\;)1<j<x of rational numbers
Aj € Qs such that Qo (vi+A1vo)+: - - +Qso(Vi+Arvo) C
Ucee,

Since every C € C is a finitely generated conic set,
Lemma V.2 shows that there exists a finite set Hc C Q¢
such that:

C= ﬂ {veQ’|lh-v>0}
heHcg
We introduce the set H = | Jo.. Hc and the set Hy = {h €
H|h-vy>0}.

We build up a sequence (\;)1<;< of rational numbers \; €
Q=0 such that h - (v; + A\;vg) > 0 for every h € Hy as
follows. Let h € Hy and j € {1,...,k}. Since h-vg > 0
we deduce that there exists An; € Q>0 such that h - (v; +
An,jVo) > 0. We introduce a rational number A; € Q¢ such
that A\; > Ay ; for every h € Hy. By construction observe
that h - (v; + A\;vg) > 0 for every h € Hy and for every
jed{l,... .k}

We introduce the sequence (wW;)i<j<x of vectors w; =
v; + A;vo. Now, let us consider x € Q> ow1 + -+ + Qs oWy
and let us prove that x € Ucecg C. Observe that for every
n € N we have nvo+x € Qsovo+- -+ Qs0vi € Ugee C-
Hence there exists C,, € C such that nvg + x € C,,. Since C
is finite, there exists C € C such that C,, = C for an infinite
number of n € N. Let h € H¢. Since nvg +x € C we get
nh-vg+h-x > 0. As this inequality holds for an infinite
number of n € N we deduce that h - vg > 0. In particular
vp € C and we deduce that C € Cy. Note that if h-vg =0
then h - x > 0. Otherwise, if h- vy > 0 then h € Hy. In this
case h-w; > 0 for every j. From x € Q5w+ -+ Qs oWy
we get h - x > 0. We have proved that h - x > 0 for every
h € Hc¢. Therefore x € C and we have proved the inclusion

Qsowi 4+ -+ Qsowy, C UCeco C.

By induction, there exists C € Cy such that CN (Qxowy +
-+ 4+ Qsowj;) is non empty for every j € {1,...,k}. Since
QoW1 + -+ Qxuowr € Qxovo + -+ -+ Qxov; we deduce
that C N (Qsovo + --- + Q>oV;) is non empty for every
je{l,....k}. As CN (Q=ovp) contains vy, this set is also
non empty. Therefore, we have proved the induction at rank
k+1. ]

Given a finitely generated conic set C C Q% and a finite
class IC of definable conic sets, we denote by CNK the finite
class {CNK | K € £}.



Lemma D.5. For every finite class K of definable conic sets
of Q% with the overlapping property and for every finitely
generated conic set C C Q4 the class C N K has the
overlapping property.

Proof: Let us consider K € K and a sequence cq,...,cC
of vector ¢; € Q¢ such that Qsgc; + -+ + Qsoc, € CN
K. Since K has the overlapping property, there exists K’ €
K such that K’ N (Qsoc1 + -+ - + Qsoc;) is non empty for
every j € {1,...,k}. As C is a finitely generated conic set,
Lemma V.2 shows that there exists a finite set H C Q¢ such
that:

C={ceQ’| Ah-v=>0}
heH
Let c = Z?:1 c;j. As Qsoci + -+ Qsoc, € C we deduce
that ¢ + Q>pc; C C. In particular h- ¢ + Ah - ¢c; > 0 for
every A € Q>o. Thus h - c; > 0. We deduce that c; € C.
Hence Q-c; + -+ Qsoc; C C for every j € {1,...,k}.
In particular CN K’ N (Qsoc1 + - - + Qxoc;) is non empty
for every j € {1,...,k}. We have proved that the class CNKC
has the overlapping property. ]

Lemma D.6. Let K be a finite class of definable conic sets
of Q% with the overlapping property then IC has the complete
extraction property.

Proof: We prove by induction over r € N that for every
vector space V. C Q7 with rank(V) < r and for every
finite class K of definable conic subsets of V, if K has
the overlapping property then it has the complete extraction
property. The rank r = 0 is immediate since in this case
V = {0}. So, let us assume the induction proved for a rank
r € N and let us consider a vector space V. C Q% with
rank(V) < r + 1 and a finite class K of definable conic
subsets of V. We assume that C has the overlapping property.

Since K is a finite class of sets definable in FO (Q, +, <, 0),
and this logic admits a quantifier elimination algorithm, we
deduce that there exists a finite set H C Qd such that every
K € K is the set of vectors v € V satisfying a boolean
combination of constraints of the form h - x#0 where # €
{<,<,>,>}. Note that if a vector h € H satisfies h-v =0
for every v € V then the constraints h - x#0 is useless. So,
we can assume without loss of generality that for every h € H
there exists v € V such that h - v # 0.

Let us consider for every s : H — {—1,1} the finitely
generated conic set C;, = {v € V | s(h)h - v > 0}. Since
K has the overlapping property, LemmaD.5 shows that s =
C, N K has the overlapping property. From V = (J, C, we
deduce that X(K) = [J, 3(Ks). So, it is sufficient to prove
that K¢ has the complete extraction property. By replacing /C
by Ks and H by {s(h)h | h € H}, we can assume without
loss of generality that h - v > 0 for every v € ¥(K).

We introduce the following finitely generated conic set C
and the following set X:
C= (){ceV|h-c>0}
heH,

X= (){xeV|h-x>0}
heH,

We also introduce for every h € H the vector space Vi, =
{v.e V]h-v = 0}. Since for every h € H there exists
a vector v € V such that h - v # 0 we deduce that Vy,
is strictly included in V and in particular rank(Vy) < 7.
Lemma D.5 shows that Vi, N K has the overlapping property
and by induction we deduce that this class has the complete
extraction property. We introduce the set K' = {K € K |
KNX # 0}. Since C\X is included in J,,cy Vi we deduce
that X(/C) is equal to the union of the sets X (VL NK) indexed
by h € H and X(K’). Therefore, in order to prove that K has
the complete extraction property it is sufficient to prove that
K’ has the complete extraction property is immediate.

Let us prove that X C K for every K € K’. Recall that K is
the set of vectors v € V satisfying a boolean combination of
constraints of the form h - x#0 where # € {<,<,>,>}. As
KNX is non empty we deduce that this boolean combination
is true when the predicates h - x#0 with # € {>,>} are
evaluated to true. We deduce that X C K.

Let us prove that X’ has the overlapping property. Let us
consider K € K’ and a sequence Vi, ..., v} of vectors in Q%
such that Q-gvy + -+ + Qsove € K. Since KN X is non
empty, there exists a vector x in this intersection. As X C K
we deduce that Qsovy + -+ + Qsovr + Q-0x € X C K.
As K has the overlapping property we deduce that there exists
K’ € K such that K' N (Q>0V1 + -+ Qsovi + Q>0X) is
non empty and such that K’ N (Qsovi+---4+Qsv; ) is non
empty for every j € {1,...,k}. Since Qsovi+---+Qsovir+
Qs0xs € X, we deduce that K’ € K'. Therefore X' has the
overlapping property.

Note that if X is empty then K’ has a complete extraction.
So, we can assume that X is non empty. We fix x € X.
Lemma D.5 shows that Vi, N K’ has the overlapping property
for every h € H. By induction we deduce that this class has
the complete extraction property. We denote by Cy, a complete
extraction of Vi, N K’ and we consider the following class C:

C={C+Qsox|Ce JCn}

heH

Let us first prove that C is an extraction of K’. Let h € H
and C € Cy,. Since Cy, is an extraction of Vi, N /s we deduce
that there exists K € K’ such that C C VL,NK. Let A € Q¢
and observe that C + Ax C X C K. Hence C + Q>ox C K.
We have proved that C is an extraction of K'.

Let us prove that the completeness of the extraction C of
K'. We consider y € X(K'). Since x € X we deduce that
h-x > 0 and since y € C we get h-y > 0. Let us introduce
A = minpey g—i and observe that ¢ = y — A\x, satisfies
h-c > 0 for every h € H. Hence ¢ € C. In particular
Qso0c + Q-ox € X. Let K € K'. Since X C K, we get
Qsoc + Q-0x € K. As K’ has the overlapping property we
deduce that there exists K’ € K such that K'N(Qsc) is non



empty. Hence there exists u € Qs such that uc € K'. Since
K’ is a conic set we deduce that  (uc) € K'. Therefore ¢ €
¥ (K'). Moreover by definition of A we deduce that there exists
h € H such that ¢ € V},. We deduce that ¢ € X(Vy N Ks).
Therefore, there exists C € Cp such that ¢ € C. We have
proved that y € X(C). Therefore C is a complete extraction
of K'.

The induction is proved. ]
We have proved Theorem D.2.



APPENDIX E
PROOF OF THEOREM XII.1

In this section, we prove the following theorem.

Theorem XIL1. Let X = J5_, b; + P; where b; € Z¢ and
P; C 7% is a smooth periodic set. We assume that X is non
empty and we introduce v = dim(X). If X is equivalent for
=, to a Presburger set then there exists a sequence (Y j)1<j<k
of linear sets Y; C b; + P, such that X =, U?:1 p,+Y,;
for every sequence (p;)i< <k of vectors p; € P;.

We first prove the following three lemmas.

Lemma E.1. For every periodic set P C Q® and for every
vector v € Q4, we have v € (P — P) Nlim(P) if, and only
if there exists p € P such that p 4+ Nv C P.

Proof: Let v € Q¢ and assume first that p + Nv C P
for some p € P. In this case v € lim(P) and from v =
(p+v)—p we deduce that ve P—P. Thus ve (P—P)N
lim(P). Conversely, let us consider v € (P — P) N lim(P).
There exists p4, p— such that v = p, — p_. Moreover there
exists q € P and n € Ny such that g + nNv C P. Let
us consider p = q + nv + (n — 1)p_ and let us prove that
p-+Nv C P. Let us consider & € N. The Euclidean divisor of
k by n shows that there exists ¢ € N and r € {0,...,n — 1}
such that £ = gn + r. Note that rp_ + rv = rpy. Thus
(n—p_+rv=rpy+(n—1—-r)p_ € P. We deduce
that p+ kv =(q+n(g+1)v)+((n—1)p_+rv) € P. We
have proved that p + Nv C P. In particular p € P. ]

Lemma E.2. Let P be a periodic set included in a Presburger
set S C 7%, We have:

dim((P — P) N lim(P)\S) < dim(S)

Proof: Let V be the vector space generated by P.
Lemma X.2 shows that dim(P) = rank(V). By replacing S
by SNV we can assume without loss of generality that S C V.
Since the Presburger arithmetic admits a quantifier elimination
algorithm, a quantifier free formula in disjunctive normal
form shows that S can be decomposed into a finite union
U?Zl(Rj N X;) where R; is the set of vectors z € Z4N'V
satisfying a conjunction of formulas of the form h-z € c+mZ
with h € Z4, ¢ € Z and m € N, and where X; is a subset
of V such that there exists a finite set 4; C Q¥ x {>,>} xQ
such that:

X;={veV| AN h-v#c

(h,#,c)€A;

We can assume that for every (h,#,c) € A; there exists a
vector v € V such that h-v # 0 since otherwise the constraint
h - v#c reduces to O#c. Without loss of generality we can
also assume that R; is non empty. Let r; € R; and observe
that L; = R; — r; is a lattice that generates V since for
every v € V there exists m € Nyq such that nv € L;. We
introduce the lattice L = ﬂ?:l L;. By considering a product

of the natural numbers m € Ns( (one for each j), we deduce
that for every v € 'V there exists m € N5 such that mv € L.

Let v € (P — P)Nlim(P). Lemma E.1 shows that there
exists p € P such that p+Nv C P. By replacing p by a vector
in N5 op we can assume that p € L. Sinceve P-P CV,
we deduce that there exists m € Ny such that mv € L. Since
p+v+mNv CP CS, there exists j € {1,...,k} and an
infinite subset N C N such that p 4+ v +mNv C R; N X.
Let n € N and observe that p + v +mnv € r; + L; and
from p,nmv € L C L; we get v € r; +L; = R;. Moreover,
since NV is infinite and p +v +mNv C X; we deduce that
v is in the following set f(j:

X;={veVv|] N\
(h,#,c)€A;

h-v >0}

We have proved that (P — P) N lim(P) C S where S =
Ul_1(R;nX;). Thus dim((P—P)Nlim(P)\S) < dim(S\S).
From Lemma XI.1 since =, is distributive over U and N, we
get S =, S. Thus dim((P — P) Nlim(P)\S) < r. |

Lemma E.3. Let (m;)1<,<, be a sequence of vectors m, €
Z% and let M, = Nm; +- - -+Nm, for every r € {1,...,n}.
If M,, is included in U?Zl b, +P; where b; € 7% and P; C
7% is a well-limit periodic set then there exists j € {1,...,k}
such that M,, N (b; +P;) is non empty and such that (m, +
M,) Nlim(P;) is non empty for every r € {1,...,n}.

Proof: We prove the lemma by induction over n € N. The
rank n = 0 is immediate. Assume the rank n € N proved and
let us consider a sequence (m,)i<,<n41 Of vectors m, € 7%
and let M, = Nmy +---+Nm, forevery r € {1,...,n+1}.
Assume M, is included in |J}_, b; + P; where b; € Z4
and P; C Z% is a well-limit periodic set. Let ¢ € N and
observe that M,, C Ule b; —tm,; + P;. By induction
there exists j € {1,...,k} such that M,, N (b; — tm, 1 +
P;) is non empty and such that (m, + M,) N lim(P;) is
non empty for every r € {1,...,n}. We deduce that there
exists j € {1,...,k} and an infinite subset 7' C N such that
(m, +M,)Nlim(P;) is non empty for every r € {1,...,n}
and such that M,, N (b; — tm, 1 + P;) is non empty for
every t € T. Since M,, + tm,,+; C M, ;1 we deduce that
M, 1N (b; +P;) is non empty. For every ¢t € T there exists
k; € M,, such that v, = k; —b; +tm,; inin P;. As M,
is finitely generated and P; is a well-limit periodic set, we
deduce that there exists ¢ < ¢’ such that ks — k; € M, and
vy — v € lim(P;). Observe that this last vector is equal to
ky — k¢ + (¢ — t)my, 1 which is in m, 11 + M, ;1. So we
have proved the rank n + 1. Therefore, the lemma is proved
by induction. [ ]

Now, let us prove Theorem XII.1. We consider a non-empty
set X = |Ji_,b; + P; where b; € Z¢ and P; C Z7 is
a smooth periodic set. We introduce the definable conic set
K; = lim(P;). We denote by r the dimension of X. Note that
k>0andr € {1,...,d} since X is non empty. We introduce
the lattices L; = P; —P;. We denote by V; the vector space
generated by P ;. We introduce the set J = {j € {1,...,k} |



rank(V;) =r}, the class V = {V; | j € J}. For every vector
space V € V we introduce the set Jy = {j € J | V =V},
the lattice Ly = (1, L;. For every V € V and for every
z € Z* we introduce the set Jv , = {j € Jv |z € b; + L;}
and the finite class Kv , = {K; | j € Jv 2}

Lemma E.4. For every V € V and for every z € 79, we
have:

Lvﬂ(X*Z)ETLvﬂ U bj*Z*FPj

jEJV,z

Proof: Let us consider j € {1,...,k} such that the
dimension of the intersection Ly N (b; — z + P;) is greater
or equal to r and let us prove that j € Jy ,. In that case, this
intersection is non empty and thus it contains a vector x. We
deduce that the intersection is included in x+(VNV;). Hence
rank(VNV;) > r. From VN'V; C V and rank(V) = r
we get VNV, = V. Hence V C V;. As rank(V) = r
and rank(V;) < r we deduce that V.= V;. Thus j € Jy.
Moreover, since x € Ly N (b; —z + P;) we deduce that
b —zcx+L; CL;jasx€ Ly CLj;. Thus j € Jy ,. We
deduce the relations:

j=1
= U LVﬂ(bj*Zﬂ’Pj)
VISPAV
=Lvn |J (bj—z+P))
JEIV .z
We have proved the lemma. ]

Lemma E.5. If there exists a Presburger set S C 7% such
that X =,. S then for every V € V and for every z € 7¢ we
have:

Ly NY(Kvaz) = Lv N U b, —z+P;
JEINV 2

Proof: Assume that there exists a Presburger set S C Z¢
such that X =, S. Lemma E.4 shows the following relation:

LVQ(S_Z) Eerﬂ U bj—Z+Pj
JEIV,z

Hence, there exists a Presburger set D C 7% such that
dim(D) < r and such that the Presburger set R = Ly N(S—z)
satisfies R\D C Ly N Ujer,z b, —z+P; C DUR.
Lemma E.2 shows that for every j € Jv , there exists a
Presburger set D; C Z? such that dim(D;) < dim(P;) and
such that b; — z + (L; N K;) € D; UD U R. Therefore
LvNUjesn , bj —z+ (I; NK;) is included in the union of

Z=Du{ ey D; and R. We get the following inclusions:

R\ZCLvn |J bj—z+(L;NK;) CRUZ

J€EIV .,z

Since dim(Z) < r we deduce the following relation:

Lv N U bj*ZﬁL(LjﬂK]‘)Eerﬂ U b; —z+P;

JE€EIV 2 VISPAV

Finally observe that for every j € Jv 5, since b; —z € L;, we
have b; —z+ (L;NK;) =L;N(b; —z+K;). Corollary XI.2
shows that L; N (b; —z+ K;) =, L; N K. [ |

Lemma E.6. Let V €V and z € 7% such that:
LV N Z(’CV,Z) =r LV N U bj —Zz+ Pj

JEIV =z
Then the class X(Kv ) has the overlapping property.

Proof: There exists a Presburger set D C Z% such that
dim(D) < r and such that the Presburger set S = Ly N
Y(Kv ) and the set R = Lv NU;¢, , bj — 2z + P; satisfy
R\DCSCRUD. '

Let us consider jo € Jv , and a sequence vi,...,Vv, of
vectors v, € Q7 such that Qsovy + -+ + Qsov, C Kj,
and let us prove that there exists K € Ky, such that
KN (Qsovy + -+ Qsov,) # 0 for every r € {1,...,n}.
By extending the sequence we can assume that vi,...,v,
generates V. Moreover, by replacing vectors v, by vec-
tors in Nygv, we can assume without loss of generality
that v, € Lv. Therefore v. = vy + --- + v, satisfies
v+Nvi+---+Nv, C Ly nK;; €S C RUD. By
decomposing D into linear sets, since vy, ..., Vv, generates
V, Lemma E.3 shows that there exists j € Jv , such that
(v+Nvy+ -+ +Nv,)N (b; —z+ P;) # 0 and such that
(Nsovy + -+ Nygv,) NK; # 0 for every r € {1,...,n}.
We have proved that v , has the overlapping property. H

Lemma E.7. For every V € V and for every z € 7. we have:

Lvn |J bj -2+ (1,;NK;) = Ly N%(Kv.,)
Jj€IV, 2
Proof: We observe that for every j € Jy, the intersection

Lv N(b; —z+Lj) is equal to Ly. We deduce the following
equality:

Lvm U bj —Z—I—(ijKj)

JE€JIV 2
= |J Lvn(b; —z+(L;NK;))
VISOAV

Since b —z € L; we get b; —z+(L;NK;) = L;N(b; —z+
K ). Corollary XI.1 shows that L;N(b,; —z+K;) =, L;NK;.
Hence Lv N (b; —z + (L; NK;)) =, Lv N K;. We have
proved:

U Lvn(b; —z+(L;nK;))
jeJV.z

= (J LvnK; =Ly NZ(Kv.)

JEJIV,2

We deduce the lemma. |



Lemma E.8. If Kv/ ; has a complete extraction for every V €
V and for every z € 7% then there exists a finite sequence
(Cj)i<j<k of finitely generated conic sets C; C K; such
that J;_ b +L; NK; =U_ b; +L;NC;.

Proof: Let V € V and z € Z%. From Lemma E.7 we
deduce the following relation:

Lv N U bj —7Z+ (LJ n Kj) =Ly N Z(’CV’Z)
JE€EIV,2
Since Kv, has a complete extraction, there exists a
sequence (Cv zj)jes,, of finitely generated conic sets
Cv.; C K; such that Ujer_z Cv.z,; = X(Kv ). Since
for every j € Jv , we have Ly N (b; —z+ L;) = Ly, we
deduce:

Lv N E(K:V,z) = U Lv N CV,z,j

JE€IV,z
=LvnN ( U (b] —Z +L]) N CV,z,j)
Jj€IV,z
Lemma XI.1 shows that (b; —z+L;)NCv ., = b;
(L N Cv 4,;) for every j € Jv ,. We have proved:

Lv N E(K:VJ) =.Lv N U bj —Z+ (Lj n CV,z,j)
JE€EIV,z

—z+

Let us introduce a finite set Zy C Z? such that 3 jeay Pit
L; = Zv + Ly. We consider the sequence (C;)i<j<i of
finitely generated conic sets defined by C; = {0} if j & J
and defined for every j € J by:

Cj= Y Cv,a,
zEZvj

Observe that C; C K for every j € {1,...,k}. In particular
L; N C; C L; NnK;. We consider the sequence (M;)1< <
of sets M; = L; N C;. Since Ly N (b; —z + M;) is empty
for every j € Jv\Jv  we deduce:

Lvn(J bj—z+(L;NK;)

j€Jv
=, Lyn |J bj—z+M;
JEIV .2
=Lvn [J bj—z+M;
JjEJv

Since > _,c 5, bj + Lj = Zv + Lv, we deduce the relation
UjEJv bj + (LJ n K]) =, UjEJv bj + Mj. Therefore
UjEJ bj+(LjﬂKj) =, UjEJ bj+Mj. Since dim(bj+(Ljﬂ
K;)) < rand dim(b; +M;) < r forevery j € {1,...,k}\J
we deduce that b; + (L; NK;) =, 0 and b; + M; =, 0. We
have proved the following relation:

k

k
Ub;+ @nK;) = | Jb; + M,
j=1 j=1

In the previous relation, the relation =, can be replaced by
since the set Y = U?:l b;+ (L;NK;) satisfies dim(Y) =

Now let us prove Theorem XII.1. Assume that X is equiv-
alent for =, to a Presburger set. We deduce that there exists
a finite sequence (C;)i<;<i of finitely generated conic sets
Cj - Kj such that X =, U;?:l bj + (Lj N Cj)

Let us introduce the periodic set Q; = L; N C;. Since the
conic set generated by Q; is C; which is finitely generated,
Lemma V.4 shows that Q; is finitely generated. Lemma E.1
shows that for every v € Q; there exists p € P; such that
p + Nv C P;. Since Q; is finitely generated, there exists
y; € b; + P, such that the linear set Y; = y; + Q; is
included in b; + P;.

Now, let us consider a sequence (p;)i<j<k of vectors p; €
P;. Note that p; +Y; = y; + (L; N (p; +C;)). Note that the
vector space W generated by C; is included in V. If the
inclusion is strict then rank(W;) < r and we get p, +Y,; =,
0 =, b; + Q,. Otherwise, if W; = V; then Corollary XL.2
shows that p; + (y; — b;) + C; =, C;. Thus p; +Y; =,
b; + Q;. We have proved that X =, szl p; +Y;.



