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Abstract—This work deals with a general energetic ap-

proach to establish an accurate electromechanical model of a 

piezoelectric transformer (PT). Hamilton’s principle is used to 

obtain the equations of motion for free vibrations. The modal 

characteristics (mass, stiffness, primary and secondary electro-

mechanical conversion factors) are also deduced. Then, to il-

lustrate this general electromechanical method, the variational 

principle is applied to both homogeneous and nonhomogeneous 

Rosen-type PT models. A comparison of modal parameters, 

mechanical displacements, and electrical potentials are pre-

sented for both models. Finally, the validity of the electro-

dynamical model of nonhomogeneous Rosen-type PT is con-

firmed by a numerical comparison based on a finite elements 

method and an experimental identification.

I. I

T emergence of piezoelectric transformers coincides 
with the development in the 1950s of ferroelectric 

ceramics belonging to the perovskites crystalline family. 
The first architecture was proposed by Rosen [1], who 
designed a step-up piezoelectric transformer (PT) made 
in barium titanate (BaTiO3) rod in 1956. In addition to 
providing small size and weight, PTs offer outstanding 
performance in terms of galvanic insulation, voltage ratio, 
and efficiency. Furthermore, compared with conventional 
electromagnetic transformers, PTs are free from electro-
magnetic interference. They are consequently more suit-
able for low-power applications, high efficiency, and small 
embedded systems.

For some years, a wide range of piezoelectric trans-
former structures has been developed to ensure various 
electrical requirements, also considering fixed constraints 
or environmental conditions. Substantial performance im-
provements have been reached with the development of 
new piezoactive materials and manufacturing process.

Typically, PTs provide optimal performances when 
they are supplied by voltage power supply close to one 
of their mechanical resonance frequencies. Furthermore, 
these frequencies depend strongly on dimensions, shape, 
and mechanical properties of the medium. This implies 
that vibratory eigenmodes must be clearly defined and 

convenient models have to describe the electromechanical 
behavior. The development of analytical models [2]–[3] is 
particularly suitable for implementation into optimization 
algorithms [4] to deduce optimal dimensions.

The present paper relies on the development of a gen-
eral analytical method to treat the modeling of any PT for 
several vibratory modes. With this analytical multimodal 
approach, the performance can also be predicted for dif-
ferent kinds of PT design.

First, the general method based on Hamilton’s principle 
and matrix formulation is detailed. Then, this method is 
illustrated by modeling a classical Rosen-type transformer 
with consideration of nonhomogenous electromechanical 
properties along the displacement axis. The same method 
is also used for this transformer considering a current ap-
proximation of a homogenous elastic medium. As result, 
both problem formulations are balanced and thus highlight 
the influence of this assumption in terms of precision.

Finally, the modal parameters (i.e., the modal mass, 
the modal stiffness, the transformer ratio, the resonant 
frequency at shorted circuit) will be extracted and com-
pared with those that come from a numerical study using 
a finite elements method and an experimental identifica-
tion.

II. G A F

Following the example of conventional magnetic trans-
formers, the piezoelectric transformers are composed of 
primary and secondary sections with the difference that 
the coupling lies in an electromechanical conversion. The 
transformer is driven by a sinusoidal voltage power supply. 
The frequency of applied voltage usually coincides with a 
fundamental mode of vibration to take advantage of the 
best electrical performances of the PT (efficiency, voltage 
step-up ratio).

To establish a multimodal model of any piezoelectric 
transformer, a general analytical formulation is presented 
in following sections. First, the Hamilton’s principle is de-
tailed, governed by matrix formulation. Then, a method-
ology to deduce modal shapes is undertaken to get to the 
electromechanical model.

A. Electromechanical Modeling

To access the electromechanical behavior of the PT, an 
energy approach based on Hamilton’s principle seems to 
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be the most appropriate choice. From [5], a generalized 
form of Hamilton’s principle for electromechanical systems 
is

 d d
t
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t
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Ldt Wdt
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= 0ò ò+ , (1)

where L is the Lagrangian of the system and W is the 
variational work done by the external forces. In the clas-
sical way, the Lagrangian of a piezoelectric structure is 
given by

 L T U We= - + , (2)

where T and U are the kinetic and potential energies from 
which the modal mass and stiffness matrices are respec-
tively deduced. A linear electrical energy term We, is add-
ed to take into account the electrical energy stored within 
the piezoelectric material. For a piezoelectric transformer 
of volume Ω and total surface Σ, the expression of kinetic 
energy simply takes the following form:

 T u u d u u dT T=
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where ρ represents the material density; Ωin and Ωout are, 
respectively, the volumes of the driving and receiving 
parts. The kinetic energy is split into 2 contributions: that 
caused by the motion within the driving part and that 
caused by motion within the receiving part. The 3-D vec-
tor {u} is the displacement vector in the x1, x2, and x3 di-

rections. The superscript T  denotes the mathematical 
transpose.

The potential energy of a piezoelectric transformer is 
defined as
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where {S} represents the strain vector and {T} the stress 
vector. The electrical energy We exists also within the 
whole piezoelectric transformer:
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where {D} represents the electrical displacement vector 
and {E} the electric field vector.

The variational work due to the external forces on the 
piezoelectric transformer is given by

 d d dW W W= in out+ , (6)

where Win and Wout are, respectively, the applied electri-
cal energies to the driving and receiving portions caused 
by the external charges. These variational electrical works 
can be expressed as

 d d d dW q v W q vT T
in in in out out out= { } { } = { } { }- ; , (7)

where {qin}T, {vin}, {qout} and {vout} are, respectively, the 
electrical charge and voltage vectors at the electrodes of 
the primary and secondary parts. The difference of sign 
between the primary and secondary external energies is 
due to the respective actuator and sensor behaviors of the 
driving and receiving sections.

To derive the potential and electrical energy expres-
sions, the piezoelectric constitutive relationships relative 
to the primary and secondary sections will be properly 
included. Regarding the constitutive laws of the piezoelec-
tric material, the driving part behaves like a piezoelectric 
actuator, which means that a mechanical deformation can 
be generated by applying an electrical field. The set of 2 
independent variables (S, E) is so chosen in the constitu-
tive equations which take the following form:
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where [cE], [e], and [εS] are, respectively, the stiffness ma-
trix (at constant electrical field), the piezoelectric constant 
matrix, and the dielectric permittivity matrix (at constant 
strain). The secondary part behaves like a sensor, which 
means that the mechanical strain and the electrical field 
can interact. The set of 2 independent variables (S, D) is 
consequently selected to express the constitutive equations 
of the secondary part. They take the following form:

 
{ } = [ ]{ } [ ] { }

{ } = [ ]{ } [ ]{ }

T c S h D

E h S D

D T

S

-

- + b ,
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where [cD], [h], and [βS] are, respectively, the stiffness ma-
trix (at constant electrical displacement), the piezoelectric 
constant matrix, and the dielectric impermittivity matrix 
(at constant strain).

Before the assumed modes are chosen, the strain-dis-
placement relations must be developed according to the 
theory of linear elasticity. Within the framework of a mod-
al study, the displacement vector can be defined in terms 
of several assumed modes and takes generally the follow-
ing matrix formula [6]:
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This expression differentiates the geometrical domain 
from the time domain (harmonic vibrations assumption). 
In fact, the mechanical modal amplitude vector {η} is only 
dependent on time and the assumed mechanical mode 
shape matrix λm is only dependent on the coordinates 
x1, x1, and x3. It must be emphasized that the solution 
remains general for n assumed modes.



The relationship between strain and displacement vec-
tors can be obtained by applying the Green’s relation in 
the case of a linear deformation assumption [7]. The strain 
vector is finally represented with the mechanical modal 
amplitude {η} as shown:

 { } = { } =S N N Lm m m mh l where , (11)

where Lm is a (6 × 3)-matrix differential operator depend-
ing on the coordinates system. As an example, in the Car-
tesian coordinates system, Lm is
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Contrary to the strain vector, the assumed shapes on the 
electrical potential ϕ within the piezoelectric transformer 
have to be defined in the primary and secondary parts. 
The selected solution is to write the electrical potential in 
both sides as
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v ,
 (13)

where λin and λout are the electrical mode shape matrix 
of the primary and secondary sides, respectively. Thereby, 
the electrical field in the piezoelectric transformer is given 
by
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 (14)

where the operator matrices Lin and Lout convert the as-
sumed shape on the potential ϕ at the electrodes to an 
electrical field within the primary and secondary parts, 
respectively. As a consequence, the electrical field and the 
applied voltage relationships in both sections are
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 (15)

After the strain-displacement and the electrical field-volt-
age relations are defined, the equation of motion of the 
piezoelectric transformer can be derived by appropriately 
substituting T, U, and We in (1), as described subsequent-
ly.

1) Kinetic Energy: By substituting (11) in (3) and rear-
ranging the terms, the kinetic energy within transformer 
is

 T M MT T=
1

2
{ } [ ]{ }

1

2
{ } [ ]{ }   h h h hin out+ , (16)

where [Min] and [Mout] are the modal mass matrix of the 
primary and secondary sections respectively, which are 
defined as
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2) Potential Energy: By substituting the expressions of 
the stress vector from the piezoelectric constitutive equa-
tions (8) and (9) in (4) and rearranging the terms, the 
potential energy of PT is the sum of both contributions of 
the driving and receiving parts given by
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where [Kin] and [Kout] are the modal stiffness matrix of 
the primary and secondary parts, respectively, which are 
defined as
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where [ψin] and [ψout] are the modal electromechanical 
coupling matrix parts which are expressed as
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3) Electrical Energy: By substituting the expressions 
of the electrical displacement from the piezoelectric con-
stitutive equations (8) and (9) in (5) and rearranging the 
terms, the electrical energy of the PT is the sum of both 
contributions of the primary and secondary sides given 
by
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where [Cin] and [Cout] are the primary and secondary 
piezoelectric “blocked” capacitance matrices respectively, 
defined by
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4) Lagrangian: The expression of the Lagrange function 
of the piezoelectric transformer is obtained by substituting 
T, U, and We in (2). Observing that the terms {η}T[ψin]



{vin} and {η}T[ψout]{vout} are scalar, the Lagrangian is re-
duced to the expression given by
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where [M] and [K] are, respectively, the total modal mass 
and stiffness of the piezoelectric transformer given by
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The equations of motion can now be derived by making 
the substitution for the Lagrangian (23) and the variation-
al work terms (7) in (1). By integrating the kinetic energy 
by parts in time and rearranging the terms, the dynamic 
equilibrium of a PT defined by the independent quantities 
{δη}, {δvin}, and {δvout} can be obtained. By allowing arbi-
trary variations for {η}, {vin}, and {vout} 3 matrix equations 
of motion are obtained:
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The dynamic solution is based on the generalized coordi-
nates, which are the modal amplitude and the applied and 
received voltages. In the next part, the study of the free 
vibrations of a piezoelectric transformer is undertaken.

B. Free Vibrations of Piezoelectric Transformers

Mechanically, a piezoelectric medium is close to a 
“classic” elastic medium. Because of that, the methods 
of mechanical studies of linear elastic problems [7] can 
be adapted to linear piezoelectric problems. The eigen-
value problem of the dynamic equilibrium of a PT free of 
all external influences is considered. The assumption of a 
harmonic time evolution of the mechanical and electrical 
quantities can be made because the piezoelectric material 
is supposed to be linear. The displacement field and the 
electrical potential can be expressed with the following 
form:
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The elastic and electrical behaviors of PT can be ex-
plained by the linear theory of the piezoelectricity. Ac-
cording to [8], a piezoelectric medium is governed by the 
local equations given by the Newton’s and Gauss’s elec-
trostatic laws:
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To these equations showing the dynamic equilibrium of 
the linear piezoelectric continuum the boundary conditions 
must be added. Mechanically, assuming that the acoustic 
impedance of air is neglected, a traction-free condition is 
considered at the surface of the PT:

 T nij i = 0 on S, (28)

where ni denotes the components of the unit normal to 
the surface. Electrically, if the appropriate dielectric con-
stant of the material is large compared with the dielectric 
constant of air, the boundary condition becomes approxi-
mately:

 D ni i = 0 on S. (29)

Thus, the homogeneous system of equations and the har-
monic time evolution assumption define an eigenvalue 
problem. Its eigenvalues are in infinite number and can be 
represented by the following ordered pairs:
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According to (27), (28), and (29), they verify individually 
the following equations:
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(31)

This problem includes 4 scalar equations with the asso-
ciated boundary conditions which depend on the modal 
pulsation ω(n). It will consequently be impossible to deter-
mine the eigensolutions in a unique way: it corresponds to 
the indetermination on the modal amplitudes {v(n)}.

According to [7], the eigenmodes associated with a mul-
tiple eigenfrequency are linearly independent and they can 
be consequently chosen to be orthogonal. To prove the 
orthogonality properties of the eigensolutions, the equi-
librium equations in the volume of the PT verified by 
the eigenvector {v(n)} is multiplied by the transpose of the 
eigenvector {v(m)} and integrated over the volume:
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The equilibrium equation of eigenvector {v(m)} is treated 
in the same way by multiplying it by the transpose of 
the eigenvector {v(n)}. By using the constitutive equations 



of the driving and receiving sections and the boundary 
conditions verified by the eigenvectors {v(n)} and {v(m)}, 
respectively, 2 relations are obtained. By manipulating 
them, the normalization of the modal mass is achieved by 
the following relation:

 
W

Wò r d{ } { } =( ) ( )u u dm T n
nm, (33)

where δnm is the Kronecker’s symbol. A second relation of 
orthogonality can also be deduced, given by (34), between 
the strain field and the electrical field in the piezoelectric 
transformer induced by 2 different eigenmodes.

 

W

W

W
in

out

 

ò
ò

+

+

[{ } [ ]{ } { } [ ]{ }]

[{ }

( ) ( ) ( ) ( )

( )

S c S E E d

S

m T E n n T S m

m T

e

(([ ] [ ] [ ] [ ]){ }

{ } [ ] { }] =

1 ( )

( ) 1 ( )
(

c h h S

E E d

D T S n

n T S m
nm n

-

+

-

-

b

b d w W ))
2

 (34)

The relationships (33) and (34) are a priori valid for any 
geometry of piezoelectric transformer.

III. A  R P 
T

To illustrate the previously established electromechani-
cal method, a typical Rosen PT is chosen. In concrete 
terms, this type of PT consists of a single rectangular 
piece of piezoelectric ceramic material; the primary part 
is poled in the thickness direction, whereas the secondary 
part is poled in the length direction.

This architecture is driven by an ac voltage power sup-
ply applied to the driving part at a frequency close to the 
length extensional modes frequency. As a consequence, by 
the converse piezoelectric effect, a promoted longitudinal 
vibration is transmitted to the receiving part by mechani-
cal coupling. An electrical potential is therefore induced 
by the direct piezoelectric effect at the same frequency [9]. 
This architecture is particularly dedicated to high-voltage 
step-up ratio and low-power applications. For that rea-
son, the primary side is often constituted with multilayers, 
which allows an increase of voltage step-up ratio.

A. Modeling of Rosen PT

Fig. 1 is a schematic of a multilayer Rosen PT of length 
L0, width w, and thickness t. The transformer is consti-
tuted by a driving part transversally poled and a longitu-
dinally poled receiving part of length L1 and L2, respec-
tively. The origin of the coordinate system is chosen at the 
center of the interface between the primary and secondary 
portions. The driving section −L1 < x1 < 0 is made of m 
layers with e/m thickness. In the receiving section 0 < x1 
< L2, the output electrode at the end x1 = L2 is connected 
at the load resistance RL.

1) Definition of Lagrangian: To access a simple ana-
lytical solution and a representative description of electro-

dynamical behavior of the PT, the multimodal model is 
derived from the following assumptions:

 1)  Because the optimum performance of this structure 
is achieved for longitudinal modes, the vibratory 
analysis will only deal with extensional modes, so 
the Rosen PT is considered as a thin sheet in exten-
sion motion.

 2)  The Rosen-type PT is considered as a thin ceramic 
rod with rectangular cross section in extensional mo-
tion in the axial direction x1 [8]. The length L0 is as-
sumed to be much longer than the width w, and the 
thickness t is much thinner than the width to satisfy 
thin plate approximation: L0 Ԡ w Ԡ t. Moreover, 
the electrodes’ thickness is also neglected.

 3)  The state of 1-D stress is considered.
 4)  The boundary conditions for the Rosen PT are trac-

tion-free.
 5)  In first approach, the nonhomogeneous property 

along x1 is considered, i.e., the difference of stiffness 
between the primary and secondary parts is taken 
into account.

Because the axes of poling are different in the primary 
and secondary sides, the material matrices for each ceram-
ic have to be written by respecting the local coordinate 
system. In this case, for the ceramic poled in the x3 direc-
tion, the material matrices of the driving portion take the 
following expressions [10]:
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 (35)

For the ceramic poled in the x1 direction, which is used to 
define the receiving section, the material matrices can be 
obtained from the previous matrices by rotating rows and 
columns properly. They are expressed as

Fig. 1. Structure of classical Rosen transformer.
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 (36)

From these assumptions and geometrical considerations, 
the constitutive relations of the primary and secondary 
portions can be simplified. Indeed, after assumption 3 is 
made, the PT is assumed to undergo an uniaxial stress 
along the axis x1 and to be free of shear stresses. Thus, the 
stress and strain vectors are reduced to one component:
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Moreover, as each layer is assumed to be supplied by a 
sinusoidal voltage, the electrical field is oriented parallel 
to the axis (3), in the same direction of the depolarizing 
field. Both electrical field and electrical displacement are 
consequently reduced to one component:
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 (38)

This leads to the following reduced constitutive relation-
ships of the primary part given by
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The tilde symbol on the coefficients of the piezoelectric 
material is a note to use the specific values of the trans-
verse coupling mode. These coefficients are given in Table 
I, where k31 is the material coupling factor relative to the 
transverse mode.

Furthermore, assuming that the electrical field is con-
stant as well as the thickness, the operator matrix Lin can 
be simply defined by

 L
m

t
in = -

é

ë
ê
ê

ù

û
ú
ú
, (40)

and as each layer is supplied by the applied voltage Vin(t), 
the primary electrical field is defined as

 { } = ( ) = 0 0E N V t N m t
T

in in in with /-é
ëê

ù
ûú . (41)

Concerning the receiving section, the insulating and with-
out free charges ceramic assures that the components of 

electrical displacement along the axes (2) and (3) are equal 
to zero and, according to Gauss’s law, the component D1 is 
constant. Both electrical field and electrical displacement 
are consequently reduced to one element:
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This leads to the following reduced constitutive relation-
ships of the secondary part:
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The tilde symbol on the coefficients of the piezoelectric 
material is a note to use the specific values of the longitu-
dinal coupling mode. These coefficients are given in Table 
I, where k33 is the material coupling factor relative to the 
longitudinal mode.

In a similar way, the operator matrix Lout can be sim-
ply defined 

 L
L

out =
1

2

-
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ê
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ù

û
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, (44)

and as the piezoelectric transformer produces an output 
voltage Vout(t), the secondary electrical field is defined as 
follows:

 { } = ( ) = 1 0 02E N V t N L
T

out out out with /-éëê
ù
ûú . (45)

2) Vibratory Analysis: To apply the previously detailed 
electromechanical modeling to extract a multimodal mod-
el, a preliminary vibratory analysis is necessary to charac-
terize the displacement field of extensional modes.

The vibratory study follows the 1-D model of a bar in 
extension explained in [10]. Furthermore, the number of 
considered longitudinal modes will be limited to minimize 
the influence of transverse modes (assumption 2). Accord-

TABLE I. P M C   
T  L C M. 
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ing to assumption 5, the Rosen PT is the association of a 
primary and secondary parts considered as continuous 
beams of length L1 (resp. L2), density ρ, and stiffness c 11 
(resp. c 33). From (27) and the reduced constitutive equa-
tions (39) and (43), the following dynamic equilibrium 
equation in the assumption of linear piezoelectricity is ob-
tained:
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 (46)

According to the free vibrations assumption (assumption 
4), the driving and receiving electrodes are considered as 
short and open, respectively. This means that the driv-
ing voltage Vin(t) is equal to zero. Hence, from (43), the 
expression of the electrical potential along the structure 
can be obtained:
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(47)

and A(t) and B(t) are 2 integration constants which may 
still be functions of time. Physically, A(t) represents the 
output electric charge and as a consequence the current on 
the receiving electrode at x1 = L2 [10]. Thus, as the latter 
is supposed to be open for free vibrations study, A(t) is 
considered to be equal to zero for vibratory analysis.

Concerning the interface conditions, the displacement, 
the stress, and the electrical potential verify the following 
continuity relations at the junction of both sections, x1 = 
0:
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Furthermore the free-free ends boundary conditions (as-
sumption 4) can be written as follows:

 

T x L t
u

x
x L t

T x L t
u

x

c

c

1 1 1 11
1

1
1 1

1 1 2 33
1

1

( = , ) = ( = , ) = 0

( = , ) = (

-
¶
¶

-

¶
¶



 xx L t1 2= , ) = 0.

 (49)

To analyze the free vibrations, the harmonic motion as-
sumption u1(x1, t) = U(n)(x1)cos(ωt) is considered. Thus, 
(46) is modified into
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(50)

which admits the general solution (i = 1, 2)

 U x A k x B k xn
i i
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i i
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1
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1

( )
1( ) = ( ) ( )cos sin ,+  (51)

where k n1
( ) and k n2

( ) are the wave vectors of the nth mode 
in the primary and secondary parts, respectively, with the 
following expressions
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and finally ω(n) is the nth root of the frequency equation 
given by (A1) and obtained by the determination of con-
stants Ai and Bi. A graphic solution of the frequency equa-
tion is presented in Fig. 2. The general solution of the 
proposed eigenvalue problem consequently takes the form 
of (A2). Therefore, in the interests of an appropriate choice 
of generalized coordinate, the eigenfunction U(n) must be 
normalized to match the mechanical generalized coordi-
nate with the maximum amplitude of the displacement. 
The selected criterion of normalization affects the modal 

mass according to (33). The constant U n
0
( ) consequently 

takes the form given by (A3) where the symbol sinc repre-

sents the unnormalized sinc function. Note that U n
0
( ) is 

inversely proportional to the square root of a mass and in 
this instance, if the multiplying constant M 0, where M0 
is given by (53), is added to normalize the eigenfunction 
U(n), the mechanical generalized coordinate will be the 
maximum amplitude of the displacement.

 M wtL0 =
1

2
r  (53)

Thus, for applied frequencies close to mechanical resonant 
frequency, the displacement field of the Rosen-type piezo-
electric transformer can be finally defined by:

 u x t U x tn n
1 1

( )
1

( )( , ) = ( ) ( )ˆ ,h w  (54)

Fig. 2. Determination of eigenfrequencies by graphic resolution.



where h w( )n  and Û n( ) are, respectively, the mechanical gen-
eralized coordinates representing the maximum amplitude 
of the displacement and the normalized eigenfunction of 
the nth extensional mode with:

 ˆ .U x M U xn n( )
1 0

( )
1( ) = ( ) (55)

As the consequence, the assumed mechanical mode shape 
matrix λm can be defined as
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The normalized mechanical displacement of the first 4 lon-
gitudinal modes for a Rosen PT with equal primary and 
secondary lengths are shown in Fig. 3; λ represents the 
wavelength of the vibratory phenomenon. Note that the 
location of the nodal point is sensitive to the difference of 
stiffness between the driving and receiving parts. In fact, 
in the case that compliances of both sections verify the 

inequality s s kE E
11 33 33

2< (1 )- , the nodal point of the first 
extensional mode appears in the left half where the mate-
rial is more rigid in the x1 direction. In Fig. 4, the normal-
ized electrical potential of the first 4 extensional modes 
functions of x1 are represented. ϕ(1) and ϕ(2) rise in receiv-
ing part. That is why Rosen-type PT are generally de-
signed to operate at the first 2 extensional modes [9].

3) Application of Hamilton’s Principle: After the vi-
bratory analysis is made, the Hamilton’s principle is ap-
plied. According to the general analytical formulation, the 
Lagrangian of the Rosen PT can be expressed by (23). By 
calculating the integral in (24) and using the criterion of 
normalization (33), the modal mass matrix of the Rosen 
PT is diagonal and reads
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where the modal mass of the ith mode is equal to M0. The 
total stiffness matrix can be calculated from (19) and (24). 
By using the equation of normalization (34), the diagonal-
ization of the stiffness matrix is achieved as follows:
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where the modal stiffness of the ith mode is given by (59), 
where the piezoelectric material coefficient of the trans-
verse and longitudinal coupling modes (Table I) have been 
used.
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The electromechanical coupling matrices of the driving 
and receiving sections take the form of a column vector 
as follows:
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where the modal electromechanical factor of the ith mode 
of the primary and secondary portions are given by

Fig. 3. Normalized mechanical shape of the first 4 extensional modes. Fig. 4. Normalized electrical potential of the first 4 extensional modes.
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 (61)

The input and output “blocked” capacitances of the Rosen 
PT can be simply defined by a scalar as
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By applying Hamilton’s principle, the dynamic equilib-
rium of a Rosen PT is governed by one matrix equation 
and 2 scalar relations:
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The second-order mechanical equation shows a resonant 

phenomenon whose characteristic modal frequency f r
i( ) 

takes the form
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By manipulating (63), the Rosen-type PT’s vibratory be-
havior can be represented by an equivalent circuit (Fig. 5) 
where resistances have been added to take into account 
the dielectric and mechanical losses. The modal mechani-

cal losses are represented by a resistance Rm
i( ) which is in-

versely proportional to the mechanical quality factor Qm 
of piezoelectric material.

The dielectric losses at the primary and secondary sec-
tions are respectively symbolized by the resistances Rin 
and Rout, estimated by the dielectric loss angle. The mod-

al transformer ratio of the Rosen PT is also introduced 
and is given by
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. (65)

B. Modeling of Simplified Homogeneous PT

A current simplified analytical model of the electrome-
chanical behavior of a Rosen-type PT is to consider the 
structure as a homogeneous medium. In this section, the 
presented method is newly applied from this additional 
assumption. As a consequence, the stiffness of the primary 
side close to the one of the secondary part is implicitly 
supposed. This assumption takes the following analytical 
form:
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Thus, to determine the electrodynamical characteristics, 
the application of Hamilton’s principle requires a new vi-
bratory analysis to obtain the displacement field. Conse-
quently, consider the Rosen PT as a continuous and ho-
mogeneous beam of length L0, density ρ, and stiffness c. 
Newton’s second law applied on a slice of length dx1 gives, 
in the assumption of linear elasticity,
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Following the example of the previous vibratory analy-
sis, by making the free-free ends boundary conditions and 
harmonic motion assumptions, the solution of free vibra-
tions problem can be expressed as follows:
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(68)

where k(n) is the wave vectors of the nth mode in the Rosen 
PT. Contrary to the previous study, the wave vector has 
an analytical expression which is obtained by calculating 
the constants of integration:

 k
n

L
n( )

0

=
p

. (69)

Therefore, to match the mechanical generalized coordi-
nate to the maximum amplitude of the displacement, the 
normalization of the displacement field can be made just 

by substituting k n1
( ) and k n2

( ) by k(n) in the expression of 

the constant U n
0
( ). The same will be true of the calculus of 

the modal matrices (mass, stiffness, and electromechanical 
factor) during the application of Hamilton’s principle. The 
normalized mechanical displacements of the first 4 longi-

Fig. 5. Equivalent electrical circuit of Rosen piezoelectric transformer.



tudinal modes are shown in Fig. 6 for a Rosen PT with 
equal primary and secondary lengths. It can be noted 
that, contrary to the previous vibratory analysis, the as-
sumed homogeneity along the x1 direction makes normal-
ized mechanical displacement of extensional modes cen-
tered in the middle of the structure. In Fig. 7, the 
normalized electrical potential of the first 4 modes func-
tions of x1 are represented.

Hereafter, comparison between the electrodynamical 
and electrical characteristics of both analytical models 
will be detailed.

C. Comparisons of Both Models

To check the relevance of both electromechanical mod-
els, a Noliac Ceramic Multilayer Transformer (CMT; No-
liac Group, Kvistgaard, Denmark) is considered [11]. The 
piezoelectric material used in PT’s processing is a lead 
zirconate titanate ceramic. The geometric parameters and 
the material properties are itemized in Table II.

According to Table II, modal electromechanical param-
eters of nonhomogeneous PT model can be calculated 
from (57)–(62). They are shown in Table III. For the ho-
mogeneous model, the modal characteristic parameters 

are obtained by simply substituting k n1
( ) and k n2

( ) by k(n) in 
(57)–(62). These parameters are detailed in Table IV.

In Tables III and IV, the series resonant frequencies 
at short and open receiving electrode are added. Their 
expressions take the form
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Comparisons of results in Tables III and IV lead to 
several conclusions about accuracy and interest of these 
models. First, the vibratory behavior defined by the reso-
nant frequencies, modal stiffness, and modal mass is quite 
similar in both cases. According to mass normalization 
assumption, both models modal mass is constant regard-
less of the vibratory mode. Second, significant differences 

Fig. 6. Normalized mechanical shape of the first 4 modes. Fig. 7. Normalized electrical potential of the first 4 modes.

TABLE II. N C M T R P T’ 
G P  M P. 

Definition Value Unity

L1 Primary length 12 mm
L2 Secondary length 13 mm
w Width 5 mm
t Thickness 1.7 mm
m Primary layers 16
ρ Mass density 7600 kg/m3

s E11 Transversal compliance at constant E 1.256e−11 m2/N

s E33 Longitudinal compliance at constant E 1.610e−11 m2/N
d31 Transversal piezoelectric coefficient −1.329e−10 m/N
d33 Longitudinal piezoelectric coefficient 3.086e−10 m/N

 33T Permittivity at constant T 1454 0 F/m
k31 Transversal coupling factor 0.330
k33 Longitudinal coupling factor 0.678
Qm Mechanical quality factor 1000
tan δ Loss angle 0.003



appear on electromechanical conversion factors except for 
the (λ)-mode. More generally, modal characteristics of 
both models are similar for the (λ)-mode. The weak influ-
ence of nonhomogeneous media on the even waveforms 
can give the proof of this noteworthy agreement.

Another significant difference is observed on the elec-
trical potential repartition along the receiving part, par-
ticularly for the (3/2λ)-mode. An obvious difference of 
the extremum values of the electrical potential appears 
on Figs. 4 and 7. These curves are obtained from equa-
tions (A1) and (68), respectively. This difference lies in 
the value of k(n) factor and L1/L2 ratio. The singular unit 
waveform on Fig. 7 appears in the case of consideration 
of homogeneous medium and equal primary and second-
ary lengths.

In intermediate conclusion about both models com-
parisons, it can be deduced that the choice of analyti-
cal approach and assumption considerations depend on 
the model’s final objective. A simple model will be a 
sufficient approximation in the case of single mode con-
sideration. The most complete model becomes necessary 
if a multimodal approach is required for optimization 
problems without arbitrary selected mode or in the case 
that the electrical potential repartition is a considered 
point of view.

In following section, previous analytical values will be 
compared with results obtained by finite elements method 
and experimental results.

IV. N  E V

To verify the Rosen-type PT analytical electrodynami-
cal model, a numerical study and an experimental identi-
fication were undertaken.

The experimental identification of the electrical equiva-
lent circuit of the CMT Noliac transformer has been led 
for the first 4 longitudinal vibratory modes and previously 
undertaken in [12]. This identification is based on admit-
tance measurements with Agilent HP 4294A impedance 
analyzer (Agilent Technologies Inc., Santa Clara, CA).

By two successive characterizations with the input and 
output terminal shorted, respectively, the electrical equiv-
alent circuit is fully identified [13].

The following part is dedicated to briefly introduc-
ing the numerical method. The aim of this approach is 
to validate the theoretical modal mechanical shapes and 
electrical potentials and to extract the electromechanical 
parameters of the PT.

A. Development of Numerical Method

The method to characterize the double electromechani-
cal conversion is based on a modal analysis and energy 
considerations using a finite element method with the AN-
SYS software. The modal study concerns the longitudinal 
mode of a PT composed of 2 rectangular piezoelectric ce-
ramics of length L1 (resp. L2), width w, thickness t, and 

TABLE III. M P  N R-T P T 
M. 

Mode λ/2 Mode λ Mode 3/2λ Mode 2λ

fs [Hz] 63 686 123 430 190 790 247 420
fp [Hz] 69 276 139 630 194 520 247 420
Cin [nF] 103.63 103.63 103.63 103.63
Cout [pF] 4.551 4.551 4.551 4.551
M [g] 0.808 0.808 0.808 0.808
K [GN/m] 0.129 0.486 1.161 1.952
Lm [mH] 0.823 0.285 1.569 287.9
Cm [nF] 7.584 5.833 0.443 0.001
ψin [C/m] 0.990 1.683 −0.717 −0.053
ψout [C/m] 0.0104 −0.0249 −0.0144 0.0006
ψ 95.37 −67.68 49.70 −96.52

TABLE IV. M P  H R-T P T M. 

Mode λ/2 Mode λ Mode 3/2λ Mode 2λ

fs [Hz] 60 760 122 120 182 290 244 220
fp [Hz] 70 103 138 600 184 240 244 230
Cin [nF] 103.63 103.63 103.63 103.63
Cout [pF] 4.551 4.551 4.551 4.551
M [g] 0.808 0.808 0.808 0.808
K [GN/m] 0.117 0.475 1.060 1.901
Lm [mH] 1.284 0.284 0.800 1143
Cm [nF] 5.343 5.976 0.953 0.0004
ψin [C/m] −0.793 1.685 1.005 −0.026
ψout [C/m] −0.0133 −0.0250 0.0101 0.0004
ψ 59.54 −67.52 98.66 −67.52



poled in the x3 (resp. x1) direction (Fig. 8). Because of the 
thin beam geometry and the range of interest of vibratory 
modes, the numerical study comes down to extensional 
modes along the axis x1.

The primary and secondary sides have to be separately 
created by introducing 2 local coordinate systems to de-
fine the material matrices of each piezoelectric ceramic 
from (35) and (36). After defining the structure, the deter-
mination of the electromechanical characteristics requires 
a modal study. This procedure, in which the primary and 
secondary sections are short-circuited and open, respec-
tively, enables the determination of the modal mass, the 
modal stiffness, the modal electromechanical conversion 
factors, and the modal transformer ratio. This method 
relies on the calculus for each longitudinal mode of the res-
onant frequency fp, the maximum amplitude of displace-
ment ηm, the kinetic energy T, the potential energy U, the 
charge on the primary electrode qin, and the secondary 
electrical potential Vout. By knowing these different quan-
tities, the electromechanical parameters can be obtained 
by the following equations:
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According to the previous expressions of the electrome-
chanical parameters, the electrical characteristics (mo-
tional inductance and motional capacitance) can be ex-
tracted as follows:
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A modal study where the driving and receiving sections 
are short-circuited is also undertaken to extract the series 
resonant frequency fs. The modal values are itemized in 
Table V.

B. Validation of Analytical Models

Figs. 9 and 10 show the numerically obtained normal-
ized mechanical shape and electrical potential, respective-
ly, of the first 4 modes. It appears clear that the curves, as 
much for the modal mechanical displacements as for the 
modal electrical potentials, are quite similar with the ones 
from nonhomogeneous Rosen-type PT model. The nodes 
and antinodes of modal shapes are effectively located in 
the left half of the structure in conformity with the non-
homogeneous model. Furthermore, the vibratory behav-
ior defined by the modal parameters is in line with the 
analytical values for the (λ/2)- and (λ)-modes. The pe-
culiar vibratory behavior of the (2λ)-mode, underlined by 
the theoretical model, is also confirmed by the numerical 
study. Indeed, the very close values of series resonant fre-
quencies fs and fp and the weak electromechanical conver-
sion factors ψin and ψout can testify to this phenomenon.

As the experimental identification is obtained by admit-
tance measurement, Fig. 11 shows the input admittance 
simulated by analytical and numerical models and the lat-
ter are compared with experimental results. Fig. 12 illus-

TABLE V. M P  N R-T P T M. 

Mode λ/2 Mode λ Mode 3/2λ Mode 2λ

fs [Hz] 61 883 124 873 203 569 265 276
fp [Hz] 704 468 141 249 206 495 265 279
M [g] 0.973 0.762 0.600 0.654
K [GN/m] 0.191 0.600 1.008 1.818
Lm [mH] 0.852 0.333 2.936 131.8
Cm [nF] 5.984 3.814 0.202 0.003
ψin [C/m] −1.068 1.513 −0.451 −0.070
ψout [C/m] 0.0114 −0.0240 −0.0122 0.0004
ψ −93.53 −62.92 37.02 −158.61

Fig. 9. Numerical normalized mechanical shape of the first 4 modes.Fig. 8. 3-D deformed structure.



trates the voltage step-up ratio obtained by simulation of 
the equivalent multimodal electrical circuit (Fig. 5). Ac-
cording to these both figures, a convenient accuracy for 
the first 2 (λ/2)- and (λ)-modes can be noted between the 
different approaches. This comparison proves the validity of 
the assumption (66) about consideration of homogeneous 
medium. Then, an obvious divergence between models 
appears at the third longitudinal vibratory mode. If the 
nonhomogeneous model may be considered as acceptable, 
the homogeneous one presents a widely undervalued reso-
nant frequency. From this mode, it can be considered the 
limit of validity of 1-D approximation for these dimensions, 
whereas the numerical model is still convenient. Another 
comment can be made about the peculiar (2λ)-mode: if 
the analytical and numerical models shows its existence, 
the first transverse mode predominates experimentally in 
the vicinity of the latter and the identification of its modal 

characteristics is made impossible. The frequency location 
of this first transverse mode can be proved by a numerical 
study and is also confirmed in [14].

Finally, it can be noted that amplitude accuracy of 
nonhomogeneous and numerical models depends on load 
choice. Indeed, waveform is affected by the latter, leading 
to displacement of the nodes and consequently the modal 
parameters values.

V. C

A general multimodal electromechanical method of a 
freely vibrating PT based on Hamilton’s principle was 
presented. The main interest of this analytical approach 
was to obtain a dimensioning model for inverse problem 
formulation to deduce the optimal dimensions. Moreover, 
this general method can be applied to several kinds of 
PT geometry with multiple driving and receiving sec-
tions, and also without imposing beforehand a vibratory 
mode rank. To validate the proposed model, the classic 
Rosen-type PT was considered and the nonhomogeneous 
and homogeneous PT assumptions are made. The modal 
characteristics, mechanical shapes, and electrical poten-
tials were obtained and compared for both approaches. 
The analytical models are pertinent and their use depends 
only on the considered point of interest (for example: elec-
trical potential repartition study, single-mode study, etc.). 
Finally, a comparison between the theoretical, numerical, 
and experimental results was presented and a good agree-
ment was obtained.

A A

Č	Frequency	 equation	of	 the	nonhomogeneous	Rosen-
type PT model:

Fig. 11. Input admittance modulus of Rosen piezoelectric transformer 
for 500 kΩ load.

Fig. 12. Voltage step-up ratio of Rosen piezoelectric transformer for 
500 kΩ load.

Fig. 10. Numerical normalized electrical potential of the first 4 modes.
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General solution of eigenvalue problem based on the Č	
nonhomogeneous Rosen-type PT model: see (A2), 
above.
Č	Normalization constant of modal mechanical shapes 
from the nonhomogeneous Rosen-type PT model:
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