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, and are applied to obtain the asymptotic behavior of the return probabilities for random walks on R + with non-elastic reflection at 0.

Introduction

General context. An essential aspect of fluctuation theory of discrete time random walks is the study of the two-dimensional renewal process formed by the successive maxima (or minima) of the random walk (S n ) n 0 and the corresponding times; this process is called the ascending (or descending) ladder process. It has been studied by many people, with major contributions by Baxter [START_REF] Baxter | Combinatorial methods in fluctuation theory[END_REF], Spitzer [START_REF] Spitzer | Principles of random walks[END_REF], and others who introduced Wiener-Hopf techniques and established several fundamental identities that relate the distributions of the ascending and descending ladder processes to the law of the random walk.

Let (S n ) n 0 be a random walk defined on a probability space (Ω, T , P) and starting from 0; in other words, S 0 = 0 and S n = Y 1 + • • • + Y n for n 1, where (Y i ) i 1 is a sequence of independent and identically distributed (i.i.d.) random variables. The strict ascending ladder process (T * + n , H n ) n 0 is defined as follows:

(1.1) T * + 0 = 0, T * + n+1 = inf{k > T * + n : S k > S T * + n }, ∀n 0, and

H n = S T * +
n , ∀n 0. There exists a large literature on this process, which typically focuses on so-called local limit theorems, and in particular on the behavior of the probabilities P[T * + 1

> n] and

P[T * + 1 > n, H 1 ∈ K],
where K ⊂ R is some compact set. Roughly speaking, when the variables (Y i ) i 1 admit moments of order 2 and are centered, one has the asymptotic 

P[T * + 1 > n] = a √ n (1 + o(1)), P[T * + 1 > n, H 1 ∈ K] = b n 3/2 (1 + o(1)),
for some constants a, b > 0 to be specified (see for instance [START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF] and references therein).

These estimations are of great interest in several domains: one may cite for example branching processes in random environment (see for instance [START_REF] Geiger | The survival probability of a critical branching process in random environment[END_REF][START_REF] Guivarc'h | Normalisation d'un processus de branchement critique dans un environnement aléatoire[END_REF][START_REF] Kozlov | On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment[END_REF]) and random walks on non-unimodular groups (see [START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF][START_REF] Page | Local limit theorems on some non-unimodular groups[END_REF]); they also play a crucial role in several other less linear contexts, as in the study of return probabilities for random walks with reflecting zone on a half-line [START_REF] Lalley | Return probabilities for random walks on a half-line[END_REF].

In [START_REF] Lalley | Return probabilities for random walks on a half-line[END_REF], Lalley introduced for r > 0 the waiting time τ >r = inf{n > 0 : S n > r},

see Figure 1, and first looked at the behavior, as n → ∞, of the probability P[τ >r = n, S n ∈ K], where K is a compact set. Under some strong conditions (namely, if the variables (Y i ) i 1 are lattice, bounded from above and centered), Lalley proved that (1.2) P[τ >r = n, S n ∈ K] = c n 3/2 (1 + o(1)), n → ∞, for some non-explicit constant c > 0, and wrote that "[he] do[es] not know the minimal moment conditions necessary for [such an] estimate" (see Equation (3.18) and below in [12, page 590]). His method is based on the Wiener-Hopf factorization and on a classical theorem of Darboux which, in this case, relates the asymptotic behavior of certain probabilities to the regularity of the underlying generating function in a neighborhood of its radius of convergence. In [START_REF] Lalley | Return probabilities for random walks on a half-line[END_REF], the fact that the jumps (Y i ) i 1 are bounded from above is crucial since it allows the author to verify that the generating function of the jumps (Y i ) i 1 is meromorphic in a neighborhood of its disc of convergence, with a non-essential pole at 0.

Aim and methods of this article. In this article we obtain the asymptotic behavior of the probability in (1.2), with besides an explicit formula for the constant c, under quite general hypotheses (Theorem 7). This in particular answers to Lalley's question. We will also obtain (Theorem 10) the asymptotic behavior of

(1.3) P[τ >r > n, S n ∈ K], n → ∞.
To prove Theorems 7 and 10, we shall adopt another strategy as that in [START_REF] Lalley | Return probabilities for random walks on a half-line[END_REF], inspired by the works of Iglehart [START_REF] Iglehart | Random walks with negative drift conditioned to stay positive[END_REF], Le Page and Peigné [START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF] (Sections 2 and 3). We will also propose an application of our main results to random walks on R + with non-elastic reflection at 0 (Section 4). Finally, we shall emphasize the connections of our results with the ones of Denisov and Wachtel [START_REF] Denisov | Random walks in cones[END_REF], where quite a new approach is developed in any dimension, to find local limit theorems for random walks in cones (Section 5).

First results

2.1. Notations. We consider here a sequence (Y i ) i 1 of i.i.d. R-valued random variables with law µ, defined on a probability space (Ω, T , P). For any n 1, we set T n = σ(Y 1 , . . . , Y n ). Let (S n ) n 0 be the corresponding random walk on R starting from 0, i.e., S 0 = 0 and for n 1,

S n = Y 1 + • • • + Y n .
In order to study the fluctuations of (S n ) n 0 , we introduce for r ∈ R the random variables τ r , τ >r , τ r and τ <r , defined by τ r := inf{n 1 : S n r}, τ >r := inf{n 1 : S n > r}, τ r := inf{n 1 : S n r}, τ <r := inf{n 1 : S n < r}.

Throughout we shall use the convention inf{∅} = ∞. The latter variables are stopping times with respect to the canonical filtration (T n ) n 1 . When r = 0, in order to use standard notations, we shall rename τ 0 , τ >0 , τ 0 and τ <0 in τ + , τ * + , τ -and τ * -, respectively.

As a R -= R \ R * + (resp. R + = R \ R * -
), there will be some duality connections between τ -and τ * + (resp. τ + and τ * -).

We also introduce, as in (1.1), the sequence (T * + n ) n 0 of successive ascending ladder epochs of the walk (S n ) n 0 . One has T * + 1 = τ * + . Further, setting τ * + n+1 := T * + n+1 -T * + n for any n 0, one may write

T * + n = τ * + 1 + • • • + τ * + n
, where (τ * + n ) n 1 is a sequence of i.i.d. random variables with the same law as τ * + . b 2.2. Hypotheses. Throughout this manuscript, we shall assume that the law µ satisfies one of the following moment conditions M:

M(k): E[|Y 1 | k ] < ∞; M(exp): E[exp(γY 1 )] < ∞, for all γ ∈ R; M(exp -): E[exp(γY 1 )] < ∞, for all γ ∈ R -.
We shall also often suppose

C: E[Y 1 ] = 0. Under M(1)
and C, the variables τ + , τ * + , τ -and τ * -are P-a.s. finite, see [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], c and we denote by µ + (resp. µ * + , µ -, µ * -) the law of the variable S τ + (resp. S τ * + , S τand S τ * -).

a Here and throughout, we shall note

R + = [0, ∞[, R * + =]0, ∞[, R -=] -∞, 0] and R * -=] -∞, 0[. b
Similarly, we may also consider the sequences

(T + n ) n 0 , (T - n ) n 0 and (T * - n ) n 0 defined respectively by T + 0 = T - 0 = T * - 0 = 0 and for n 0, T + n+1 = inf{k > T + n : S k S T + n }, T - n+1 = inf{k > T - n : S k S T - n } and T * - n+1 = inf{k > T * - n : S k < S T * - n }. c
Notice that this property also holds for symmetric laws µ without any moment assumption.

We will also consider the two following couples of hypotheses AA: AA(Z): the measure µ is adapted on Z (i.e., the group generated by the support S µ of µ is equal to Z) and aperiodic (i.e., the group generated by S µ -S µ is equal to Z); AA(R): the measure µ is adapted on R (i.e., the closed group generated by the support S µ of µ is equal to R) and aperiodic (i.e., the closed group generated by S µ -S µ is equal to R).

Classical results.

Let us now recall the result below, which concerns the probability (1.3) for r = 0.

Theorem 1 ( [START_REF] Iglehart | Random walks with negative drift conditioned to stay positive[END_REF][START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF]). Assume that the hypotheses AA, C and M(2) hold. Then for any continuous function φ with compact support on R, one has

d lim n→∞ n 3/2 E[τ * + > n; φ(S n )] = a -(φ) := R - φ(t)a -(dt) := 1 σ √ 2π R - φ(t)λ - * U -(dt),
where

• σ 2 := E[Y 2 1 ]; • λ -is the counting measure on Z -when AA(Z) holds (resp. the Lebesgue measure on R -when AA(R) holds); e • U -is the σ-finite potential U -:= n 0 (µ -) * n .
Since some arguments will be quite useful and used in the sequel, we give below a sketch of the proof of Theorem 1, following [START_REF] Iglehart | Random walks with negative drift conditioned to stay positive[END_REF][START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF]. By a standard argument in measure theory (see Theorem 2 in Chapter XIII on Laplace transforms in the book [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF]), it is sufficient to prove the above convergence for all functions φ of the form φ(t) = exp(αt), α > 0 (indeed, notice that the support of the limit measure a -(dt) is included in R -). We shall use the same remark when proving Theorems 6 and 7.

Sketch of the proof of Theorem 1 in the case AA(Z).

We shall use the following identity, which is a consequence of the Wiener-Hopf factorization (see [18, P5 in page 181]):

(2.1) φ α (s) := n 0 s n E[τ * + > n; e αSn ] = exp B α (s), ∀s ∈ [0, 1[, ∀α > 0, where B α (s) := n 1 s n n E[S n 0; e αSn ].
Further, by the classical local limit theorem on Z (this is here that we use M(2), see for instance [18, P10 in page 79]), one gets

E[S n 0; e αSn ] = 1 σ √ 2πn 1 1 -e -α (1 + o(1)), n → ∞.
d Below and throughout, for any bounded random variable Z : Ω → R and any event A ∈ T , one sets

E[A; Z] := E[Z½A].
e For an upcoming use, we also introduce

• the counting measures λ * -, λ + and λ * + on Z * -, Z + and Z * + , respectively;

• the Lebesgue measures λ * -, λ + and λ * + on R * -, R + and R * + , respectively. Notice that λ * -= λ -and λ * + = λ + when AA(R) holds, but we keep the two notations in order to unify the statements under the two types of hypotheses AA.

Accordingly, the sequence (n 3/2 E[τ * + > n; e αSn ]) n 1 is bounded, thanks to Lemma 2 below (taken from [10, Lemma 2.1]), applied with b n := E[S n 0; e αSn ]/n and

d n := E[τ * + > n; e αSn ]. Lemma 2 ([10]). Let n 0 d n s n = exp n 0 b n s n . If the sequence (n 3/2 b n ) n 1 is bounded, the same holds for (n 3/2 d n ) n 1 .
Differentiating the two members of (2.1) with respect to s, one gets

φ ′ α (s) = n 1 ns n-1 E[τ * + > n; e αSn ] = φ α (s) n 1 s n-1 E[S n 0; e αSn ].
We then make use of Lemma 

(i) lim n→∞ √ nc n = c > 0; (ii) n 0 d n = D < ∞; (iii) (nd n ) n 0 is bounded. If a n = 0 k n-1 d k c n-k , then lim n→∞ √ na n = cD.
This way, one reaches the conclusion that

lim n→∞ n 3/2 E[τ * + > n; e αSn ] = 1 σ √ 2π 1 1 -e -α n 0 E[τ * + > n; e αSn ].
To conclude, it remains to express differently the limit. First, the factor 1/(1e -α ) is equal to R e αt λ -(dt). Further, since the vectors (Y 1 , . . . , Y n ) and (Y n , . . . , Y 1 ) have the same law, one gets

n 0 E[τ * + > n; e αSn ] = n 0 E[S 1 0, S 2 0, . . . , S n 0; e αSn ] = n 0 E[S n S n-1 , S n S n-2 , . . . , S n 0; e αSn ] = n 0 E[∃ℓ 0 : T - ℓ = n; e αSn ] = ℓ 0 E[e αS T - ℓ ] = U -(x → e αx ), i.e., n 0 E[τ * + > n; S n ∈ dx] = U -(dx), so that 1 σ √ 2π 1 1 -e -α n 0 E[τ * + > n; e αSn ] = 1 σ √ 2π R - e αt λ - * U -(dt).
The proof is complete.

Remark 4. For similar reasons as in the proof of Theorem 1, one has

n 0 E[τ + > n; S n ∈ dx] = U * -(dx) := n 0 (µ * -) * n (dx), n 0 E[τ * -> n; S n ∈ dx] = U + (dx) := n 0 (µ + ) * n (dx), n 0 E[τ -> n; S n ∈ dx] = U * + (dx) := n 0 (µ * + ) * n (dx)
, as well as the weak convergences, as n → ∞,

n 3/2 E[τ * + > n; S n ∈ dx] -→ a -(dx) := (1/σ √ 2π)λ - * U -, n 3/2 E[τ + > n; S n ∈ dx] -→ a * -(dx) := (1/σ √ 2π)λ * - * U * -, n 3/2 E[τ * -> n; S n ∈ dx] -→ a + (dx) := (1/σ √ 2π)λ + * U + , n 3/2 E[τ -> n; S n ∈ dx] -→ a * + (dx) := (1/σ √ 2π)λ * + * U * + .
We conclude this part by finding the asymptotic behavior of P[τ * + > n]. Using the well-known expansion

√ 1 -s = exp 1 2 ln(1 -s) = exp - 1 2 n 1 s n n
and setting α = 0 in (2.1), one gets that for s close to 1, n 0

s n P[τ * + > n] = exp n 1 s n n P[S n 0] = exp κ √ 1 -s (1 + o(1)),
where

(2.2) κ = n 1 1 n P[S n 0] - 1 2 .
Notice that the series in (2.2) is absolutely convergent, see [START_REF] Rosén | On the asymptotic distribution of sums of independent identically distributed random variables[END_REF]Theorem 3]. f By a standard Tauberian theorem, since the sequence (P[τ * + > n]) n 0 is decreasing, one obtains (see [START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF])

(2.3) P[τ * + > n] = exp κ √ πn (1 + o(1)), n → ∞.
Note that the monotonicity of the sequence (P[τ * + > n]) n 0 is crucial to replace the Cesàro means convergence by the usual convergence.

2.4. Extensions. Equation (2.3) shows that the asymptotic behavior of

P[τ * + > n] is in 1/ √ n as n → ∞.
As for the probability P[τ * + = n], we have the following result, which is proved in [START_REF] Alili | Wiener-Hopf factorization revisited and some applications[END_REF][START_REF] Eppel | A local limit theorem for the first passage time[END_REF].

Proposition 5. Assume that the hypotheses AA, C and M(2) hold. Then the sequence (n 3/2 P[τ * + = n]) n 0 converges to some positive constant.

We now refine Proposition 5, by adding in the probability the information of the position of the walk at time τ * + . Using the same approach as for Theorem 1, we may obtain the following theorem, which we did not find in the literature:

f There also exists the following expression for κ: e κ = (

√ 2/σ)E[S τ * + ], see [18, P5 in Section 18].
Theorem 6. Assume that the hypotheses AA, C and M(2) hold. Then for any continuous function φ with compact support on R, one has

lim n→∞ n 3/2 E[τ * + = n; φ(S n )] = b * + (φ) := R + φ(t)b * + (dt) := 1 σ √ 2π R + φ(t)λ * + * µ * + (dt),
where λ * + is the counting measure on Z * + when AA(Z) holds (resp. the Lebesgue measure on R * + when AA(R) holds).

Sketch of the proof of Theorem 6 in the case AA(Z). We shall use the following identity, which as (2.1) is a consequence of the Wiener-Hopf factorization:

(2.4)

ψ α (s) := n 0 s n E[τ * + = n; e -αSn ] = 1 -exp -B α (s), ∀s ∈ [0, 1[, ∀α > 0,
where

B α (s) := n 1 s n n E[S n > 0; e -αSn ].
Setting d n := E[τ * + = n; e -αSn ], the same argument as in the proof of Theorem 1 (via Lemma 2) implies that the sequence (n 3/2 d n ) n 1 is bounded (we notice that in Lemma 2, the sequences (b n ) n 0 and (d n ) n 0 are not necessarily non-negative, so it can be applied in the present situation).

Differentiating the two members of (2.4) with respect to s then yields

ψ ′ α (s) = n 1 ns n-1 E[τ * + = n; e -αSn ] = (1 -ψ α (s)) n 1 s n-1 E[S n > 0; e -αSn ],
and Theorem 6 is thus a consequence of Lemma 3, applied with c n := E[S n > 0; e -αSn ], According to the previous proof, we also have, as n → ∞, the weak convergences below:

n 3/2 E[τ * + = n; S n ∈ dx] -→ b * + (dx) := (1/σ √ 2π)λ * + * µ * + , n 3/2 E[τ + = n; S n ∈ dx] -→ b + (dx) := (1/σ √ 2π)λ + * µ + , n 3/2 E[τ * -= n; S n ∈ dx] -→ b * -(dx) := (1/σ √ 2π)λ * - * µ * -, n 3/2 E[τ -= n; S n ∈ dx] -→ b -(dx) := (1/σ √ 2π)λ - * µ -.

Main results

In this section we are first interested in the expectation E[τ >r = n; φ(S n )], for any fixed value of r > 0. In Theorem 7 we find its asymptotic behavior as n → ∞, for any continuous function φ with compact support on R. Then in Proposition 9 we take φ identically equal to 1, and we prove that the sequence (nP[τ >r = n]) n 0 is bounded. We then consider the expectation E[τ >r > n; φ(S n )]. We first derive its asymptotic behavior as n → ∞, in Theorem 10. Finally, in Proposition 11 we obtain the asymptotics of the probability P[τ >r > n] for large values of n. The theorems stated in Section 3 concern the hitting time τ >r ; similar statements (obtained exactly along the same lines) exist for the hitting times τ r , τ <r and τ r . Proof. Since φ has compact support in ]r, ∞[, one has

E[τ >r = n; φ(S n )] = 0 k n E[∃ℓ 0, T * + ℓ = k, S k r, n -k = τ * + ℓ+1 , S n > r; φ(S n )] = 0 k n ∆r φ(x + y)P[∃ℓ 0, T * + ℓ = k, S k ∈ dx] × ×P[τ * + = n -k, S n-k ∈ dy] = 0 k n I n,k (r, φ),
where we have set

(3.1) I n,k (r, φ) := ∆r φ(x + y)P[τ -> k, S k ∈ dx]P[τ * + = n -k, S n-k ∈ dy].
In Equation (3.1) above, we have used the equality P[∃ℓ 0,

T * + ℓ = k, S k ∈ dx] = P[τ -> k, S k ∈ dx].
It follows by the same arguments as in the proof of Theorem 1 (below Lemma 3). To pursue the proof, we shall use the following elementary result (see [START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF]Lemma II.8] for the original statement and its proof): Lemma 8. Let (a n ) n 0 and (b n ) n 0 be two sequences of non-negative real numbers such that lim n→∞ n 3/2 a n = a ∈ R * + and lim n→∞ n 3/2 b n = b ∈ R * + . Then:

• there exists C > 0 such that, for any n 1 and any 0 < i < nj < n,

n 3/2 i+1 k n-j a k b n-k C 1 √ i + 1 √ j ;
• setting A := n 0 a n and B := n 0 b n , one has

lim n→∞ n 3/2 n k=0 a k b n-k = aB + bA.
Since φ is non-negative with compact support in ]r, ∞[, there exists a constant c φ > 0 such that φ(t) c φ e -t , for all t 0. This yields that for any 0 < i < nj < n,

i+1 k n-j I n,k (r, φ) c φ i+1 k n-j a k b n-k , with a k := E[τ -> k; e -S k ] and b k := E[τ * + = k; e -S k ].
With Lemma 8 we deduce that there exists some constant C > 0 such that

i+1 k n-j I n,k (r, φ) C 1 √ i + 1 √ j .
On the other hand, for any fixed k 1 and x ∈ [0, r], one has by Theorem 6

lim n→∞ n 3/2 {y 0} φ(x + y)P[τ * + = n -k, S n-k ∈ dy] = {y 0} φ(x + y)b * + (dy).
Further, for any k 1, the function

x → n 3/2 {y 0} φ(x + y)P[τ * + = n -k, S n-k ∈ dy] is dominated on [0, r] by x → c φ (sup n 1 n 3/2 E[τ * + = n -k; e -S n-k ])e -x
, which is bounded (by Theorem 6) and so integrable with respect to the measure

P[τ -> k, S k ∈ dx].
The dominated convergence theorem thus yields

lim n→∞ n 3/2 0 k i I n,k (r, φ) = 0 k i ∆r φ(x + y)P[τ -> k, S k ∈ dx]b * + (dy).
The same argument leads

lim n→∞ n 3/2 n-j k n I n,k (r, φ) = 0 k j ∆r φ(x + y)a * + (dx)P[τ * + = k, S k ∈ dy].
Letting i, j → ∞ and using the equalities

k 0 E[τ -> k; S k ∈ dx] = U * + (dx), k 0 E[τ * + = k; S k ∈ dy] = µ * + (dy),
one concludes.

Proposition 9. Assume that the hypotheses AA, C and M(2) hold. Then for any r ∈ R + , the sequence (nP[τ >r = n]) n 0 is bounded.

Proof. By the proof of Theorem 7, one may decompose P[τ >r = n] as 0 k n I n,k (r, 1), with I n,k defined in (3.1). One easily obtains that

I n,k (r, 1) P[τ -> k, S k ∈ [0, r]]P[τ * + = n -k],
∆ r being defined as in Theorem 7. One concludes by applying Remark 4 (we obtain the estimate 1/k 3/2 for the first probability above), Proposition 9 (we deduce the estimate 1/(nk) 3/2 for the second probability) and Lemma 8.

We now pass to the second part of Section 3, which is concerned with the expectation We do not write the proof of Theorem 10 in full details, for the three following reasons. First, it is similar to that of Theorem 7. We just emphasize the unique but crucial difference in the decomposition of the expectation E[τ >r > n; φ(S n )], namely: (3.2)

E[τ >r > n; φ(S n )].
E[τ >r > n; φ(S n )] = 0 k n Dr φ(x + y)P[τ -> k, S k ∈ dx]P[τ * + > n -k, S n-k ∈ dy].
The second reason is that Theorem 10 is equivalent to [START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF]Theorem II.7]. Indeed, the event [τ >r > n] can be written as [M n r], where M n = max(0, S 1 , . . . , S n ). Likewise, Proposition 11 below on the asymptotics of P[τ >r > n] can be found in [START_REF] Page | A local limit theorem on the semi-direct product of R * + and R d[END_REF]. Finally, Theorem 10 is also proved in the recent article [START_REF] Doney | Local behaviour of first passage probabilities[END_REF], see in particular Proposition 11.

Proposition 11. Assume that the hypotheses AA, C and M(2) hold. One has

(3.3) P[τ >r > n] = exp κ √ πn U * + ([0, r])(1 + o(1)), n → ∞.
Proof. By (3.2), the probability P[τ >r > n] may be decomposed as 0 k n J n,k (r), with

J n,k (r) = Dr P[τ -> k, S k ∈ dx]P[τ * + > n -k, S n-k ∈ dy] = P[τ -> k, S k ∈ [0, r]]P[τ * + > n -k],
where the domain D r is defined in Theorem 10. One concludes, using the following three facts. Firstly, by Remark 4, one has In the right-hand side of the equation above, R * + can be replaced by R + , as b * + (0) = 0.

n 3/2 P[τ -> n, S n ∈ [0, r]] → a * + ([0, r]) as n → ∞.
We then obtain the right constant in Theorem 6. Likewise, we could see that Theorem 10 formally implies Theorem 1.

4.

Applications to random walks on R + with non-elastic reflection at 0

In this section we consider a sequence (Y i ) i 1 of i.i.d. random variables defined on a probability space (Ω, T , P), and we define the random walk (X n ) n 0 on R + with nonelastic reflection at 0 (or absorbed at 0) recursively, as follows:

X n+1 := max(X n + Y n+1 , 0), ∀n 0,
where X 0 is a given R + -valued random variable. The process (X n ) n 0 is a Markov chain on R + . We obviously have that for all n 0,

X n+1 = f Y n+1 (X n ), with f y (x) := max(x + y, 0), ∀x, y ∈ R.
The chain (X n ) n 0 is thus a random dynamical system; we refer the reader to [START_REF] Peigné | Stochastic dynamical systems with weak contractivity properties I. Strong and local contractivity[END_REF][START_REF] Peigné | Stochastic dynamical systems with weak contractivity properties II. Iteration of Lipschitz mappings[END_REF] for precise notions and for a complete description of recurrence properties of such Markov processes.

The profound difference between this chain and the classical random walk (S n ) n 0 on Z or R is due to the reflection at 0. We therefore introduce the successive absorption times (a ℓ ) ℓ 0 :

a 0 := 0, a = a 1 := inf{n > 0 : X 0 + Y 1 + • • • + Y n < 0}, a ℓ := inf{n > a ℓ-1 : Y a ℓ-1 +1 + • • • + Y a ℓ-1 +n < 0}, ∀ℓ 2.
Let us assume the first moment condition M(1) (i.e., that

E[|Y 1 |] < ∞). If in addition E[Y 1 ]
> 0, the absorption times are not P-a.s. finite, and in this case, the chain is transient. Indeed, one has

X n X 0 +Y 1 +• • •+Y n , with Y 1 +• • •+Y n → ∞, P-a.s. If E[Y 1 ]
0, all the a ℓ , ℓ 1, are P-a.s. finite, and the equality X a ℓ ½ {a ℓ <∞} = 0, P-a.s., readily implies that (X n ) n 0 visits 0 infinitely often. On the event [X 0 = 0], the first return time of (X n ) n 0 at the origin equals τ -. In the subcase E[Y 1 ] = 0, it has infinite expectation, and

(X n ) n 0 is null recurrent. If E[Y 1 ] < 0, one has E[τ -] < ∞, and the chain (X n ) n 0 is positive recurrent. In particular, when E[Y 1 ]
0, for any x 0 and any continuous function φ with compact support included in R + , one has (4.1)

lim n→∞ E[φ(X n )|X 0 = x] = 0.
We shall here focus our attention on the speed of convergence in (4.1), by proving the following result:

Theorem 13. Assume that the hypotheses AA, C and M(2) are satisfied. Then, for any x 0 and any continuous function φ with compact support on R + , one has

lim n→∞ √ nE[φ(X n )|X 0 = x] = κ √ π R + φ(t)U + (dt),
where g (4.2) κ := exp

n 1 P[S n < 0] -1/2 n . If E[Y 1 ] > 0 and if furthermore AA and M(exp -) hold, h there exists ρ = ρ(µ) ∈]0, 1[ and a positive constant C(φ) (which can be computed explicitly) such that lim n→∞ n 3/2 ρ n E[φ(X n )|X 0 = x] = C(φ).
g We refer to Footnote f for another expression of κ. h In fact, it would be sufficient to assume that E[e γY 1 ] < ∞ for γ belonging to some interval [a, 0], if [a, 0] is such that the convex function γ → E[e γY 1 ] reaches its minimum at a point γ0 ∈]a, 0[. Proof. We first assume that X 0 = 0. On the event [T * - ℓ n < T * - ℓ+1 ], one has that

X n = S n -S T * - ℓ . It readily follows that E[φ(X n ) | X 0 = 0] = ℓ 0 E[a ℓ n < a ℓ+1 ; φ(X n )|X 0 = 0] = ℓ 0 E[T * - ℓ n < T * - ℓ+1 ; φ(X n )|X 0 = 0] = ℓ 0 E[T * - ℓ n < T * - ℓ+1 ; φ(S n -S T * - ℓ )] = ℓ 0 0 k n E[T * - ℓ = k, Y k+1 0, . . . , Y k+1 + • • • + Y n 0; φ(Y k+1 + • • • + Y n )] = 0 k n   ℓ 0 P[T * - ℓ = k]   E[Y k+1 0, . . . , Y k+1 + • • • + Y n 0; φ(Y k+1 + • • • + Y n )].
Using the fact that for any k 0, the events [T * - ℓ = k], ℓ 0, are pairwise disjoint together with the fact that L(Y 1 , . . . , Y n ) = L(Y n , . . . , Y 1 ), one gets

ℓ 0 P[T * - ℓ = k] = P[∃ℓ 0, T * - ℓ = k] = P[S k < 0, S k < S 1 , . . . , S k < S k-1 ] = P[τ + > k],
which in turn implies that

(4.3) E[φ(X n )|X 0 = 0] = 0 k n P[τ + > k]E[τ * -> n -k; φ(S n-k )].
The situation is more complicated when the starting point is x 0. In that case, one has the decomposition

(4.4) E[φ(X n )|X 0 = x] = E 1 (x, n) + E 2 (x, n), with E 1 (x, n) := E[a > n; φ(X n )|X 0 = x] and E 2 (x, n) := E[a n; φ(X n )|X 0 = x].
From the definition of a, one gets

E 1 (x, n) = E[τ <-x > n; φ(x + S n )].
Similarly, by the Markov property and the fact that X a = 0, P-a.s., one may write

E 2 (x, n) = 0 ℓ n P[τ <-x = ℓ]E[φ(X n-ℓ )|X 0 = 0].
The centered case. We first assume that hypotheses AA and M(2) are satisfied and that the (Y i ) i 1 are centered (hypothesis C). In this case, by fluctuation theory of centered random walks, one gets P[a ℓ < ∞] = 1 for any ℓ 0 and any initial distribution L(X 0 ). We first consider the case when X 0 = 0 and we use the identity (4.3). By [13, Theorem II.2] (see also how (2.3) is obtained), one gets

lim n→∞ √ nP[τ + > n] = κ √ π ,
with κ defined in (4.2). On the other hand, by Remark 4 in Section 2 we know that

lim n→∞ n 3/2 E[τ * -> n; φ(S n )] = a + (φ).
We conclude, setting c n := P[τ + > n, d n := E[τ * -> n; φ(S n )], thus c := κ/ √ π and

D := n 0 E[τ * -> n; φ(S n )] = U + (φ), in Lemma 3.
In the general case (when X 0 = x), we use identity (4.4). By the results of Section 3 (Theorem 10 with τ <-x instead of τ >r ), one gets E 1 (x, n) = O(n -3/2 ). i On the other hand, by the Markov property, since X a = 0, P-a.s., one has

E 2 (x, n) = 0 k n E[a = k; φ(X n )|X 0 = x] = 0 k n P[a = k|X 0 = x]E[φ(X n-k )|X 0 = 0] = 0 k n P[τ <-x = k]E[φ(X n-k )|X 0 = 0]. Recall that lim n→∞ √ nE[φ(X n )|X 0 = 0] = ( κ/ √ π)U + (φ)
; on the other hand, it follows from Proposition 9 (with τ <-x instead of τ >r ) that (nP[τ <-x = n]) n 0 is bounded. Furthermore,

n 1 P[τ <-x = n] = P[τ <-x < ∞] = 1.
One may thus apply Lemma 3, which yields

lim n→∞ √ nE[φ(X n-k )|X 0 = x] = lim n→∞ √ nE 2 (x, n) = κ √ π U + (φ).
The non-centered case. Hereafter, we assume that hypotheses M(1), M(exp -) and AA hold, and that in addition E[Y 1 ] > 0. We use the standard relativisation procedure that we now recall: the function

µ(γ) := E[e γY 1 ]
is well defined on R -, tends to ∞ as γ → -∞, and has derivative E[Y 1 ] > 0 at 0. It thus achieves its minimum at a point γ 0 < 0, and we have ρ := µ(γ 0 ) ∈]0, 1[. The measure µ(dx) := (1/ρ)e γ 0 x µ(dx) is a probability on R. Furthermore, if ( Y i ) i 1 is a sequence of i.i.d. random variables with law µ and ( S n ) n 1 is the corresponding random walk on R starting from 0, one gets

E[ϕ(Y 1 , . . . , Y n )] = ρ n E[ϕ( Y 1 , . . . , Y n )e -γ 0 Sn ]
for any n 1 and any bounded test Borel function ϕ : R n → R. Denoting by τ + and τ * - the first entrance times of ( S n ) n 1 in R + and R * -, respectively, we may thus write (4.3) as

E[φ(X n )|X 0 = 0] = ρ n 0 k n E[ τ + > k; e -γ 0 S k ]E[ τ * -> n -k; φ( S n-k )e -γ 0 S n-k ],
and by Lemma 8 the sequence

((n 3/2 /ρ n )E[φ(X n )|X 0 = x]) n 0 converges to some constant C(φ) > 0.
i Notice that in the preceding formula, O(n -3/2 ) depends on x.

Following the same way, for any x 0 one can decompose as above

E[φ(X n )|X 0 = x] as E 1 (x, n) + E 2 (x, n), with E 1 (x, n) = ρ n E[ τ <-x > n; φ( S n )e -γ 0 S n-k ], E 2 (x, n) = 0 k n ρ k E[ τ <-x = k; e -γ 0 S k ]E[φ(X n )|X 0 = 0].
One concludes using Section 3 (Theorem 7 with τ <-x instead of τ >r ) for the behavior of the sequence (E[ τ <-x = n; e -γ 0 Sn ]) n 0 and the previous estimation for the behavior of (E[φ(X n )|X 0 = 0]) n 0 .

Local limit theorems and links with results by Denisov and Wachtel

Hereafter, we shall assume that AA(Z) holds; in particular, the random walk (S n ) n 0 is Z-valued. Taking φ(S n ) = ½ {Sn=i} , Theorem 10 immediately leads to: Corollary 14. Assume that the hypotheses AA(Z), C and M(2) hold. Then for i r,

P[τ >r > n, S n = i] = Z(r, i) n 3/2 (1 + o(1)), n → ∞, where we have set (5.1) Z(r, i) = max{i,0} k r [a -(i -k)U * + (k) + U -(i -k)a * + (k)].
It is worth noting that the definition of a -implies that for y ∈ Z * + , a -(y) = 0, and for

y ∈ Z -, a -(y) = 1 σ √ 2π n 0 E[τ * + > n; S n ∈ [y, 0]].
Likewise, for y ∈ Z -, a * + (y) = 0, and for y ∈ Z * + ,

a * + (y) = 1 σ √ 2π n 0 E[τ -> n; S n ∈]0, y]].
Remark 15. Using these facts and similar remarks for the potentials U * + and U -, we obtain that the quantity (5.1) can also be written as a sum of two convolution terms:

Z(r, i) = -∞<k<r [a -(i -k)U * + (k) + U -(i -k)a * + (k)] (5.2) = -∞<k<∞ [a -(i -k)U * + (k)½ {k r} + U -(i -k)a * + (k)½ {k r} ]. (5.3)
In the remaining of this section we compare the local limit theorem of Corollary 14 with the one in [START_REF] Denisov | Random walks in cones[END_REF]. All results taken from [START_REF] Denisov | Random walks in cones[END_REF] make the assumptions that the (Y i ) i 1 have moments of order 2 + ǫ, with ǫ > 0. To state the local limit theorem [START_REF] Denisov | Random walks in cones[END_REF]Theorem 7], we need to introduce the function (see [START_REF] Denisov | Random walks in cones[END_REF]Section 2.4] for more details) This function is positive on R + and is harmonic for the random walk (S n ) n 0 killed when reaching R -; it means that for x > 0, E[V (x + Y 1 ); τ <-x > 1] = V (x).

Define V ′ as the harmonic function for the random walk with increments (-Y i ) i 1 with the same construction as (5.4). We have the following result: Proof. Theorem 7 in [START_REF] Denisov | Random walks in cones[END_REF] states that if ( S n ) n 0 is a random walk on a lattice hZ starting from 0 and with increments ( Y i ) i 0 having a variance equal to 1, the following local limit theorem holds:

P[x + S n = y, τ -x > n] = h 2 π V (x)V ′ (y) n 3/2 (1 + o(1)), n → ∞.
Applying this result to the random walk ( S n ) n 0 := (-S n /σ) n 0 , and letting x := (r+1)/σ and y := (r + 1i)/σ, we obtain Theorem 16.

By Corollary 14 and Theorem 16, we must have (5.5) Z(r, i) = 1 σ 2 π V ′ ((r + 1)/σ)V ((r + 1i)/σ).

However:

Question 1.
It is an open problem to show by a direct computation that (5.5) holds.

To conclude Section 5, we prove (5.5) for the simple random walk, with probabilities of transition P[Y i = -1] = P[Y i = 1] = p and P[Y i = 0] = 1 -2p. In this case the harmonic functions have the simple form V (x) = V ′ (x) = x, and obviously σ = √ 2p. We deduce that the constant in Theorem 16 is (5.6) (r + 1)(r + 1i) 2p 3/2 √ π .

To compute Z(r, i), we start from the formulation (5.1), where we assume that i 0 (the computation for i < 0 would be similar). We recall that for the simple random walk one has U * + (k) = ½ {k 0} and U -(k) = ½ {k 0} /p. Then for k 0, a -(k) = (|k| + 1)/(pσ √ 2π) and for k 0, a * + (k) = k/(σ √ 2π). We deduce that

Z(r, i) = 1 pσ √ 2π i k r [(k -i + 1) + k].
It is then an easy exercise to show that Z(r, i) equals (5.6).
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 4 V (x) := -E[S τ -x ] = -E[S τ <-x+1 ].

Theorem 16 (

 16 [START_REF] Denisov | Random walks in cones[END_REF]). Assume that the hypotheses AA(Z), C and M(2 + ǫ) hold. Then for i r,P[τ >r > n, S n = i] = 1 σ 2 π V ′ ((r + 1)/σ)V ((r + 1i)/σ) n 3/2 (1 + o(1)), n → ∞.

  3 (see [10, Lemma 2.2] for the original statement), applied with c

n := E[S n 0; e αSn ] = nb n , d n := E[τ * + > n; e αSn ] and a n := nE[τ * + > n; e αSn ]. Lemma 3 ([10]). Let (c n ) n 0 and (d n ) n 0 be sequences of non-negative real numbers such that
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