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Fast spectral methods for the shape identification problem
of a perfectly conducting obstacle

Frédérique Le Louër ∗

Abstract

We are concerned with fast methods for the numerical implementation of the direct and
inverse scattering problems for a perfectly conducting obstacle. The scattering problem is
usually reduced to a single uniquely solvable modified combined-field integral equation (M-
CFIE). For the numerical solution of the M-CFIE we propose a new high-order spectral
algorithm by transporting this equation on the unit sphere via the Piola transform. The
inverse problem is formulated as a nonlinear least squares problem for which the iteratively
regularized Gauss-Newton method is applied to recover an approximate solution. Numerical
experiments are presented in the special case of star-shaped obstacles.

Keywords : Maxwell equations, perfectly conducting interface, boundary integral equation,
spectral method, Fréchet derivative, regularized Newton method.

1 Introduction
In this paper we are concerned with the numerical aspects of the solution of the direct and inverse
electromagnetic scattering problems for a three-dimensional bounded and perfectly conducting
obstacle lit by time-harmonic incident plane waves.

We assume the perfect conductor be represented by a bounded domain Ω in R3. Let Ωc denote
the exterior domain R3\Ω and n denote the outer unit normal vector to the boundary Γ. Let
κ denote the exterior wavenumber. The propagation of electromagnetic waves are governed by
the system of Maxwell equations and the time-harmonic Maxwell system can be reduced to a
second order equation for the electric field only. In this case the forward problem is formulated
as follows : Given an incident electric wave Einc which is assumed to solve the second order
Maxwell equation in the absence of any scatterer, find the electric scattered wave Es solution to
the time-harmonic Maxwell equation

curl curlEs − κ2Es = 0 in Ωc, (1.1a)

and satisfying the boundary condition,

n× (Es +Einc) = 0 on Γ. (1.1b)

In addition the scattered field Es has to satisfy the Silver-Müller radiation condition:

lim
|x|→+∞

|x|
∣∣∣∣curlEs(x)× x

|x|
− iκEs(x)

∣∣∣∣ = 0. (1.1c)
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This scattering problem can be reduced in several different ways to a single modified combined-
field boundary integral equation (M-CFIE). In section 2, we describe, via direct and indirect
approaches, the single integral equations that are usually used to solve the problem (1.1a)-(1.1c).

The construction of efficient inverse obstacle scattering algorithm greatly depends on an ac-
curate approximation of the solution to the forward problem. Among all the existing numerical
methods to solve integral equations, we focus here on spectral methods. Ganesh and Hawkins
already proposed in [8, 9, 10, 11] several spectrally accurate methods to implement the electric
field integral equation (EFIE). One of them [11] consists in transporting the EFIE on the unit
sphere via a normal transformation acting from the tangent plane to the boundary Γ onto the
tangent plane to the unit sphere, so that one only have to seek a solution in terms of tangential
vector spherical harmonics. To treat numerically the M-CFIE, we need to implement the hy-
persingular part of the electromagnetic double layer boundary integral operator. This requires a
transformation that move the nullspace of the surface divergence on Γ onto the nullspace of the
surface divergence on S2. The implementation of a hypersingular integral can then be avoided by
involving integration by parts and surface derivatives of the vector spherical harmonics that can
be computed analytically. Such a transformation is well known as the Piola transform. In section
3 we give the reformulation of the integral equation in spherical coordinates, based on this ap-
proach, and describe an appropriate splitting of the various singularities. The fully discrete high
order spectral algorithm and numerical examples are presented in section 4. The Piola transform
is already used by Hohage and Le Louër [15] to implement systems of second-kind boundary
integral equations in an inverse dielectric obstacle scattering algorithm. Therefore, section 3 and
4 use notations and contain various results from [15] that are essential for this paper.

The radiation condition implies that the scattered field Es has an asymptotic behavior of the
form

Es(x) =
eiκ|x|

|x|
E∞(x̂) +O

(
1

|x|

)
, |x| → ∞,

uniformly in all directions x̂ = x
|x| . The far-field pattern E∞ is a tangential vector function

defined on the unit sphere S2 of R3 and is always analytic.
Let consider the scattering of m incident plane waves of the form Einc

k (x) = pk e
iκx·dk where

dk,pk ∈ S2 and dk · pk = 0. We denote by Fk the boundary to far-field operator that maps
the boundary Γ onto the far-field pattern E∞k of the solution to the forward problem (1.1a)-
(1.1c) for the incident wave Einc

k . The inverse problem is formulated as follows: Given noisy far
field measurements E∞1,δ, . . . ,E

∞
m,δ obtained from the scattering of the m incident plane waves

characterized by the couples of directions and polarizations (dk,pk)k=1,...,m, solve

Fk(Γ) = E∞k,δ, for k = 1, . . . ,m. (1.2)

Here, the noise level is measured in the L2-norm, i.e.
(

m∑
k=1

||E∞k,δ −E
∞
k ||2L2

) 1
2

< δ, and the error

bound δ is assumed to be known. Kress [16] proved that a perfect conductor can be uniquely
determined from the knowledge of the far-field pattern for all incoming plane waves. However, it
remains an open question whether or not the boundary Γ is uniquely determined by only a finite
number of incoming plane waves.

To solve the inverse problem (1.2), we reformulate it as a nonlinear equation posed on an open
set of parametrized boundaries. Then we apply the iteratively regularized Gauss-Newton method
(IRGNM) to the nonlinear equation via first order linearization. The computation of the iterates
requires the analysis and an explicit form of the first Fréchet derivative of the parametrized form
of the boundary to far-field operator. The first Fréchet derivative is usually characterized as the
far-field pattern of the solution to a new exterior boundary value problem. The fast spectral solver
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of the direct problem is then incorporated in the IRGNM to compute the far-field pattern of the
solution and its derivative at each iteration steps. In electromagnetism, Fréchet differentiability
was first investigated by Potthast [21] for the perfect conductor problem, using the boundary
integral equation approach. The characterization of the first derivative was then improved by
Kress [16]. In section 5, we formulate the IRGNM for the inverse problem (1.2). We also recall
the main result on the Fréchet differentiability of the boundary to far-field operator and give
a characterization of the adjoint operator, following ideas of [14, 15], which is needed in the
implementation of the utilized regularized Newton method. We present numerical experiments
in the special case of star-shaped obstacles.

2 The solution of the perfect conductor problem
In this paper, we will assume that the boundary Γ of Ω is a smooth and simply connected closed
surface, so that Ω is diffeomorphic to a ball.

Notation: We denote by Hs(Ω), Hs
loc(Ω

c) and Hs(Γ) the standard (local in the case of the
exterior domain) complex valued, Hilbertian Sobolev space of order s ∈ R defined on Ω, Ωc and
Γ respectively (with the convention H0 = L2.) Spaces of vector functions will be denoted by
boldface letters, thus Hs = (Hs)3. If P is a differential operator, we write:

Hs(P,Ω) = {v ∈Hs(Ω) : Pv ∈Hs(Ω)},
Hs

loc(P,Ω
c) = {v ∈Hs

loc(Ω
c) : Pv ∈Hs

loc(Ω
c)}.

The space Hs(P,Ω) is endowed with the graph norm ||v||Hs(P,Ω) =
(
||v||2Hs(Ω) + ||Pv||2Hs(Ω)

) 1
2

.
This defines in particular the Hilbert spaces Hs(curl,Ω) and Hs(curl curl,Ω) and the Fréchet
spaces Hs

loc(curl,Ω) and Hs
loc(curl curl,Ω). When s = 0 we omit the upper index 0.

We use the following surface differential operators: The tangential gradient denoted by gradΓ,
the surface divergence denoted by divΓ, the tangential vector curl denoted by curlΓ and the
surface scalar curl denoted by curlΓ. For their definitions we refer to [15, Appendix A] or [17,
pages 68-75]. For s ∈ R, we introduce the Hilbert space

Hs
div(Γ) = {j ∈Hs(Γ); j · n = 0 and divΓ j ∈ Hs(Γ)} ,

Hs
curl(Γ) = {j ∈Hs(Γ); j · n = 0 and curlΓ j ∈ Hs(Γ)} ,

endowed with the norms

|| · ||Hs
div(Γ) =

(
|| · ||2Hs(Γ) + ||divΓ · ||2Hs(Γ)

)1/2

,

|| · ||Hs
curl(Γ) =

(
|| · ||2Hs(Γ) + || curlΓ ·||2Hs(Γ)

)1/2

.

Recall that for a vector function u ∈ H(curl,Ω) ∩H(curl curl,Ω), the traces n × u|Γ and

n× curlu|Γ are in H−
1
2

div (Γ). The dual space of H−
1
2

div (Γ) for the L2 duality product is H−
1
2

curl(Γ)
and the exterior product with the normal vector defines a bicontinuous isomorphism between
H
− 1

2

div (Γ) and H−
1
2

curl(Γ); so that (n× u|Γ)× n and (n× curlu|Γ)× n are in H−
1
2

curl(Γ).

Let Φ(κ, z) =
eiκ|z|

4π|z|
be the fundamental solution of the Helmholtz equation ∆u+ κ2u = 0.

For any solution Es to the Maxwell equation (1.1a) that satisfies the radiation condition (1.1c),
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it holds the Stratton-Chu representation formula:

Es(x) =

∫
Γ

curlx
{

Φ(κ,x− y)
(
n(y)×Es(y)

)}
ds(y)

+
1

κ2

∫
Γ

curl curlx
{

Φ(κ,x− y)
(
n(y)× curlEs(y)

)}
ds(y).

(2.1)

Conversely, for any j ∈H−
1
2

div (Γ) the potentials

S j =
1

κ

∫
Γ

curl curlx
{

Φ(κ, · − y)j(y)
)}
ds(y) and Dj =

∫
Γ

curlx
{

Φ(κ, · − y)j(y)
}
ds(y)

satisfy the Maxwell equation and the Silver-Müller radiation condition.
Using these results, the forward problem (1.1a)-(1.1c) can be reduced, in several different

ways, to a single uniquely solvable modified combined-field integral equation (M-CFIE). We will
consider the following two different approaches. The first one can be used to solve electromagnetic
scattering problem with general Dirichlet conditions of the form n×Es = f where f ∈H−

1
2

div (Γ)
is given. It is based on the layer ansatz :

Es = Dj + iηS Λj, (2.2)

where Λ is a bounded operator from H
− 1

2

div (Γ) to itself, self-adjoint and elliptic for the bilinear
form

(j,m) 7→
∫

Γ

j · (n×m) ds (2.3)

and η is a non vanishing real constant. By the jump relations, the field Es given by (2.2) solves
the Dirichlet boundary value problem (1.1a)-(1.1c) if the density j solves the following integral
equation

(I−Mκ − iηCκΛ)j = 2f on Γ. (2.4)

Here the single layer potential Cκ and the double layer potential Mκ are defined by

Mκj(x) = −
∫

Γ

n(x)× curlx{2Φ(κ,x− y)j(y)}ds(y),

Cκj(x) = − 1

κ

∫
Γ

n(x)× curl curlx{2Φ(κ,x− y)j(y)}ds(y)

= −κn(x)×
∫

Γ

2Φ(κ,x− y)j(y)ds(y) +
1

κ
curlΓ

∫
Γ

2Φ(κ,x− y) divΓ j(y)ds(y).

The operator Mκ : H
− 1

2

div (Γ) → H
− 1

2

div (Γ) is compact and the operator Cκ has a hypersingular

kernel but is bounded on H−
1
2

div (Γ). The operator Λ is then chosen such that (I−Mκ − CκΛ) is
a Fredholm operator of index zero. Kress first proposed a compact regularization Λj = n× S2

0j
where S0 is the single layer boundary integral operator of the Laplace equation [3], thus (I +
Mκ+CκΛ) is a Fredhom operator of the second kind. One can also use the elliptic and invertible
operator Λj = C0j which is a variant of the operator Cκ [5, 22] defined on H−

1
2

div (Γ) by

C0j = n× S0j + curlΓ S0 divΓ j.

The far-field pattern can be computed via the integral representation formula E∞ = F∞j where
the far-field operator F∞ : H

− 1
2

div (Γ)→ L2
t (S2) is defined for x̂ ∈ S2 by :

F∞j(x̂) =
iκ

4π

∫
Γ

e−iκx̂·y
(
x̂× j(y)

)
ds(y) + iη

κ

4π

∫
Γ

e−iκx̂·y
((

x̂×Λj(y)
)
× x̂

)
ds(y).
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The alternative boundary integral equation approach is based on the Stratton-Chu represen-
tation formula (2.1) and the following equality for x ∈ Ωc

0 =
1

κ2

∫
Γ

curl curlx
{

Φ(κ,x− y)
(
n(y)× curlEinc(y)

)}
ds(y)

+

∫
Γ

curlx
{

Φ(κ,x− y)
(
n(y)×Einc(y)

)}
ds(y).

Adding the last equation to (2.1) and using the boundary condition of Es, it yields

Es(x) =
1

κ2

∫
Γ

curl curlx
{

Φ(κ,x− y)
(
n(y)× curl

(
Es(y) +Einc(y)

))}
ds(y), x ∈ Ωc.

Taking the Neumann and Dirichlet trace of the above equation we obtain

Cκ

(
1

κ
n× curl

(
Es +Einc

))
= 2n×Einc,

and
(I +Mκ)

(
1

κ
n× curl

(
Es +Einc

))
= 2

(
1

κ
n× curlEinc

)
.

Setting m = κ−1n × curl
(
Es +Einc

)
, by a linear combination of the two above equalities we

obtain the integral equation

(I +Mκ + iηΛCκ)m = 2

(( 1

κ
n× curlEinc

)
+ iηΛ

(
n×Einc

))
on Γ, (2.5)

where Λ is still an elliptic operator for the bilinear form (2.3).
The far-field pattern can then be computed via the integral representation formula

E∞(x̂) =
κ

4π

∫
Γ

e−iκx̂·y
((

x̂×m(y)
)
× x̂

)
ds(y).

3 Spherical reformulation of the integral equation
We transport the surface integral equations (2.4) and (2.5) on a spherical reference domain and
work in the spherical coordinate system. We denote by θ, φ the spherical coordinates of any point
x̂ ∈ S2, that means we can write

x̂ = ψ(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ)
T
, with (θ, φ) ∈ ]0;π[×[0; 2π[∪{(0, 0); (0, π)}.

The tangent and the cotangent planes at any point x̂ = ψ(θ, φ) ∈ S2 is generated by the unit
vectors eθ = ∂ψ

∂θ (θ, φ) and eφ = 1
sin θ

∂ψ
∂φ (θ, φ). The triplet (x̂, eθ, eφ) forms a direct orthonormal

system. The determinant of the Jacobian of the change of variable is Jψ(θ, φ) = sin θ.
Let q : S2 → Γ be a parametrization of class C 1 at least. The total derivative [Dq(x̂)] maps

the tangent plane T x̂ to S2 at the point x̂ onto the tangent plane T q(x̂) to Γ at the point q(x̂). The
latter is generated by the vectors t1(x̂) = [Dq(x̂)]eθ and t2(x̂) = [Dq(x̂)]eφ. The determinant
Jq of the Jacobian of the change of variable q : S2 7→∈ Γ and the normal vector n ◦ q can be
computed via the formulas Jq =

∣∣t1 × t2∣∣ and τq(n) = t1×t2
Jq

. The parametrization q : S2 → Γ

being a diffeomorphism, we set [Dq(x̂)]−1 = [Dq−1] ◦ q(x̂). The transposed matrix [Dq(x̂)*]−1

maps the cotangent plane T ∗x̂ to S2 at the point x̂ onto the cotangent plane T ∗q(x̂) to Γ at the
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point q(x̂). The latter is generated by the vectors t1(x̂) = t2(q(x̂))×n(q(x̂))
Jq(x̂) = [Dq(x̂)*]−1eθ and

t2(x̂) = n(q(x̂))×t1(q(x̂))
Jq(x̂) = [Dq(x̂)*]−1eφ.

To transport the boundary integral equations on the unit sphere, we use the Piola transform
of q, which is an invertible operator from H

− 1
2

div (Γ) to H−
1
2

div (S2) defined as follows [15, Lemma
3.1]:

Pq : H
− 1

2

div (Γ) −→ H
− 1

2

div (S2)
j 7→ js = Jq[Dq]−1(j ◦ q).

(3.1)

This allows us to use the following identities stated in [15]:

(gradΓ u) ◦ q = [Dq*]−1 gradS2(u ◦ q), (curlΓ u) ◦ q =
1

Jq
[Dq] curlS2(u ◦ q),

(divΓ v) ◦ q =
1

Jq
divS2

(
Jq [Dq]−1(v ◦ q)

)
, (curlΓw) ◦ q =

1

Jq
curlS2

(
[Dq*](w ◦ q)

)
.

(3.2)

The construction of the spectral method is based on the combination of the boundary integral
operators Mκ and Cκ with the Piola transform (3.1) and its inverse. In practice, we apply the
operator (3.1) to both sides in the boundary integral equations (2.4) and (2.5) and we insert the
identity I

H
− 1

2
div (Γ)

= PqP−1
q between the integral operators and the unknown. We thus replace

the operators Λ, Mκ and Cκ in (2.4) and (2.5) by the following operators defined for any density
js ∈H

− 1
2

div (S2) by:

Λs js = P−1
q ΛPqjs,

Mκ js = P−1
q MκPqjs = −Jq[Dq]−1

∫
S2
τq(n)× curl{2Φ(κ, |q(·)− q(ŷ)|)[Dq(ŷ)]js(ŷ)}ds(ŷ),

Cκ js = PqCκPqjs = −κJq[Dq]−1

∫
S2
τq(n)× {2Φ(κ, |q(·)− q(ŷ)|)[Dq(ŷ)]js(ŷ)}ds(ŷ)

+
1

κ
curlS2

∫
S2
{2Φ(κ, |q(·)− q(ŷ)|) divS2 js(ŷ)}ds(ŷ).

The new unknown will be a tangential vector density inH−
1
2

div (S2) obtained by applying the Piola
transform (3.1) to the unknown in (2.4) or (2.5).

Lemma 3.1 The operator Λ is an elliptic operator on H−
1
2

div (Γ) for the bilinear form (2.3) if and

only if Λs is an elliptic operator on H−
1
2

div (S2) for the bilinear form

H
− 1

2

div (S2)×H−
1
2

div (S2) → C

(js,ms) 7→
∫
S2
js · (x̂×ms) ds

(3.3)

Proof. Let js ∈ H
− 1

2

div (S2). Notice that we have (P−1
q js) ◦ q = 1

Jq
[Dq]js. In view of the

definition of the vectors t1 and t2, we obtain the following equality :(
n×

(
P−1
q js

) )
◦ q = [Dq*]−1 (x̂× js) . (3.4)
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Now, we set j = P−1
q js. We have Λj = P−1

q Λsjs and∫
Γ

Λj · (n× j) ds =

∫
S2
Jq ((Λj) ◦ q) · ((n× j) ◦ q) ds

=

∫
S2
Jq

( (
P−1
q Λsjs

)
·
(
n×

(
P−1
q js

)) )
◦ q ds

=

∫
S2

(
[Dq]Λsjs

)
·
(

[Dq*]−1(x̂× js)
)
ds

=

∫
S2

Λsjs · (x̂× js) ds.

It follows that the ellipticity of Λs for the bilinear form (3.3) results from the ellipticity of Λ for
the bilinear form (2.3), and conversely. �

Remark 3.2 A suitable choice is to define Λs such that js 7→ (Λsjs)× x̂ is the duality operator
from H

− 1
2

div (S2) to H−
1
2

curl(S2) [17, pp. 208], that is

Λsjs = −∇S2(−∆S2)−
3
2 curlS2 − curlS2(−∆S2)−

1
2 divS2 .

In practice we will use the operator defined by Λsjs = x̂× js.

The implementation of the operator Mκ is already discussed in [15]. Here, we focus on the
operator Cκ. We introduce the functions :

S1(q;κ, x̂, ŷ) =
1

2π
cos(κ|q(x̂)− q(ŷ)|),

S2(q;κ, x̂, ŷ) =
1

2π


sin(κ|q(x̂)− q(ŷ)|)
|q(x̂)− q(ŷ)|

x̂ 6= ŷ,

κ x̂ = ŷ.

and
R(q; x̂, ŷ) =

|x̂− ŷ|
|q(x̂)− q(ŷ)|

.

The operator Cκ can then be rewritten as

Cκ js(x̂) =

∫
S2

R(q; x̂, ŷ)

|x̂− ŷ|
W1(q;κ, x̂, ŷ)js(ŷ)ds(ŷ) + i

∫
S2
W2(q;κ, x̂, ŷ)js(ŷ)ds(ŷ)

+
1

κ
curlS2

∫
S2

R(q; x̂, ŷ)

|x̂− ŷ|
S1(q;κ, x̂, ŷ) divS2 js(ŷ)ds(ŷ)

+
i

κ
curlS2

∫
S2
S2(q;κ, x̂, ŷ) divS2 js(ŷ)ds(ŷ)

where W1(q;κ, x̂, ŷ) and W2(q;κ, x̂, ŷ) are 3× 3 matrices given by

W1(q;κ, x̂, ŷ) = κS1(q;κ, x̂, ŷ)V(q; x̂, ŷ),

W2(q;κ, x̂, ŷ) = κS2(q;κ, x̂, ŷ)V(q; x̂, ŷ),

with
V(q; x̂, ŷ) = t2(x̂) · t1(ŷ) eθ(x̂)⊗ eθ(ŷ) + t2(x̂) · t2(ŷ) eθ(x̂)⊗ eφ(ŷ)

−t1(x̂) · t1(ŷ) eφ(x̂)⊗ eθ(ŷ)− t1(x̂) · t2(ŷ) eφ(x̂)⊗ eφ(ŷ).
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Next, we introduce a change of coordinate system in order to move all the singularities in the
weakly singular integrals to only one point that is chosen to be the North pole. For x̂ ∈ S2 we
consider an orthogonal transformation Tx̂ which maps x̂ onto the North pole denoted by η̂. If
x̂ = x̂(θ, φ) then Tx̂ := P (φ)Q(−θ)P (−φ) where P and Q are defined by

P (φ) =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

 and Q(θ) =

 cos θ 0 sinφ
0 1 0

− sinφ 0 cosφ

 .

We also introduce an induced linear tranformation Tx̂ defined by Tx̂u(ŷ) = u(T−1
x̂ ŷ) and we still

denote by Tx̂ its bivariate analogue Tx̂v(ŷ1, ŷ2) = v(T−1
x̂ ŷ1, T

−1
x̂ ŷ2). If we write ẑ = Tx̂ ŷ then

we have the identity
|x̂− ŷ| = |T−1

x̂ (η̂ − ẑ)| = |η̂ − ẑ|.

The boundary integral operator Cκ can be rewritten in the form:

Cκ js(x̂) =

∫
S2

[
Tx̂R(q; η̂, ẑ)

|η̂ − ẑ|
Tx̂W1(q;κ, η̂, ẑ) + iTx̂W2(q;κ, η̂, ẑ)

]
Tx̂js(ẑ)ds(ẑ)

+
1

κ
curlS2

∫
S2

(
Tx̂R(q; η̂, ẑ)

|η̂ − ẑ|
Tx̂S1(q;κ, η̂, ẑ) + iTx̂S2(q;κ, η̂, ẑ)

)
Tx̂
(

divS2 js
)
(ẑ)ds(ẑ),

(3.5)

and it can be shown that the mappings (θ′, φ′) 7→ Tx̂R(q; η̂, ẑ(θ′, φ′))Tx̂S1(q;κ, η̂, ẑ(θ′, φ′)) and
(θ′, φ′) 7→ Tx̂R(q; η̂, ẑ(θ′, φ′))Tx̂C1(q;κ, η̂, ẑ(θ′, φ′)) are smooth. An important point is that the
singularity 1

|η̂−ẑ(θ′,φ′)| = 1

2 sin
θ′

2

is cancelled out by the surface element ds(ẑ) = sin θ′dθ′dφ′.

Finally, setting fs = Pqf , the parametrized form of the equation (2.4) is(
I
H
− 1

2
div (S2)

−Mκ − iηCκΛs
)
js = 2fs, on S2, (3.6)

and setting uinc
1 = Pq

(
n × Einc

)
and uinc

2 = Pq
(
n × curlEinc

)
the parametrized form of the

equation (2.5) is(
I
H
− 1

2
div (S2)

+Mκ + iηΛsCκ
)
js = 2

(( 1

κ
uinc

2

)
+ iηΛsu

inc
1

)
, on S2. (3.7)

4 A high order spectral algorithm
The parametrized boundary integral equations (3.6) and (3.7) are now propicious to obtain spec-
trally accurate approximations of the solution by combining the spectral method of Ganesh and
Graham [7] and the hybrid spectral method of Ganesh and Hawkins [10, 11]. The numerical
scheme is based on the numerical integration formula over the unit sphere for a continuous func-
tion ∫

S2
u(x̂)ds(x̂) ≈

2n+1∑
ρ=0

n+1∑
τ=1

µρντu(x̂(θτ , φρ)), (4.1)

where θτ = arccos ζτ where ζτ , for τ = 1, . . . , n + 1, are the zeros of the Legendre polynomial
P 0
n+1 of degree n+ 1 and ντ , for τ = 1, . . . , n+ 1, are the corresponding Gauss-Legendre weights

and
µρ =

π

n+ 1
, φρ =

ρπ

n+ 1
, for ρ = 0, . . . , 2n+ 1.
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For l ∈ N and 0 ≤ j ≤ l, let P jl denote the j-th associated Legendre function of order l. When
j = 0 we write P 0

l = Pl. The spherical harmonics defined by

Yl,j(x̂) = (−1)
|j|+j

2

√
2l + 1

4π

(l − |j|!)
(l + |j|!)

P
|j|
l (cos θ)eijφ

for j = −l, . . . , l and l = 0, 1, 2, . . . form a complete orthonormal system in L2(S2). The formula
(4.1) is exact for the spherical polynomials of order less than or equal to 2n+ 1 (see [20]). This
induces the discrete inner product (·, ·)n

(ϕ1, ϕ2)n =

2n+1∑
ρ=0

n+1∑
τ=1

µρντϕ1(x̂ρτ )ϕ2(x̂ρτ ),

on the space Pn of all scalar spherical polynomials of degree less than or equal to n. We have
(ϕ1, ϕ2)S2 = (ϕ1, ϕ2)n for all ϕ1, ϕ2 ∈ Pn. We introduce a projection operator `n on Pn defined
by

`nu =

n∑
l=0

l∑
j=−l

(u, Yl,j)nYl,j ,

and we set

Lnu =

 `nu1

`nu2

`nu3

 where u = (u1, u2, u3)
T
.

The tangential vector spherical harmonics defined by

Y(1)
l,j =

1√
l(l + 1)

gradS2 Yl,j and Y(2)
l,j =

1√
l(l + 1)

curlS2 Yl,j

for j = −l, . . . , l and l = 1, 2, . . . form a complete orthonormal system in L2
t (S2). The formula

(4.1) is exact for the vector spherical polynomials of order less than or equal to 2n and we have
Y(k)
l,j · Y

(k′)
l′,j′ ∈ P2n+1 for l, l′ ≤ n, |j| ≤ l, |j′| ≤ l′ and k, k′ = 1, 2 (see [20]). This induces the

discrete inner product

(v1|v2)n =

2n+1∑
ρ=0

n+1∑
τ=1

µρντv1(x̂ρτ ) · v2(x̂ρτ ),

on the subspace Tn ⊂ H
− 1

2

div (S2) of finite dimension 2(n + 1)2 − 2 generated by the orthonormal
basis of tangential vector spherical harmonics of degree less than or equal to n ∈ N. We introduce
a projection operator Ln on Tn defined by

Lnv =

2∑
i=1

n∑
l=1

l∑
j=−l

(v|Y(i)
lj )nY(i)

lj .

In a first step, the operator Cκ is approached by

Cκ,n′ js(x̂) =

∫
S2

1

|η̂ − ẑ|
Ln′{Tx̂R(q; η̂, ·)Tx̂W1(q;κ, η̂, ·)Tx̂js(·)}(ẑ)ds(ẑ)

+ i

∫
S2

Ln′{Tx̂W2(q;κ, η̂, ·)Tx̂js(·)}(ẑ)ds(ẑ)

+
1

κ
curlS2

∫
S2

1

|η̂ − ẑ|
`n′{Tx̂R(q; x̂, ·)Tx̂S1(q;κ, x̂, ·)Tx̂

(
divS2 js(·)

)
}(ẑ)ds(ẑ)

+
i

κ
curlS2

∫
S2
`n′{Tx̂S2(q;κ, x̂, ·)Tx̂

(
divS2 js(·)

)
}(ẑ)ds(ẑ).

9



for some n′ = an+ 1 with fixed a > 1 and n′ − n > 3 (see [11] and [8, Appendix A]). By the use
of the fact that the scalar spherical harmonics are eigenfunctions of the single layer potential on
the sphere and additional identities [4] we obtain

Cκ,n′ js(x̂) =Wκ,n′ js(x̂) +
1

κ
curlS2 Sκ,n′ divS2 js(x̂), (4.2)

with

Wκ,n′ js(x̂) =

2n′+1∑
ρ′=0

n′+1∑
τ ′=1

µρ′ντ ′ατ ′Tx̂R(q; η̂, ẑρ′τ ′)Tx̂W1(q;κ, η̂, ẑρ′τ ′)Tx̂js(ẑρ′τ ′)

+ i

2n′+1∑
ρ′=0

n′+1∑
τ ′=1

µρ′ντ ′Tx̂W2(q;κ, η̂, ẑρ′τ ′)Tx̂js(ẑρ′τ ′),

and

Sκ,n′ ϕs(x̂) =
2n′+1∑
ρ′=0

n′+1∑
τ ′=1

µρ′ντ ′ατ ′Tx̂R(q; η̂, ẑρ′τ ′)Tx̂S1(q;κ, η̂, ẑρ′τ ′)Tx̂ϕs(ẑρ′τ ′)

+ i

2n′+1∑
ρ′=0

n′+1∑
τ ′=1

µρ′ντ ′Tx̂S2(q;κ, η̂, ẑρ′τ ′)Tx̂ϕs(ẑρ′τ ′),

where ατ ′ =
∑n′

l=0 Pl(ζτ ′). We proceed in the same way for the operator Mκ as for the weakly
singular part of Cκ and we denote by Mκ,n′ its approximation. Our fully discrete scheme for
(3.6) is as follows: compute jn ∈ Tn such that

jn −LnMκ,n′jn − iηLnCκ,n′Λsjn = 2Lnfs, (4.3)

where Λs is defined as in remark 3.2. Since any density jn ∈ Tn can be written

jn =

n∑
l=1

l∑
j=−l

αl,jY(1)
l,j + βl,jY(2)

l,j ,

the equation (4.3) is equivalent to a system of 2×
(
(n+1)2−1

)
equations for the 2×

(
(n+1)2−1

)
unknown coefficients (αl,j) and (βl,j) by applying the scalar product ( · |Y(1)

l,j )n and ( · |Y(2)
l,j )n,

for l = 1, . . . , n and j = −l, . . . , l to the equation (4.3). The same remarks hold true for the
equation (3.7).

In the remaining of the section we briefly describe the fully discrete scheme for the equation
(4.3) and give numerical results. The discrete approximation Wκ of the weakly singular part of
the operator of Cκ is of the form

Wκ =

(
W1,1 W1,2

W2,1 W2,2

)
,

where Wa,b, for a, b = 1, 2 is a
(
(n+ 1)2 − 1

)
×
(
(n+ 1)2 − 1

)
matrix. The coefficients of Wa,b,

for 1 ≤ l, l′ ≤ n, |j| ≤ l and |j′| ≤ l′ are given by

Wljl′j′

a,b = (LnWκ,n′Y(b)
l,j |Y

(a)
l′j′)n.
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The discrete approximation of the operatorMκ is obtained in the same way and is denoted by Mκ.
We refer to the paper of Hohage and Le Louër [15] for details on their numerical implementation.
The discrete approximation of the hypersingular part of the operator Cκ is of the form

Hκ =

(
0 0

H2,1 0

)
,

where T2,1 is a
(
(n+ 1)2 − 1

)
×
(
(n+ 1)2 − 1

)
matrix. The coefficients of H2,1, for 1 ≤ l, l′ ≤ n,

|j| ≤ l and |j′| ≤ l′ are given by

Hljl′j′

2,1 = κ−1(Ln curlS2 Sκ,n′ divS2 Y
(1)
l,j |Y

(2)
l′j′)n

= −κ−1(curlS2 `nSκ,n′
√
l(l + 1)Yl,j ,Y(2)

l′j′)n

= −κ−1(`nSκ,n′
√
l(l + 1)Yl,j ,

√
l′(l′ + 1)Yl′j′)n .

where Sκ,n′ is the discrete approximation of the acoustic single layer potential and we refer to
the paper of Ganesh and Graham [7] for details on its numerical implementation. The discrete
approximation of the operator Cκ is Cκ = Wκ + Hκ. The discrete approximation of Λs is of the
form

Λn =

(
0 −IC(n+1)2−1

IC(n+1)2−1 0

)
.

Finaly, the discrete approximation of the integral operator associated to (2.4) is I−Mκ−iηCκΛn,
and the discrete approximation of the integral operator associated to (2.5) is I + Mκ + iηΛnCκ.
The discrete approximation of the right-hand side 2fs = 2Pqf of one of the boundary integral
equations is the vector 2f , where f = (f1, f2)

T, whose coefficients are given for k = 1, 2, l = 1, . . . , n

and j = −l, . . . , l by f ljk = (LnPqf |Y(k)
lj )n.

The parametrized form of the far-field operator F∞ is F∞js = F1 js + iηF2 Λsjs, with

(F1js) (x̂) =
iκ

4π

∫
S2
e−iκx̂·q(ŷ)

((
eθ(ŷ) · js(ŷ)

)
x̂× t1(ŷ) +

(
eφ(ŷ) · js(ŷ)

)
x̂× t2(ŷ)

)
ds(ŷ),

and

(F2ms) (x̂) =
κ

4π

∫
S2
e−iκx̂·q(ŷ)

((
eθ(ŷ) ·ms(ŷ)

)
x̂× t1(ŷ) +

(
eφ(ŷ) ·ms(ŷ)

)
x̂× t2(ŷ)

)
× x̂ ds(ŷ).

The discrete approximation of F∞ evaluated at the 2(n∞ + 1)2 Gauss-quadrature points on the
unit far sphere is

F∞ =
(
F1 F2

)(IC2(n+1)2−2 0
0 Λn

)
with

F1 =
(
F1,1 F1,2

)
, F2 =

(
F2,1 F2,2

)
where Fa,b, for a, b = 1, 2 is a 6(n∞ + 1)2 × ((n + 1)2 − 1) matrix. The coefficients of Fa,b, for
a, b = 1, 2, 1 ≤ l′ ≤ n, |j′| ≤ l′ and ρ = 0, . . . , 2n∞ + 1 and τ = 1, . . . , n∞ + 1 are given by
Fρτl

′j′

a,b =
(
FaY(b)

l′j′

)
(x̂ρτ ).

Table 2 exhibits emphasized fast convergence for the far-field pattern E∞ for boundaries with
parametric representations given in Table 1. As a first test we compute the electric far-field
denoted, E∞ps , created by an off center point source located inside the perfect conductor :

Einc(x) = grad Φ(κ, |x− s|)× p, s ∈ Ω and p ∈ S2.
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Table 1: Parametric representation of the perfectly conducting obstacles [1, 18]
surface parametric representation

sphere q ◦ ψ(θ, φ) = Rψ(θ, φ), R ∈ R∗+;

great stellated dodecahedron q ◦ ψ(θ, φ) = 0.33 r(θ, φ)ψ(θ, φ), where r(θ, φ) > 0 solves

p−|r(θ,φ)f(δ,ξ,0)|
p
+ p−|r(θ,φ)f(δ,−ξ,0)|

p
+ p−|r(θ,φ)f(0,δ,ξ)|

p

+ p−|r(θ,φ)f(0,δ,−ξ)|
p
+ p−|r(θ,φ)f(ξ,0,δ)|

p
+ p−|r(θ,φ)f(−ξ,0,δ)|

p
= 2.5,

with f(a, b, c) = a sin θ cosφ+ b sin θ sinφ+ c cos θ,

δ =

√
5−
√
5

10
, ξ =

√
5+
√
5

10
, p ∈ N, p > 2.

Table 2: Numerical examples for the perfect conductor problem
surface n ||[E∞ps ]n −E∞exact||∞ Re[E∞pw(d)]n · p Im[E∞pw(d)]n · p

sphere 5 3.0071E− 04 0.153 874 899 2.392 810 874
R = 1 10 2.2449E− 12 0.156 527 151 2.383 319 427

κ = 4.49340945 15 1.0175E− 14 0.156 527 163 2.383 319 428
20 9.5447E− 15 0.156 527 163 2.383 319 428

great stellated dodecahedron 25 1.1905E− 03 −0.292 692 794 2.229 490 540
p = 4 35 2.1864E− 04 −0.294 669 310 2.234 334 948
κ = π 45 5.0831E− 05 −0.294 839 844 2.232 714 273

55 1.4777E− 05 −0.294 712 464 2.233 078 537

In this case the total exterior wave has to vanish so that the far-field pattern of the scattered
wave Es is the opposite of the far field pattern of the incident wave:

E∞exact(x̂) = − iκ
4π
e−iκx̂·s (x̂× p).

We choosed s =
(
0, 0.1√

2
,− 0.1√

2

)T and p = (1, 0, 0)
T. In the tabulated results we indicate the

uniform-norm error (by taking the maximum of errors obtained over 1300 observed directions, i.e
n∞ = 25) :

||[E∞ps ]n −E
∞
exact||∞ = max

x̂∈S2

∣∣[E∞ps ]n −E
∞
exact

∣∣.
As a second task we compute the electric far field denoted, E∞pw, created by the scattering of

an incident plane wave :

Einc(x) = p eiκx·d, where d,p ∈ S2 and d · p = 0.

In the tabulated results we indicate the real part and the imaginary part of the polarization
component of the electric far field evaluated at the incident direction : [E∞pw(d)]n ·p. We choosed
d =

(
0, 0, 1

)T and p = (1, 0, 0)
T. In each of the examples we take η = 1.

5 Numerical solution of the inverse problem and IRGNM
With the objective of using a regularized Newton-type method to solve numerically the inverse
problem (1.2) we first reformulate it as a nonlinear equation posed on an open subset of admissible
parametrizations of a Hilbert space. More precisely, we choose some reference domain Ωref with
a simply connected closed boundary Γref and consider mappings q : Γref → Γ belonging to

Q = {q ∈ Hs(Γref ,R3) : q injective, det(Dq(x̂)) 6= 0 for all x̂ ∈ Γref}.
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For s > 2 the set Q is open in Hs(Γref ,R3) and Hs(Γref ,R3) ⊂ C 1(Γref ,R3). Since now, for q ∈ Q
we define Γq := q(Γref) and denote by nq the exterior unit normal vector to Γq. More generally we
will label all quantities and operators related to the perfect conductor problem for the boundary
Γq by the index q. We denote by Fk : Q → L2

t (S2) the boundary to far field operator that
maps the parametrization q of the boundary Γq onto the far-field pattern E∞q,k corresponding to
the scattering of the incident wave Einc

k by the perfect conductor Γq. These operators may be
combined into one operator F : Q → L2

t (S2)m, F (q) := (F1(q), . . . , Fm(q))
T. We also combine

the measured far-field patterns into a vector E∞δ := (E∞1,δ, . . . ,E
∞
m,δ)

T ∈ L2
t (S2)m such that the

inverse problem (1.2) can be written as the following nonlinear equation

F (q) = E∞δ . (5.1)

A regularized iterative method can then be applied to the linearized equation F ′[q]ξ = E∞δ −F [q].
Here, we use the Iteratively Regularized Gaus-Newton Method (IRGNM). This requires to

prove the Fréchet differentiability of the boundary to far-field operator F and an explicit form of
the first Fréchet dérivative F ′[q] and its adjoint F ′[q]*. Then the iterates of the IRGNM can be
computed by

qδN+1 := argminq∈Hs(S2,R)

[
||F ′[qδN ](q − qδN ) + F (qδN )−E∞δ ||2L2 + αN ||q − q0||2Hs

]
, (5.2)

Here q0 = qδ0 is some initial guess and the regularization parameters are chosen of the form
αN = α0

(
2
3

)N . The updates (∂q)N := qδN+1−qδN are the unique solutions to the linear equations(
αN I + F ′[qδN ]*F ′[qδN ]

)
(∂q)δN = F ′[qδN ]*

(
E∞κ,δ − F (qδN )

)
+ αN

(
qδ0 − qδN

)
. (5.3)

For the analysis of the derivative and its adjoint, we restrict ourselves to the case m = 1
since the general case can be reduced to this special case by the obvious formulas F ′[q]ξ =

(F ′1[q]ξ, . . . , F ′m[q]ξ)
T and F ′[q]*h =

∑m
k=1 F

′
k[q]*h. The following theorem is a rewriting, for

the electric field only, of the theorem established in [16] by Kress.

Theorem 5.1 (characterization of F ′[q]). The mapping F : Q → L2
t (S2) with s > 2 is Fréchet

differentiable at all q ∈ Q for which Γq is of class C 2, and the first derivative at q in the direction
ξ ∈ Hs(Γref ,R3) is given by

F ′[q]ξ = E∞q,ξ,

where E∞q,ξ is the far-field pattern of the solution Es
q,ξ to the Maxwell equation (1.1a) in Ωcq that

satisfies the Silver-Müller radiation condition and the following Dirichlet boundary condition

nq ×Es
q,ξ =−

(
ξ ◦ q−1 · nq

)
uq × nq −

1

κ2
curlΓq

(
(ξ ◦ q−1 · nq) divΓq uq

)
. (5.4)

on Γq where uq = nq × curl
(
Es
q + Einc

)
and Es

q is the solution of the scattering problem
(1.1a)-(1.1c) satisfying the Dirichlet boundary condition

nq ×
(
Es
q +Einc

)
= 0 on Γq.

To define the adjoint of F ′[q] : Hs(Γref ;R3)→ L2
t (S2), we interpret the naturally complex Hilbert

space L2
t(S2) as a real Hilbert space with the real-valued inner product Re〈· , ·〉L2

t(S2). For bounded
linear operator between complex Hilbert spaces such a reinterpretation of the spaces as real Hilbert
spaces does not change the adjoint.
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Proposition 5.2 (characterization of the adjoint F ′[q]*). Let

Einc
h (y) =

1

4π

∫
S2

e−iκx̂·yh(x̂) ds(x̂), y ∈ R3

be the vector Herglotz function with kernel h ∈ L2
t (S2) and Eq,h̄ the total wave solution to the

scattering problem for the perfectly conducting interface Γq and the incident wave Einc
h̄ . Moreover,

let jHs↪→L2 denote the embedding operator from Hs(Γref ,R3) to L2(Γref ,R3). Then

F ′[q]*h = j*
Hs↪→L2

(
Jq

(
nq Re

{
−
(
nq × curlEq,h̄

)
· uq

+
1

κ2
divΓq

(
nq × curlEq,h̄

)
· divΓq uq

})
◦ q
)
.

Proof. It suffices to follow the three-step proof of Proposition 6.3 in [15]. �

Remark 5.3 As mentioned in [15], the implementation of the formulas in Theorem 5.1 and
Proposition 5.2 is straightforward using our discretization. Indeed, by the use of the Piola trans-
form it remains to compute some surface derivatives on S2 and both divS2 and curlS2 are diagonal
with respect to the chosen bases of spherical harmonics and vector spherical harmonics.

For the numerical experiments, we consider perfectly conducting scatterers that are star-
shaped with respect to the origin. In this case, it is natural to choose the unit sphere as a
reference boundary (Γref = S2) and to consider special parametrizations of the form q = Rr where(
Rr
)
(x̂) = r(x̂) x̂ for all x̂ ∈ S2 and r is a positive-valued function defined on the unit sphere.

The function r is uniquely determined by Γq. We restrict the set of admissible parametrization
to radial parametrization and choose Qstar = {r ∈ Hs(S2,R) : r > 0}. We have R(Qstar) ⊂ Q,
and we can define Fstar : Qstar → L2

t(S2)m by Fstar := F ◦ R. Then Fstar is injective if a star-
shaped interface Γ is uniquely determined by the far field data E∞1 , . . . ,E

∞
m . Using [12, Corollary

4] we obtain that F ′star[r]
*h = jHs→L2r2Re{. . .} ◦ q where the expression in the curly brackets

coincides with that in Proposition 5.2. In practice, we apply the IRGNM to the nonlinear equation
Fstar(r) = E∞δ . We refer to [15] for details on the inverse scattering algorithm.

Our tests concern the reconstruction of the (rounded) stellation of the dodecahedron defined
by the implicit equation given in table 1. This shape consists of 20 peaks located at the 20
vertex of the regular dodecahedron. The diameter of the obstacle is roughly 2. To compute the
exact far-field data we use the boundary integral equation (2.4) with n = 30. To compute the
far-field data at each iteration step we use the boundary integral equation (2.5) with n = 25. This
allows us to retrieve the boundary value data of the scattered field that are needed to evaluate
the adjoint. To compute the Fréchet derivatives of the boundary to far-field operator we use
the boundary integral equation (2.4). In each of the following test, we use a mesh grid of 128
(n = 7) degrees of freedom to evaluate the far-field pattern. The radial functions describing the
reconstruction belong to the space of spherical harmonics of order less than or equal to 20. The
initial guess is the unit sphere. We choose α0 = 10−2.

Test 1: We reconstruct the obstacle from noisy far-field measurements corresponding to the
scattering of 6 incident plane waves from top, bottom, front, back, left and right. The noise level
is 5%. The wavenumber κ is chosen such that the diameter of the obstacle is equivalent to the
wavelength, that is κ = π. After ten iterations we obtain the result, presented in the top right
picture below, which is pretty good. We observe that all the peaks are recovered.

Test 2: We reconstruct the obstacle from noisy far-field measurements corresponding to the
scattering of one incident plane wave from bottom and polarized in the (Ox) direction. The
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(a) True obstacle (b) 6 incident plane waves, κ = π, 5% noise

(c) 1 incident plane wave, κ = π, 5% noise (d) 6 incident plane waves, κ =
π

2
, 1% noise

Figure. Reconstruction of the (rounded) great stellated dodecahedron.

other parameters does not change. After twenty iterations, we obtain the result presented in the
bottom left picture below.

Test 3: We reconstruct the obstacle from noisy far-field measurements corresponding to the
scattering of 6 incident plane waves. The noise level is 1%. Here The wavenumber κ is chosen
such that the diameter of the obstacle is greater than the wavelength, that is κ =

π

2
. After twenty

iterations, we obtain the result presented in the bottom right picture below.
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