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Abstract

We study how asymmetric information affects the set of rationalizable solutions in
a linear setup where the outcome is determined by forecasts about this same outcome.
The unique rational expectations equilibrium is also the unique rationalizable solution
when the sensitivity of the outcome to agents’ forecasts is less than one, provided that
this sensitivity is common knowledge. Relaxing this common knowledge assumption,
multiple rationalizable solutions arise when the proportion of agents who know the
sensitivity is large, and the uninformed agents believe it is possible that the sensitivity
is greater than one. Instability is equivalent to existence of some kind of sunspot
equilibria.
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1 Introduction
The Rational Expectations Equilibrium (REE) supposes common knowledge (CK) of ex-
pectations. Following Guesnerie (1992), one can assess the relevance of this assumption by
considering rationalizable outcomes. An outcome is rationalizable whenever it is consistent
with CK of rationality and model. The REE is always a rationalizable outcome, but it
is not necessarily the only rationalizable outcome since rationalizability entails no prior
knowledge about expectations.

When the REE is the only rationalizable outcome, agents’ expectations and the market
outcome (prices, allocations) are uniquely determined by the fundamentals. This is no
longer the case when there are multiple rationalizable outcomes. Expectations can then
be heterogeneous and wrong1 and the market outcomes are no longer pinned down by
fundamentals. In this case, the REE is ‘unstable.’

We address the stability issue in a linear coordination game with a continuum of players.
In this class of games, stability is determined by the sensitivity of the actual aggregate
outcome to agents’ beliefs about it. Under CK of the sensitivity, Guesnerie (1992) shows
that the REE is stable if and only if the sensitivity parameter is smaller than one. We
relax the CK assumption and introduce asymmetric information about the sensitivity:
Some agents are perfectly informed and the others have no private information about the
sensitivity.

Suppose that the sensitivity differs across states of nature. Our main result is that
asymmetric information about the sensitivity can lead to instability even in states of nature
where the REE is the unique rationalizable outcome under CK of the sensitivity.

The intuition for this result hinges on a contagion-like argument across the different
states of nature. Every agent wants to predict the outcome and, to achieve this goal, needs
to expect others’ behavior. But why should an informed agent care about the outcome
in a state that does not occur? To predict the outcome in the true state, the informed
agent needs to predict uninformed agents’ behavior. To determine his own behavior, every
uninformed agent must predict the outcome in every state since he does not know the true
state. Everyone therefore takes account of all the states to predict the outcome. Both
informed and uninformed agents are crucial for the contagion effect across states.

When there is a state of nature where the sensitivity is greater than one, this contagion-
like argument implies that adding a small mass of uninformed agents to a world with per-
fectly informed agents is enough to lead to instability. Indeed, informed agents are unable
to predict the outcome in the state where the sensitivity is greater than one. Therefore,
uninformed agents cannot predict the outcome in this state, and instability spills over into
other states through the forecasts of uninformed agents.

We show that instability under asymmetric information obtains if and only if there is
a state where the sensitivity is greater than one and the proportion of informed agents is

1Dominitz and Manski (2007), Dominitz and Manski (2011) and Arrondel et al. (2012) provide recent
empirical evidence about heterogeneous expectations.
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high enough. The main implication of this result is that a higher proportion of informed
agents can be ‘destabilizing’: ‘More information’ leads to instability.

Alternative assessments of REE instability refer to multiplicity of REE or existence of
sunspot equilibria. We introduce a concept of sunspot equilibrium adapted to our static
framework to discuss instability of the REE using the sunspot approach. We show equiv-
alence between multiplicity of rationalizable outcomes and existence of a sunspot equilib-
rium.

In the main strand of the literature, asymmetric information in linear coordination
games has been analyzed under CK of the sensitivity (Morris and Shin (2002), Angeletos
and Pavan (2004), Angeletos and Pavan (2007), Hellwig (2005), Cornand and Heinemann
(2010)). We depart from the literature by assuming that uncertainty bears on the sensitivity
parameter.

Our equivalence between instability and existence of sunspot equilibrium is reminiscent
of equivalence results found in dynamic models in Guesnerie (1993). Guesnerie (2011)
discuss the links between various concepts based on CK ideas.

The paper is organized as follows. The benchmark setup is presented in Section 2. The
case of complete information is briefly described in Section 3. In Section 4, the analysis is
extended to the case of asymmetric information, and the main results are given. In Section
5, we consider extraneous uncertainty of the sunspot type.

2 The framework
We consider a stylized model with a beauty contest issue. There is a continuum of infinitesi-
mal agents i ∈ [0, 1] who simultaneously form forecasts pei about the ‘price.’ These forecasts
then determine the actual price. The uncertainty about fundamentals is represented by Ω
states of nature indexed by ω, ω = 1, . . . ,Ω. In state ω, the actual price is

p(ω) = φ (ω)

∫ 1

0

peidi+ η (ω) . (1)

Fundamentals in state ω are summarized by the pair (φ (ω) , η (ω)), where φ (ω) measures
the sensitivity of the actual price to forecasts and η (ω) is a scale factor. The reduced form
used by Morris and Shin (2002) fits (1) with φ(ω) = φ ∈ (0, 1). In the sequel, we also
assume that the model exhibits strategic complementarity, i.e., φ(ω) > 0 for every ω. Our
analysis would apply in the presence of strategic substitutability, i.e., φ(ω) < 0 for every ω,
as in the agricultural model of Guesnerie (1992). However it does not extend to the case
where the signs of the sensitivity to beliefs differ across states of nature.

Example 1. Muth model (Guesnerie, 1992). There is a continuum of farmers i ∈ [0, 1] who
produce corn. Each farmer chooses his crop one period before observing the corn price.
The cost of producing q units of corn is q2/σ, with σ > 0. Farmer i expected profit is
peiq − q2/σ and thus his production is qi = σpei . The actual price clears the market. The
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aggregate demand is b− ap. Aggregate supply equals aggregate demand when

σ

∫
peidi = −ap+ b,

which fits (1), with φ(ω) = φ = −σ/a < 0. In this example, the sensitivity is the same
in every state. The sensitivity would vary across states of nature with uncertain aggregate
demand, e.g., b(ω)− a(ω)p in state ω (a(ω), b(ω) > 0).

Example 2. Lucas supply curve. There is a continuum of infinitesimal firms i ∈ [0, 1].
Supply of firm i is qi = σ(pi − pei ), where pi stands for the price of its product and pei
represents its forecast about the aggregate price level. The aggregate price level in state ω
is

p(ω) ≡
∫ 1

0

pi(ω)di.

The aggregate demand is −a(ω)p + b(ω) in state ω when the aggregate price is p. In
equilibrium, the aggregate price p (ω) satisfies∫ 1

0

σ(pi(ω)− pei )di = −a(ω)p (ω) + b(ω).

This fits (1), with φ (ω) ≡ σ/(σ + a(ω)) > 0 and η (ω) ≡ b(ω)/(σ + a(ω)).

3 Complete information
In (1), the individual price forecasts implicitly depend on agents’ information. When it
is commonly known that the state is ω, price forecasts are made conditionally on ω, i.e.,
pei = pei (ω) in (1). A rational expectations equilibrium (REE) is a price p∗(ω) solution to
(1) when pei (ω) = p∗(ω) for all i. The REE is unique if and only if φ (ω) 6= 1.

The REE can be viewed as the Nash equilibrium of a strategic guessing game in which
agent j chooses a forecast pej(ω) which minimizes his forecast error (p(ω) − pej(ω))2, given
that p(ω) is determined by (1). In this game, the best-response forecast of agent j to a
profile (pei (ω)) of others’ forecasts is

pej(ω) = φ (ω)

∫ 1

0

peidi (ω) + η (ω) . (2)

Through this interpretation, every agent expects p∗(ω) because each one believes that all
the others expect p∗(ω). This (second order) belief is justified by higher order beliefs such
that all the agents believe that all the rest expect p∗(ω). The price p∗(ω) is the only one
consistent with the common knowledge (CK) of every agent expecting it.

Following Guesnerie (1992), this interpretation suggests an assessment of the REE re-
lying on a weaker assumption than CK of pei (ω) = p∗(ω) for all i. Assume instead that
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it is CK that the actual price p(ω) belongs to some set P 0 =
[
p0

inf , p
0
sup

]
which comprises

p∗(ω). From this assumption, it is CK that pei (ω) ∈ P 0 for all i. Appealing to (1), all the
agents can infer that the actual price will be in the set P 1(ω) = Rω(P 0) where the map Rω

is defined by

Rω (P ) ≡ [φ(ω)P + η(ω)] ∩ P,

where P is any subset of prices. The actual price is determined by (1), provided that it is
in P 0. Otherwise, it is the appropriate bound of P 0, either p0

inf (if the price given by (1) is
less than p0

inf) or p0
sup (if the price is greater than p0

inf).
One defines a sequence of sets P τ (ω) along the same lines by P τ (ω) = Rω(P τ−1 (ω)).

It follows that if it is CK that p(ω) ∈ P τ−1(ω), then it is CK that p(ω) ∈ P τ (ω) =
Rω(P τ−1(ω)). Then, the set of prices consistent with the common knowledge assumptions
is the limit set

P∞ (ω) = ∩
τ≥0

P τ (ω).

This limit set is properly defined since the sequence P τ (ω) is decreasing. The limit set is
the set of rationalizable price forecasts of the guessing game (where forecasts are a priori
restricted to P 0).

The equilibrium is ‘stable’ when P∞ (ω) = {p∗(ω)}. Otherwise, the REE is ‘unstable.’
Every price in P 0 is rationalizable when the REE is unstable. The following condition for
stability has been given by Guesnerie (1992):

Proposition 1. The REE is stable if and only if φ (ω) < 1.

This proposition provides a benchmark for our analysis of the asymmetric information
case. Stability is obtained when the economic system is not too sensitive to forecasts in
(1), or equivalently agents’ forecasts are not too sensitive to others’ forecasts in (2).

4 Asymmetric information
We now assume that there are only α (0 ≤ α < 1) ‘informed’ agents who observe ω before
choosing their price forecasts. The (1− α) remaining agents have no information about the
true state of nature at that time. These ‘uninformed’ agents have common prior beliefs:
They all believe that state ω occurs with probability π(ω).

A REE is a vector of (p∗(1), . . . , p∗(Ω)) such that

p∗ (ω) = φ (ω)

(
αp∗ (ω) + (1− α)

∑
w

π(w)p∗(w)

)
+ η (ω) (3)

for any ω. The REE coincides with the Nash equilibrium of an amended guessing game
in which agents try to minimize their forecast errors. This Bayesian game is as follows.
First, the true state ω is observed only by the informed agents i ∈ [0, α]. Then, all the
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agents simultaneously choose their forecasts. The strategy of agent i is a price forecast
conditional on his information. If i is informed, his strategy is a vector of price forecasts
(pei (1), ..., pei (Ω)), where pei (ω) is the price expected by i to arise in state ω. If i is unin-
formed, then his strategy merely consists of a single price forecast pei independent of ω.
The aggregate price forecast in state ω is therefore∫ α

0

pei (ω) di+

∫ 1

α

peidi.

Finally, the actual price p(ω) is determined by the aggregate price forecast according to
the map

p(ω) = φ (ω)

(∫ α

0

pei (ω) di+

∫ 1

α

peidi

)
+ η (ω) . (4)

Example 3. Muth model. The aggregate demand in state ω be b(ω)−a(ω)p. The expected
profit of an informed farmer i is pei (ω)q − q2/σ and his supply is qi(ω) = σpei (ω). The
expected profit of an uninformed farmer is

∑
w π(w)pei (w)q − q2/σ, so that his production

is qi = σ
∑

w π(w)pei (w). In equilibrium, the actual price p(ω) in state ω is such that

σ

(∫ α

0

pei (ω)di+

∫ 1

α

∑
w

π(w)pei (w)di

)
= −a(ω)p(ω) + b(ω).

Example 4. Lucas supply curve. If firm i is informed about the demand function, its supply
is qi = σ(pi(ω)− pei (ω)). If it is uninformed, its supply is qi = σ(pi −

∑
w π(w)pei (w)). The

aggregate price level is

p(ω) ≡
∫ α

0

pei (ω)di+

∫ 1

α

pidi.

Therefore, in equilibrium,

σp(ω)− σ

(∫ α

0

pei (ω)di+

∫ 1

α

∑
w

π(w)pei (w)di

)
= −a(ω)p(ω) + b(ω).

Assume CK that the price a priori belongs to some interval P 0 which includes the
equilibrium prices p∗(ω) for every ω. Every agent thus knows that all the other agents
expect the price to be in P 0, and, consequently, each one understands that the aggregate
price forecast is in P 0 in any state of nature. Hence, every agent concludes that the price
in state ω belongs to the set P 1(ω) = Rω (P 0), which is included in P 0 and may coincide
with P 0. When P 1(ω)  P 0, agents have succeeded in eliminating some price forecasts.

Iterating this process yields the CK restriction that the price in state ω is in some set
P τ−1 (ω) after τ −1 steps. At step τ , every agent knows that all the others expect the price
in state ω to be in P τ−1 (ω). Every agent understands that the price forecast in state ω of
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an informed agent is in P τ−1 (ω), and that the price forecast of an uninformed agent is in∑
w π(w)P τ−1 (w). All agents conclude that the price in state ω belongs to

P τ (ω) = Rω

(
αP τ−1(ω) + (1− α)

∑
w

π(w)P τ−1(w)

)
. (5)

The relation (5) defines a sequence of intervals (P τ (ω), τ ≥ 0) for every ω. These sequences
are decreasing and converge to limit sets P∞ (ω). The REE is ‘stable’ whenever P∞ (ω) =
{p∗(ω)} for every ω. Otherwise, it is ‘unstable.’

As in Section 3, this definition has a game-theoretical counterpart in terms of rationaliz-
able solutions (Bernheim (1984), Pearce (1984)). At step τ , if the strategy set is restricted
to ×ωP τ−1 (ω) for an informed agent, and to

∑
w π (w)P τ−1 (w) for an uninformed agent,

then the best-response of agent i is a strategy in ×ωP τ (ω) when he is informed, and in∑
w π (w)P τ (w) when he is uninformed. The limit sets P∞ (ω) are the rationalizable price

forecasts of the ‘guessing’ game: P∞ (1) × · · · × P∞ (Ω) is the set of rationalizable price
forecasts of an informed agent, and

∑
w π (w)P∞ (w) is the set of rationalizable price fore-

casts of an uninformed one. Stability of the REE is equivalent to the uniqueness of the
rationalizable price forecast, which then reduces to the REE prices.

4.1 (In)stability results

The following result presents the properties of the set of rationalizable prices when the
REE is unstable.

Proposition 2. Consider an unstable REE.

1. For every ω, {p∗ (ω)}  P∞ (ω): For every ω, the set P∞ (ω) of rationalizable prices
in state ω includes but differs from {p∗ (ω)}.

2. There is ω such that p∞inf (ω) = p0
inf , and there is ω′ (possibly different from ω) such

that p∞sup (ω′) = p0
sup. In addition, for every ω such that αφ (ω) > 1, P∞ (ω) = P 0.

3. For every ω such that φ (ω) < 1, P∞ (ω)  P 0, and P∞ (ω) decreases in P 0: If
P 0  P̃ 0, then the limit sets P∞ (ω) and P̃∞ (ω) associated with the initial restrictions
P 0 and P̃ 0 are such that P∞ (ω)  P̃∞ (ω).

The first item of this Proposition is a formal statement of the ‘contagion’ property.
It shows that no price p∗ (ω) can be guessed in the case of instability, even in a state ω
where φ (ω) < 1. Indeed, uninformed agents cannot select a single price forecast when the
REE is unstable. This situation implies that, in every state, agents cannot settle upon the
aggregate price forecast. Therefore, the actual price, which is determined by the aggregate
price forecast, cannot be uniquely determined.
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When the equilibrium is unstable, some ‘coordination’ volatility occurs in all the states
at the outcome of the process of elimination of non-best response strategies. The mag-
nitude of this volatility can be measured in state ω by the size of the interval P∞ (ω) of
rationalizable prices. Volatility is dampened when P∞ (ω) is a narrow interval around the
REE price p∗ (ω). The second and the third items of Proposition 2 characterize how the
residual volatility depends on economic fundamentals. They show that a low sensitivity
to beliefs φ (ω) plays a role reminiscent of that in the complete information case. A low
sensitivity favors a narrow set P∞ (ω) of rationalizable prices in state ω. In the contrary
case, in a state where φ (ω) is large enough, the iterative process (5) provides no additional
information: P∞ (ω) = P 0. These two items also show how the magnitude of this volatility
depends on the initial assumption made about the relevant prices: A narrower prior set P 0

yields a narrower set P∞ (ω) of rationalizable prices at the outcome of (5).
Thus far, we have focused on the description of an unstable REE. The system (5) is a

first-order linear recursive system. The REE is stable if and only if the spectral radius of
the square matrix governing the dynamics (5) is less than 1. This yields the conditions for
stability of the REE given in Proposition 3.

Proposition 3. Assume that φ (ω) > 0 for any ω. Let 0 ≤ α ≤ 1.

1. If αφ (ω) > 1 for some ω, then the REE is unstable.

2. If αφ (ω) < 1 for every ω, then the REE is stable if and only if

Ω∑
w=1

π (w)
(1− α)φ (w)

1− αφ (w)
< 1. (6)

Point 1 in Proposition 3 states that the REE is stable in (5) only if αφ (ω) < 1 for
every ω. This inequality would also govern stability of the REE in state ω in a complete
information setup involving α informed agents only. This fact suggests one should interpret
this inequality by referring to a virtual restricted coordination problem which abstracts
from the difficulties caused by uninformed agents. Namely, if informed agents know that
the forecast of uninformed agents is fixed at p̄∗ ≡

∑
w π(w)p∗(w), then the actual price in

state ω is
p(ω) = φ(ω)

∫ α

0

pei (ω)di+ η̃ (ω)

where η̃ (ω) = (1− α)φ(ω)p̄∗ + η (ω). This virtual restricted setup is formally equivalent
to the complete information case discussed in the previous section (with a mass α of agents
only). Hence, by Proposition 1, the REE is unstable when αφ(ω) > 1. In this configuration,
informed agents cannot correctly predict the price in state ω, even though, they know that
uninformed agents expect the REE prices. It follows that in the true unrestricted setup, no
agent (neither informed nor uninformed) succeeds in predicting the price in such a state.
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Along the same lines, Point 2 in Proposition 3 can be interpreted as a stability condition
of a virtual restricted problem which abstracts from the difficulties caused by the informed
agents. Namely, if informed agents correctly guess the price, then the actual price is

p(ω) = φ(ω)

(
αp(ω) +

∫ 1

1−α
p̄eidi

)
+ η(ω),

and the actual average price is

Ω∑
w=1

π (w) p(w) =

(
Ω∑
w=1

π (w)
φ (w)

1− αφ (w)

)∫ 1

1−α
p̄eidi+ η̂(ω),

where

η̂(ω) =
Ω∑
w=1

π (w)
η (w)

1− αφ (w)
.

Again this virtual restricted setup is formally equivalent to the complete information case
with a mass 1 − α of agents. By Proposition 1, stability of this virtual setup is given by
(6).

The following Corollary to Proposition 3 describes how stability is affected by the in-
formation structure.

Corollary 1. Let φ (ω) > 0 for all ω. Let also α < 1. Then, there is a unique threshold
proportion α∗, 0 ≤ α∗ ≤ 1, of informed agents such that stability of the REE is obtained if
and only if α < α∗. In addition,

1. if φ (ω) < 1 for any ω, then α∗ = 1,

2. if there is ω with φ (ω) > 1 and if φ̄ =
∑
π(w)φ (w) < 1, then 0 < α∗ < 1,

3. if φ̄ > 1, then α∗ = 0.

The REE is stable if and only α < α∗, i.e., the proportion of informed agents is low
enough: Information revealed to some uninformed agents can only destabilize the REE.
An intuition in line with Proposition 1 stems from the sensitivity of individual forecasts to
others’ behavior. When an uninformed agent expects the aggregate price forecast to change
in some state, the adjustment in his own price forecast will be weighted by the probability
of that state occurring. For this reason, his forecasting behavior is less sensitive to others’
forecasts than the behavior of an informed agent. The uninformed agent’s behavior is
consequently easier to predict, which favors stability.
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Figure 1: Information structure and rationalizable prices in a two-state case

4.2 A two-state illustration

Figure 1 summarizes our results in a two-state case, with φ(1) < 1 < φ(2). The equilibrium
price p∗(1) is normalized to 0 in state 1. The black increasing curve depicts the relation
between the equilibrium price p∗(2) in state 2 and the proportion α.

By Proposition 1, when all the agents are informed (α = 1), the price p∗(1) is the
only rationalizable price in state 1 while all prices in P0 are rationalizable in state 2.
By Proposition 3, the equilibrium (p∗(1), p∗(2)) is unstable for α large enough (α > α∗).
Introducing a few uninformed agents thus implies multiple rationalizable prices in state 1,
i.e., p∞inf(1) < p1 < p∞sup(1). However, when α is close to 1, the influence of uninformed
agents on the actual outcome can be neglected, so that p∞inf(1) and p∞sup(1) are close to the
equilibrium price p∗(1).

It is supposed in the figure that 0 < α∗ < 1 (Corollary 1). By Proposition 2 the set
of rationalizable prices in state 2 is P0 for α high enough. In the figure this set remains
equal to P0 for all α > α∗, i.e., both p∞inf(2) = p0

inf and p∞sup(2) = p0
sup for all α > α∗. The

red dashed lines p∞inf(1) and p∞sup(1) represent the boundaries of the set of rationalizable
prices in state 1 for α > α∗. There is a discontinuity in the set of rationalizable prices in
both states when α passes below the threshold α∗: for α just above α∗, uninformed agents
expect any price in P0 to arise in state 2, and for all α < α∗ the rationalizable prices reduce
to the equilibrium prices in every state.

5 Sunspots and stability
We show how instability results extend to the issue of existence of sunspot equilibria. It is
known that existence of sunspot equilibria is closely related to multiplicity of rationalizable
outcomes (Guesnerie, 1993). We introduce a concept of sunspot equilibria adapted to our
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static framework (equilibrium with imperfectly observed sunspots) and we show that the
equivalence result holds. Hence, all our (in)stability results apply to the sunspot equilibria:
Instability of the equilibrium is associated with non fundamental equilibrium volatility.

Consider a stochastic sunspot variable that can take Σ values (S = 1, . . . ,Σ), not cor-
related with fundamentals. Assume that its actual value is not known when agents form
their forecasts. Every agent i observes a private signal si = 1, . . . ,Σ imperfectly correlated
with S. Conditionally based on S, private signals are independently and identically dis-
tributed across agents, and the probability Pr(si | S) that i observes si in sunspot event S
is independent of i. Thus, in sunspot event S, there are Pr(s | S) agents who observe the
signal s (s = 1, . . . ,Σ).

Suppose that all the agents expect the price pe(ω, S) to arise if the state of fundamentals
is ω and the sunspot is S. In state (ω, S), there are αPr(s | S) informed agents whose
price forecast is

Σ∑
S′=1

Pr(S ′ | s)pe(ω, S ′)

for any s. There are also (1− α) Pr(s | S) uninformed agents who expect
Σ∑

S′=1

Pr(S ′ | s)
Ω∑
w=1

π (w) pe (w, S ′) .

Let

µ(S ′|S) =
Σ∑
s=1

Pr(s | S) Pr(S ′ | s)

be the average probability (across agents) of sunspot S ′ if the actual sunspot is S. The
aggregate price forecast P e(ω, S) is expressed as

Σ∑
S′=1

µ(S ′|S)

[
αpe(ω, S ′) + (1− α)

Ω∑
w=1

π (w) pe (w, S ′)

]
, (7)

and the actual price p(ω, S), determined by (1) in state (ω, S), is such that

p(ω, S) = φ (ω)P e(ω, S) + η (ω) . (8)

A REE is a vector of ΩΣ prices (p∗(1, 1), . . . , p∗(Ω,Σ)) such that pe (ω, S) = p (ω, S) =
p∗(ω, S) for every (ω, S) in (7) and (8). The ‘fundamental’ REE is obtained when p∗(ω, S)
is independent of S. Otherwise, sunspots matter and the REE is a ’sunspot’ equilibrium.

The following result gives conditions for the existence of a sunspot REE.

Proposition 4. There exists a sunspot REE if and only if the fundamental REE is unstable
in (5).

In our linear setup, the stability of the fundamental REE is still ruled by Proposition 3
and Corollary 1. Hence, both results also give necessary and sufficient conditions needed
for the sunspot REE to exist. In particular, sunspot equilibria exist when many agents are
informed about the true state of nature (i.e., α ≥ α∗).
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6 Conclusion
This paper emphasizes the difficulty of coordinating expectations when the sensitivity of
the market outcome to agents’ forecasts is not common knowledge. A low value of the true
sensitivity is not enough for stability. Instead, either a low average sensitivity (when there
are many uninformed agents), or even a low sensitivity in every possible state (when there
are many informed agents) are needed.

The intuition sustaining these results is easily illustrated in the case with two possible
states of nature, one with a low sensitivity and the other with a high sensitivity. Under
complete information, the rational expectations equilibrium is stable in the ‘low’ state,
and unstable in the ‘high’ one. Under asymmetric information, stability properties of the
prices in the two states are no longer disconnected. When many agents are informed,
multiplicity of rationalizable prices arises in the high state (as in the complete information
case). Uninformed agents then fail to predict a unique price in the high state. By contagion
this failure implies multiple rationalizable prices in the low state.

These results may possibly contribute to the debate about the transparency of economic
policy. They suggest that the disclosure of information about parameters which influence
the sensitivity of the economy to agents’ beliefs, e.g., the slope of the aggregate demand
function in the Muth setup, may be harmful to stability. A government agency or a central
bank revealing that the underlying sensitivity is low may destabilize the equilibrium if it
cannot convince all the agents to believe its announcement: Instability occurs between full
ignorance and full common knowledge.
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A Proof of Proposition 2
1. Since the equilibrium is unstable, there is a state ω such that {p∗ (ω)}  P∞ (ω).

The set of rationalizable price forecasts of uninformed agents cannot be reduced to a
single element. In any given state the set of rationalizable prices is determined by the
aggregate price forecast in that state, which depends on the forecasts of uninformed
agents. Thus in any given state the aggregate price forecast cannot reduce to a single
point.

2. Consider the minimum rationalizable prices (p∞inf (ω))ω. For every ω, P
∞ (ω)  P 0. In

the case where p∞inf (ω) > p0
inf for every ω, the definition of P∞ (ω) implies P∞ (ω) =

φ (ω)P∞ (ω) + η (ω), and thus, for every ω:

p∞inf (ω) = αφ (ω) p∞inf (ω) + (1− α)φ (ω)
∑

π (w) p∞inf (w) + η (ω) .

Since the equilibrium price p∗ (ω) is the unique solution of this equation, p∞inf (ω) =
p∗ (ω) for every ω. The same holds true for the maximum rationalizable prices. This
shows the first statement.

For ω such that αφ (ω) > 1, we show that p∞inf (ω) = p0
inf . To this purpose, we show

that, when everyone expects (p∞inf (ω))ω, we have

p0
inf ≥ αφ (ω) p0

inf + (1− α)φ (ω)
∑

π (w) p∞inf (w) + η (ω) , (9)

which means that p0
inf is the actual price in state ω (that is: p0

inf = p∞inf (ω)). Recall
the fixed point relation characterizing the equilibrium (p∗ (ω))ω

p∗ (ω) = αφ (ω) p∗ (ω) + (1− α)φ (ω)
∑

π (w) p∗ (w) + η (ω) .

Subtracting this equality to (9) gives

∆p (ω) > αφ (ω) ∆p (ω) + (1− α)φ (ω)
∑

π (w) ∆p (w) ,

where ∆p (ω) = p∞inf (ω)− p∗ (ω) ≤ 0. This rewrites

(1− αφ (ω)) ∆p (ω) ≥ (1− α)φ (ω)
∑

π (w) ∆p (w) ,

which holds true as

(1− αφ (ω)) ∆p (ω) ≥ 0 ≥ (1− α)φ (ω)
∑

π (w) ∆p (w) .

The same argument shows that p∞sup (ω) = p0
sup for every ω such that αφ (ω) > 1. This

shows the second statement.
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3. The third item follows from the first step of the iterative process. By assumption, the
equilibrium price η(ω)/(1 − φ(ω)) under complete information belongs to P 0. From
(5), at the first step of the process, we have:

p1
inf (ω) = max

(
p0

inf , φ (ω) p0
inf + η (ω)

)
.

Since p0
inf < η(ω)/(1 − φ(ω) and φ (ω) < 1, we have p1

inf (ω) > p0
inf . By definition,

the map Rω(P ) cannot be increasing with τ . It follows that p∞inf (ω) ≥ p1
inf (ω) > p0

inf .
The same argument shows that

p1
sup (ω) = min

(
p0

sup, φ (ω) p0
sup + η (ω)

)
< p0

sup,

so that p∞sup (ω) ≤ p1
sup (ω) < p0

sup. This shows that P∞(ω) is a strict subset of P 0.

B Proof of Proposition 3
Consider, e.g., the Ω equations in (5) corresponding to the lowest bounds P τ

inf(ω) of P τ (ω).
They can be rewritten in matrix form pτ+1

inf = Mpτinf + η, where pτinf is the Ω × 1 vector
(P τ

inf (1) , . . . , P τ
inf (Ω)), η is the Ω × 1 vector (η (1) , ..., η (Ω)), and M is the Ω × Ω matrix

αΦ + (1− α) ΦΠ (with Φ the diagonal Ω × Ω matrix whose ωωth entry is φ(ω), and Π
the Ω× Ω stochastic matrix whose ωω′th entry is π(ω′)). The REE is stable if and only if
the spectral radius ρ(M) of M is less than 1. The proof now hinges on the fact that for
any Ω× Ω positive matrix M, and any Ω× 1 vector x = (xω) with every xω > 0, we have

min
ω

(Mx)ω
xω

≤ ρ(M) ≤ max
ω

(Mx)ω
xω

,

where (Mx)ω stands for the ωth component of the Ω× 1 vector Mx (see Lemma 3.1.2. in
Bapat and Raghavan(1997)). Let

Q (x, ω) =
(Mx)ω
xω

= φ (ω)

[
α + (1− α)

1

xω

Ω∑
w=1

π (w)xw

]
,

for any ω. Assume first that αφ (ω) > 1 for some ω, e.g. ω = Ω. Then, consider the vector
x = (ε, . . . , ε, 1)′ where ε > 0. When ε tends toward 0, Q (x, ω) tends to (+∞) for every
ω < Ω, and Q (x,Ω) ≥ αφ (Ω) > 1. Hence, minωQ (x, ω) > 1 for ε small enough, and so
ρ(M) > 1: The REE is unstable if αφ (ω) > 1 for some ω. If, on the contrary, αφ (ω) < 1
for any ω, then define

E =
Ω∑
w=1

π (w)
(1− α)φ (w)

1− αφ (w)
.

Consider the Ω× 1 positive vector x whose ωth component is

xω =
1

E

(1− α)φ (ω)

1− αφ (ω)
.
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If E ≥ 1, then Q (x, ω) > 1 for any ω, so that minωQ (x, ω) ≥ 1, and the REE is unstable.
If, on the contrary, E < 1, then Q (x, ω) < 1 for any ω, so that maxωQ (x, ω) < 1, and the
REE is stable.

C Proof of Corollary 1
1. Assume first that φ (ω) < 1 for any ω = 1, . . . ,Ω. Then, αφ (ω) < 1 and (1− α)φ (ω) /

(1− αφ (ω)) < 1 for any ω. By Proposition 3, the REE is stable.

2. Let now infω φ (ω) < 1 < supω φ (ω). If α > 1/ supω φ (ω), the REE is unstable, by
Proposition 3. If α ≤ 1/ supω φ (ω), then αφ (ω) < 1 for every ω, and the REE is
stable if and only if (6) is met. Let

F (α) =
Ω∑
w=1

π (w)
φ (w)

1− αφ (w)
− 1

(1− α)
(10)

Since F (·) is a continuous and increasing function of α on the interval [0, 1/ supω φ (ω)],
with F ′(α) > 0 whatever α is, there is at most one value α such that F (α) = 0 on
this interval. Observe now that F (0) = φ̄− 1, and F (α) tends to +∞ when α tends
to 1/ supω φ (ω) from below. If, on the one hand, φ̄ ≥ 1, then F (α) ≥ F (0) > 0 for
any α ∈ [0, 1/ supω φ (ω)], and the stability condition (6) is never satisfied. If, on the
other hand, φ̄ < 1, then there exists a unique solution α∗ (α∗ > 0) to F (α) = 0 in
[0, 1/ supω φ (ω)]. The condition F (α) < 0, i.e. the stability condition (6), is equiva-
lent to α < α∗. Since F (α∗) = 0 implicitly defines α∗ as a function (φ(1), . . . , φ(Ω)),
and since F (·) increases in every φ (ω), α∗ decreases in every φ (ω).

3. Let φ̄ > 1. We know that F (α) > 0 for any α ∈ [0, 1/ supω φ (ω)]. As a result, the
stability condition (6) is never satisfied.

D Proof of Proposition 4
Let us rewrite conditions (8) in matrix form. To this aim, let p(S) be the Ω × 1 vector
whose ωth component is p(ω, S), and p be the ΩΣ × 1 vector (p(1), . . . ,p(Σ)). Let S
be the Σ × Σ stochastic matrix whose S ′Sth entry is µ(S ′|S). Then, with M defined in
Proposition 3, a REE is a vector p such that

p = (M⊗ S) p + 1Σ ⊗ η, (11)

where the symbol ⊗ stands for the Kronecker product. Let e(S) be the Sth eigenvalue of
S, with e(S) ∈ [−1, 1] since S is a stochastic matrix. Let µ(ω) be the ωth eigenvalue of M.
Then, the ΩΣ eigenvalues of M⊗S are e(S)µ(ω) for any pair (ω, S). If ρ(M) < 1, then all
the eigenvalues of M⊗S have moduli less than 1, and so M⊗S−I2Ω is invertible and there
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is a unique REE. If ρ(M) ≥ 1, there exist stochastic matrices such that e(S) = 1/ρ(M)
for some S. In this case, the matrix M ⊗ S has an eigenvalue equal to 1, and there are
infinitely many p solution to (11), i.e. infinitely many sunspot REE and the fundamental
REE.
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