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Abstract. In [12] a variational method using C2-smoothed ℓ1-TV func-
tionals was proposed to process digital (quantized) images so that the
obtained minimizer is quite close to the input image but its pixels are
all different from each other. These minimizers were shown to enable ex-
act histogram specification outperforming the state-of-the-art methods [6],
[19] in terms of faithful total strict ordering. They need to be computed
with a high numerical precision. However the relevant functionals are
difficult to minimize using standard tools because their gradient is nearly
flat over vast regions.
Here we present a specially designed fixed-point algorithm enabling to at-
tain the minimizer with remarkable speed and precision. This variational
method applied with the new proposed algorithm is actually the best way
(in terms of quality and speed) to order the pixels in digital images. This
assertion is corroborated by exhaustive numerical tests.
We extend the method to color images where the luminance channel is
exactly fitted to a prescribed histogram. We propose a new fast algorithm
to compute the modified color values which preserves the hue and do
not yield gamut problem. Numerical tests confirm the performance of the
latter algorithm.

Key words: Color image enhancement; Exact histogram specification;
Fast smooth convex nonlinear minimization; Fixed point algorithm; Gamut
preservation; Hue preservation; Minimizer analysis; Smoothed ℓ1-TV func-
tionals; Total strict ordering; Variational methods.

1 Introduction

Histogram processing is a technique with numerous applications. The goal of ex-
act histogram specification (HS) is to transform an input image into an output
image having a prescribed histogram. Histogram equalization (HE) is a partic-
ular case of HS. Among the applications of HS let us mention invisible water-
marking, image normalization and enhancement, object recognition [7], [5], [16].
Let f be an input M × N digital image with L gray values. The set of values
of f is denoted by1 Q = {q1, · · · , qL}. To simplify the notation we reorder the

1 For 8-bit images we have L = 256 and Q = {0, · · · , 255}.
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image columnwise into a vector of size n := MN and address the pixels by the
index set2 In := {1, · · · , n}. The histogram of f , denoted by hf , is given by
hf [qk] = ♯ {i ∈ In | f [i] = qk}, ∀ k ∈ IL, where ♯ stands for cardinality.

Exact HS is straightforward for images whose pixels values are all different
from each other. However exact HS (and also exact HE) is an ill-posed problem
for digital (quantized) images since the number of pixels3 n is much larger than
number the possible intensity levels L [6] ,[17]. The clue to achieving exact HS is
to obtain ameaningful total strict ordering of all pixels in the input digital image.
Research on this problem has been conducted for four decades already [8]. The
Local Mean (LM) method of Coltuc, Bolon and Chassery [6], the wavelet-based
approach (WA) of Wan and Shi in [19] and the specialized variational approach
(SVA) of Nikolova, Wen and Chan [12] are the state-of-the-art methods. For any
input pixel f [i] in the input digital image f these methods extract K auxiliary
information, say ak[i], k ∈ IK , based on f . For simplicity, we set a0 := f . Then
an ascending order “≺ ” for all pixels is sought using the rule

i ≺ j if f [i] ≤ f [j] and ak[i] < ak[j] for some k ∈ {0, · · · ,K}. (1)

The numerical results in [12] have shown that SVA clearly outperforms its
main competitors—LM and WA—in terms of quality and memory requirements
but not in speed. In section 3 we derive a specialized fixed point minimization
algorithm that attains the minimizer with remarkable speed and precision. Con-
vergence and parameter selection are briefly discussed. Numerical tests confirm
that the SVA method along with the new FP algorithm outperforms by far all
other relevant sorting methods.

In section 4 we focus on HS for color digital images. Extension of gray scale
HS to color images is a quite complex task. As usual, a color image has three
components: red (R), green (G) and blue (B). Applying HS to each color channel
independently changes the hue of the image [17]. To avoid this problem, several
ways to define a 3-D color histogram were proposed, e.g. [18], [10]. Recently, Han
et al. [9] showed that these methods increase the brightness of the image and
cannot fit the prescribed (uniform) histogram. In the same article, the authors
propose to equalize the luminance (intensity) component of the image and apply
the hue-preserving transformation proposed by Naik and Murthy [11] to assign
the new color values. There are many methods that rely on modification of the
histogram of the luminance component and deduce the needed change in the
RGB space, see e.g. [2], [1], [16]. Our approach is to produce a correct template
for the luminance part by HS. To compute the color components, we propose a
new algorithm preserving the hue and the gamut, and ensuring that the resultant
luminance component fits the specified histogram. The new algorithm share the
same simplicity as the one used in [9] but provides much better results.

2 In what follows, Im := {1, · · · ,m} for any integer m.
3 E.g. for an 1024× 1024 8-bit image we have n = 1048576 ≫ 256 = L.
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2 The specialized variational approach (SVA)

The functionals proposed in [12] are of the form

J(u, f) := Ψ(u, f) + βΦ(u), β > 0 (2)

with
Ψ(u, f) :=

∑

i∈In

ψ(u[i]− f [i]),

Φ(u) :=
∑

i∈Ir

ϕ(giu)
(3)

where gi ∈ R
1×n, i ∈ Ir correspond to a forward discretization. More precisely,

– If only vertical and horizontal differences are considered

gi[i] = −1, gi[i+ 1] = 1 and gi[k] = 0 ∀ k ∈ In \ {i, i+ 1},
gj [j] = −1, gj [j +M ] = 1 and gi[k] = 0 ∀ k ∈ In \ {j, j +M};

(4)

– If diagonal differences are added, Φ(u) is nearly rotationally invariant and

gi[i] = −1, gi[i+M − 1] = 1 and gi[k]= 0 ∀ k ∈ In\ {i, i+M−1},
gj [j] = −1, gj [j +M + 1] = 1 and gj [k]= 0 ∀ k ∈ In\ {j, j+M+1}.

In both cases, Neumann or periodic boundary conditions are adopted. We denote

G =
[
gT1 , · · · , g

T
r

]T
∈ R

r×n ,

where the superscript T stands for transposed.
The functions ψ(·) := ψ(·, α1) : R → R and ϕ(·) := ϕ(·, α2) : R → R depend

on two parameters α1 > 0 and α2 > 0, respectively. When necessary, we shall
use the notation ψ(·, α1) and ϕ(·, α2). The functions ψ and ϕ in (3) belong to
the family of functions θ(·, α) : R → R, α > 0, satisfying the conditions H1 and
H2 described below. We denote θ′(t, α) := d

dt
θ(t, α), and similarly for θ′′.

H1 For any α > 0 fixed, θ(·, α) is Cs-continuous for s ≥ 2, even—i.e. θ(−t, α) =
θ(t, α)—and meets

t ∈ R ⇒ θ′′(t, α) > 0 .

Note that by H1, for any α fixed, t→ θ′(t, α) is strictly increasing in t. Further,

H2 For any α > 0 given, θ′(t, α) is upper bounded4 and for t > 0 fixed, it is
strictly decreasing in α > 0 with

α > 0 ⇒ lim
t→∞

θ′(t, α) = 1 ,

t ∈ R ⇒ lim
α→0

θ′(t, α) = 1 and lim
α→∞

θ′(t, α) = 0 .

Under these assumptions, the functional J(·, f) in (2)-(3) is clearly a fully
smoothed ℓ1-TV model. Good choices for θ meeting H1 and H2 are given in
Table 1.

Remark that θ′′ is even, positive and its upper bound is finite and

‖θ′′‖∞ = θ′′(0) > 0.

4 The upper bound of θ′ is set to 1 only for definiteness.
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θ θ′ θ′′

f1
√

t2 + α
t√

t2 + α

α
(√

t2 + α
)3

f2 α log

(

cosh

(

t

α

))

tanh

(

t

α

)

1

α

(

1−
(

tanh

(

t

α

))2
)

f3 |t| − α log

(

1 +
|t|
α

)

t

α+ |t|
α

(α+ |t|)2

Table 1: Relevant choices for θ(·, α) obeying H1 and H2. When α > 0 decreases
towards zero, θ(·, α) becomes stiff near the origin.

2.1 Preliminary facts

Using H1 and H2, the properties listed below play a role in what follows.

1. For any β > 0 and any f , J(·, f) has a unique minimizer û [12, Proposition 1].
2. For any β > 0 and any f living in a dense open subset of Rn, say K

n, the
minimizer û of J(·, f) satisfies [12, Theorem 1]

û[i] 6= û[j], ∀ i, j ∈ In, i 6= j;
û[i] 6= f [i], ∀ i ∈ In.

(5)

However, all digital images with L gray values (like f) belong to a subset
Sn
Q which is closed and of null Lebesgue measure in R

n. Using some results
from number theory, the conclusion drawn in [12, sect. 2, Remark (b)] is that
♯ (Kn∩Sn

Q)/ ♯ S
n
Q should be a number close to zero5. Then the minimizer û of

J(·, f) for f ∈ Sn
Q satisfies (5) with a very high probability. Thus û provides

the auxiliary information to strictly order the pixels in f using (1).
3. Since ψ′(·, α) is Cs−1 and odd, it has an inverse function

ξ(·, α1, ) := (ψ′)
−1

(·, α) : (−1, 1) → R , (6)

which is also odd, strictly increasing and Cs−1 (inverse functions theorem).
4. For any y ∈ (0, 1), the function α 7→ ξ(y, α) is strictly increasing on (0,+∞)

[3, Lemma 2].
5. Let us denote η := ‖G‖1. If βη < 1 then ‖û− f‖∞ ≤ ξ

(
βη, α1

)
. and α1 7→

ξ
(
βη, α1

)
is strictly increasing on (0,+∞).

6. Further, ‖û− f‖∞ ր ξ
(
βη, α1

)
as α2 ց 0 [3, Theorem 2].

3 A fast sorting algorithm

3.1 Semi-Explicit Formula for the Minimizer

The unique minimizer û of J(·, f) satisfies ∇J(û, f) = 0 where the gradient ∇
is taken with respect to the first variable, namely u. From the definition of J in

5 Note that no reasonable sorting algorithm can order strictly the pixels of all digital
images. E.g., the pixels of a constant image should not be ordered in a strict way.
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(2) this is equivalent to ∇Ψ(û, f) = −β∇Φ(û). Using (3), we have

dΨ(u, f)

du[i]
= ψ′(u[i]− f [i]) and

dΦ(u)

du[i]
=

∑

j∈Ir

ϕ′(gju)gj [i]. (7)

Thus the minimizer û satisfies

ψ′(û[i]− f [i]) = −β
∑

j∈Ir

ϕ′(gj û)gj [i], ∀ i ∈ In.

Using the notation in (6), the latter equations are equivalent to

û[i] = f [i] + ξ


−β

∑

j∈Ir

ϕ′(gj û)gj [i]


 , i ∈ In. (8)

The inverse function ξ(y, α) = (θ′)
−1

(y, α) in (6) has an explicit expression for
f1, f2 and f3 in Table 1. This function and its derivative ξ′ := d

dy
ξ(y, α) are given

in Table 2. Note that ξ′ is even and strictly increasing on [0, 1).

ξ ξ′

f1 y

√

α

1− y2

√
α

(
√

1− y2)3

f2
α

2
ln

1 + y

1− y

α

1− y2

f3
αy

1− |y|
α

1− |y|

Table 2: The inverse function ξ(y, α) = (θ′)
−1

(y, α) in (6) and its derivative ξ′

with respect to y for all functions in Table 1.

3.2 A fixed point (FP) algorithm to minimize J(·, f)

The proposed algorithm uses (8) and Table 2. The iterations are given by

uk+1 = X (uk), (9)

X (u) := f + ξ
(
− β∇Φ(u)

)
, (10)

where the function ξ, given in Table 2, is applied componentwise and u0 = f .

Theorem 1. Let α1, α2 and β be chosen so that βη < 1 and

β ξ′(βη)ϕ′′(0, α2) ‖G
T G‖∞ < 1, (11)

where η is defined in 5, subsection 2.1. Then the iteration (9)-(10) converges.
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Sketch of the proof. For any α2 > 0,

0 < ϕ′′(giu, α2) ≤ ϕ′′(0, α2) ∀ i ∈ Ir.

Further, one derives

‖∇X (u)‖∞ ≤ βξ′(βη)‖GTdiag
(
ϕ′′(giu)

)
G‖∞ ≤ βξ′(βη)ϕ′′(0)‖GTG‖∞.

Then ‖∇X (u)‖∞ < 1. The spectral radius of∇X (u) meets ρ(∇X (u)) ≤ ‖∇X (u)‖∞.
Since X has a fixed point by (8), Ostrowski theorem [13] entails the result. �

Some practical values of the parameters ensuring convergence are given next.

– If G corresponds only to (4), then η = ‖G‖1 = 4 and ‖GT G‖∞ = 8. For ψ
and ϕ given by f1 in Table 1 and α1 = 0.05, α2 = 0.3 and β = 0.1 we have

‖∇X (u)‖∞ ≤ 0.4242 and ‖û− f‖∞ / 0.0976.

– If G corresponds to jointly (4) and (2), η = ‖G‖1 = 8 and ‖GT G‖∞ = 16.
For ψ and ϕ given by f1 and α1 = 0.02, α2 = 0.4 and β = 0.07 we have

‖∇X (u)‖∞ ≤ 0.6963 and ‖û− f‖∞ / 0.0956.

Remark 1. When initialized with a nonconstant image, the iteration (9)-(10)
provides fast convergence even if (11) is not satisfied. One of the reason is that for
many differences we have ϕ′′(giu) > 0 in which case ‖GTdiag

(
ϕ′′(giu)

)
G‖∞ ≪

ϕ′′(0)‖GTG‖∞. And when ‖X (u0) − X (u1)‖ < 1, then the iteration converges
(see [15, p. 142]). Another reason is that ρ(∇X (u)) is quite smaller than ‖∇X (u)‖∞
and so under the condition in (11), ρ(∇X (u)) is quite smaller than 1.

3.3 Comparison with the state-of-the-art sorting algorithms

The variational method provides one auxiliary information which is the mini-
mizer û of J(·, f), i. e. a1[i] = û[i] ∀ i ∈ In and ordering is obtained by (1). As
in [12], J(·, f) was used with G corresponding to (4) and

ψ(t) =
√
t2 + α1, ϕ(t) =

√
t2 + α2, α1 = α2 = 0.05 and β = 0.1.

We ran the Polak-Ribière (PR) CG minimization with stopping rule given by
‖∇J(uk, f)‖∞ ≤ 10−6 and limiting the iteration number to 35, as in [12]. Our FP
algorithm was applied with stopping rule ‖∇J(uk, f)‖∞ ≤ 10−6. Our method
was compared with the local mean (LM) algorithm [6] for K = 6 and with the
wavelet-based algorithm (WA) [19] for Haar wavelet for K = 9. These values of
K were recommended by the authors. The experiments were performed using a
PC DELL Latitude E6220 with an Intel Core i7-2640M, 2.8 GHZ processor and
8 GB of RAM under Windows 7, using MATLAB v. 7.11.0.584, 64-bit.

Here we present sorting results on 12 digital images with various sizes and
content, with gray values in {0, · · · , 255}. The images and their histograms are
shown in Fig. 1. Note that most of these histograms are quite singular.
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airplane(5122) baril (5122) car (5122) clock (5122) couple (2562) F-16 (5122)

house (5122) Lena (5122) man (10242) raffia (5122) sand (5122) stream (5122)

0 255

Fig. 1: All 12 digital 8 bit images used to compare the algorithms and their
histograms. The gray values of these images belong to {0, · · · , 255}.

Remark 2. Since our parameter choice guarantees that ‖û− f‖∞ < 0.1 (see 5 in
subsection 2.1), ordering the pixels according to (1) amounts just to sort (û+f).

This fact was not noticed in [12] where (1) was used directly which is com-
putationally heavier. For the LM and WA methods, (1) must be applied for
K = 6 and K = 9 images, respectively, which requires much more memory and
computation than the SVA method [12] where K = 1.

The pixel ordering provided by the PR minimization in [12] and the new FP
algorithm should be the same since the obtained PSNR values for HE inversion
are the same (these experiments are not presented here). The experiments in [12,
section 5] have shown that SVA outperforms by far the LM and WA methods
in terms of PSNR in restoration of contrast compression and in HE inversion.
The proposed FP minimization scheme gives rise to a much shorter CPU time
and a more than 5 times better numerical precision. For fair comparison of the
numerical schemes, Remark 2 was not used to generate the results in Table 3.
When Remark 2 is applied, the mean CPU time for the SVA-FP algorithm is
reduced to 1.54 sec. In terms of faithful total strict ordering and CPU time,
the SVA with the proposed FP scheme and using the simple ordering rule in
Remark 2 provides the best results. The same conclusion was drawn on a test on
50 eight-bit gray-value images downloaded from http://sipi.usc.edu/database/.

4 HS for color images

4.1 Our approach

Let w = (w1, w2, w3) be an input color image where w1, w2 and w3 are its red,
green and blue channels, respectively. Let ζ = (ζ1, · · · , ζL) be the prescribed
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Fail % CPU SVA

LM WA SVA LM WA SVA SVA ‖∇J‖∞×10−7

Image PR FP PR FP

airplane 5.30 17.70 0.00 2.85 6.29 2.54 2.07 45.70 6.06
baril 0.17 0.24 0.00 2.15 5.34 2.37 1.92 3.83 6.45
car 7.84 19.91 0.00 3.67 6.51 2.28 2.22 5.96 7.30
clock 1.57 4.52 0.00 1.05 2.20 0.69 0.44 4.47 6.92
couple 2.50 3.30 0.00 0.94 2.11 0.53 0.37 6.68 7.38
F-16 0.18 0.57 0.00 2.48 5.21 5.21 2.11 63.19 7.22

houseB 0.36 1.58 0.00 1.62 5.40 2.40 2.37 15.02 5.71
Lena 0.00 0.20 0.00 2.84 4.91 4.57 1.67 58.95 5.81
man 0.34 0.68 0.00 7.58 15.68 9.24 9.38 29.13 7.65
raffia 13.66 16.05 0.00 2.71 6.99 2.37 1.87 10.60 5.43
sand 12.62 15.21 0.00 3.82 6.63 4.82 2.45 68.90 5.80
stream 0.41 0.75 0.00 2.75 4.98 2.34 2.29 6.08 7.22

means 2.97 5.28 0.00 2.19 4.46 2.46 1.79 20.23 4.88

Table 3: Comparison with the state-of-the-art algorithms. Fail denotes the per-
centage of pixels that could not be sorted in a strict way. CPU is in seconds.

histogram. As in the previous section, we consider that all wk’s are reordered
columnwise as n-length vectors. The luminance of w is [4]

f =
1

3
(w1 + w2 + w3) ∈ R

n.

With the help of the ordering algorithm described in section 3, f is transformed
into f̂ ∈ R

n whose histogram is exactly ζ. We need a color image ŵ such that

1

3
(ŵ1 + ŵ2 + ŵ3) = f̂ (12)

and satisfying the classical requirements:

(c1) ŵ has the same hue as w;
(c2) to avoid gamut problem, 0 ≤ ŵk[i] ≤ L− 1, ∀ i ∈ In, k = 1, 2, 3.

It is well known (and easy to verify) that the hue of a pixel w[i] is guaranteed
to be preserved in the restored ŵ[i] only if ŵ[i] is obtained from w[i] using an
affine transform [4], [11].

Our method to compute the color channels from w and f̂ consists in a “slight”
but important modification of the method proposed in [11] and used in [2], [9],
among others. It is composed of a forward step followed by a correction step.

Algorithm for color assignment

(step 1) Compute F ∈ R
n according to

F [i] :=
f̂ [i]

f [i]
∀ i ∈ In
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and assign
ŵk[i] = F [i]wk[i] k = 1, 2, 3 ∀ i ∈ In. (13)

(step 2) Find the set

J := {i ∈ In | ŵ1[i] > L− 1 or ŵ2[i] > L− 1 or ŵ3[i] > L− 1}. (14)

Compute C ∈ R
♯J by

C[i] :=
L− 1− f̂ [i]

L− 1− f [i]
∀ i ∈ J

and correct the pixels in J as

ŵk[i] = L− 1− C[i] (L− 1− wk[i]) k = 1, 2, 3 ∀ i ∈ J . (15)

It is easy to check that that both modifications in (13) and (15) satisfy (12).
A value F [i] > 1 means that the color at pixel i should be enhanced, i.e.,
|wk[i]−wk′ [i]| < |ŵk[i]− ŵk′ [i]|, k 6= k′, k, k′ ∈ {1, 2, 3}. So we wish to keep the
maximum number of pixels computed using (13). Some of them (quite a few in
practice) will fail the constraint (c2)—these pixels form the set J in (14). Their
value will be properly modified at the correction step 2.

Remark 3. In the scheme of Naik and Murthy [11] (and the one of [16]) , step 1
is applied only if F [i] ≤ 1 and in all other cases step 2 is applied. We can note
that their strategy is quite conservative. For instance, if w[i] = (10, 30, 50) and
F [i] = 5, noticing that f [i] = 30, their strategy yields ŵ[i] = (140.67, 150, 159.33)
which results in a nearly gray-value pixel. Instead, our approach yields ŵ[i] =
(50, 150, 250), so the color is enhanced and the constraint (c2) is satisfied.

The computational cost of the algorithm of Naik and Murthy was analysed
in [9]. The conclusion was that the computational complexity is proportional to
the number of pixels. In all experiments, we observed that in mean 3.5 % of
the pixels go through step 2. So the computational cost of our color assignment
algorithm is nearly the same.

4.2 Numerical results

Here we compare our algorithm for color assignment with the algorithm proposed
in [11] and used in [9]. For fair comparison of the color assignment algorithms,
in all cases we used our sorting algorithm (section 3). Exhaustive comparison
with other algorithms for HE of color images can be found in [9].

The original image (800× 800× 3) in Fig. 2 is underexposed and has a poor
contrast. HE often produces overly enhanced unnatural looking images. The tar-
get histogram was chosen according to general recommendations of commercials
in image processing (seen on You Tube). It is exactly satisfied and can be seen
on the last row of the histograms of the restored images (in black). The image
obtained by [11], [9] suffers from being too gray. This confirms our Remark 3.
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Original image HS by [11], [9] HS - ours

0 255 0 255 0 255

Fig. 2: Images and their histograms—R (�), G (�), B (�), luminance (�).

Original image HS by [11], [9] HS - ours

0 0 0

Fig. 3: Images and their histograms—R (�), G (�), B (�), luminance (�).
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Using our algorithm (13)-(15)—only 4.7 % of the pixels needed the correction
step 2. The image quality is really improved.

In Fig. 3 the original image (750× 1000× 3) seems nearly gray-valued. Fol-
lowing [1], the prescribed histogram is a linear combination of the histogram of
the input image and a uniform histogram—see the last row of the histograms of
the restored images. The image obtained by [11], [9] is almost gray-valued. Our
method enables us to recover all colors. In this case, only 1.27 % of the pixels
had to be rescaled using step 2.

Original image HS by [11], [9] HS - ours

0 255 0 255 0 255

Fig. 4: Images and their histograms—R (�), G (�), B (�), luminance (�).

In the original image in Fig. 4 (1000× 1000× 3) there is a snake that is not
easy to distinguish from the surrounding landscape. Our goal was to modify the
histogram so that the snake is clearly seen. This is the reason why we chose as
target histogram the curve on the bottom row of the restored images. For our
algorithm, only 3.3% of the pixels were reprocessed by step 2.

5 Conclusions and perspectives

The sorting algorithm proposed in section 3 is for the present the best one. The
proposed algorithm for color assignment in section 4 is fast and yields better
results than the one used in [9]. However it does not exploit color perceptual
facts that were used e. g. in [14]—but with an intensive computational cost.
This point deserves further exploration.
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