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Abstract. Consider a compound Poisson process which is discretely observed with
sampling interval ∆ until exactly n nonzero increments are obtained. The jump density
and the intensity of the Poisson process are unknown. In this paper, we build and
study parametric estimators of appropriate functions of the intensity, and an adaptive
nonparametric estimator of the jump size density. The latter estimation method relies
on nonparametric estimators of m-th convolution powers density. The L

2-risk of the
adaptive estimator achieves the optimal rate in the minimax sense over Sobolev balls.
Numerical simulation results on various jump densities enlight the good performances of
the proposed estimator.
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1. Introduction

Compound Poisson processes are widely used in practice especially in queuing and
insurance theory (see e.g. Embrechts et al., 1997 and refererences therein, Katz (2002) or
Scalas (2006)). Let (Xt, t ≥ 0) be a compound Poisson process, given by

(1) Xt =
Nt∑

i=1

ξj,

where (ξj , j ≥ 1) is a sequence of i.i.d. real valued random variables with density f , (Nt)
is a Poisson process with intensity c > 0, independent of the sequence (ξj , j ≥ 1). The
density f and the intensity c are unknown. In this paper, we are interested in adaptive
nonparametric estimation of f from discrete observations (Xj∆, j ≥ 0) of the sample path
with sampling interval ∆.

Compound Poisson processes have independent and stationary increments. They are a
special case of Lévy processes with integrable Lévy density equal to cf(.). It is therefore
natural to base the estimation procedure for f on the i.i.d. increments (Xj∆−X(j−1)∆, j ≥
1). If c is known, the nonparametric estimation of f is equivalent to the nonparametric
estimation of the Lévy density of a pure jump Lévy process with integrable Lévy measure.
Several papers on the subject are available, see Basawa and Brockwell (1982), Buchmann
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(2009), Chen et al. (2010), Comte and Genon-Catalot (2009, 2010, 2011), Figueroa-López
and Houdré (2006), Figueroa-López (2009), Gugushvili (2009, 2012), Jongbloed et al.
(2005), Kim (1999), Neumann and Reiss (2009), Ueltzhöfer and Klüppelberg (2011), Zhao
and Wu (2009).

However, specific methods for compound Poisson processes have been investigated, for
instance Buchmann and Grübel (2003) first introduced decompounding methods to esti-
mate discrete compound densities. Indeed, the common distribution of the increments is
equal to

(2) PX∆
(dx) = e−c∆δ0(dx) + (1− e−c∆)g∆(x)dx,

where δ0 is the Dirac mass at 0, g∆ is the conditional density of X∆ given that X∆ 6= 0:

(3) g∆ =
∑

m≥1

e−c∆

1− e−c∆

(c∆)m

m!
f⋆ m,

and f⋆ m denotes the m-th convolution power of f . Thus, null increments provide no
information on the density f . Relying on this fact, van Es et al. (2007) assume that
the sample path Xt is discretely observed until exactly n increments are nonzero. Such
observations can be described as follows. Let

(4) S1 = inf{j ≥ 1,Xj∆−X(j−1)∆ 6= 0}, Si = inf{j > Si−1,Xj∆−X(j−1)∆ 6= 0}, i ≥ 2,

and let

(5) Zi = XSi∆ −X(Si−1)∆.

Assume that the Xj∆’s are observed for j ≤ Sn. Thus, (Si, Zi), i = 1, . . . , n are observed
and Z1, . . . , Zn is a n-sample of the conditional distribution of X∆ given that X∆ 6= 0
which has density g∆ (see Proposition 2.1). The problem then is to deduce an estimator
of f from an i.i.d. sample of g∆.

Under the assumption that the intensity c is known and for ∆ = 1 (low frequency
data), van Es et al. (2007) build a nonparametric kernel estimator of f exploiting the
relationship between the characteristic function of f and the characteristic function of g∆.
In Duval (2012a), a different estimation method is considered. Duval (2012a) remarks that
the operator f → g∆ := P∆f can be explicitly inverted, actually using the relationship
pointed out by van Es et al. (2007). So, f = P−1

∆ g∆. Provided that c∆ < log 2, the inverse

operator P−1
∆ admits a series development given by (see Duval, 2012a, chap. 3, Lemma

1):

(6) g 7→ P−1
∆ (g) =

∑

m≥1

(−1)m+1

m

(ec∆ − 1)m

c∆
g⋆m.

Consequently, truncating the above development and keeping K + 1 terms, an approxi-
mation of the inverse operator is obtained which suggests to approximate f by:

(7) f ≃
K+1∑

m=1

(−1)m+1

m

(ec∆ − 1)m

c∆
g⋆m∆ .
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The approximation is valid for small ∆. Afterwards, an estimator of f is built replacing,
for m = 1, . . . ,K+1, (ec∆−1)m/c∆ by a consistent estimator and g⋆m∆ by a nonparametric
estimator based on the observations (Zj , j = 1, . . . , n). This is not quite simple as g⋆m∆
is the density of the sum Z1 + . . . , Zm. The estimator proposed by Duval for g⋆m∆ is a
wavelet threshold estimator using data composed by independent sums of m observations
assuming that a deterministic number nT of increments are observed with sampling interval
∆T and total length time of observation T = nT∆T . The rate of Lp-risk of the resulting
estimator of f is measured in terms of T for ∆T tending to 0 while T tends to infinity.
The usual optimal rate on Besov balls is obtained up to logarithmic factors provided that
T∆2K+2

T = O(1). In Comte and Genon-Catalot (2009), the adaptive estimator of the Lévy
density reaches the same rate provided that T∆2

T = O(1) (without logarithmic loss and
for the L2-risk only). As soon as K ≥ 1, Duval’s estimator of f improves the result of
Comte and Genon-Catalot (2009), in the case of compound Poisson processes. In Kessler
(1997) a similar strategy of adding correction terms to improve parametric estimators for
diffusion models is also adopted.

Nevertheless, estimating g⋆m∆ by building sums ofm variables from the sample (Z1, . . . , Zn)
is heavy and numerically costly. In this paper, we build a nonparametric estimator of f
relying on the approximation (7). In our approach, the difference lies in the estimation
method of g⋆m∆ . To simplify notations, we omit the dependence on ∆ for g∆ and set

(8) g := g∆, g⋆m := g⋆m∆ .

It is well known that, from a n-sample of a density g,
√
n-consistent nonparametric es-

timators of the convolution power g⋆m, for m ≥ 2, can be built (see e.g. Schick and
Wefelmeyer, 2004). In a recent paper, Chesneau et al. (2013), propose a very simple√
n-consistent estimator of the m-th convolution power g⋆m of a density g from n i.i.d.

random variables with density g. Of course, m ≥ 2 is fixed and should not be too large.
This is the point of view adopted here.

Let g∗ denote the Fourier transform of the density g. As (g∗)m is the Fourier transform
of g⋆m, Chesneau et al. (2013) propose to estimate (g∗)m for all m ≥ 1, by the empirical
counterpart (g̃∗(t))m with:

(9) g̃∗(t) =
1

n

n∑

j=1

eitZj ,

leading by Fourier inversion to the estimator with cutoff ℓ,

(10) ĝ⋆mℓ (x) =
1

2π

∫ πℓ

−πℓ
e−itx(g̃∗(t))mdt.

Afterwards, we define:

(11) f̃K,ℓ(x) =

K+1∑

m=1

(−1)m+1

m
cm(∆)ĝ⋆mℓ (x), with cm(∆) =

(ec∆ − 1)m

c∆
.

As c is unknown, this is not an estimator of f . To get an estimator f̂K,ℓ(x) of f , we

replace, for all m and ∆, cm(∆) by an estimator ĉm(∆) defined below. We study for fixed
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ℓ the L2-risk of f̂K,ℓ and propose an adaptive (data-driven) choice ℓ̂ of ℓ. We prove that

the L2-risk of the adaptive estimator f̂K,ℓ̂ attains the usual optimal rate on Sobolev balls.

Moreover, the risk bounds are non asymptotic and the contribution of terms coming from
the estimation of g⋆m for m ≥ 2 is of order O(1/n). Note that the total length time of
observation is, in our framework, equal to Sn∆. As n tends to infinity and ∆ tends to 0,
this random value is asymptotically equivalent to n. Hence, the benchmark for evaluating
rates is in terms of (negative) powers of n. Note that, compared to Duval (2012a), we have
no logarithmic loss in our rate, which is optimal. Indeed, the lower bound is available and
our adaptive estimator is thus minimax from an asymptotic point of view.

In Section 2, we define the estimators of cm(∆),m ≥ 1 and give a bound for their L2-risk
in terms of n and ∆. In Section 3, results from Chesneau et al. (2013) on nonparametric
estimation of m-th convolution powers of a density are recalled. Section 4 concerns the
estimation of f . Our main result (Theorem 4.1) gives the L2-risk of the adaptive estimator
of f . In Section 5, the estimation method is illustrated on simulated data for various jump
densities. It shows that the adaptive estimator performs well for small values ofK. Section
6 gives some concluding remarks. Proofs are gathered in Section 7 and Appendix.

2. Preliminary results.

Consider a compound Poisson process given by (1) and ∆ a sampling interval. Then
we can prove the following result.

Proposition 2.1. Let S0 = 0 and Si, Zi, i ≥ 1 be given by (4)-(5). We have, for all i ≥ 1,
P(Si < +∞) = 1, (Si−Si−1, Zi), i ≥ 1 are independent and identically distributed random
couples. For k ≥ 1,

P(S1 = k, Z1 ≤ x) = e−c(k−1)∆(1− e−c∆)P(X∆ ≤ x|X∆ 6= 0).

Consequently, S1 and Z1 are independent, the distribution of Z1 is equal to the condi-
tional distribution of X∆ given X∆ 6= 0, S1 has geometric distribution with parameter
1 − e−c∆. Moreover, the random variables (S1, Z1, . . . , Si − Si−1, Zi, . . . , Sn − Sn−1, Zn)
are independent.

Let us now study the estimation of cm(∆). For this, we use (S1, . . . , Sn) which are
independent of the sample (Z1, . . . , Zn).

Proposition 2.2. Assume that c ∈ [c0, c1] with c0 > 0 and c1∆ ≤ log(2)/2. For m ≥ 1,
let

(12) Hm(ξ) =
1

(ξ − 1)m log ξ
ξ−1

,

and define

(13) ĉm(∆) = Hm(Sn/n) 1{
1+ 1

e2c1∆−1
≤Sn

n
≤1+ 1

ec0/(2∆)−1

}.

Then,

(14) E
(
ĉm(∆)− cm(∆)

)2
≤ Cm

∆2(m−1)

n
,
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where Cm has an explicit expression as a function of c0, c1 and m.

We remark that the indicator in the definition of ĉm(∆) implies that the estimator is

set to zero on the complement of the set
{
1 + 1

e2c1∆−1
≤ Sn

n ≤ 1 + 1
ec0/(2∆)−1

}
, but it is

shown in the proof of Proposition 2.2 that this complement has small probability.
Note that the bound in (14) is non asymptotic and the exact value of Cm can be deduced

from the proof of Proposition 2.2.

3. Estimation of the m-th convolution power g⋆m of a density g from a

n-sample of g.

We recall now results proved in Chesneau et al. (2013). An important point is that
estimators of the m-th convolution power g⋆m with L2-risk of order 1/n can be built.
Consider an i.i.d. sample of variables Z1, . . . , Zn with density g and characteristic function
g∗, the Fourier transform of g. Using the standard estimator g̃∗ of g∗ defined by (9),
Chesneau et al. (2013) propose the estimator of g⋆m given by (10). The following bounds
for this estimator are proved in Chesneau et al. (2013):

Proposition 3.1. For m ≥ 2 and all t,

(15) E(| ̂(g∗)m(t)− (g∗)m(t)|2) ≤ Em
(

1

nm
+

|g∗(t)|2
n

)

where Em is a constant which does not depend on n nor on g, increasing with m and
̂(g∗)m(t) = (g̃∗(t))m (see (9)). Consequently,

E(‖ĝ⋆mℓ − g⋆m‖2) ≤ 1

2π

∫

|t|≥πℓ
|(g⋆m)∗(t)|2dt+ Em

(
ℓ

nm
+

‖g‖2
n

)
.

Let us introduce the Sobolev ball

S(α,R) = {f ∈ L1(R) ∩ L2(R),

∫
(1 + x2)α|f∗(x)|2dx ≤ R}.

If g⋆m belongs to S(αm, Rm), the L2-risk bound becomes

E(‖ĝ⋆mℓ − g⋆m‖2) ≤ Rmℓ
−2αm + Em

(
ℓ

nm
+

‖g‖2
n

)
.

Choosing a trade-off bandwidth ℓopt = Cnm/(2αm+1), we get a risk bound on E(‖ĝ⋆mℓopt−g‖2)
of order max(n−2mαm/(2αm+1), n−1). This allows to obtain a rate of order 1/n whenever
2mαm/(2αm + 1) ≥ 1 i.e. 2αm(m − 1) ≥ 1. This occurs for instance if m ≥ 2 and
αm ≥ 1/2.

4. Estimation of f .

Let us first give the links between Sobolev regularities of f , g and g⋆m with g = g∆.
Below, for any function h ∈ L1(R) ∩ L2(R), we denote by hℓ the function defined by
h∗ℓ = h∗1[−πℓ,πℓ].
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Proposition 4.1.
Let the density f belong to S(α,R). Then g defined by (3) and (8) belongs to S(α,R) and
g⋆m ∈ S(mα,Rm) for some constant Rm. In particular,

‖g‖ ≤ ‖f‖.

We assume now that c ∈ [c0, c1] with c1∆ ≤ log 2/2 and consider the estimator f̂K,ℓ

given by

(16) f̂K,ℓ(x) =

K+1∑

m=1

(−1)m+1

m
ĉm(∆)ĝ⋆mℓ (x).

where cm(∆) is defined in (11) and ĉm(∆) is the estimator of cm(∆) given in (13).

Proposition 4.2. Assume that c ∈ [c0, c1] with c0 > 0 and c1∆ ≤ log 2/2. Then the

estimator f̂K,ℓ is such that

(17) E(‖f̂K,ℓ − f‖2) ≤ 5

2π

∫

|t|≥πℓ

|f∗(t)|2dt+ 10ℓ

n
+ 5AK∆2K+2 +

5BK

n
,

with

(18) AK = 6
‖f‖2

(K + 2)2
(
√
2c)2K+2,

(19)

BK = 2(K + 1)

{
C1(1 + ‖f‖2) + ∆2

K+1∑

m=2

(Cm + 2mc2(m−1))Em
m2

∆2(m−2)(1 + 2‖f‖2)
}
,

where Cm, Em are the constants appearing respectively in (14) and in (15).

If f ∈ S(α,R), choosing ℓ = ℓ∗ ∝ n−1/(2α+1), inequality (17) yields

(20) E(‖f̂K,ℓ∗ − f‖2) ≤ Cn−2α/(2α+1) + 5AK∆2K+2.

Usually, in high frequency data for continuous time models, rates are measured in terms of
the total length time of observation which is, in our framework, equal to Sn∆. Evaluating
this random value as n tends to infinity, ∆ tends to 0, we get that

Sn∆ =
Sn
n
n∆ ∼ ∆

p(∆)
n ∼ n

c
.

The total length time of observation is asymptotically equivalent to n. Hence, the rate in
(20) is exactly the one obtained by Duval (2012a), with no logarithmic loss.
Now, we aim at obtaining the choice of ℓ in an automatic and nonasymptotic way. For
this, we propose an adaptive selection procedure.

More precisely, let

ℓ̂ = arg min
ℓ∈{1,2,...,Ln}

{
−‖f̂K,ℓ‖2 + pen(ℓ)

}
, with pen(ℓ) = κ

ℓ

n
.

We can prove the following result.
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Theorem 4.1. Assume that f is bounded and Ln ≤ n. There exists a value κ0 such that
for any κ larger than κ0, we get,

(21) E(‖f̂K,ℓ̂ − f‖2) ≤ 4 min
1≤ℓ≤Ln

(
‖f − fℓ‖2 + pen(ℓ)

)
+ 32AK∆2K+2 + 32

BK

n
+
C ′

n
,

where C ′ is a constant.

Comparing the above inequality with (17), we see that the adaptive estimator auto-
matically realizes the best compromise between the squared bias term (first one, inside
the min) and the variance term (second one, inside the min). The last two terms are
standardly negligible. For the term 32AK∆2K+2, either the sampling interval ∆ for given
K is tuned to make it negligible (O(1/n)) or n, ∆ are given and K is chosen so that
n∆2K+2 ≃ 1.

We now recall a lower bound derived in Duval (2012a). This lower bound is obtained
in the super experiment where the compound Poisson process (Xt, t ≥ 0) is continuously
observed over [0, Sn∆]. In that super experiment we observe (at least) n independent
realizations of f and we obtain a lower bound applying classical results (see e.g. Tsybakov
2009).

Proposition 4.3. We have

(22) lim
n→∞

inf
f̂

sup
f∈S(α,R)

n2α/(2α+1) E(‖f̂ − f
∥∥2) > 0

where the infimum is taken over all estimators based on the observations (Xt, t ≤ Sn∆).

The above inequality shows that the estimator is minimax whenever n−2α/(2α+1) is
larger than ∆2K+2. Since 2α/(2α + 1) ≤ 1, we take K such that n∆2K+2 ≃ 1.

5. Simulations

In this section we illustrate the method on simulated data. We have implemented the
adaptive estimator on different examples of jump densities f , namely,

(1) A Gaussian N (0, 1).
(2) A Laplace L(0, 1) with density exp(−|x|)/2.
(3) A Gamma Γ(5, 1).
(4) A mixture of a Gaussian and a Gamma 2

3N (−4, 1) + 1
3Γ(3, 1).

After preliminary experiments the constant κ is taken equal to 17.6 and the cutoff ℓ̂ is
selected among 100 equispaced values between 0 and 10. We consider different values
of ∆: 0.2, 0.5, 0.8. For each ∆ we choose K such that n∆2K+2 ≤ 1; more precisely the
corresponding values ofK are 2, 5, 17 respectively. It ensures that the estimator is minimax
(see Theorem 4.1 and Proposition 4.3).

Results are given in Table 1, where 50 estimated curves are plotted on the same figure
to show the small variability of the estimator. We take a sample size n = 5000 and an
intensity c = 0.5, the first column gives the result for ∆ = 0.2 (K = 2), the second for
∆ = 0.5 (K = 5) and the last for ∆ = 0.8 (K = 17). On top of each graph we give the

mean of selected values for ℓ̂ and the associated standard deviation in parenthesis evaluated
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ℓ̂ = 1.00 (0.25) ℓ̂ = 1.09 (0.61) ℓ̂ = 1.26 (0.99)

−2 0 2

0

0.2

0.4

 

 

−2 0 2

0

0.2

0.4

 

 

−2 0 2

0

0.2

0.4

 

 

ℓ̂ = 2.52 (0.79) ℓ̂ = 2.43 (0.65) ℓ̂ = 2.57 (0.87)

−5 0 5

0

0.2

0.4

 

 

−5 0 5

0

0.2

0.4

 

 

−5 0 5

0

0.2

0.4

 

 

ℓ̂ = 0.65 (0.10) ℓ̂ = 0.66 (0.18) ℓ̂ = 0.76 (0.31)

0 5 10

0

0.1

0.2

 

 

0 5 10

0

0.1

0.2

 

 

0 5 10

0

0.1

0.2

 

 

ℓ̂ = 0.92 (0.21) ℓ̂ = 0.91 (0.13) ℓ̂ = 0.98 (0.29)

−5 0 5 10

0

0.1

0.2

 

 

−5 0 5 10

0

0.1

0.2

 

 

−5 0 5 10

0

0.1

0.2

 

 

Table 1. Estimation of f for a Gaussian N (0, 1) (first line),
Laplace L(0, 1) second line, Gamma Γ(5, 1) (third line) and the mixture
2
3N (−4, 1) + 1

3Γ(3, 1) (fourth line) with c = 0.5 and n = 5000. True den-
sity (bold blak line) and 50 estimated curves (red lines), left ∆ = 0.2 and
K = 2; middle ∆ = 0.5 and K = 5; right ∆ = 0.8 and K = 17. The value
ℓ̂ is the mean over the 50 selected ℓ̂’s (with standard deviation in paren-
thesis).

over the fifty plots given. It appears that for each ∆ the estimator well reproduces the
estimated density with little variability. Increasing ∆, and therefore K, does not affect
the accuracy nor the variability of the estimator.
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6. Concluding remarks

In this paper, we propose a nonparametric estimator of the jump density f of a com-
pound Poisson process. The process (Xt) is discretely observed with sampling interval ∆
until exactly n nonzero increments are obtained. This provides a n-sample of the con-
ditional distribution g∆ of X∆ given X∆ 6= 0. The setting is more general than in van
Es et al. (2007), as the intensity of the Poisson process is unknown and is estimated. By
inverting the operator P∆ : f 7→ P∆f = g∆, we define a class of nonparametric estimators
of f depending on a cutoff parameter ℓ and a truncation parameter K. For given K and
small ∆, we define an adaptive choice of ℓ and prove that the resulting adaptive estimator
is minimax over Sobolev balls. The estimator is easy to implement and performs well even
for small K.

An interesting development would be to look for an adaptive choice of both ℓ and K by
including the term AK∆K+2 in the penalty, K being searched in a finite set of integers.

Another direction, investigated by Duval (2012b) with wavelet estimators, would be an
extension to renewal processes: but the lack of independence between increments makes
the theoretical study much more tedious.

7. Appendix: Proofs

7.1. Proof of Proposition 2.1. The joint distribution of (S1, Z1) is elementary using
that the increments Xj∆ − X(j−1)∆ are i.i.d.. The process (Xx

j∆ = x + Xj∆, j ≥ 1) is

strong Markov. We denote by Px its distribution on the canonical space RN, denote by
(Xj , j ≥ 0) the canonical process of RN and by Fj = σ(Xk, k ≤ j) the canonical filtration.

Let θ : RN → RN denote the shift operator. Consider the stopping times built on the
canonical process S0 = 0,

(23) S1 = inf{j ≥ 1,Xj −Xj−1 6= 0}, Si = inf{j > Si−1,Xj −Xj−1 6= 0}, i ≥ 2,

and let

(24) Zi = XSi −XSi−1.

Because the Si’s are built using the increments (Xj − Xj−1, j ≥ 1), their distributions
under Px is independent of the initial condition x. We have Si = Si−1 + S1 ◦ θSi−1 . The
process (XSi−1+j − XSi−1 = (Xj − X0) ◦ θSi−1 , j ≥ 0) is independent of FSi−1 and has
distribution P0 and Zi = Z1 ◦ θSi−1 . Consequently,

Ex(ϕ(Si − Si−1)ψ(Zi)|FSi−1) = E0(ϕ(S1)ψ(Z1)).

By iterate conditioning, we get the result. �

7.2. Proof of Proposition 2.2. Let us set

p(∆) = 1− e−c∆ =
ec∆ − 1

ec∆
.

An elementary computation yields:

c∆ = log (
x

x− 1
) with x := x(∆) =

1

p(∆)
= 1 +

1

ec∆ − 1
> 1,
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and
(ec∆ − 1)m

c∆
= Hm(x).

As the standard maximum likelihood (and unbiased) estimator of 1/p(∆) computed from
the sample (Si − Si−1, i = 1, . . . , n) is Sn/n ≥ 1, we are tempted to estimate Hm(x) by
Hm(Sn/n). This is not possible as Sn/n may be equal to 1. This is why we introduce a

truncation. Set u0 = ∆/(ec0∆/2 − 1), u1 = ∆/(e2c1∆ − 1), u = ∆/(ec∆ − 1). Note that

1 +
u1
∆

< x = 1 +
u

∆
< 1 +

u0
∆
.

We have

ĉm(∆)− cm(∆) = Hm(Sn/n)1(1+u1
∆

≤Sn
n

≤1+
u0
∆

) −Hm(x) = A1 +A2

with

A1 = (Hm(Sn/n)−Hm(x)) 1(1+u1
∆

≤Sn
n

≤1+
u0
∆

), A2 = −Hm(x)(1(Sn
n

<1+
u1
∆

)+1(Sn
n

>1+
u0
∆

)).

Thus, on the set (1 + u1
∆ ≤ Sn

n ≤ 1 + u0
∆ ),

(Hm(Sn/n)−Hm(x))2 ≤ (
Sn
n

− x)2 sup
ξ∈[1+u1

∆
,1+

u0
∆

]

(H
′
m(ξ))2.

As

H
′
m(ξ) = − m

(ξ − 1)m+1 log ξ
ξ−1

+
1

ξ(ξ − 1)m+1 log2 ξ
ξ−1

,

we have, for ξ ∈ [1 + u1
∆ , 1 +

u0
∆ ],

|H ′
m(ξ)| ≤ 2∆m

c0u
m+1
1

(
m+

2

u1c0

)
.

Writing that e2c1∆ − 1 = 2c1∆e
2sc1∆ for s ∈ (0, 1), using that 2c1∆ ≤ log(2), we get

1/u1 ≤ 4c1. As

E(
Sn
n

− x)2 =
1− p(∆)

np2(∆)
=

ec∆

n(ec∆ − 1)2
,

we get, using ec∆ − 1 ≥ c∆ ≥ c0∆:

EA2
1 ≤ C ′

m

∆2(m−1)

n
, with C ′

m =
4
√
2(4c1)

2(m+1)

c40

(
m+

8c1
c0

)2

.

Then, we have, setting a0 = u0 − u > 0, a1 = u− u1 > 0,

P

(
Sn
n
< 1 +

u1
∆

)
+ P

(
Sn
n
> 1 +

u0
∆

)
= P(

∆

p(∆)
−∆

Sn
n
> a1) + P(∆

Sn
n

− ∆

p(∆)
> a0)

≤ (
1

a21
+

1

a20
)

∆2 ec∆

n(ec∆ − 1)2
.
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Thus, noting that u0 − u ≥ 1/(2c1) and u− u1 ≥ 1/(4
√
2c0),

(25) EA2
2 ≤ (

1

a21
+

1

a20
)
(ec∆ − 1)2(m−1)ec∆

nc2
≤ C ′′

m

∆2(m−1)

n
,

where

C ′′
m = 4

√
2
[
8c20 + c21

] (4c1)2(m−1)

c20
.

The proof is complete with Cm = 2(C ′
m +C ′′

m). �

7.3. Proof of Proposition 4.1. Consider f integrable with ‖f‖1 =
∫
|f | and square

integrable such that
∫
(1 + x2)α|f∗(x)|2dx ≤ R. Then

∫
(1 + x2)α|g∗(x)|2dx =

(
e−c∆

1− e−c∆

)2 ∑

m,k≥1

(c∆)m

m!

(c∆)k

k!

∫
(1 + x2)α[f∗(x)]m[f∗(−x)]kdx

≤
(

e−c∆

1− e−c∆

)2 ∑

m,k≥1

(c∆)m

m!

(c∆)k

k!
‖f‖m+k−2

1

∫
(1 + x2)α|f∗(x)|2dx

≤ R

(
e−c∆

1− e−c∆

)2
1

‖f‖21


∑

m≥1

(c∆)m

m!
‖f‖m1




2

= R

(
e−c∆

1− e−c∆

exp(c∆‖f‖1)− 1

‖f‖1

)2

:= R(∆) < +∞

As f is a density, ‖f‖1 = 1 and R(∆) = R. This implies the announced result for g. If
the density g belongs to S(α,R), then (1+x2)α|g∗(x)|2 is continuous and integrable, thus
bounded by B. Therefore g⋆m ∈ S(mα,Rm) with Rm = Bm−1R. �

7.4. Proof of Proposition 4.2. Recall that f∗ =
∑

m≥1((−1)m+1/m)cm(∆)(g∗)m (see

(6)-(7)). Let fℓ be such that f∗ℓ = f∗ 1[−πℓ,πℓ] and fK,ℓ be such that

f∗K,ℓ = 1[−πℓ,πℓ]

K+1∑

m=1

(−1)m+1

m
cm(∆)(g∗)m.

Recall that f̃K,ℓ (see (11)) is such that

(f̃K,ℓ)
∗ = 1[−πℓ,πℓ]

K+1∑

m=1

(−1)m+1

m
cm(∆)(̂g∗)m.

We distinguish the first term of this development from the other ones and set

(26) f̃K,ℓ = f̃K,ℓ
(1)

+ R̃fK,ℓ, with f̃K,ℓ
(1)

= c1(∆)ĝ⋆1ℓ = c1(∆)ĝℓ.

Analogously, with gℓ such that g∗ℓ = g∗ 1[−πℓ,πℓ],

(27) fK,ℓ = f
(1)
K,ℓ +RfK,ℓ, with f

(1)
K,ℓ = c1(∆)gℓ
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The following decomposition of the L2-norm holds:

‖f − f̂K,ℓ‖ ≤ ‖f − fℓ‖+ ‖fℓ − fK,ℓ‖+ ‖f (1)K,ℓ − f̃K,ℓ
(1)‖

+‖RfK,ℓ − R̃fK,ℓ‖+ ‖f̃K,ℓ − f̂K,ℓ‖,

which involves two bias terms and two stochastic error terms. The first bias term is the
usual deconvolution bias term:

‖f − fℓ‖2 =
1

2π

∫

|t|≥πℓ

|f∗(t)|2dt

Noting that

f∗ℓ − f∗K,ℓ = 1[−πℓ,πℓ]

∞∑

m=K+2

(−1)m+1

m
cm(∆)(g∗)m,

we get, using that |g∗(t)| ≤ 1 and ‖g‖ ≤ ‖f‖ (see Proposition 4.1):

2π‖fℓ − fK,ℓ‖2 = ‖f∗ℓ − f∗K,ℓ‖2 =
∫ πℓ

−πℓ

∣∣∣∣∣
∞∑

m=K+2

(−1)m+1

m
cm(∆)(g∗)m(t)

∣∣∣∣∣

2

dt

≤
∫ πℓ

−πℓ


 ∑

m≥K+2

1

m
cm(∆)|g∗(t)|




2

dt ≤ 2π‖g‖2

 ∑

m≥K+2

1

m
cm(∆)




2

≤ 2π‖f‖2
(c∆)2(K + 2)2

(
(ec∆ − 1)K+2

2− ec∆

)2

≤ 4π‖f‖2(
√
2c∆)2K+2

((K + 2)2(2− e2∆))2
≤ 2πAK∆2K+2,(28)

where in the last line, we have used 1/(2− ec∆)2 ≤ 1/(2−
√
2)2 ≤ 3 and ec∆ − 1 ≤

√
2c∆

and AK is given in (18).

To study the next term, we recall that, E(|(̂g∗)(t)− (g∗)(t)|2) ≤ 1/n. Then we get

2πE

(
‖f (1)K,ℓ − f̃K,ℓ

(1)‖2
)

=

∫ πℓ

−πℓ
E

(∣∣∣c1(∆)[(̂g∗)(t)− (g∗)(t)]
∣∣∣
2
)
dt

≤ 2πℓ[c1(∆)]2

n
≤ 4πℓ

n
(29)

since c1(∆) ≤
√
2.
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Hereafter, we use inequality (15) of Proposition 3.1.

2πE
(
‖RfK,ℓ − R̃fK,ℓ‖2

)
=

∫ πℓ

−πℓ
E



∣∣∣∣∣
K+1∑

m=2

(−1)m+1

m
cm(∆)[ ̂(g∗)m(t)− (g∗)m(t)]

∣∣∣∣∣

2

 dt

≤
∫ πℓ

−πℓ
(K + 1)

K+1∑

m=2

1

m2
[cm(∆)]2E

(
| ̂(g∗)m(t)− (g∗)m(t)|2

)
dt

≤ 2πK

K+1∑

m=2

Em
m2

[cm(∆)]2
(

ℓ

nm
+

‖g‖2
n

)

This yields, since cm(∆) ≤ (
√
2)m(c∆)m−1 and ℓ/n ≤ 1,

(30) E
(
‖RfK,ℓ − R̃fK,ℓ‖2

)
≤ DK

n

with

DK = K

K+1∑

m=2

2mc2(m−1)Em
m2

∆2(m−1)

(
1

nm−2
+ ‖g‖2

)

For the last term, we use Proposition 2.2, with the fact that the estimators ĉm(∆) and
̂(g∗)m(t) are independent, and write

2πE
(
‖f̃K,ℓ − f̂K,ℓ‖2

)
=

∫ πℓ

−πℓ
E



∣∣∣∣∣
K+1∑

m=1

(−1)m+1

m

(
ĉm(∆)− cm(∆)

)
̂(g∗)m(t)

∣∣∣∣∣

2

dt




≤ 2

∫ πℓ

−πℓ
E



∣∣∣∣∣
K+1∑

m=1

(−1)m+1

m

(
ĉm(∆)− cm(∆)

)
[ ̂(g∗)m(t)− (g∗)m(t)]

∣∣∣∣∣

2

dt




+2

∫ πℓ

−πℓ
E



∣∣∣∣∣
K+1∑

m=1

(−1)m+1

m

(
ĉm(∆)− cm(∆)

)
(g∗)m(t)

∣∣∣∣∣

2

dt




≤ 2(K + 1)

K+1∑

m=1

1

m2

{
E

[(
ĉm(∆)− cm(∆)

)2] ∫ πℓ

−πℓ
E
[
| ̂(g∗)m(t)− (g∗)m(t)|2

]
dt

+E

[(
ĉm(∆)− cm(∆)

)2] ∫ πℓ

−πℓ
|g∗(t)|2mdt

}

≤ 2(K + 1)

{
C1

n
(
2πℓ

n
+ 2π‖g‖2) +

K+1∑

m=2

Cm∆2(m−1)

m2

[Em
n

∫ πℓ

−πℓ

(
1

nm
+

1

n
|g∗(t)|2

)
dt+

1

n
‖g∗‖2

]}

≤ 2πEK

n
(31)
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using that ℓ/n ≤ 1 and

EK = 2(K + 1)

[
C1(1 + ‖g‖2) +

K+1∑

m=2

Cm

m2
∆2(m−1)Em(

1

nm−1
+ 2‖g‖2)

]
.

This ends the proof of the result with DK + EK ≤ BK and ‖g‖ ≤ ‖f‖. �

7.5. Proof of Theorem 4.1. Consider the contrast

γn(t) = ‖t‖2 − 2〈t, f̂K,Ln〉,

and for ℓ = 1, . . . , Ln, the increasing sequence of spaces

Sℓ = {t ∈ L2 ∩ L1(R), supp(t∗) ⊂ [−πℓ, πℓ]}.

Note that, for ℓ ≤ Ln and t ∈ Sℓ, γn(t) = ‖t‖2 − 2〈t, f̂K,ℓ〉, and

argmin
t∈Sℓ

γn(t) = f̂K,ℓ, with γn(f̂K,ℓ) = −‖f̂K,ℓ‖2.

For ℓ, ℓ∗ ≤ Ln, s ∈ Sℓ and t ∈ Sℓ∗, the following decomposition holds:

γn(t)− γn(s) = ‖t− f‖2 − ‖s− f‖2 − 2〈t− s, f̂K,Ln − f〉

and 〈t− s, f̂K,Ln − f〉 = 〈t− s, f̂K,Ln − fLn〉. By definition of the estimator,

γn(f̂K,ℓ̂) + pen(ℓ̂) ≤ γn(f̂K,ℓ) + pen(ℓ) ≤ γn(fℓ) + pen(ℓ).

Thus, we obtain, ∀ℓ ∈ {1, . . . , Ln},

‖f̂K,ℓ̂ − f‖2 ≤ ‖fℓ − f‖2 + pen(ℓ) + 2〈f̂K,ℓ̂ − fℓ, f̂K,Ln − fLn〉 − pen(ℓ̂)

≤ ‖fℓ − f‖2 + pen(ℓ) +
1

4
‖f̂K,ℓ̂ − fℓ‖2 + 4 sup

t∈Sℓ+S
ℓ̂
,‖t‖=1

〈t, f̂K,Ln − fLn〉2 − pen(ℓ̂)(32)

Then using

(33)
1

4
‖f̂K,ℓ̂ − fℓ‖2 ≤

1

2
‖f̂K,ℓ̂ − f‖2 + 1

2
‖f − fℓ‖2,

and decompositions (26) and (27), we get

〈t, f̂K,Ln−fLn〉 = 〈t, f̂K,Ln−f̃K,Ln〉+〈t, f̃K,Ln

(1)
−f (1)K,Ln

〉+〈t,Rf̃K,Ln−RfK,Ln〉+〈t, fK,Ln−fLn〉.

By the Cauchy-Schwarz Inequality and for ‖t‖ = 1, we have

〈t, f̂K,Ln − fLn〉2 ≤ 4‖f̂K,Ln − f̃K,Ln‖2 + 4‖Rf̃K,Ln −RfK,Ln‖2

+4‖fK,Ln − fLn‖2 + 4〈t, f̃K,Ln

(1)
− f

(1)
K,Ln

〉2.(34)
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Thus, inserting (33) and (34) in (32) yields

1

2
‖f̂K,ℓ̂ − f‖2 ≤ 3

2
‖fℓ − f‖2 + 16‖fK,Ln − fLn‖2

+16‖f̂K,Ln − f̃K,Ln‖2 + 16‖Rf̃K,Ln −RfK,Ln‖2 + pen(ℓ)

+16 sup
t∈S

ℓ∨ℓ̂
,‖t‖=1

〈t, f̃K,Ln

(1)
− f

(1)
K,Ln

〉2 − pen(ℓ̂)

Here, the bounds of Proposition 4.2 can be applied. Indeed (28), (30) and (31) are uniform
with respect to ℓ and imply

‖fK,Ln−fLn‖2 ≤ AK∆2(K+2), E(‖Rf̃K,Ln−RfK,Ln‖2) ≤ DK/n, E(‖f̂K,Ln−f̃K,Ln‖2) ≤ EK/n.

Below, we prove using the Talagrand Inequality that

(35) E

(
sup

t∈S
ℓ∨ℓ̂

,‖t‖=1
〈t, f̃K,Ln

(1)
− f

(1)
K,Ln

〉2 − p(ℓ, ℓ̂)

)

+

≤ C ′

n
,

where p(ℓ, ℓ′) = 8ℓ ∨ ℓ′/n and 16p(ℓ, ℓ′) ≤ pen(ℓ) + pen(ℓ′) as soon as κ ≥ κ0 = 16× 8.

Thus, we get E(16p(ℓ, ℓ̂)− pen(ℓ̂)) ≤ pen(ℓ) and

E(‖f̂K,ℓ̂ − f‖2) ≤ 4‖f − fℓ‖2 + 4pen(ℓ) + 32AK∆2(K+2) + 32
BK

n
+

32C ′

n
.

Proof of (35). We consider t ∈ Sℓ∗ for ℓ∗ = ℓ∨ ℓ′ with ℓ, ℓ′ ≤ Ln and (see (26) and (27))

νn(t) = c1(∆)〈t, ĝLn − gLn〉 =
1

n

n∑

k=1

(ψt(Zk)− E(ψt(Zk))

where

ψt(z) =
c1(∆)

2π

∫
t∗(u)eiuzdu = c1(∆)t(z).

We apply the Talagrand Inequality recalled in Section 8, and to this aim, we compute the
quantities M,H, v. First

sup
t∈Sℓ∗ ,‖t‖=1

sup
z

|ψt(z)| ≤
c1(∆)

2π

√
2πℓ∗ × sup

t∈Sℓ∗ ,‖t‖=1
‖t∗‖ = c1(∆)

√
ℓ∗ := M.

The density of Z1 is g which satisfies

‖g‖∞ ≤
∑

m≥1

1

ec∆ − 1

(c∆)m

m!
‖f⋆ m‖∞ ≤ ‖f‖∞.

Therefore,

sup
t∈Sℓ∗ ,‖t‖=1

Var(ψt(Z1)) ≤ c21(∆)× sup
t∈Sℓ∗ ,‖t‖=1

E(t2(Z1)) ≤ c21(∆)‖f‖∞ := v.

Lastly, using the bound in (29) and the fact that for t ∈ Sℓ∗ ,

〈t, f̃K,Ln

(1)
− f

(1)
K,Ln

〉 = 〈t, f̃K,ℓ∗
(1) − f

(1)
K,ℓ∗〉,



16 F. COMTE, C. DUVAL, AND V. GENON-CATALOT

we get

E( sup
t∈Sℓ∗ ,‖t‖=1

ν2n(t)) = E

(
sup

t∈Sℓ∗ ,‖t‖=1
〈t, f̃K,ℓ∗

(1) − f
(1)
K,ℓ∗〉2

)
≤ E

(
‖f̃K,ℓ∗

(1) − f
(1)
K,ℓ∗‖2

)

≤ 2ℓ∗

n
:= H2.

Therefore, Lemma 8.1 yields with ǫ2 = 1/2,

E( sup
t∈Sℓ∗ ,‖t‖=1

ν2n(t)− 4H2) ≤ A1

n
(e−A2ℓ∗ + e−A3

√
n)

for constants A1, A2, A3 depending on c1(∆) and ‖f‖∞. Now since
∑Ln

ℓ′=1 e
−A2ℓ∨ℓ′ =

ℓe−A2ℓ +
∑

ℓ<ℓ′≤Ln
e−A2ℓ′ is bounded by say B2 and Lne

−A3
√
n is bounded by B3, we get

E

(
sup

t∈Sℓ∨ℓ̂,‖t‖=1
ν2n(t)− 8

ℓ ∨ ℓ̂
n

)
≤
∑

ℓ′
E( sup

t∈Sℓ∨ℓ′ ,‖t‖=1
ν2n(t)− 4H2) ≤ B4

n
.

This ends the proof of (35) and thus of Theorem 4.1. �

8. Appendix.

The result below follows from the Talagrand concentration inequality given in Klein and
Rio (2005) and arguments in Birgé and Massart (1998) (see the proof of their Corollary 2
page 354).

Lemma 8.1. (Talagrand Inequality) Let Y1, . . . , Yn be independent random variables, let
νn,Y (f) = (1/n)

∑n
i=1[f(Yi)−E(f(Yi))] and let F be a countable class of uniformly bounded

measurable functions. Then for ǫ2 > 0

E
[
sup
f∈F

|νn,Y (f)|2 − 2(1 + 2ǫ2)H2
]
+

≤ 4

K1

(
v

n
e−K1ǫ2

nH2

v +
98M2

K1n2C2(ǫ2)
e
− 2K1C(ǫ2)ǫ

7
√

2
nH
M

)
,

with C(ǫ2) =
√
1 + ǫ2 − 1, K1 = 1/6, and

sup
f∈F

‖f‖∞ ≤M, E
[
sup
f∈F

|νn,Y (f)|
]
≤ H, sup

f∈F

1

n

n∑

k=1

Var(f(Yk)) ≤ v.

By standard density arguments, this result can be extended to the case where F is a
unit ball of a linear normed space, after checking that f 7→ νn(f) is continuous and F
contains a countable dense family.
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