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The maximum likelihood method offers a standard way to estimate the three parameters of a generalized extreme value (GEV) distribution. Combined with the block maxima method, it is often used in practice to assess the extreme value index and normalization constants of a distribution satisfying a first order extreme value condition, assuming implicitely that the block maxima are exactly GEV distributed. This is unsatisfactory since the GEV distribution is a good approximation of the block maxima distribution only for blocks of large size. The purpose of this paper is to provide a theoretical basis for this methodology. Under a first order extreme value condition only, we prove the existence and consistency of the maximum likelihood estimators for the extreme value index and normalization constants within the framework of the block maxima method.

Introduction and results

Estimation of the extreme value index is a central problem in extreme value theory. A variety of estimators are available in the literature, for example among others, the Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF], the Pickand's estimator [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF], the probability weighted moment estimator introduced by Hosking et al. [START_REF] Hosking | Estimation of the generalized extreme-value distribution by the method of probability-weighted moments[END_REF] or the moment estimator suggested by Dekkers et al. [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF]. The monographs by Embrechts et al. [START_REF] Embrechts | Modelling extremal events[END_REF], Beirlant et al. [START_REF] Beirlant | Statistics of extremes[END_REF] or de Haan and Ferreira [START_REF] De Haan | Extreme value theory[END_REF] provide good reviews on this estimation problem.

In this paper, we are interested on estimators based on the maximum likelihood method. Two different types of maximum likelihood estimators (MLEs) have been introduced, based on the peak over threshold method and block maxima method respectively. The peak over threshold method relies on the fact that, under the extreme value condition, exceedances over high threshold converge to a generalized Pareto distribution (GPD) (see Balkema and de Haan [START_REF] Balkema | Residual life time at great age[END_REF]). A MLE within the GPD model has been proposed by Smith [START_REF] Smith | Estimating tails of probability distributions[END_REF]. Its theoretical properties under the extreme value condition are quite difficult to analyze due to the absence of an explicit expression of the likelihood equations: existence and consistency have been proven by Zhou [START_REF] Zhou | Existence and consistency of the maximum likelihood estimator for the extreme value index[END_REF], asymptotic normality by Drees et al. [START_REF] Drees | On maximum likelihood estimation of the extreme value index[END_REF]. The block maxima method relies on the approximation of the maxima distribution by a generalized extreme value (GEV) distribution. Computational issues for ML estimation within the GEV model have been considered by Prescott and Walden [START_REF] Prescott | Maximum likelihood estimation of the parameters of the generalized extreme-value distribution[END_REF][START_REF] Prescott | Maximum likelihood estimation of the parameters of the three-parameter extreme-value distribution from censored samples[END_REF], Hosking [START_REF] Hosking | Algorithm AS 215: Maximum likelihood estimation of the parameters of the generalized extreme value distribution[END_REF] and Macleod [START_REF] Macleod | AS R76 -A remark on algorithm AS 215: Maximum likelihood estimation of the parameters of the generalized extreme value distribution[END_REF]. Since the support of the GEV distribution depends on the unknown extreme value index γ, the usual regularity conditions ensuring good asymptotic properties are not satisfied. This problem is studied by Smith [START_REF] Smith | Maximum likelihood estimation in a class of nonregular cases[END_REF]: asymptotic normality is proven for γ > -1/2 and consistency for γ > -1.

It should be stressed that the block maxima method is based on the assumption that the observations come from a distribution satisfying the extreme value condition so that the maximum of a large numbers of observations follows approximatively a generalized extreme value (GEV) distribution. On the contrary, the properties of the maximum likelihood relies implicitely on the assumption that the block maxima have exactly a GEV distribution. In many situations, this strong assumption is unsatisfactory and we shall only suppose that the underlying distribution is in the domain of attraction of an extreme value distribution. This is the purpose of the present paper to justify the maximum likelihood method for the block maxima method under an extreme value condition only.

We first recall some basic notions of univariate extreme value theory. The extreme value distribution distribution with index γ is noted G γ and has distribution function

F γ (x) = exp(-(1 + γx) -1/γ ), 1 + γx > 0.
We say that a distribution function F satisfies the extreme value condition with index γ, or equivalently that F belongs to the domain of attraction of G γ if there exist constants a m > 0 and b m such that

lim m→+∞ F m (a m x + b m ) = F γ (x), x ∈ R. (1) 
That is commonly denoted F ∈ D(G γ ). The necessary and sufficient conditions for F ∈ D(G γ ) can be presented in different ways, see e.g. de Haan [START_REF] De Haan | Slow variation and characterization of domains of attraction[END_REF] or de Haan and Ferreira [4, chapter 1]. We remind the following simple criterion and choice of normalization constants.

Theorem 1. Let U = 1 1-F ← be the left continuous inverse function of 1/(1 -F ). Then F ∈ D(G γ ) if and only if there exists a function a(t) > 0 such that lim t→+∞ U (tx) -U (t) a(t) = x γ -1 γ , for all x > 0.
Then, a possible choice for the function a(t) is given by In the sequel, we will always use the normalization constants (a m ) and (b m ) given in Theorem 1. Note that they are unique up to asymptotic equivalence in the following sense: if

a(t) =    γU (t), γ > 0, -γ(U (∞) -U (t)), γ < 0, U (t) -t -1 t 0 U (s)ds, γ = 0,
(a ′ m ) and (b ′ m ) are such that F m (a ′ m x + b ′ m ) → F γ (x) for all x ∈ R, then lim m→+∞ a ′ m a m = 1 and lim m→+∞ b ′ m -b m a m = 0. (2) 
The log-likelihood of the extreme value distribution G γ is given by

ℓ γ (x) = -(1 + 1/γ) log(1 + γx) -(1 + γx) -1/γ , if 1 
+ γx > 0 and -∞ otherwise. For γ = 0, the formula is interpreted as ℓ 0 (x) = -x -exp(-x). The three parameter extreme value distribution with shape γ, location µ and scale σ > 0 has distribution function x → F γ (σx + µ). The corresponding log-likelihood is

ℓ (γ,µ,σ) (x) = ℓ γ x -µ σ -log σ.
The set-up of the block maxima method is the following. We consider independent and identically distributed (i.i.d.) random variables (X i ) i≥1 with common distribution function F ∈ D(G γ 0 ) and corresponding normalization sequences (a m ) and (b m ) as in Theorem 1. We divide the sequence (X i ) i≥1 into blocks of length m ≥ 1 and define the k-th block maximum by

M k,m = max(X (k-1)m+1 , . . . , X km ), k ≥ 1.
For fixed m ≥ 1, the variables (M k,m ) k≥1 are i.i.d. with distribution function F m and

M k,m -b m a m =⇒ G γ 0 as m → +∞. (3) 
Equation ( 3) suggests that the distribution of M k,m is approximately a GEV distribution with parameters (γ 0 , b m , a m ) and this is standard to estimate these parameters by the maximum likelihood method. The log-likelihood of the n-sample (M 1,m , . . . , M n,m ) is

L n (γ, σ, µ) = 1 n n k=1 ℓ (γ,µ,σ) (M k,m ).
In general, L n has no global maximum, leading us to the following weak notion: we say that ( γ n , µ n , σ n ) is a MLE if L n has a local maximum at ( γ n , µ n , σ n ). Clearly, a MLE solves the likelihood equations

∇L n = 0 with ∇L n = ∂L n ∂γ , ∂L n ∂µ , ∂L n ∂σ . (4) 
Conversely, any solution of the likelihood equations with a definite negative Hessian matrix is a MLE. For the purpose of asymptotic, we let the length of the blocks m = m(n) depend on the sample size n. Our main result is the following theorem, stating the existence of consistent MLEs.

Theorem 2. Suppose F ∈ D(G γ 0 ) with γ 0 > -1 and assume that lim n→+∞ m(n) log n = +∞. (5) 
Then there exists a sequence of estimators ( γ n , µ n , σ n ) and a random integer N ≥ 1 such that

P[( γ n , µ n , σ n ) is a MLE for all n ≥ N ] = 1 (6) 
and

γ n a.s. -→ γ 0 , µ n -b m a m a.s.
-→ 0 and σ n a m a.s.

-→ 1 as n → +∞. [START_REF] Embrechts | Modelling extremal events[END_REF] The condition γ 0 > -1 is natural and agrees with Smith [START_REF] Smith | Maximum likelihood estimation in a class of nonregular cases[END_REF]: it is easy to see that the likelihood equation ( 4) has no solution with γ ≤ 1 so that no consistent MLE exists when γ 0 < -1 (see Remark 3 below). Condition [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF] states that the block length m(n) grows faster than logarithmically in the sample size n, which is not very restrictive. Let us mention a few further remarks on this condition. Remark 1. A control of the block size is needed, as the following simple example shows. Consider a distribution F ∈ D(G γ 0 ) with γ 0 > 0 and such that the left endpoint of F is equal to -∞. Then for each m ≥ 1, the distribution of the m-th block maxima M k,m has left endpoint equal to -∞ and there exist a sequence m(n) (growing slowly to +∞) such that

lim n→+∞ min 1≤k≤n M k,m -b m a m = -∞ almost surely. ( 8 
)
The log-likelihood L n (γ, σ, µ) is finite if and only if

min 1≤k≤n 1 + γ M k,m -µ σ > 0, so that any MLE ( γ n , µ n , σ n ) must satisfy min 1≤k≤n 1 + γ n M k,m -µ n σ n > 0.
Using this observations, one shows easily that Equation ( 8) is an obstruction for the consistency (7) of the MLE. Of course, this phenomenon can not happen under condition (5).

Remark 2. It shall be stressed that condition [START_REF] Dekkers | A moment estimator for the index of an extreme-value distribution[END_REF] appears only in the proof of Lemma 4 below. One can prove that under stronger assumptions on the distribution F ∈ D(G γ 0 ), condition (5). This is for example the case if F is a Pareto distribution function: one checks easily that the proof of Lemma 4 goes through under the weaker condition lim n→+∞ m(n) = +∞. Hence Theorem 2 holds under this weaker condition in the Pareto case. In order to avoid technical conditions that are hard to check in practice when F is unknown, we do not develop this direction any further.

The structure of the paper is the following. We gather in Section 2 some preliminaries on properties of the GEV log-likelihood and of the empirical distribution associated to normalized block maxima. Section 2 Preliminaries

Properties of the GEV log-likelihood

We gather in the following proposition some basic properties of the GEV log-likelihood. We note x - γ and x + γ the left and right end point of the domain ℓ γ , i.e.

(x - γ , x + γ ) = {x ∈ R; 1 + γx > 0}.
Clearly, it is equal to (-∞, -1/γ), R and (-1/γ, +∞) when γ < 0, γ = 0 and γ > 0 respectively.

Proposition 1. The function ℓ γ is smooth on its domain.

1. If γ ≤ -1, ℓ γ is stricly increasing on its domain and

lim x→x - γ ℓ γ (x) = -∞ lim x→x + γ ℓ γ (x) = +∞ if γ < -1 0 if γ = -1 . 2. If γ > -1, ℓ γ is increasing on (x - γ , x * γ ] and decreasing on [x * γ , x + γ )
, where

x * γ = (1 + γ) -γ -1 γ . Furthermore lim x→x - γ ℓ γ (x) = lim x→x + γ ℓ γ (x) = -∞ and ℓ γ reaches its maximum ℓ γ (x * γ ) = (1 + γ)(log(1 + γ) -1) uniquely.
Remark 3. According to Proposition 1, the log-likelihood ℓ γ has no local maximum in the case γ ≤ -1. This entails that the log-likelihood Equation (4) has no local maximum in (-∞, -1] × R × (0, +∞) and that any MLE ( γ n , µ n , σ n ) satisfies γ n > -1. Hence, no consistent MLE does exist if γ 0 < -1. The limit case γ 0 = -1 is more difficult to analyze and is disregarded in this paper.

Normalized block maxima

In view of Equation (3), we define the normalized block maxima

M k,m = M k,m -b m a m , k ≥ 1,
and the corresponding likelihood

L n (γ, σ, µ) = 1 n n k=1 ℓ (γ,µ,σ) ( M k,m(n) ).
It should be stressed that the normalization sequences (a m ) and (b m ) are unknown so that the normalized block maxima M k,m and the likelihood L n cannot be computed from the data only. However, they will be useful in our theoretical analysis since they have good asymptotic properties. The following simple observation will be useful.

Lemma 1. ( γ n , µ n , σ n ) is a MLE if and only if L n has a local maxi- mum at ( γ n , ( µ n -b m )/a m , σ n /a m ).
Proof. The GEV likelihood satisfies the scaling property

ℓ γ,µ,σ ((x -b)/a) = ℓ (γ,aµ+b,aσ) (x) + log a so that L n (γ, µ, σ) = L n γ, µ -b m a m , σ a m -log a m .
Hence the local maximizers of L n and L n are in direct correspondence and the lemma follows.

Empirical distributions

The likelihood function Ln can be seen as a functional of the empirical distribution defined by

P n = 1 n n k=1 δ M k,m ,
where δ x denotes the Dirac mass at point x ∈ R. For any measurable f : R → [-∞, +∞), we note P n [f ] the integral with respect to P n , i.e.

P n [f ] = 1 n n k=1 f ( M k,m ).
With these notations, it holds

L n (γ, µ, σ) = P n [ℓ (γ,µ,σ) ].
The empirical process is defined by

F n (t) = P n ((-∞, t]) = 1 n n k=1 1 { M k,m ≤t} , t ∈ R.
In the case of an i.i.d. sequence, the Glivenko-Cantelli Theorem states that the empirical process converges almost surely uniformly to the sample distribution function. According to the general theory of empirical processes (see e.g. Shorack and Wellner [START_REF] Shorack | Empirical processes with applications to statistics[END_REF] Theorem 1, p106), this result can be extended to triangular arrays of i.i.d. random variables. Equation (3) entails the following result.

Lemma 2. Suppose F ∈ D(G γ 0 ) and lim n→+∞ m(n) = +∞. Then,

sup t∈R |F n (t) -F γ 0 (t)| a.s.
-→ 0 as n → +∞.

This entails the almost surely weak convergence P n ⇒ G γ 0 , whence

P n [f ] a.s -→ G γ 0 [f ] as n → +∞
for all bounded and continuous function f : R → R. The following lemma dealing with more general functions will be useful.

Lemma 3. Suppose F ∈ D(G γ 0 ) and lim n→+∞ m(n) = +∞.
Then, for all upper semi-continuous function f : R → [-∞, +∞) bounded from above, lim sup

n→+∞ P n [f ] ≤ G γ 0 [f ] a.s..
Proof of Lemma 3. Let M be an upper bound for f . The function f = M -f is non-negative and lower semicontinuous. Clearly,

P n [f ] = M -P n [ f ] and G γ 0 [f ] = M -G γ 0 [ f ],
whence it is enough to prove that

lim inf n→+∞ P n [ f ] ≥ G γ 0 [ f ] a.s..
To see this, we use the relation

P n [ f ] = 1 0 f (F ← n (u))du.
where F ← n is the left-continuous inverse function

F ← n = inf{x ∈ R; F n (x) ≥ u}, u ∈ (0, 1).
Lemma 2 together with the continuity of the distribution function F γ 0 entail that almost surely, F ← n (u) → F ← γ 0 (u) for all u ∈ (0, 1) as n → +∞. Using the fact that f is lower semi-continuous, we obtain

lim inf n→+∞ f (F ← n (u)) ≥ f (F ← γ 0 (u)) u ∈ (0, 1).
On the other hand, according to Fatou's lemma,

lim inf n→+∞ 1 0 f (F ← n (u))du ≥ 1 0 lim inf n→+∞ f (F ← n (u))du.
Combining the two inequalities, we obtain

lim inf n→+∞ f (F ← n (u)) ≥ 1 0 f (F ← γ 0 (u))du, whence lim inf n→+∞ P n [ f ] ≥ G γ 0 [ f ] a.s..
The next lemma plays a crucial role in our proof of Theorem 2. Its proof is quite technical and is postponed to an appendix. Lemma 4. Suppose F ∈ D(G γ 0 ) with γ 0 > -1 and assume condition (5) is satisfied. Then,

lim n→+∞ P n [ℓ γ 0 ] = G γ 0 [ℓ γ 0 ] a.s.. (9) 
It shall be stressed that Lemma 4 is the only part in the proof of Theorem 2 where condition ( 5) is needed (see Remark 2).

Proof of Theorem 2

We introduce the short notation Θ = (-1, +∞) × R × (0, +∞). A generic point of Θ is noted θ = (γ, µ, σ).

The restriction L n : Θ → [-∞, +∞) is continuous, so that for any compact K ⊂ Θ, L n is bounded and reaches its maximum on K. We can thus define θ

K n = ( γ K n , µ K n , σ K n ) such that θ K n = argmax θ∈K L n (θ). (10) 
The following proposition is the key in the proof of Theorem 2.

Proposition 2. Let θ 0 = (γ 0 , 0, 1) and K ⊂ Θ be a compact neighborhood of θ 0 . Under the assumptions of Theorem 2,

lim n→+∞ θ K n = θ 0 a.s..
The proof of Proposition 2 relies on an adaptation of Wald's method for proving the consistency of M -estimators (see Wald [START_REF] Wald | Note on the consistency of the maximum likelihood estimate[END_REF] or van der Vaart [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] Theorem 5.14). The standard theory of M -estimation is designed for i.i.d. samples, while we have to deal with the triangular array {( M k,m ) 1≤k≤n , n ≥ 1}. We first state two lemmas.

Lemma 5. For all θ ∈ Θ, G γ 0 [ℓ θ ] ≤ G γ 0 [ℓ θ 0 ]
and the equality holds if and only if θ = θ 0 .

Proof of Lemma 5. The quantity G γ 0 [ℓ θ 0 -ℓ θ ] is the Kullback-Leibler divergence of th GEV distributions with parameters θ 0 and θ and is known to be non-negative (see van der Vaart [START_REF] Van Der | Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics[END_REF] section 5.5). It vanishes if and only if the two distributions agree. This occurs if and only if θ = θ 0 because the GEV model is identifiable.

Lemma 6. For B ⊂ Θ, define ℓ B (x) = sup θ∈B ℓ θ (x), x ∈ R.
Let θ ∈ Θ and B(θ, ε) be the open ball in Θ with center θ and radius ε > 0. Then,

lim ε→0 G γ 0 [ℓ B(θ,ε) ] = G γ 0 [ℓ θ ].
Proof of Lemma 6. Proposition 1 implies

ℓ θ (x) = ℓ γ ((x -µ)/σ) -log σ ≤ m γ -log σ. One deduce that if B is contained in (1, γ] × [σ, +∞) × R for some γ > -1 and σ > 0 , then there exists M (γ, σ) such that ℓ θ (x) ≤ M (γ, σ) for all θ ∈ B, x ∈ R.
Hence there exists M > 0 such that function M -ℓ B(θ,ε) is non-negative for ε small enough. The continuity of θ → ℓ θ (x) on Θ implies

lim ε→0 ℓ B(θ,ε) (x) = ℓ θ (x) for all x ∈ R.
Then, Fatou's Lemma entails

G γ 0 lim inf ε→0 (M -ℓ B(θ,ε) ) ≤ lim inf ε→0 G γ 0 M -ℓ B(θ,ε) ,
whence we obtain

lim sup ε→0 G γ 0 [ℓ B(θ,ε) ] ≤ G γ 0 [ℓ θ ].
On the other hand,

θ ∈ B(θ, ε) implies G γ 0 [ℓ B(θ,ε) ] ≥ G γ 0 [ℓ θ ]. We deduce lim ε→0 G γ 0 [ℓ B(θ,ε) ] = G γ 0 [ℓ θ ].
Proof of Proposition 2. In view of Lemmas 5 and 6, for each θ ∈ K such that θ = θ 0 , there exists ε θ > 0 such that

G γ 0 [ℓ B(θ,ε θ ) ] < G γ 0 [ℓ θ 0 ]. Fix δ > 0. The set ∆ = {θ ∈ K; θ -θ 0 ≥ δ} is compact and is covered by the open balls {B(θ, ε θ ), θ ∈ ∆}. Let B i = B(θ i , ε θ i ), 1 ≤ i ≤ p, be a finite subcover. Using the relation L n (θ) = P n [ℓ θ ], we see that sup θ∈∆ L n (θ) ≤ max 1≤i≤p P n [ℓ B i ].
The function ℓ B i is upper semi-continuous and bounded from above, so that Lemma 3 entails

lim sup n→+∞ P n [ℓ B i ] ≤ G γ 0 [θ i ] a.s., whence lim sup n→+∞ sup θ∈∆ L n (θ) ≤ max 1≤i≤p G γ 0 [θ i ] < G γ 0 [θ 0 ] a.s.. (11) 
According to Lemma 4,

P n [ℓ θ 0 ] a.s. -→ G γ 0 [ℓ γ 0 ], so that lim inf n→+∞ sup θ∈K L n (θ) ≥ G γ 0 [θ 0 ] a.s.. (12) 
Since θ K n realizes the maximum of L n over K, Equations ( 11) and ( 12) together entail that θ K n ∈ K\∆ for large n. Equivalently, θ K n -θ 0 < δ for large n. Since δ is arbitrary, this proves the convergence θ K n a.s.

-→ θ 0 as n → +∞.

Proof of Theorem 2. Let K ⊂ Θ be a compact neighborhood of θ 0 as in Proposition 2 and define θ K n by Equation [START_REF] Hosking | Estimation of the generalized extreme-value distribution by the method of probability-weighted moments[END_REF]. We prove that Theorem 2 holds true with the sequence of estimators

( γ n , µ n , σ n ) = ( γ K n , a m µ K n + b m , a m σ K n ), n ≥ 1. According to Lemma 1, ( γ n , µ n , σ n ) is a MLE if and only if L n has a local maximum at θ K n = ( γ K n , µ K n , σ K n ). Since θ K n = argmax θ∈K L n (θ)
, this is the case as soon as L n lies in the interior set int(K) of K. Proposition 2 implies the almost surely convergence θ K n a.s.

-→ θ 0 which is equivalent to Equation [START_REF] Embrechts | Modelling extremal events[END_REF]. Furthermore, since θ 0 ∈ int(K), this implies θ K n ∈ int(K) for large n so that ( γ n , µ n , σ n ) is a MLE for large n. This proves Equation [START_REF] Drees | On maximum likelihood estimation of the extreme value index[END_REF].

C. Dombry is grateful to Laurens de Haan for suggesting the research problem in the first place and for useful comments that improved greatly an early version of the manuscript.

Appendix: Proof of Lemma 4

We will use the following criterion.

Lemma 7. Suppose F ∈ D(G γ 0 ) and lim n→+∞ m(n) = +∞. We note Y m = ℓ γ 0 (a -1 m (M 1,m -b m )). If there exists a sequence (α n ) n≥1 and p > 2 such that n≥1 nP(|Y m | > α n ) < +∞ and sup n≥1 E[|Y m | p 1 {|Ym|≤αn} ] < +∞, then Equation (9) holds true.
Proof of lemma 7. We note µ = G γ 0 [ℓ γ 0 ] and we define

Y k,m = ℓ γ 0 (a -1 m (M k,m -b m )) and S n = n k=1 Y k,m .
With these notations, ( 9) is equivalent to n -1 S n a.s.

→ µ. We introduce the truncated variables

Y k,m = Y k,m 1 {|Y k,m |≤αn} and S n = n k=1 Y k,m .
Clearly,

P[ S n = S n ] ≤ P[ Y k,m = Y k,m for some k ∈ {1, . . . , n}] ≤ nP[|Y m | > α n ], so that n≥1 nP[|Y m | > α n ] < +∞ entails n≥1 P[ S n = S n ] < +∞.
By the Borel-Cantelli Lemma, this implies that the sequences ( S n ) n≥1 and (S n ) n≥1 coincide eventually, whence n -1 S n a.s.

→ µ if and only if n -1 S n a.s. → µ. We now prove this last convergence. We first prove that E[ Y 1,m ] → µ. Indeed, by the continuous mapping theorem, the weak convergence

(3) implies Y 1,m ⇒ ℓ γ 0 (Z) with Z ∼ G γ 0 . Since P[ Y 1,m = Y 1,m ] converges to 0 as n → +∞, it also holds Y 1,m ⇒ ℓ γ 0 (Z). Together with the condition sup n≥1 E[| Y 1,m | p ] < ∞, this entails E[ Y 1,m ] → E[ℓ γ 0 (Z)] = µ.
Next, Theorem 2.10 in Petrov [START_REF] Petrov | Limit theorems of probability theory, volume 4 of Oxford Studies in Probability[END_REF] provides the upper bound

E[| S n -E[ S n ]| p ] ≤ C(p)n p/2 E[| Y 1,m -E[ Y 1,m | p ]
for some constant C(p) > 0 depending only on p. Equivalently,

E[|n -1 S n -µ n | p ] ≤ C(p)n -p/2 E[| Y 1,m -µ n | p ]. with µ n = E[ Y 1,m ]. Furthermore, E[| Y 1,m -µ n | p ] ≤ 2 p-1 (E[| Y 1,m | p ] + |µ n | p )
is uniformly bounded by some constant C > 0. By the Markov inequality, for all ε > 0,

P[|n -1 S n -µ n | ≥ ε] ≤ ε -p E[|n -1 S n -µ n | p ] ≤ ε -p C(p)Cn -p/2 . Since p > 2, it holds n≥1 P[|n -1 S n -µ n | ≥ ε] < +∞ and the Borel-Cantelli Lemma entails n -1 S n -µ n a.s. → 0. Since µ n → µ, we deduce n -1 S n a.s.
→ µ which proves the Lemma.

Proof of Lemma 4. We prove that there exists a sequence (α n ) and p > 2 satisfying n≥1 nα -p n < +∞ [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF] and

sup n≥1 E[(|Y m | ∧ α n ) p ] < +∞. (14) 
The Markov inequality yields

P[|Y m | ≥ α n ] ≤ α -p n E[(|Y m | ∧ α n ) p ]
so that Equations ( 13) and ( 14) together entail

n≥1 nP(|Y m | > α n ) < +∞ and sup n≥1 E[|Y m | p 1 {|Ym|≤αn} ] < +∞,
This shows that Equations ( 13) and ( 14) together imply the assumptions of Lemma 7 and prove Lemma 4.

We first evaluate the quantity E[(|Y m | ∧ α n ) p ] from Equation [START_REF] Prescott | Maximum likelihood estimation of the parameters of the generalized extreme-value distribution[END_REF]. Recall that Y m = ℓ γ 0 ((M 1,m -b m )/a m ). It is well known that the random variable X i with distribution function F has the same distribution as the random variable F ← (V ), with V a uniform random variable on (0, 1). We deduce that the random variable M 1,m = ∨ m i=1 X i has the same distribution as F ← (V m ), with V m a random variable with distribution mv m-1 1 (0,1) (v)dv (this is the distribution of the maximum of m i.i.d. uniform random variables on [0, 1]). Hence,

E[(|Y m | ∧ α n ) p ] = 1 0 (|ℓ γ 0 ((F ← (v) -b m )/a m )| ∧ α n ) p mv m-1 dv. The relations U (x) = F ← (1 -1/x) and b m = U (m) together with the change of variable v = 1 -1/(mx) yield E[(|Y m | ∧ α n ) p ] = ∞ 1/m |ℓ γ 0 ( U m (x))| ∧ α n p 1 - 1 mx m-1 x -2 dx
where

U m (x) = U (mx) -U (m) a m .
We now provide an upper bound for the integral and we use the following estimates. There exists a constant c > 0 such that

|ℓ γ 0 (y)| ≤ c(1 + γ 0 y) -1/γ 0 , y < 0, (1 + 1/γ 0 ) log(1 + γ 0 y) + 1, y ≥ 0 .
Note that U m (x) is positive for x > 1 and negative for x < 1. Furthermore, for all x ≥ 1/m and m ≥ 2, 1 -

1 mx m-1 ≤ exp(-(m -1)/(mx)) ≤ exp(-1/(2x)).
Using these estimates, we obtain the following upper bound: for m ≥ m 0 (m 0 to be precised later),

E[(|Y m | ∧ α n ) p ] ≤ I 1 + I 2 + I 3 (15) 
with

I 1 = m 0 /m 1/m α p n exp(-1/(2x))x -2 dx, I 2 = 1 m 0 /m c p 1 + γ 0 U m (x) -p/γ 0 exp(-1/(2x))x -2 dx, I 3 = ∞ 1 (1 + 1/γ 0 ) log 1 + γ 0 U m (x) + 1 p exp(-1/(2x))x -2 dx.
The integral I 1 can be computed explicitely and

I 1 ≤ 4α p n exp(-m/(2m 0 )). (16) 
To estimate I 2 and I 3 , we need upper and lower bounds for U m (x) and we have to distinguish between the three cases γ 0 > 0, γ 0 ∈ (-1, 0) and γ = 0. Case γ 0 > 0: According to Theorem 1, the function U is regularly varying at infinity with index γ 0 > 0 and

1 + γ 0 U m (x) = 1 + γ 0 U (mx) -U (m) a m = U (mx) U (m) .
We use then Potter's bound (see e.g. Proposition B.1.9 in [START_REF] De Haan | Extreme value theory[END_REF]): for all ε > 0, there exists m 0 ≥ 1 such that for m ≥ m 0 and mx ≥ m 0

(1 -ε)x γ 0 min(x ε , x -ε ) ≤ U (mx) U (m) ≤ (1 + ε)x γ 0 max(x ε , x -ε ).
We fix ε ∈ (0, γ 0 ) and choose m 0 accordingly. Using the lower Potter's bound to estimate I 2 and the upper Potter's bound to estimate I 3 , we get

I 2 ≤ 1 m 0 /m c p (1 -ε)x γ 0 +ε -p/γ 0 exp(-1/(2x))x -2 dx ≤ c p (1 -ε) -p/γ 0 1 0
x -2-p-pε/γ 0 exp(-1/(2x))dx, and

I 3 ≤ ∞ 1
(1 + 1/γ 0 ) log (1 + ε)x γ 0 +ε + 1 p exp(-1/(2x))x -2 dx.

These integrals are finite and this implies that I 2 and I 3 are uniformly bounded for m ≥ m 0 . From Equations ( 15) and ( 16 We check easily that the condition lim n→+∞ m(n)

log n = +∞ implies Equation [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF]. Case γ 0 < 0: It follows from Theorem 1 that the function t → U (∞) -U (t) is regularly varying at infinity with index γ 0 < 0 and that

1 + γ 0 U m (x) = 1 + γ 0 U (mx) -U (m) a m = U (∞) -U (mx) U (∞) -U (m) .
Then, the Potter's bounds become: for all ε > 0, there exists m 0 ≥ 1 such that for m ≥ m 0 and mx ≥ m 0

(1 -ε)x γ 0 min(x ε , x -ε ) ≤ U (∞) -U (mx) U (∞) -U (m) ≤ (1 + ε)x γ 0 max(x ε , x -ε ).

Using this, the proof is completed in the same way as in the case γ 0 > 0 with straightforward modifications.

Case γ 0 = 0: In this case, Theorem B.2.18 in [START_REF] De Haan | Extreme value theory[END_REF] implies that for all ε > 0, there exists m 0 ≥ 1 such that for m ≥ m 0 and mx ≥ m 0 ,

U (mx) -U (m) a m -log x ≤ ε max(x ε , x -ε ).
Equivalently, for m ≥ m 0 and mx ≥ m 0 , log x -ε max(x ε , x -ε ) ≤ U m (x) ≤ log x + ε max(x ε , x -ε ).

Using the lower bound to estimate I 2 and the upper bound to estimate I 3 , we obtain For ε ∈ (0, 1/p), the integrals appearing in the upper bounds are finite and independent of m. This shows that I 2 and I 3 are uniformly bounded for m ≥ m 0 . The proof is then completed as in the case γ 0 > 0.

  and a possible choice for the normalization constants in (1) is a m = a(m) and b m = U (m).

  ), we obtainE[(|Y m | ∧ α n ) p ] ≤ 4α p n exp(-m/(2m 0 )) + C,for some constant C > 0. Finally, we set α p n exp(-m/(2m 0 )) = 1, i.e. α n = exp(m/(p2m 0 )). Equation (14) is clearly satisfied andnα -p n = exp[log n -m/(2m 0 )] = exp[-(m/(2m 0 log n) -1) log n].

I 2 = 1 m 0 c p 1 0 3 = ∞ 1 U 1 log

 101311 /m c p exp(-p U m (x)) exp(-1/(2x))x -2 dx ≤ exp(-p log x + pεx -ε -1/(2x))x -2 dx,andI m (x) + 1 p exp(-1/(2x))x -2 dx ≤ ∞ x + εx ε + 1 p exp(-1/(2x))x -2 dx.

is devoted to the proof of Theorem 2, which relies on an adaptation of Wald's method for proving the consistency of M -estimators. Some technical computations (proof of Lemma

4) involving regular variations theory are postponed to an Appendix.
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