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The influence of macrofaunal burrow spacing and diffusive
scaling on sedimentary nitrification and denitrification: An

experimental simulation and model approach

by Franck Gilbert1, Robert C. Aller2 and Stefan Hulth3

ABSTRACT

The influence of burrow spacing on sedimentary nitrification and denitrification was simulated

experimentally using sediment plugs of different thicknesses immersed in aerated seawater reser-

voirs. Different plug thicknesses mimic different distances between oxygenated burrow centers and

produce similar changes in aerobic–anaerobic reaction balances as a function of diffusive transport

scaling. The thicknesses used were roughly equivalent to transport scales (interburrow spacing) that

could be produced by burrow abundances of ;400 to 50,000 m22, depending on burrow lumen radii

(e.g., 0.05–1 cm). Following the exposure of anoxic sediment plugs to aerated water, an efficient

aerobic nitrification zone was established within the first ;2–3 millimeters of sediment. At

pseudo-steady state, the thinnest plug (2 mm) simulating highest burrow density, was entirely oxic

and the denitrification rate nil. Denitrification was stimulated in anoxic regions of the thicker plugs

(5, 10, and 20 mm) compared to the initial value in experimental sediment. Maximum nitrification

rates and the highest denitrification/nitrification ratio between oxic nitrification and adjacent

denitrification zones occurred for the intermediate plug thickness of 5 mm. Of the oxic/anoxic

composites, the thickest plug showed the least efficient coupling between nitrification/denitrification

zones (lowest denitrification/nitrification ratio). Both the thickness of the oxic layer and the total net

remineralization of dissolved inorganic N varied inversely with plug thickness. A set of diffusion–

reaction models was formulated assuming a range of possible nitrification kinetic functions. All

model forms predicted optimal nitrification–denitrification and ammonification–denitrification cou-

pling with relative oxic–anoxic zonation scales comparable to intermediate plug thicknesses

(5–6 mm). However, none of the commonly assumed kinetic forms for nitrification could produce

the observed NO3
2 profiles in detail, implying that natural sediment populations of nitrifiers may be

less sensitive to O2 than laboratory strains. Our experimental and model results clearly show that

rates of N remineralization and the balance between stimulation/inhibition of denitrification are

highly dependent on sedimentary biogenic structure and the particular geometries of irrigated burrow

distributions.
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1. Introduction
Sedimentary denitrification is one of the major components of the marine nitrogen cycle

(e.g. Seitzinger, 1988; Seitzinger and Giblin, 1996). Denitrification consumes dissolved
nitrate, remineralizes Corg, and exports gaseous nitrogen to the atmosphere (Knowles,
1982). Although an anaerobic process, denitrification has an antipodal interaction with O2
in sediments. Oxygen inhibits the enzymes of denitrification (Firestone et al., 1980) but
also stimulates sedimentary nitrification which usually provides the major source of NO3

2

for denitrification (Billen, 1982). Bioturbation of sedimentary deposits typically generates
close juxtapositions of oxic and anoxic microenvironments around biogenic structures and
strongly influences both nitrification and denitrification. There is often a general stimula-
tory effect of macrobenthic activity, and particularly bioirrigation, on sedimentary nitrifica-
tion and denitrification (Sayama and Kurihara, 1983; Kristensen and Blackburn, 1987;
Henriksen and Kemp, 1988; Pelegri et al., 1994; Mayer et al., 1995; Rysgaard et al., 1995;
Gilbert et al., 1998). Field measurements have demonstrated that denitrification rates can
also vary inversely with bioirrigation intensity at the highest irrigation rates (Berelson et

al., 1998). Direct comparison of the causes and magnitudes of reported stimulation (from
114 to 950%) or inhibition is virtually impossible because both the macrofaunal species
and the organism abundances are distinct to each study. Species-specific burrow properties
such as mucous secretions, burrow wall construction, or irrigation behavior are known to
affect nitrification and denitrification, and require characterization of individual species
(Aller et al., 1983; Kristensen et al., 1985, 1991; Mayer et al., 1995). In contrast, the likely
effects of population abundance or burrow spacing, and the corresponding changes in
transport-reaction structure, can in principle be isolated by geometrically simulating
variations in the distances between burrows.
A primary effect of irrigated tubes or burrows is to create diffusive sources or sinks for

pore water solutes within otherwise isolated portions of sedimentary deposits. Stagnant
burrows have no discernable effects on pore water distributions, and frequent irrigation is
required to maintain local oxygenated conditions and diffusive concentration gradients
between burrow lumen and surrounding sediment pore water (Aller, 1984; Kristensen,
1988; Boudreau and Marinelli, 1994). In order to examine the general impacts of irrigated
burrows and the associated macro-transport structure on nitrification and denitrification
independently of species-specific effects, we carried out an experiment in which plugs
filled with sediment were exposed continuously to oxygenated overlying water (e.g. Aller
and Mackin, 1989). Our experimental design was based on the concept that the characteris-
tic scales of diffusion, and thus transport–reaction patterns within the bioturbated zone of
muddy deposits, are determined in large part by the time-averages of size and effective
spacing of irrigated burrow structures (Aller, 2001). By simply varying plug thickness (L;
Fig. 1A), we simulated different spacings between irrigated burrows and the resulting
degrees of sediment oxygenation, thereby altering the relative extent of coupled nitrifica-
tion and denitrification zones, and mimicing changes in burrow density (Aller and Aller,
1998; Hulth et al., 1999).
Our experimental setup allowed us to simulate a wide range of effective burrow



Figure 1. (A) Schematic diagram of two idealized, identical burrow structures shown separated in
the axial plane at a particular time by a constant characteristic distance 2L. Light areas indicate
oxygenated zones, dark are anoxic. In reality, the distance 2L and axial orientation vary as a
complex function of space and time, however, the basic physical interactions between irrigation
centers are represented in the idealized geometry. (B) Idealized view perpendicular to axis of
hexa-net packed burrows or burrow structure microenvironments (a, b, x) having burrow lumen
radius r. In this case the orientation of the plane is parallel to the sediment surface in (A) but may
be thought as having an arbitrary orientation within a sedimentary deposit. Because sedimentary
solutes must achieve a concentration minimum or maximum at distance ;L (no net flux) between
identical structures, a characteristic diffusion scale L 5 (r 2 r) can be considered along the
segment t between any two burrow centers. This diffusive scaling within the plane applies roughly
to the swath of sediment D 5 2r sin (u) with a fractional variation around L of ;r(1 2 cos
(u ))/(r 2 r). Because irrigated microenvironments are never exactly identical, the scaling L may
lie away from the midpoint between any two burrow centers. (C) The effect of variable
interburrow spacing on the characteristic diffusion scale (L) can be simulated approximately by
sections of planar sediment exposed on one surface and with sealed bottoms (i.e., no net flux basal
condition). The scale D is not critical to examining the effect of scale L per se but is an indication
of spatial extent over which a given approximation applies (smaller as r/r 3 0). The planar
diffusion and one dimensional scale approximation to radial diffusion distributions becomes most
accurate as r/r 3 1. (D) Different thicknesses (lengths) of plugs were used in the present
experiments to mimic different time-averaged burrow spacings which might occur at various
locations within bioturbated sediments (L values are expressed in millimeters). The upper 2 mm of
plugs were divided at 1 mm intervals by use of stacked rings of 1 mm thickness, allowing rapid
accurate sectioning at time of sampling.



abundances from medium (;400 m22) to high density (;50,000 m22, e.g., Ronan, 1978;
Aller et al., 2002), depending on the exact burrow lumen radii (e.g., 0.05–1 cm). A
characteristic diffusive transport scale L resulting from a particular burrow abundance is
given approximately by (r 2 r), where r ; 1/=pN (N 5 burrow abundance per area)
and r 5 radius of the irrigated burrow center or lumen (Fig. 1). The use of a planar
transport geometry in our experimental manipulations does not exactly mimic the radial or
irregular diffusive coupling between reaction zones typically found around burrows or
between sectors of individual burrows, but it is sufficient to demonstrate the basic
principles involved (Fig. 1).

2. Materials and methods
a. Experimental procedure

Surface (0–2 cm) muddy sediment and overlying seawater were collected using a Ponar
grab at station P (;14 m) in central Long Island Sound, USA, during June 1997 (see:
Gérino et al., 1998; for station P description; salinity 24–28, silt-clay, ;2% organic C,
;3% CaCO3). All materials used in the laboratory for sampling, storage and chemical
analyses were precleaned with HCl and rinsed with double distilled water and seawater.
Experimental containers for holding sediment were made of sections of PVC pipes cut into
rings (two diameter sizes: small, 2.1 cm ID; large, 5.2 cm ID). First, 1, 3, 8 and 18 mm
length PVC rings were fixed on individual circular PVC base sheets. Then, one or two
additional 1 mm thick rings were stacked on the basal rings in order to obtain 4 groups of
sediment plugs having total thicknesses (lengths) of: 2, 5, 10 and 20 mm (Fig. 1B). A
second group of polycarbonate plug containers (2.85 cm ID) of equivalent total thicknesses
(lengths) was used for the measurement of denitrification activity only.
All plugs were filled with sediment that had been sieved through a 0.5 mm nylon mesh

(no added water) to remove macrofauna and homogenized by hand stirring under N2 in a
glove bag. Sets of plugs having the same thickness (single set 5 9 large PVC plugs, 1 small
PVC plug and 4 polycarbonate plugs; Fig. 2), were then submersed in large polycarbonate
reservoirs containing 15.4 l of 0.2-mm filtered seawater continuously purged with water-
saturated air. These plug sets were termed 2-OXIC, 5-OXIC, 10-OXIC, 20-OXIC respec-
tively, depending on thickness (2-, 5-, 10-, 20-mm). As a control, another reservoir without
sediment plugs (BLANK) was also filled with filtered and aerated seawater. Subsamples of
the experimental sediment were dried to constant weight at 60°C for determination of
saturated porosity.
Water reservoirs were continuously stirred by a centrally located magnetic stir bar at a

rate slightly below that necessary to suspend sediment (in order to minimize diffusive
boundary layers). Overlying water (;20 ml) from each container was periodically sampled
(after 0, 1, 3, 5, 7, 9 and 13 days) with a syringe and analyzed. After 13 days, plugs were
removed from reservoirs, sediment layers were sliced by sliding off individual rings of a
stack, placing the sediment into plastic syringes, and porewater separated from the
sediment (large plugs) by squeezing in individual syringe presses. There was no discern-



able compaction or expansion of sediment relative to starting thicknesses within individual
plugs. Pore water sampling and separations were completed within several minutes
following removal of individual plugs from water reservoirs. Pore water from particular

Figure 2. Schematic diagram of experimental setup. Inner diameters (I.D.) and numbers of plugs
used for the different measurements are indicated. Each container held a complete set of plugs
having a single overall thickness (14 plugs). The depth interval sampling scheme for pore water is
shown for each type of plug of a given overall thickness. The equivalent depth intervals from
several plugs having the same total thickness were combined into single samples for pooled
analysis. For example, the top 0–1 mm of sediment from 4 separate plugs in the 2 mm thick plug
container was combined into a single pooled sample. There were 2 such combined samples
(composed of 4 plugs each) representing the sampling of pore water from 8 plugs overall.



depth intervals in multiple plugs of the same length were combined as necessary to obtain
sufficient sample for analyses, resulting in 2 pooled replicates for each of the 1 mm
intervals and up to 4 replicates for the thicker basal sections (Fig. 2).

b. Chemical analyses: denitrification

Denitrification rates were assessed using the acetylene-blockage method. Sediment
subsamples (0.7 ml for the 2-mm thick plugs, 1 ml for the others) from duplicate
polycarbonate plugs were transferred into 5 ml tubes with 2 ml of seawater from each
corresponding reservoir. Seawater was supplemented with chloramphenicol (final concen-
tration: 1 g L21) to prevent new bacterial growth during incubation and to extend the
period of linear N2O accumulation (Tiedje et al., 1989). The tubes were sealed with rubber
stoppers and anaerobic conditions were obtained by flushing N2 through the tube for 2 min.
Acetylene, which inhibits the reduction of N2O to N2 (Balderston et al., 1976), was
injected in the gas phase (final pressure: 15 kPa) and the tubes were vortexed. Samples
were incubated in the dark at experimental temperature for 0, 1, 3, 5 and 8 h. After
incubation, each tube was fixed with 0.1 ml of 1 M HgCl2 solution to terminate reaction.
Nitrous oxide in the tubes was determined by gas chromatography (HP5890, Series II)

using an electron capture detector and an automatic injector (Dani HSS 86.50). The nitrous
oxide detection limit was 100 nM. Chromatographic operating conditions: oven tempera-
ture: 50°C; injector temperature: 150°C; detector temperature: 260°C. Nitrogen was used
as carrier gas (20 ml min21) for the ECD GC system.

c. Chemical analyses: oxygen, nutrients

The smaller PVC plugs were used for the determination of oxygen distribution using a
Clark-style combination microelectrode (Revsbech et al., 1980). The electrode was
standardized in seawater saturated with air or nitrogen at 22°C, and the zero value also
checked by insertion of the electrode deep into a separate container of anoxic sediment. A
gas exchange FIA-technique using conductivity detection as described by Hall and Aller
(1992) was used to determine ammonium concentrations. Concentrations of nitrite and
nitrate were determined using standard colorimetric methods (Strickland and Parsons,
1972) applied to a miniaturized flow injection system. Analytical precisions were generally
;2–5% SD and less than variability between plug samples.

3. Results
a. Overlying water N-compound changes with time

N-compound concentrations changed regularly both in magnitude and speciation as a
function of time in the different overlying water reservoirs (Fig. 3). Reservoirs were
continuously aerated and stirred. The basic relative patterns of DIN (NH4

1, NO2
2, NO3

2) in
each reservoir were the same. These relative changes consisted of an initial release and
rapid buildup of NH4

1, followed by progressive oxidation and successive conversion to
NO2

2 and NO3
2, and then a continued, but slowed buildup of total DIN, largely as NO3

2,



over the remainder of the experiment. The magnitude of DIN concentrations obtained in
each case depended directly on the quantity of sediment present in the reservoir, i.e. plug
thickness (Fig. 3). These general patterns are typical of the classically recognized
successions of DIN speciation observed during remineralization (ammonification) and
nitrification.
In detail: following initial exposure of oxygenated water to anoxic sediment plugs, NH4

1

concentrations increased sharply until the second day, reaching maxima of 4.38 to
13.90 mM for 2-OXIC and 20-OXIC respectively, and then decreased exponentially to
final concentrations after 13 days of ,0.04 (detection limit) to 1.94 mM, all lower than the

Figure 3. Nitrogen compound (NH4
1, NO2

2 and NO3
2) concentrations as a function of time in

overlying water reservoirs for the different sediment plug thicknesses.



starting value (2.5 mM; Table 1). Although total DIN continued to increase in the overlying
water over time, the initially released NH4

1 pools were progressively oxidized first to NO2
2

and then NO3
2, with the intermediate NO2

2 showing maximum concentrations during the
initial stages of conversion (approximately three days). Final concentrations ranged
between 0.03 mM (initial concentration; Table 1) and 0.5 mM. NO3

2 concentrations were
quite stable the first day and then continuously increased to reach final concentrations from
13.45 mM (5-OXIC) to 26.08 mM (20-OXIC) (Fig. 3). In the control container without
sediment (BLANK), final concentrations were 1.02, 0.4 and 4.01 mM for NH4

1, NO2
2, and

NO3
2, respectively.

b. Oxygen penetration patterns
Oxygen progressively diffused into the initially anoxic sediment plugs and reached

pseudo-steady state penetration depths. After the 13 d incubation, O2 profiles in the
sediments showed typical diffusive patterns with the O2 penetration decreasing inversely
with increasing sediment thickness (mean of 3–4 individual profiles) (Fig. 4A). For
example, the O2 concentration at 2 mm depth was 152, 54, 28 and 19 mM for 2-OXIC,
5-OXIC, 10-OXIC and 20-OXIC, respectively.

c. Sedimentary DIN-compound profiles
The sediment in all plugs was initially homogenized and had identical, vertically

constant concentrations of NH4
1, NO2

2, and NO3
2 (Table 1). These initial concentration

profiles changed rapidly following continuous exposure to oxygenated water. Oxic and
anoxic sediment zones were established, the relative scales of which depended on total
sediment thickness. In contrast to the 2 mm plugs, the partial penetration of O2 in the cases
of the 5, 10, and 20 mm plug sets resulted in varying relative thicknesses of oxic and anoxic
redox zones (Fig. 4B). At the time of final sampling, all N reaction patterns and
corresponding concentration distributions were expected to be at a pseudo-steady state (see
subsequent model calculations). The 2 mm plug set was completely oxidized, and the DIN
vertical distributions were characterized by low NH4

1 and high NO3
2 concentrations,

reflecting net nitrification throughout the entire plug and a net NO3
2 flux to the overlying

water (Fig. 5).
The surface of each of the thicker plug sets was clearly dominated by nitrification, as

indicated by maximum NO3
2 concentrations in either the upper 1 or 2 mm (Fig. 5). These

NO3
2 concentrations exceeded overlying water concentrations, demonstrating a diffusive

Table 1. Concentrations in the sediment and overlying water and sediment denitrification rate prior
to the open plug incubations (mean, n 5 2).

SNO3
2 1 NO2

2

(mM)
NO2

2

(mM)
NH4

1

(mM)
Denitrification rate

(mmol N2O L21 d21)
Porewater 1.5 0.6 640 37.7
Overlying water 0.0 0.03 2.5 —



flux of NO3
2 into overlying water. Basal anoxic sediment zones had lower NO3

2 concentra-
tions than overlying oxic zones, indicating downward diffusion of NO3

2 and net denitrifica-
tion. NH4

1 profiles demonstrated buildup at the bases of each plug set and obvious
depletion in the surface 1–2 mm, mirroring surficial NO3

2 increases. Averaged NH4
1

concentrations in plugs were all lower than the initial pore water NH4
1 concentration,

consistent with both diffusive loss of NH4
1 to overlying water during transient equilibration

conditions (Fig. 3), and also with the consumption of NH4
1 in the oxic zone during

sedimentary nitrification. The profiles of NH4
1 concentration varied regularly with plug

thickness (length), attaining the least overall concentrations in the 2 mm plug set and
highest in the basal regions of the 20 mm plugs.

d. Direct measures of sediment denitrification rates
Directly measured denitrification rates showed differences with the plug thickness (Fig.

6). The rate measured in the thinnest, completely oxic plug (less than 0.5 mmol.
N2O L21 d21) showed a decrease with respect to the initial homogenized sediment rate
(37.7 mmol. N2O L21 d21, immediately following homogenization). In the remaining plug
sediments, denitrification rates in the anoxic zone were increased ;4 to 10 times the initial
bulk value (Table 1).

Figure 4. (A) Measured O2 penetration depth (mean 6 SD) and (B) fraction of total plug thickness
that is oxic as a function of plug thickness (L) (dotted line represents interpretive pattern).



e. Mass balance estimates of N remineralization
Minimum estimates of total net N remineralization rates in the individual plug sets can

be obtained from the change between the total mass of DIN present initially and that
present at the end of the experiment in each plug set microcosm. Losses of N by
denitrification, formation of dissolved organic N during decomposition, or transient uptake
into biomass in this case are ignored. The minimum rate of dissolved N production (RN),
assumed equivalent to the ammonification rate over a time interval Dt, is:

RN 5 @~Now~Dt! 1 Npw~Dt!! 2 ~Now~0! 1 Npw~0!!#/VpwDt (1a)

Figure 5. Nitrogen compound concentration (mean 6 SD) profiles in the different sediment plugs at
the end of experimentation. Top: NH4

1, middle: NO2
2, and bottom: NO3

2. For the 0–1 and 1–2 mm
layers, n 5 2, for the 2–5 mm layer, n 5 3, and for the 2–10 and 2–20 mm layers, n 5 4.



Now~t! 5 Cow~t!Vow (1b)
Npw~t! 5 Cpw~t!~1 1 K!Vpw (1c)

Where: Now(t) 5 moles of DIN in overlying water at time t
Npw(t) 5 moles of DIN in pore water or reversibly adsorbed at time t
Cow(t) 5 concentration of DIN in overlying water at time t
Cpw(t) 5 concentration of DIN in pore water at time t

Vow 5 volume of overlying water (15.4 l)
Vpw 5 volume of pore water

The concentrations of DIN were summed over NH4
1, NO2

2, and NO3
2 measured in

overlying water (Fig. 3) and in plugs (averages used; Fig. 5) at the beginning and end of the
experiment. Ammonium pore water concentrations were multiplied by the factor (1 1 K),
where K 5 reversible adsorption coefficient (dimensionless) to account for adsorption
equilibrium with sediment particles. The volume of pore water for each plug set was
estimated from the total plug surface exposed (224 cm2) in each microcosm, plug set
thickness, and measured sediment porosity (porosity, w 5 0.774, assuming particle density
of 2.6 g cm23). The ammonium adsorption coefficient is K* 5 1.21 cm3 g21 (NH4

1

displacement by 2 N KCl) for the experimental sediment, giving a K 5 0.91 (Green et al.,
1998). The resulting minimum net N production estimates relative to pore water volume
are: 616, 79, 47, and 7.3 mM d21 for 2 mm, 5 mm, 10 mm, and 20 mm thick plugs
respectively when averaged over the course of the experiment.

f. Diffusive flux estimates of reaction rates
Minimum estimates of diffusive fluxes, Jdiff, of NO3

2 within sediment plugs and
between sediment and overlying water can be made using Fick’s first law (Berner, 1980):

Jdiff 5 2wDs~]C/]z!. (2)

Figure 6. Denitrification rate (mean values 6 minima and maxima) in the different sediment plugs
expressed as a function of the simulated burrow density. The illustrative calculation of the burrow
density as a function of the plug thickness (L) was made using an arbitrary internal burrow radius
of 5 mm. Dotted curve represents interpretive pattern.



Flux estimates were obtained by assuming linear concentration gradients between adjacent
sampling intervals and by assigning measured concentrations to the mid-point of sample
intervals or to the sediment surface in the case of overlying water (assuming no significant
diffusive boundary layers). The whole sediment diffusion coefficient for NO3

2 was
estimated from the free solution value, Do, corrected for temperature (T 5 22°C), salinity,
and tortuosity using the Archie-type relation: Ds ; w2Do (Li and Gregory, 1974; Ullman
and Aller, 1982; Boudreau, 1997). Total nitrification fluxes were calculated from the sum
of the upward and downward diffusive fluxes supported by sedimentary NO3

2 gradients.
Denitrification was defined from this standpoint as the total flux of NO3

2 into sediment. The
5 mm plug had the highest net nitrification fluxes, the highest denitrification flux, and the
highest ratio of denitrification to total nitrification (Fig. 7). The thin plug (2 mm) supported
net NO3

2 fluxes comparable to the thickest sediment layers despite substantially lower
volume of reacting material. Increased total net DIN remineralization as sediment
thickness decreases is consistent with the DIN mass balance calculations made previously.

Figure 7. Comparison of NO3
2 and denitrification flux estimates as a function of plug thickness,

using either linear gradient approximations (solid symbols) to measured concentrations between
sample intervals or a diffusion reaction model (open symbols) having a zone of constant
nitrification overlying a denitrification zone (Eq. 3, text, Figure 8). (A) Flux of NO3

2 into overlying
water as function of plug thickness. (B) Flux of NO3

2 into underlying sediment (denitrification).
(C) Total sedimentary nitrification flux (total NO3

2 production). (D) Ratio of denitrification to total
nitrification. In all cases optimal (maximum) rates and maximum relative denitrification occurs in
the 5 mm plug.



g. Diffusion reaction models–average reaction rates
Estimates of the average reaction rates over specific intervals of plug sediments were

also obtained from a simple two zone transport-reaction model evaluated at steady state
(Vanderborght and Billen, 1975; Billen, 1982; Jahnke et al., 1982). The small thicknesses
of the plugs, the N-compound concentration patterns in the overlying water, and sampling
time should have ensured that distributions in the plugs were at a pseudo-steady state (see
subsequent section). In each plug set, it was assumed that an upper zone of net nitrification
overlaid a zone of net denitrification. Nitrification rate was approximated as constant over
the oxygenated interval depth L1, and denitrification was taken as a first order reaction with
respect to NO3

2 concentration. The model equations and boundary conditions are:
Zone 1 (nitrification) ~0 # z # L1!: Ds~]2C1/]z2! 1 RNO 5 0 (3a)

Zone 2 (denitrification) ~L1 # z # L!: Ds~]2C2/]z2! 2 kdNC2 5 0 (3b)
Boundary conditions: z 5 0, C1 5 CT; z 5 L, ]C2/]z 5 0 (3c)

z 5 L1, C1 5 C2, ]C1/]z 5 ]C2/]z
The value of L1 for each plug group was set equal to the base of the sample interval in
which the maximum NO3

2 concentration was measured. We found that if the entire
measured penetration depth of O2was used (see subsequent discussion), it was not possible
to obtain even moderately accurate fits to the NO3

2 distributions if a constant nitrification
rate were also used. The analytical solution C( z) to Eqs. 3a–c was integrated (averaged)
over the finite intervals 0–1 mm, 1–2 mm, and 2 2 L corresponding to the sampling
depths. Optimal values of RNO (zeroth order nitrification rate) and kdN (denitrification rate
constant) were then estimated from simultaneous best fits of the integral solutions to the
average NO3

2 values using the Levenberg-Marquardt method (Table 2; Fig. 8). The
nitrification and denitrification fluxes so obtained were consistently higher than those

Table 2. Model flux values: linear gradient and constant nitrification rate estimates*.

Plug thickness,
L2 (mm)

Nitrification
zone thickness,

L1 (mm)
Denitrification
rate constant, kd

(d21)
SNO3

2 flux**
(mmol cm22 d21)

Denitrification
flux

(mmol cm22 d21)
2 (gradient) 0.47 0
2 2 0 0.53 0
5 (gradient) 1.14 0.28
5 1 60.4 1.84 0.45
10 (gradient) 0.58 0.077
10 2 10.1 0.75 0.17
20 (gradient) 0.68 0.17
20 1 1.7 0.50 0.052
*Model equation 3.
**Sum of upward and downward flux of NO3

2 from production zone.



derived from the simple linear gradient approximations using equation (2), but clearly
showed the same relative reaction rate patterns (Fig. 7), that is, maximum rates and optimal
(e.g., maximum ratio of denitrification/nitrification) coupling between oxic and anoxic
zones in the 5 mm plugs. The whole sediment NO3

2 diffusion coefficient in each case was
estimated as described previously.

h. Coupled models and kinetics of nitrification/denitrification
The distribution patterns of O2, NO3

2, and NH4
1 were further examined using more

sophisticated coupled transient and steady state diffusion–reaction models in order to
evaluate the assumptions of steady state, different possible concentration dependent forms
for nitrification reaction kinetics, and most importantly in the present cases, the scale–
dependent reaction balances during the experiment. For example, one characteristic of the
NO3

2 (and NO2
2) profiles that cannot be reproduced well by a constant, average nitrification

rate as used above, is the near surface (0–1 mm) maximum found in the 5 and 20 mm plugs
(Figs. 5, 6). Three different kinetic functions for nitrification, RNO3, were considered here:

RNO3 5 vNO3~O2!~NH4
1!/@~~O2! 1 KO2,NO3!~~NH4

1! 1 KNH4,NO3!# (4a)
RNO3 5 kNO3~O2!~NH4

1! (4b)
RNO3 5 k*NO3~O2!2~NH4

1! (4c)
The hyperbolic kinetic Eq. (4a) is based on the experimentally measured responses of

pure cultures of ammonia oxidizing and nitrifying bacteria to varying concentrations of O2
and NH4

1 (Brion and Billen, 1998) (NH4
1 represents total dissolved ammonia species in all

Figure 8. NO3
2 pore water profiles in plugs (from Figure 5; mean 6 SD), overlying water is plotted

as an open triangle. The continuous curves represent diffusion reaction model fits using equation 3
(surface zone of constant nitrification rate over interval L1, first order denitrification in underlying
zone).



cases). The constants vNO3, KO2,NO3, and KNH4,NO3 correspond to maximum reaction rate
and half saturation constants for O2 and NH4

1 respectively. Maximum reaction, vNO3,
depends directly on local biomass (Brion and Billen, 1998). The second order kinetic form
with fixed rate constant kNO3, Eq. (4b), was successfully employed by Van Cappellen and
Wang (1996) as a likely approximation for overall nitrification kinetics in surface
sediments. Eq. (4c) was also utilized here as a possible phenomenological alternative
consistent with overall reaction stoichiometry but without a previous observational basis.
The overall model formulation follows the hyperbolic oxidant consumption and serial

inhibition approach of Rabouille and Gaillard (1991) and Van Cappellen et al. (1993), so
that for the dissolved species set (i), (i 5 O2, NO3

2, NH4
1):

~1 1 Ki!]~i!/]t 5 Ds,i~]2~i!/]z2! 1 SRi (5)
with:

SRO2 5 2sO2vC(O2)/(KC,O2 1 (O2)) 2 RNO3
SRNO3 5 RNO3 2 sNOvC(NO3)(InhibitO2,NO3)/(KC,NO3 1 (NO3))
SRNH4 5 sNHvC 2 RNO3

vC 5 maximum organic C oxidation rate
sO2, sNO, sNH 5 stoichiometric reaction ratios O2/C, NO3/C, and NH4

1/C
InhibitO2,NO3 5 KI,O2,NO3/(KI,O2,NO3 1 (O2))

KI,O22NO3 5 inhibition constant for O2 on denitrification
Ki 5 reversible adsorption coefficient (50 for O2, NO3

2)
Qualitatively, this set of coupled equations accounts for diffusive transport, the uptake of

O2 by aerobic respiration and nitrification, the uptake and production of NO3
2 by

denitrification and nitrification, and the production and consumption of NH4
1 during

ammonification and nitrification. The inhibition of denitrification by aerobic activity was
incorporated in the inhibition function, InhibitO22NO3, with KI,O22NO3 5 1 mM as an
approximation (Humphrey, 1972; Boudreau, 1997). The equation set was evaluated using a
fully explicit finite difference routine for the initial and boundary conditions:

t 5 0, 0 # z # L, ~i! 5 ~i!0; t . 0, z 5 0, ~i! 5 ~i!T
z 5 L, ]~i!/]z 5 0

Numerical solutions were stable and mass balances maintained over the range of evalua-
tion. Whole sediment diffusion coefficients were estimated in each case from the free
solution values at 22°C assuming the Archie-type relation given previously.
Examples of steady state distributions of O2, NO3, and NH4

1 for a 5 mm plug are shown
in Figure 9. In all cases, model examples assume: vc 5 3.5 mM d21; sO2, sNO, sNH 5 1,
0.8, and 0.2; KC,O2 5 10 mM; KC,NO3 5 10 mM; and a reversible adsorption constant
KNH4 5 0.91 (Green et al., 1998). Overlying water concentrations were fixed at 240, 13.5,
and 0 mM for O2, NO3, and NH4

1 respectively. Model I assumes nitrification kinetics
(RNO3, Eq. 4a) with vNO3 5 50 mM d21; KO2,NO3 5 20 mM; KNH4,NO3 5 100 mM (half



saturation constants after Brion and Billen, 1998). Model II assumes overall second order
kinetics (RNO3, Eq. 4b) with kNO3 5 30 mM21 d21. Model III assumes nitrification
kinetics second order in O2 and first order in NH4

1 (RNO3, Eq. 4c), with k*NO3 5

0.5 mM22 d21. These values were chosen to produce simultaneous approximations to the
profiles primarily for purposes of illustration of basic principles and relative behavior
rather than for optimal fits to individual data sets.
Steady state (pseudo) was achieved in ;0.2 (L 5 2 mm) to ;4 days (L 5 20 mm) for a

wide range of potential reaction rates that were broadly constrained by observed concentra-
tion distributions. The use of a constant overlying water boundary condition in model
calculations is therefore a good approximation given the slow rate of change in water
properties over the last several days of the experiment (Fig. 3). A primary conclusion of
these calculations is that it was not possible to simulate NO3

2 maxima in the upper 0–1 mm
of plugs with any combination of reaction rates using forms of Eq. (4) that were
simultaneously consistent with O2, NO3

2, and NH4
1 distributions (and HCO3

2 distributions,
Aller et al., in preparation) and with the magnitude of observed fluxes. The NO3

2

distributions require a far higher nitrification rate at the sediment–water interface and also
require maximum nitrification to occur at a much higher average O2 than can be accounted
for by the assumed kinetic functions. These results are consistent with the need to restrict
nitrification in the model Eq. (3) to intervals less than the penetration depth of O2.
The model calculations (Eq. 4) using a fixed overall ammonification rate (sNHvC) in all

cases demonstrate that the relative rates of nitrification/ammonium production, denitrifica-
tion/nitrification, denitrification/ammonium production, and nitrification/total oxygen flux
should vary regularly with plug thickness at steady state regardless of the assumed kinetics
of nitrification (Fig. 10). Because the overall ammonification rate is constant (volumetric),
the steady flux of NH4

1 into the oxic zone increases linearly with plug thickness. The
proportion of the oxygen flux utilized by nitrification increases, and the oxygen penetration

Figure 9. Example steady state model profiles of O2, NH4
1, and NO3

2 for the 3 nitrification kinetic
functions outlined in text. The subsurface NO3

2 maximum cannot occur in the surface 0–1 mm
interval without major changes in kinetic parameters, additional reactions not accounted for, or
relative rates of remineralization (e.g. increased N/C ratio).



depth decreases, as the flux into the oxic zone of reduced metabolites (solely NH4
1 in these

model considerations) from the anoxic zone, increases with sediment thickness (Figs. 10,
11). Total nitrification fluxes increase directly with plug thickness (results not shown),
eventually reaching a maximum determined by the maximum supply of O2, the specific
nitrification kinetics, and competition with additional reductants entering the oxic zone.
The planar models predict that about ;30–50% of the remineralized N should be
denitrified, depending on the exact reaction kinetics and relative scaling of the redox zones.
Optimal couplings between nitrification, denitrification, and ammonification (highest
denitrification/nitrification; highest denitrification/ammonification) are achieved at sedi-
ment scales between 5–10 mm for the general remineralization rates in the experimental
sediment.

Figure 10. Model calculations demonstrating steady state reaction balances as a function of both
diffusion scale and three different nitrification kinetic functions (Eqs. 4a.b.c) in planar geometries
comparable to the experimental sediment plugs. The maximum Corg remineralization rate is fixed
at 3.5 mM d21 and the N/C ammonification ratio at 0.2 (see text). Model I assumes hyperbolic
nitrification kinetics (Eq. 4a), Model II first order kinetics in both O2 and NH4

1, and Model III
second order in O2, first order in NH4

1 (see text). Maximum denitrification relative to nitrification
and ammonification occurs between 5–6 mm scaling. Note the proportion of the O2 flux utilized
for other than Corg oxidation increases steadily with sediment thickness and becomes progres-
sively dominated by reoxidation of anaerobic metabolites.



4. Discussion
Our experimental and model results demonstrate that small changes in the thicknesses of

adjacent oxic–anoxic zones result in significant differences in both the absolute and
relative rates of nitrification and denitrification in sediments. The scale-dependent changes
in redox reactions in our experimental sediment plugs presumably mimic to various extents
those attained in portions of bioturbated deposits as any two oxygenated burrow centers
move closer (thin plugs) or farther apart (thick plugs) (Fig. 1). It is, therefore, clear that
nitrification–denitrification interactions in the bioturbated zone are a function of burrow
spacing, size (radii), and nearest neighbor diffusive interactions in addition to local
sediment properties determined by species-specific activities (Fig. 4).

a. Nitrification
The primary source of NO3

2 for sedimentary denitrification is normally NO3
2 formed

within the oxic sediment zone adjacent to the oxygenated water boundary (Billen, 1982).
The rate of NO3

2 formation depends on the diffusive supply of O2 and NH4
1, nitrification

kinetics (including specific properties of bacterial populations), and competition between
various reductants (e.g. Corg, DOC, NH4

1, H2S, Fe11, Mn11) for O2. The diffusive flux of
NH4

1 increases linearly with plug thickness whereas the O2 flux reaches a maximum value
limited by overlying water concentration and diffusive transport (Jørgensen, 2001).
Nitrification rates should therefore increase with plug thickness (burrow spacing) and
likely plateau (saturate) or begin to decrease, depending on the exact competitive relations
of NH4

1 with additional reductants supplied to the oxic zone. Overall, nitrification should
consume a progressively greater proportion of the O2 flux as anoxic zone thickness
increases (Fig. 10).

Figure 11. Example O2 penetration depth ($0.1 mM concentration depth) predicted by Model 2
nitrification kinetics (Eq. 4b, 1° O2, 1° NH4

1) as a function of sediment thickness (Model values as
in Fig. 8, 9 and text). If higher levels of O2 concentration are used to define penetration depth (e.g.
$10 mM), similar relative patterns are obtained but the linear portion is contracted and maximum
penetration depth occurs at a smaller L.



The experimental results show a distinct maximum in nitrification rates in the 5 mm
plugs compared to thinner (2 mm) or thicker plugs (10, 20 mm) (Fig. 7). Whereas the
increase of nitrification rate in the 5 mm plug relative to the thinner 2 mm plug is expected
from the increased NH4

1 flux from the anoxic zone, the large decrease of nitrification rate in
plugs with larger ratios of anoxic/oxic zone thicknesses (i.e. the 10 and 20 mm plugs) must
reflect: (1) higher fluxes of NH4

1 into the oxic zone of the 5 mm plug relative to thicker
plugs; and/or, (2) increased fluxes of competing reductants into the oxic zone of the thicker
plugs.
There is strong previous experimental evidence that increased transport efficiency of

solutes and decreased metabolite build-up affect net remineralization rates in sediments. In
completely anoxic sediment, net remineralization rate, as measured by NH4

1 release,
increases as diffusive scale (plug thickness) and metabolite buildup decrease (Aller and
Aller, 1998). Our present results are consistent with those findings in that the maximum in
nitrification rate in the 5 mm plugs suggests an enhanced net flux of NH4

1 into the oxic
zone relative to thicker plugs despite the greater potential source in the latter. As noted
earlier (Eq. 1), the release of inorganic N from plugs into the overlying water reservoirs
also indicate increased net remineralization of N as plug thickness decreased. Thus, at least
a portion of the maximum nitrification rate observed at the intermediate plug scale length
(5 mm) may reflect an optimal balance between diffusive supply of O2 and an enhancement
of net ammonification rate in the anoxic zone as overall diffusive scale decreases.
Regardless of whether the net remineralization rate (volumetric) is a function of

transport scale, the steady flux of reduced solutes into the oxic zone must eventually
increase as total anoxic zone thickness increases (integration of the volumetric rate with
depth). As a result, the oxic zone becomes thinner as overall plug thickness increases, and
the region within which aerobic nitrification can occur contracts (Figs. 4, 11). This
contraction of the oxic zone must accentuate competition between possible reductants for
O2 and may further contribute to the decrease in net nitrification as the ratio of anoxic/oxic
zone volumes increases.
The measured NO3

2 distributions are consistent with the concept that competition
between reductants can be an important influence on sedimentary nitrification. We
observed the maximum net nitrification in regions of relatively high O2 near the sediment-
water interface (Figs. 4, 5) and not at the redoxcline where O2 is low and NH4

1 high. These
observations have been confirmed by additional, very detailed transient state experiments
similar in design to the present experiments (Eriksson and Aller, 2001). The shift of the
highest NO3

2 concentrations toward the sediment-water interface (first sample interval)
could not be reproduced by any of the nitrification or remineralization model kinetic
functions (Eqs. 3, 4) used here, when distributions were also constrained by the O2
penetration depth and NH4

1 profiles (i.e. remineralization rate). Model fits using a simple
constant nitrification rate (Eq. 3; Fig. 8) are not accurate unless O2 penetration depths (i.e.
nitrification zone) are restricted to intervals ,0.5 3 the actual value, for example 1 mm
rather than 3 mm (Fig. 8; plug 5 mm). These findings suggest that, for example, the O2 half
saturation constant (Eq. 4a) derived from laboratory studies of pure cultures (Brion and



Billen, 1998) is actually far higher (e.g. .100 mM compared to ;10–20 mM) in natural
sediments with mixed populations and competing reactions. It was for this reason that a
second order kinetic dependence on O2 concentration (Eq. 4c), which shifts maximum
nitrification rates toward higher O2, was also utilized as a possible kinetic form in our
calculations. The functional ecological effect of a shift of nitrification to higher O2 is to
decrease reaction competition with other reductants produced during anaerobic metabo-
lism.
Our data and models show that for a variety of reasons, sedimentary nitrification is a

strong function of both the absolute and relative scaling of adjacent oxic and anoxic zones.
A maximum rate of nitrification is achieved under particular spatial scales that allow for
optimal balances between O2 flux, NH4

1 production rates in adjacent oxic/anoxic zones,
and the fluxes of competitive metabolites into the oxic zone. These optimal nitrification
conditions were found in the present case for diffusive transport scales typically observed
in the bioirrigated zone, equivalent to ;1 cm between oxygenated boundaries (or ;5 mm
half-distance between burrows).

b. Coupled nitrification–denitrification
As in the case of nitrification, a number of factors determine the rate of denitrification

and the coupling of reactions between oxic and anoxic zones. Coupling between zones
consists of the flux of NH4

1 and reduced metabolites from the anoxic into the oxic zone,
and the return flux of NO3

2 from the oxic into the denitrification zone. The distance
between the oxygenated overlying water boundary (irrigated burrow center) and the
reflective boundary at the base of the plugs (approximately midway between irrigated
burrow centers) controls the overall transport scale and the relative abundances of oxidants
(O2, NO3

2) and reductants (NH4
1). Given the remineralization rates in the experimental

sediment, the sediment became fully oxygenated and denitrification was hindered by O2
for sediment thicknesses ,5 mm (e.g., Payne, 1976; Kapralek et al., 1982) (Figs. 4, 6, 11).
As sediment thickness increased to ;5 mm, nitrification increased to a maximum for the
reasons discussed previously. Denitrification varied in direct proportion to nitrification,
also reaching an optimum (maximum) rate in the 5 mm thick plug (Fig. 6).
Regardless of whether net remineralization rates (NH4

1 production) increase with a
decrease in overall diffusive transport scale, changes in the relative rates and coupling of
reactions between zones must occur. Model calculations demonstrate that the proportion of
denitrification/nitrification and denitrification/ammonification in plugs first reach maxima
and then decrease as anoxic zone thicknesses increase (Fig. 10). Nitrification consumes a
progressively larger proportion of the O2 flux as overall sediment thickness increases, but a
larger proportion of total NH4

1 production (flux) escapes as nitrification kinetics in the oxic
zone become saturated (Fig. 10). The decrease in denitrification with increasing plug
thickness .5 mm also reflects the fact that a greater proportion of the NO3

2 formed is lost
into the overlying water as the oxic zone contracts and the NO3

2 maximum moves closer to
the sediment-water interface. For the present illustrative calculations, we assumed that
reaction kinetic parameters such as reaction rate constants (e.g. kNO3, Eq. 4b) do not



change with overall scale (i.e. are not a function of metabolite inhibition of net remineral-
ization, competition between reductants for O2, etc.). The dependence of reaction balances
on diffusion scale are even more accentuated if net remineralization rate (volumetric)
varies inversely with thickness and competition between reductants for O2 are considered.
Therefore at a given remineralization (ammonification) rate there are particular scales of

oxic and anoxic zones that produce maximum rates of reactions and maximum efficiency
of reaction coupling between zones (e.g., maximum denitrification/nitrification, maximum
denitrification/ammonification). In the case of denitrification, for example, the penetration
of NO3

2 into underlying sediment becomes a progressively smaller proportion of the total
anoxic region as plug thickness increases. The simultaneous contraction of the nitrification
zone with plug thickness accentuates this proportional decrease. If denitrification is
assumed to be a first order reaction in NO3

2, (Eq. 3b), the lengthscale of NO3
2 penetration

into the anoxic zone is ;=Ds/kdN. Thus, increasing the thickness of the anoxic zone
beyond that scale does not optimally couple ammonification and nitrification to increased
denitrification.

c. Extrapolation to the bioirrigated zone and natural conditions
For the experimental sediment used here, maximum rates and optimal coupling between

aerobic and anaerobic reactions occurred in planar geometries for sediment thicknesses of
;5 mm. This overall scale would correspond roughly to evenly spaced burrow structure
abundances of ;3000–11,000 m22, depending on the radius of the oxygenated burrows
involved (e.g., r 5 0.05–0.5 cm). For smaller and larger thicknesses (diffusive length-
scales), a combination of factors decreased the overall efficiency of coupling between
zones. The exact scaling of interactions between reactions in adjacent oxic and anoxic
zones is affected by radial geometries, such as typically characterize the regions around
irrigated burrows, and can only be approximately simulated by planar geometries (Aller,
1988, 2001; Fig. 1). In addition, the effective scaling between oxygenated burrow
microenvironments is also determined by various aspects of burrowing behavior, including
burrow generation rates, burrow longevity, and irrigation frequency (burrow lumen
boundary conditions). For example, active burrowers or tube-builders can produce en-
hanced effects at lower population densities than sedentary species (Woodin and Marinelli,
1991). Even for sedentary species, burrow size, orientation, and spacing are commonly
highly variable locally and change with time. Statistical distributions of community burrow
patterns in space and time are therefore most properly considered in quantitative models of
average transport-reaction geometries (Gilbert et al., 1995; Furukowa et al., 2001;
Koretsky et al., 2002).
There are also other, theoretically possible, sedimentary nitrification and NO3

2 reduction
reactions which may be affected by biogenic transport processes and which were not
included in our considerations. For example, anaerobic nitrification can apparently occur
through aMn-oxide reduction pathway in which the flux of Mn-oxide is largely determined
by bioturbation (Luther et al., 1997; Hulth et al., 1999; Anschutz et al., 2000). The NO3

2

profiles in basal regions of plugs and their departure from the simplest model predictions in



the present experiments hint at the occurrence of such anaerobic nitrification reactions
(Fig. 7). The reduction of NO3

2 by alternative reductants such as NH4
1 may also occur and

further complicate reaction kinetics and zonal coupling (Thamdrup and Dalsgaard, 2000).
The quantitative results derived from this study should not be directly extrapolated

without additional modifications to natural bioturbated deposits. For example, species-
specific characteristics such as mucus secretion, particle selection, bioirrigation activity
patterns, and additional factors such as Corg flux to the sediment surface, are important
controls on sedimentary redox reactions. Our experiments did not incorporate interstitial
advection of pore water that can occur around biogenic structures in highly permeable
sands (Huettel and Webster, 2001). The possible roles of meiofauna in altering reaction
rates and local transport were also not explicitly examined (e.g., Reichelt et al., 1991). Our
experiments and models clearly demonstrate; however, that whatever the burrowing
organisms involved, the balance between stimulation/inhibition of denitrification and N
remineralization is highly dependent on burrow or irrigated microenvironment distribution
and associated diffusion–reaction structure. A greater effort to statistically document
geometric relations (scaling distributions) between oxic–anoxic zones within bioturbated
deposits is clearly required for quantitative interpretation and predictive modeling of
sedimentary N cycling.

5. Conclusions
Irrigated burrow structures produce complex patterns of oxic–anoxic microenviron-

ments in the bioturbated zone.
A major property determining the absolute and relative rates of sedimentary redox

reactions such as nitrification–denitrification is the characteristic transport scale set by
burrow lumen size and the spacing of oxygenated burrow centers.
The dependence of coupled redox reactions such as nitrification–denitrification on

oxic–anoxic zonal scaling around and between burrows can be simulated in part by plugs
of variable sediment thickness exposed on one surface to oxygenated water. For a given
remineralization rate (reactive Corg), an optimal scaling exists which simultaneously
maximizes nitrification, denitrification, the ratio of denitrification/nitrification, and the
ratio of denitrification/ammonification.
Common size and abundance ranges of infaunal communities can apparently readily

achieve optimal reaction scalings for nitrification–denitrification.
The in-situ kinetics of nitrification in the oxic zone of organic rich sediments are not well

constrained by presently accepted relationships, implying that natural populations of
nitrifiers must be utilized in future kinetic studies of the dependence of aerobic nitrification
on O2, NH4

1, and the simultaneous presence of multiple anaerobic metabolites.
Redox reaction coupling during the sedimentary cycling of N in the bioirrigated zone

has the potential for far greater complexity than has been commonly appreciated.
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