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This experimental study quantified and compared particle-mixing and solute transport by the polychaetes

Marenzelleria neglecta (2 g ww, 3200 ind.m−2) and Hediste diversicolor (2 g ww, 800 ind.m−2) in Baltic Sea

sediments. Particle tracers (luminophores) were added to the sediment surface and their vertical distribution

in the sediment was measured after 10 d. The rate of particle mixing was quantified using a gallery-diffusion

model calculating the biodiffusion coefficient Db and the non-local transport parameter r. Bioirrigation was

measured by adding an inert solute tracer (bromide) to the overlying water 1, 1.5 and 2 d before the end of

the experiment, and quantified by calculating the net bromide flux and fitting the bromide profiles to a 1D

diffusion model providing an apparent biodiffusion coefficient Da. The two polychaete worms displayed

similar particle-mixing and solute transport efficiencies (based on total biomass) despite different modes of

bioturbation. However, H. diversicolor was a more efficient particle-reworker and M. neglecta a more efficient

bioirrigator, on an individual level. H. diversicolor buried a higher percentage (13%) of luminophores below

the top 0.5 cm surface layer than M. neglecta (6%). Db did not differ between the two species

(2.4×10−3 cm2 d−1) indicating a similar rate of diffusive mixing of the top sediment, however, the non-

local transport parameter r was 2.5 y−1 for H. diversicolor and zero for M. neglecta, suggesting no significant

particle-transport below the biodiffusive layer by M. neglecta. The average individual net bromide fluxes

obtained were ca. 0.01 mL min−1 for H. diversicolor and 0.003 mL min−1 for M. neglecta, corresponding to an

area-specific rate of ca. 12 L m−2 d−1 at the used densities. Da did not differ between the two polychaetes,

suggesting a higher individual solute exchange efficiency of M. neglecta considering the much higher

ventilation rates reported for H. diversicolor than for Marenzelleria sp. The ongoing colonization of Baltic Sea

sediments byM. neglecta at high densities may thus lead to an enhanced soluble release of both nutrients and

contaminants. These results add information to the understanding of the potential effects of the invasion of

M. neglecta on sediment biogeochemistry when competing with and/or replacing native species.

1. Introduction

Benthic invertebrates play a key role in sustaining important

aquatic ecosystem functions at the sediment–water interface. Biotur-

bation (i.e. particle reworking and bioirrigation) by benthic organisms

mix and transport particles and solutes in the upper sediment layer

and across the sediment surface, triggering organic matter mineral-

ization, nutrient regeneration and trace element cycling (Aller, 2001;

Kristensen andHansen, 1999). The effects of bioturbation on sediment

biogeochemistry have been shown to be highly species-specific, and

can be linked to particular feeding and burrowing strategies (Francois

et al., 2002; Quintana et al., 2007). It is therefore of interest to

characterize and quantify the bioturbation efficiency of individual

species for a better prediction and understanding of processes such as

cycling of nutrients and contaminants in the sediment compartment.

The brackish Baltic Sea, owing to its relatively young age and

strong salinity gradient, has low species diversity and is hence par-

ticularly vulnerable to the invasion of new species (Leppäkoski et al.,

2002). Since the 1980s, three sibling species of the polychaete genus

Marenzelleria (Polychaeta, Spionidae) have successfully established

themselves in the Baltic Sea and completely changed the benthic

community structure in many areas (Orlova et al., 2006). Ecological

implications of this invasion are still not well understood, although

several studies have suggested a changed nutrient and contaminant

dynamics in areas now dominated by Marenzelleria spp. (Hedman

et al., 2008; Hietanen et al., 2007). Marenzelleria spp. are surface

deposit-feeders creating J-shaped mucus-lined burrows down to

15 cm or more (Zettler et al., 1995). In the Baltic Sea they inhabit both
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shallow sandy substrates as well as deeper more muddy sediments

at abundances ranging from a few hundred individuals per m2 up

to 39000 ind.per m2 (Kube et al., 1996). There is little information

available on the mode and efficiency of bioturbation by the three

Marenzelleria species. Quintana et al. (2007) quantified particle

reworking and bioirrigation by M. viridis, and showed that it

transported both particles and solutes into the sediment more

efficiently than the polychaete Heteromastus filiformis. Recently,

they also described the mechanistic mode of burrow ventilation by

M. viridis (Quintana et al., 2011). Experimental studies on the effect of

bioturbation by Marenzelleria neglecta on the fate of contaminants

(Granberg et al., 2008; Hedman et al., 2008) have suggested little

mixing of sediment particles but an important transport of solutes

(i.e. little transport of particle-associated contaminants compared to

dissolved contaminants).

In shallow coastal areas Marenzelleria spp. are competing with

the common ragworm Hediste diversicolor (Polychaeta, Nereidae).

H. diversicolor inhabits muddy to sandy sediments down to ca. 15 m

depth at densities ranging from 40 to 5000 ind.m−2 (Rasmussen,

1973). They are opportunistic omnivores, although their main feeding

strategies are surface-deposit and filter feeding (Scaps, 2002).

H. diversicolor lives in more or less permanent U or Y-shaped burrows,

creating a complex network of burrows extending down to ca. 15 cm

(Davey, 1994). Based on the reworking of tracer particles,H. diversicolor

hasbeen classifiedasa “gallery-diffusor”,whichdescribes a combination

of apparent biodiffusion in the upper sediment layer, with a non-local

transport in deeper sediment (Francois et al., 2002). They are known

to actively ventilate their burrow, increasing the flux of oxygen and

nutrients over the sediment–water interface (Kristensen and Hansen,

1999). However, there is a lack of information on their bioirrigation

efficiency using inert solute tracers.

The aim of this study was to quantify and compare the rate of

particle-mixing and solute transport byM. neglecta and H. diversicolor

in Baltic Sea sediment, with the hypothesis that H. diversicolor is

a more efficient bioturbator. This is important information for the

understanding of the potential effects of the invasive Marenzelleria

spp. on Baltic Sea sediment functioning. We conducted a laboratory

experiment where we added inert solute (bromide) and particle

(luminophores) tracers to sediment tube cores and measured their

transport into the sediment due to the worms' activities. Experimen-

tal results of the luminophore distributions were then applied in a

gallery-diffusionmodel (Francois et al., 2002) to quantify the intensity

of particle-reworking by these two polychaetes. Bioirrigation was

quantified as the net flux of bromide transported at the sediment–

water interface and by fitting the experimentally derived bromide

profiles to a 1D diffusion model.

2. Materials and methods

2.1. Sediment and animal collection

Sediment and animals were collected on April 23, 2007 at Mörkö

(59°2.29′ N, 17°41.45′ E), in the Stockholm Archipelago. Worms, both

H. diversicolor and M. neglecta, were collected with a shovel from 1 m

depth and sieved out on-site with a 1 mm mesh. The three sibling

species of Marenzelleria found in the Baltic Sea (M. neglecta, M. viridis,

M. arctia) are morphologically very similar and can only be deter-

mined accurately to the species level using molecular genetic tools

(Blank et al., 2008), which was not done in this study. However,

based on earlier mapping of the species distribution by Blank et al.

(2008), it is most likely that the species used in this experiment

wasM. neglecta. Sediment andwater (ca. 6.5 psu) were collected from

the same site and transported together with the worms to the lab.

Worms were kept in their natural sediment in a climate room at ca.

10 °C until the start of the experiment. Sediment was sieved through a

1 mm sieve to removemacrofauna and left to compact in 20 L buckets

with a layer of aerated water on top.

The geochemical characteristics of the sediment are presented in

Table 1. Total carbon (TC) and nitrogen (TN) contents (n=3) were

determined using a Leco CHNS 932 analyzer. Bulk sediment porosity

was determined on a known volume of sieved sediment used in the

experiment. Grain size was determined by sieving a known amount of

dry sediment through a stack of sieves with decreasing mesh size and

re-weighing the amount collected in each sieve. Ninety-four percent

of the sediment had a grain size between 100 and 500 μm and the

sediment was thus characterized as sandy.

2.2. Experimental set-up

There were three treatments (n=3): 1) bioturbation byM. neglecta,

2) bioturbation by H. diversicolor, and 3) controls without animals.

Nine transparent Plexiglas tube cores (height 50 cm, inner diameter

8 cm) were filled with 15 cm of sieved sediment and a 30 cm water

column of filtered (100 μm) brackish seawater. The sediment was

inserted in the cores by pressing down the tubes in a bucket containing

the sieved sediment and filling it with seawater to the top. A rubber

stopper was then inserted at the top of the core and the tube was lifted

out of the bucket, keeping the water and sediment inside by vacuum.

Two more stoppers were immediately inserted at the bottom of the

tube, first an inner stopper, fitting inside the tube and then an outer

stopper in order to seal the tube. The sediment cores were left with

aeration at 10 °C for seven days before adding the animals. Sixteen

M. neglecta and 4 H. diversicolor were added to each of the three rep-

licate cores, respectively, and the remaining threewere controlswithout

worms. The number of worms of each species was chosen in order to

have the same biomass per core (Table 2).

Worms were allowed to acclimatize and establish burrows for 7 d

before the addition of luminophores. Batches of 2 g luminophores

(63–125 μm; Partrac Ltd., UK) were suspended in 20 mL of de-ionized

water and poured into the water column of each core. The cores were

left for 10 d with gentle aeration at 10 °C and a 12 h/12 h dark/light

cycle. Bromide tracer was added to the cores at 3 separate occasions in

order to have 3 different incubation times for each treatment, i.e. 1, 1.5

and 2 d before the end of the 10-day experiment (Martin and Banta,

1992). Before the addition of bromide, the water column in each core

was adjusted to the same height (10 cm) and thus approximately

the same volume (ca. 510 mL). NaBr was dissolved in seawater and

10 mL of the stock solution was added to the overlying water of

each core to reach a final concentration of ca. 10 mM. A 10 mL water

sample from the overlying water column was taken 15 min after the

initial bromide addition and stored at 4 °C until analysis.

Table 1

Sediment characteristics. Total carbon (TC) and nitrogen (TN) contents of the sediment

(% dry wt), n=3. Average±STD.

TC (%) TN (%) Porosity Grain size

Sediment 0.10±0.01 0.01±0.00 0.41±0.02 Sandy

Table 2

Animal additions to the experimental cores. Number of worms and biomass per core,

length and width for individual worms. Average±STD.

Species Number

of worms

per core

Density

(ind.m−2)

Length

(mm)

Width

(mm)

Biomass

per core

(g ww)

Control – – – – –

Marenzelleria neglecta 16 3200 35±10 1.5±0.2 2.2

Hediste diversicolor 4 800 93±17 3.3±0.5 2.4



2.3. Sampling

All cores were sampled, in random order, 10 d after the addition

of luminophores. First a 10 mL water sample was taken for bromide

analysis. The overlying water was then siphoned off, leaving a few mL

close to the sediment surface that were collected separately and saved

for luminophore analysis. The outer bottom stopper was removed and

the sedimentwas pushed up in the core using a piston, pressing on the

inner bottom stopper, and sliced into 0.5–1 cm slices with a stainless

steel blade. Slices of 0.5 cm were taken from the top 0–2 cm and then

of 1 cm from 2 to 15 cm. The time of sampling was carefully noted

for each tube core in order to calculate the exact time of bromide

incubation for each core. To prevent smearing effects of luminophores

from surface layers to deeper sediment slices when pushing up the

sediment in the core, a stainless steel cylinder of a slightly smaller

diameter than the core (7.7 cm) was pressed over the slice and the

sediment outside of the cylinder was removed. Each slice was

weighed and then kept in plastic tubes with lids at 4 °C until cen-

trifugation. The wet sediment was centrifuged at 800 rpm for 6 min to

extract the pore water, using double centrifuge tubes with a glass-

fiber filter (GF/F, Whatman) in the bottom of the inner tube. The

extracted pore water from each slice was kept in air tight plastic tubes

at 4 °C until bromide analysis. The remaining sediment of each slice

was freeze-dried at −20 °C for ca. 100 h and weighed to obtain the

dry weight. Porosity was calculated for each section of the sediment.

2.4. Tracer analyses — luminophores and bromide

Freeze-dried sediment from each slice was carefully homogenized

and then sub-samples were taken for luminophore analysis. Counting

of luminophores in each sample was done by placing the sediment

under a UV-light and taking a digital photograph (Olympus C-2500L)

followed by quantification using image analysis (software Image-Pro

Plus).

Bromide concentration in the overlying water and pore water of

each slice was determined spectrophotometrically by oxidizing

bromide with chloramine-T in the presence of phenol red (Presley,

1971). Absorbance was measured at 595 nm and concentrations were

calculated by fitting the absorbance to a standard curve (Schimadzu

UV-1601).

2.5. Modeling of particle-reworking

The reaction–diffusion model used in this study to describe

luminophore redistribution following macrofaunal reworking is based

on the general diagenetic equation (Berner, 1980):

∂Q

∂t
=

∂

∂z
Db

∂Q
∂z

! "

+ R Qð Þ ð1Þ

whereQ is the quantity of the tracer, t time fromadditions of the tracer,

z depth in the sediment (z=0 at the water–sediment interface), Db

the apparent biodiffusion coefficient, and R(Q) the non-continuous

displacement of tracer. The displacement is defined as follows:

R Q z; tð Þð Þ =

r

z2−z1
∫ z1

0
Q x; tð Þdx if z∈ z1; z2½ $

−rQ z; tð Þ if z∈ 0; z1½ $

0 if z>z2

8

>

>

>

<

>

>

>

:

ð2aÞ

ð2bÞ

ð2cÞ

where z1 and z2 define the upper and lower limits of the tracer

redistribution, x and z are depth variables, and r (the non-local

coefficient) the percentage of tracer that left the [0, x1] deposit andwas

redistributed in the [z1, z2] layer. The redistribution of tracer between

z1 and z2, and the disappearance of tracer from the 0–z1 layer, are

described by Eqs. (2a) and (2b), respectively. Eq. (2c) denotes that

no tracer movement occurs below the sediment depth z2.

Non-local displacement of tracers was originally exemplified in a

model describing gallery-diffusion of macrofaunal reworking (Francois

et al., 2002). This biological reworking process describes the diffusive-

like mixing of particles in the region of intense burrowing activity and

the rapid transport of organic and inorganic material from the upper

sediment layers to the lower regions of reworking.

According to the experimental conditions, the following initial

conditions were used:

Q z;0ð Þ =
Q0 if z∈ x1; x2½ $
0 else

'

ð3Þ

where [x1; x2] is the tracer deposit layer. Finally, a zero-flux Neuman

boundary condition was considered:

∂Q

∂z
0; tð Þ = limz→+∞

∂Q

∂z
z; tð Þ = 0: ð4Þ

Fitting our luminophore tracer redistribution data to this model

using the least squaremethod allowed us to estimate two parameters:

the apparent biodiffusion coefficient Db and a non-local coefficient r.

The biodiffusion coefficient Db takes into account the diffusion-like

transport due to the activity of the organisms. We assume that the

actual concentration dependent diffusion of tracers is negligible. The

coefficient r represents a non-local mixing pattern associated with

a biologically induced transfer of particles from one place to another

in a discontinuous pattern (i.e. a non-continuous transport; Boudreau,

1986; Meysman et al., 2003). The model was fitted to all cores

individually.

2.6. Net fluxes andbiodiffusion coefficients calculatedusing bromide tracers

The net bromide flux at the sediment–water interface, which is

strongly affected by the porewater transport of solutes induced by the

organisms (i.e. bioirrigation), was calculated by dividing the depth

integrated total amount of excess bromide in the sediment pore water

(mmol) over time (hours of incubation) with the bromide concen-

tration in the overlying water (mmol/L).

The diffusivity of the bromide tracer in this sediment (Ds) was

estimated to0.40 cm2d−1, basedon themoleculardiffusivity of bromide

in water at 10 °C (Li and Gregory, 1974) and a constant porosity with

depth of 0.41. The measured bromide profiles were fitted using the

least square method to a simple 1-dimensional diffusion model (Berner

1980), according to:

∂Q

∂t
=

∂

∂z
Da

∂Q
∂z

! "

: ð5Þ

With the boundary conditions: the flux equals zero at the interface

(Eq. 6);

∂Q

∂z
0; tð Þ = 0 ð6Þ

and, the tracer quantity goes to zero when depth goes to infinity:

Q z; tð Þ→0
z→∞: ð7Þ

The model-estimated parameter Da (apparent diffusion coefficient)

describes the diffusion like transport of bromide into the sediment. If

Ds equals Da the observed bromide profile can be assumed to be the

result of molecular sediment diffusion only, while if DaNDs then there

is an enhanced transport.



2.7. Statistics

The luminophore data was analyzed using the Student's t-test

comparing the difference in means between independent groups.

When groups had unequal variances, a heteroscedastic t-test was

performed. The bromide data was analyzed with a two-way repeated

measurements ANOVA followed by a Tukey HSD post hoc test.

Levene's test was used for verification of homogeneity of variance and

Shapiro–Wilk's test for normality of data.

3. Results

3.1. Sediment characteristics and visual observations

Following addition to the cores, all worms rapidly buried into the

sediment. Throughout the experiment new fecal pelletswere regularly

appearing at the sediment surface, indicating that the worms were

in good conditions during the experiment. A successive depletion of

luminophores was apparent for both species compared to the controls

(Fig. 1) and burrows down to the bottom of the core, i.e. 15 cm, were

observed in all worm cores.

3.2. Luminophore distribution

Most of the luminophores (88–100%) were found in the top 0.5 cm

of the sediment at the end of the experiment in all treatments

(Table 3). There was no significant difference in the percentage of

luminophores recovered in the 0.5 cm between M. neglecta (94%)

and H. diversicolor (87%, t-test p=0.14). In the control cores, 100% of

the luminophores were recovered in the top 0.5 cm layer. The depth

of penetration, defined as the depth of 99% recovery of luminophores

(Duport et al., 2006; Quintana et al., 2007), was ca. 6 cm for

M. neglecta and 5 cm for H. diversicolor. Another way to quantify the

depth of penetration of luminophores is to identify the deepest layer

containing N0.5% of the luminophores (maximum burial depth), since

trace amounts of luminophores (b0.5%) were found deep in all the

bioturbated cores. The maximum burial depth of luminophores was

5 cm in all H. diversicolor cores and 1–1.5 cm in the M. neglecta cores

(t-test pb0.01, Table 3).

There was a good fit between the luminophore profile from

experimental data and the profile obtained from the model (Fig. 2).

The calculated biodiffusion coefficient, Db, did not differ between the

two species (2.4×10−3 cm2 d−1, t-test p=0.89) in the biodiffusive

layer which was ca. 1–2 cm (0–z1, Eq. (2)). However, the non-local

coefficient, r, for M. neglecta was zero in all cores and 2.5±1.2 y−1 in

H. diversicolor cores (Table 3).

3.3. Bromide transport

In the control cores the sediment bromide profiles showed a steep

decrease with depth and reached background levels at ca. 3–4 cm,

irrespective of incubation time, indicating that molecular diffusion

was the main transport process of bromide from the overlying water

into the sediment in absence of bioturbation. This was confirmed by

the good fit of the control core profiles with the 1D diffusion model

when Da was set to 0.40 cm2 d−1 (1.5 d incubation, r2=0.98, Fig. 3),

i.e. equal to the calculated molecular diffusivity, Ds, of bromide in

this sediment. Da was 0.41 (r2=0.96) and 0.25 cm2 d−1 (r2=0.96)

in the 1- and 2-day incubations, respectively, and Da in the control

cores was significantly different from the bioturbated cores (Tukey

pb0.05). Bioturbation by both worms rapidly increased the pore

water concentration in the whole core, exceeding background levels

even in the deepest layers after 1 day of incubation (Fig. 4). There was

generally a good fit of the bromide profiles from both M. neglecta

and H. diversicolor cores with the 1D diffusion model (Fig. 3). In the

M. neglecta cores, Da decreased from 32 (r2=0.15) at day 1 to 15

(r2=0.94) and 11 cm2 d−1 (r2=0.97) at 1.5 and 2 d of incubation,

respectively (Table 4). The same pattern was observed in the

H. diversicolor cores with the corresponding Da being 24 (r2=0.82),

22 (r2=0.12) and 10 (r2=0.97). There were no differences in Da

between the worm treatments (Tukey pN0.05).

The calculated bromide fluxes were in agreement with the model

results, i.e. a decreasing net flux (M. neglecta,H. diversicolor) with time

of incubation, and no statistical difference between worms (Tukey

pb0.05, Table 4). The average bromide net flux over time was 0.039±

0.012 mL min−1 for H. diversicolor and 0.043±0.014 mL min−1 for

M. neglecta.

Fig. 1. Luminophores left at the surface after 10 d in A) control, B) Marenzelleria neglecta, and C) Hediste diversicolor cores.

Table 3

Recovery of luminophore tracers in the sediment at the end of the experiment (10 d) and modeled biodiffusion (Db) and non-local transport (r) parameters. Average±STD.

% in 0.5 cm 99% depth mean (range) Max burial depth (N0.5% in layer) Db r

cm cm ×10−3 cm2 d−1 y−1

Marenzelleria neglecta 94.1±1.4 6 (4–9) 1–1.5 2.4±0.2 0

Hediste diversicolor 87.5±6.1 5 (5) 5 2.4±0.8 2.5 ±1.2

Control 100 0.5 – – –



4. Discussion

4.1. Particle reworking

From visual observations it was clear that more luminophores

remainedon the surface in theM.neglecta cores than in theH. diversicolor

cores. In average 13% of the luminophores were buried below the top

0.5 cm surface layer by H. diversicolor compared to 6% by M. neglecta,

however they were not statistically different. H. diversicolor also buried

significant amounts (N0.5%) of luminophores deeper into the sediment

(5 cm) thanM. neglecta (1.5 cm). The gallery-diffusion model used here

(Francois et al., 2002) to quantify the rate of sediment-reworking

showed a good fit with the experimental data for both species. This

model describes a combination of a biodiffusive-like particle mixing

in the upper sediment layer, generally displayed as an exponential

decrease of luminophores with depth, and a non-local transport

below, which is often shown as a sub-surface peak. The calculated

biodiffusion coefficients Db did not differ between the two species

(2.4×10−3 cm2 d−1) indicating a similarmixing rate of the top 1–2 cm

sediment. On the other hand, the model only detected non-local trans-

port (below the diffusive layer) by H. diversicolor. Apparent biodiffusion

in the surface layer is due to the movement and feeding of the worms,

creation of newburrows, and a passive fall downof tracers in the burrow

openings. Both polychaetes in this experiment are surface deposit-

feeders, actively searching for food particles around theburrowopening,

mixing particles as they move in and out of the sediment (Scaps, 2002;

Zettler et al., 1995). A higher density of burrows at the surface would

theoretically increase the biodiffusive mixing, e.g. Duport et al. (2006)

sawan increasedDb (3.0 to 5.5×10−3 cm2 d−1)with increasingdensity

(144–1153 ind.m−2) of H. diversicolor. The density of H. diversicolor in

this studywas4 times lower than that ofM. neglecta, thus indicating that

individually H. diversicolor is more effective in the mixing of particles in

the upper sediment layers. Non-local transport below the biodiffusive

layer is the result of particle translocation within the burrow structures,

egestion of fecal pellets and burrow maintenance. This type of particle-

reworking is well known for H. diversicolor. The wormmakes U-shaped

burrows that are branched in their upper part, which creates a gallery of

burrowsbelow thesediment surface (Scaps, 2002). Thesub-surfacepeak

often observed when studying particle transport by H. diversicolor

usually corresponds with the bottom of the galleries where the particle-

tracer accumulates (Duport et al., 2006). Sediment profiles in this

study showed a minor increase of the percentage luminophores be-

tween 2 and 4 cm in the H. diversicolor cores, and the model calculated

a moderate non-local transport parameter r, of 2.5 y−1. No such sub-

surface peakwas visible in theM.neglecta treatments and rwaszero. The

un-branched, more or less vertical burrows created by M. neglecta do

not interact to create a network. Tubes do not protrude above the

sediment surface and the burrow opening is small (1–2 mm) compared

to the larger (3–4 mm) more crater-like holes made by H. diversicolor,

which can explain less passive transport into the burrow structures by

M. neglecta.

Compared to previous studies onparticle reworking byH. diversicolor,

results presented here are in the lower range. For example, Duport

et al. (2006) reported ca. 75% recovery of luminophores in the top 0.5 cm,

and a Db and r of up to 5.5×10−3 cm2 d−1 and 19.5 y−1, respectively,

for densities and incubation times similar to this experiment. Francois

et al. (2002) showed that the amount of tracer recovered in the top

sediment layer decreased from 75% to 55% as a function of incubation

time (15 vs. 30 d) at the same density of H. diversicolor as here, and

calculated Db between ca. 5 to 23×10−3 cm2 d−1 and r between 3 and

12 y−1. Both studies used the same type of tracers and the same gallery-

diffusive model as in our study.

So far, there is only one peer-reviewed published study on the

efficiency of particle bioturbation by the polychaete genusMarenzelleria.

Quintana et al. (2007) compared bioturbation by M. viridis and the

sub-surface feeding polychaete H. filiformis, reporting significantly

higher particle mixing by M. viridis than H. filiformis. The recovery of

Fig. 2. Luminophore distribution in sediment (selected cores) after 10 d of bioturbation

by Hediste diversicolor and Marenzelleria neglecta. Profiles show the percentage of

luminophores recovered at each depth (luminophore) and the best fit of the gallery-

diffusion model (model) (see text for details).

Fig. 3. Bromide in the sediment pore water after 2 d of incubation in cores with Hediste diversicolor, Marenzelleria neglecta or no fauna (control). Profiles show the percentage of the

total pore water bromide inventory recovered at each depth (bromide) and the best fit of the 1D diffusion model (model) (see text for details).



luminophores in the surface layer after bioturbation by M. viridis

was between 75 and 80% and like in this study the sediment profiles

showed a diffusion-like distribution of luminophores in the upper

1–2 cm. A biodiffusion coefficient for M. viridis was calculated to 3.3–

4.0×10−3 cm2 y−1 using a 1-D diffusion model. The difference in Db

between Quintana et al. (2007) and this study could in part be due to

the choice of model; Francois et al. (2002) observed consistently

slightly lower Db values obtained with the gallery-diffusion model than

the simple biodiffusion model. In addition, the time of incubation in

Quintana et al. (2007)was3–4 times longer than here,which could have

affected Db (Boudreau et al., 2001).

4.2. Solute transport

Fitting measured pore water profiles of solute tracers to a

mathematical model is a common way of quantifying bioirrigation

and a good tool for comparing the bioirrigation efficiency between

treatments. Here we used a simple one-dimensional diffusion model,

quantifying bioirrigation as an enhanced diffusion coefficient, Da.

Generally, there was a good fit between the measured and modeled

bromide profiles, showing a diffusive-like transport of solutes into

the sediment caused by the two polychaetes. The apparent diffusion

rates (Da) were more than 40 times higher in the worm cores than

in controls (molecular diffusion only). However, there was no dif-

ference betweenM. neglecta (11–32 cm2 d−1) andH. diversicolor (10–

24 cm2 d−1). The progressively decreasing Da values with time of

incubation is probably due to a decreasing concentration gradient

(Meile et al., 2005).

Bioirrigation, i.e. pore water solute transport, is strongly coupled

to the rate and mode of infaunal ventilation. H. diversicolor are

known to be active bioirrigators (Kristensen and Hansen, 1999;

Riisgård et al., 1992). They ventilate their burrows by pumping water

uni-directionally through the U-shaped burrow, increasing the ex-

change of oxygen and metabolic products with the overlying water

(Riisgård and Larsen, 2005), mainly through radial diffusion between

the burrow and the pore water (Kristensen and Hansen, 1999). The

diffusive-like bromide profiles in H. diversicolor cores may therefore

be due to a declining burrow density with depth. The blind-ended

burrows created by M. neglecta, however, prevents a uni-directional

circulation and thus advectively transported solutes within the

burrow must either overcome the resistance and penetrate into the

bulk sediment or be returned back to the overlying water through

the burrow opening. Little is known about the burrow ventilation

behavior of Marenzelleria spp., however, recently the ventilation

mechanism of M. viridis was described, showing a combined ciliar

and muscular pumping of water into and out of the burrow (Quintana

et al., 2011). It was also suggested that bioirrigation is the result of

eddy diffusion (advective transport) over the burrow wall and sub-

sequent percolation through the bulk sediment back to the overlying

water (Quintana et al., 2007; 2011). If the full length of the burrow is

equally ventilated, it would result in a steep bromide profile through-

out the bioturbated zone. The profiles in the M. neglecta cores tend to

Fig. 4. Bromide pore water profiles (mM) and overlying water concentration (−1 cm on y-axis) at ca. 1, 1.5 and 2 d of incubation in cores with Hediste diversicolor, Marenzelleria

neglecta or no fauna (control).

Table 4

Enhanced biodiffusion coefficients (Da) and irrigation rates calculated using solute (bromide) tracer and various incubation times (ca. 1, 1.5 and 2 d), and the estimated average

individual and area-specific irrigation rates. Average±STD.

Incubation time Da Irrigation Average individual irrigation Average area specific irrigation

h cm2 d−1 mL min−1 mL min−1 ind.−1 L m−2 d−1

Marenzelleria neglecta 27 32 0.059 0.003±0.001 (ca. 135 g ww ind.−1) ca. 12 (3200 ind.m−2)

32 15 0.039

52 11 0.032

Hediste diversicolor 31 24 0.049 0.01±0.003 (ca. 600 g ww ind.−1) ca. 12 (800 ind.m−2)

37 22 0.042

50 10 0.026

Control 29 0.41 – – –

36 0.40

53 0.25



be close to vertical down to ca. 6 cm depth (not including the top

0.5 cm layer, Fig. 4), which may indicate a similar mode of

bioirrigation as proposed for M. viridis (Quintana et al., 2011).

Burrows, however, were observed down to 15 cm depth. The decrease

in bromide concentration below the more vertical zone could there-

fore be due to a declining burrow density with depth, but it may also

be because the worms mainly occupy and ventilate the upper parts

of their burrows. Observations made here and previously in the

laboratory with Marenzelleria spp. have shown that they dig deep

burrows (N25 cm) but largely remain close to the sediment surface.

The bromide net flux was also quantified by calculating the rate

of bromide exchange between the overlying water and sediment. The

average bromide net fluxes obtained were ca. 0.04 mL min−1 for both

H. diversicolor and M. neglecta, corresponding to an area specific flux

of ca. 12 L m−2d−1. As the natural densities of M. neglecta is usually

higher than that of H. diversicolor our results probably have good

field relevance. When comparing bromide net fluxes between the

treatments it is important to recognize the higher per individual rate in

H. diversicolor (0.01 mL min−1) than inM. neglecta (0.003 mL min−1),

meaning that at the same density H. diversicolorwould probably have

caused a higher flux than M. neglecta. However, there are density-

dependent effects on organism behavior, including the frequency

and intensity of ventilation, and an increase in faunal density usually

results in a decrease in the individual flux (Matisoff and Wang,

1998; Reible et al., 1996). For example, it has been suggested that

the flux is related to the square root of the total biomass (Forbes

and Forbes, 1994; Reible et al., 1996). In addition, considering the

considerably higher ventilation rates reported forH. diversicolor (750–

2700 L m−2d−1, 600 ind.m−2) (Christensen et al., 2000) than for

M. viridis (276 L m−2d−1, 1200 ind.m−2) (Quintana et al., 2011),

the solute exchange efficiency (i.e. the amount of solutes transported

into the pore water per volume of ventilated water) ofM. neglectawas

equal or higher than for H. diversicolor.

When discussing the ecological implications of the invasion of

M. neglecta in the Baltic Sea, it should be noted that M. neglecta often

inhabit muddy sediments in deeper habitats where H. diversicolor

is not present. The mechanism of bioirrigation in sandy sediments

differs from muddy sediments where the low permeability limits

advective pore water transport. Instead molecular diffusion from the

burrow is the primary mass transport mechanism (Shull et al., 2009).

The solute exchange efficiency of M. neglecta is thus probably much

lower in muddy sediments than what has been observed in this

experiment. However, they dig deeper into the sediment than any of

the native species in these habitats and thus the relatively high solute

exchange deep in the sediment will significantly affect the sediment

biogeochemistry in these sediments.

5. Conclusions

The two polychaete worms displayed similar particle-mixing and

solute exchange efficiencies (based on total biomass) despite different

modes of bioturbation. Generally, however, on an individual level

H. diversicolorwas amore efficient particle-reworker andM. neglecta a

more efficient bioirrigator. This suggests that the ongoing colonization

of nutrient rich and contaminated Baltic sediments by M. neglecta

at high densities could lead to an enhanced soluble release of both

nutrients and contaminants. In the frame of the Baltic Sea functioning,

these results provide information about the potentialities ofM. neglecta

to modify sediment biogeochemistry when competing and/or replacing

native species.
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