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Colorimetric Correction

for Stereoscopic Camera Arrays

Clyde Mouffranc and Vincent Nozick

Gaspard Monge Institute, UMR 8049
Paris-Est Marne-la-Vallee University, France

Abstract. Colorimetric correction is a necessary task to generate com-
fortable stereoscopic images. This correction is usually performed with a
3D lookup table that can correct images in real-time and can deal with
the non-independence of the colour channels. In this paper, we present a
method to compute such 3D lookup table with a non-linear process that
minimizes the colorimetric properties of the images. This lookup table is
represented by a polynomial basis to reduce the number of required pa-
rameters. We also describe some optimizations to speedup the processing
time.

1 Introduction

In recent years, stereoscopic technologies have been subject to an impressive
growth and became incontrovertible in the movie maker industry. More recently,
this technology has advanced from stereoscopic to autostereoscopic displays, in-
volving more than two views and hence more than two cameras. The use of
these multiview devices emphasizes technical issues in term of video stream syn-
chronization, camera calibration, geometrical issues or colorimetric correction.
This paper deals with this last problem, i.e. how to represent each object of the
scene with a coherent colour in every view. Indeed, colorimetric inconsistencies
in stereoscopic images may cause some perception troubles, as described in [1]
as well as issues for multi-view video coding [2] or video-based rendering [3]. The
goal of this paper is to get a uniform colour response among the camera and not
to perform a colorimetric calibration [4] to get an absolute colour accuracy.

Most of the colorimetric inconsistencies mainly come from the camera sensors.
Even if the cameras are the same model and come from the same factory, the
sensor response is often quite different. Thus, selecting the same settings for
each camera, i.e. gain, brightness or shutter speed may not solve the problem.
Moreover, the camera response for two identical cameras may differ according
to their respective position on the scene, where the illumination is not perceived
the same or where the camera temperature is different. These colorimetric issues
are clearly apparent on low cost cameras but are also visible with professional
grade devices.

The usual requirement for a colorimetric correction technique is to be fast
and accurate. Moreover, the process should be efficient on high resolution images
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for the movie industry as well as for daily applications such as teleconference
running on consumer grade hardware. Most of the professionals claim that using
separated 1D-LUT for each channel are not recommended since it is known that
the colour channels are not independent. The standard approach for colorimetric
corrections is to use 3D LookUp Tables (LUT) implemented on the GPU. Indeed,
the GPU implementation is straightforward and the performances are excellent.
Finally, for images with 256 colour levels per channel, a full size 3D-LUT would
have a 2563 voxel resolution. In practice, the 3D-LUT may have a much lower
resolutions since the missing data are linearly interpolated by the GPU. As an
example, a 323 3D-LUT is preforment enough and requires few memory (e.g. less
memory than a RGB 200×200 image). The goal of this paper is to propose a 3D-
LUT computation to perform a colorimetric correction between multiple cameras
of a camera array.

2 Related Work

The problem of transferring the colorimetric properties of a source image to a
target image, namely colour transfer, has been the starting point of numerous
methods dealing more specifically with multiple view colorimetric correction.
A survey of the related works for these two approaches is presented in the fol-
lowing parts.

2.1 Colour Transfer between Two Images

Reinhard et al. [5] present a method that matches the colour mean and vari-
ance of the target image to the source image. This operation is performed on
the lαβ-colour space where the colour channels are not correlated. However this
method is limited to linear transforms. Papadakis et al. [6] describe a variational
formulation of the problem using cumulated histograms under colour conserva-
tion constraints, but provides 1-D transformations that is not suitable for our
purpose.

Morovic and Sun [7] present a method to match the 3D colour histogram of the
two images. Neumann and Neumann [8] have te same approach but also apply a
smoothing and a contrast constraint to limit unexpected high gradients artifacts.
Finally, Pitié et al. [9] matches the probability density function between the two
images using a N-dimensional transfer function. These methodes are specially
designed to perform colour transfer from images with very different colorimetric
properties.

Finally, Abadpour and Kasaei [10] use a principal component analysis (PCA)
to generate a new colour space where the channels are decorrelated. In [11], they
use the PCA to compute a colour space from some specific image regions selected
manually. PCA-based approaches will perform well on a static images, but can
fail in video sequences where the variation of the colours may not match the
initial colour space.
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2.2 Colour Correction and Camera Array

Camera arrays dedicated to stereoscopic rendering are subject to several geomet-
rical constraints (i.e. the cameras should be correctly aligned [12]) and hence the
acquired images represent approximatively the same scene, with similar colori-
metric properties.

Yamamoto et al. [13] extract SIFT correspondences [14] in order to handle
scene occlusions and perform a multiview colorimetric correction. Yamamoto and
Oi [15] use the same approach using an energy-minimization function on the 2D
correspondences. Tehrani et al. [16] propose an iterative method based on an
energy minimization of a nonlinearly weighted Gaussian-based kernel density
function applied on SIFT corresponding feature points. The main drawback of
these two methods is the fact that the colorimetric correction is performed on
each RGB channels independently.

Shao et al. [17] distinguish the foreground and the background parts from a
precomputed disparity map. They perform a PCA-based colorimetric correction
only on the forground parts that are more likely to appear on each view. Shao
et al. [18] also requires a precomputed disparity map to perform the correction
using a linear operator on the YUV colour space.

Finally, Shao et al. [19] present a content adaptive method that performs a
PCA on the data in order to select the relevant colours of the scene and generate
a 3× 3 correction matrix. This method does not require any disparity map but
is limited to linear correction.

2.3 Outline of Our Method

As specified above, 1-dimension LUTs applied independently on each RGB chan-
nel are known for their limited colorimetric correction accuracy, whereas 3D-LUT
based methods are much more accurate, still fast and easy to use. We propose
a method to generate such 3D-LUT by a non-linear process that minimizes
the colorimetric properties differences between each image. A 3D-LUT with full
resolution would imply 3×2563 ≃ 5.107 variables involving extremely long com-
putation times. Even a 3D-LUT with a standard resolution of 323 would result
in 3 × 323 ≃ 104 variables that still can not be computed in a reasonable time
delay.

In this paper, we introduce a substitution of the 3D-LUT by an orthogonal
basis functions that can represent the initial 3D-LUT with very few variables.
We present a non-linear minimization process that finds optimal values for these
variables such the recovered 3D-LUT generates corrected images with similar
colorimetric properties. In regard to the related works, our method does not
require any precomputed disparity map, can handle non-linear corrections, does
not consider each channel independently, generates a set of 3D-LUT and is fully
compatible with SIFT or other point correspondences approaches.

This paper is organized as follows: In section 3, we introduce the Chebyshev
polynomial basis. Section 5 describes the non-linear minimization process used
for the colorimetric correction. Section 6 presents some optimizations to speedup
the process and section 7 shows some results.



Colorimetric Correction for Stereoscopic Camera Arrays 209

3 3D-LUT and Basis Functions

3.1 Basis Functions for 3D-LUT

The purpose of the basis function is to decrease the number of variables rep-
resenting the 3D-LUT. The basis function should be orthogonal to ensure the
unicity of the LUT representation. We selected Chebyshev polynomial basis for
several reasons. Indeed, the first order polynomials have soft variations, hence
higher order polynomials can be ignored without a significant loose on the 3D-
LUT description. Moreover, polynomial basis functions can represent the identity
function used for the initialization. Some other well known basis such as discrete
cosine transform can not unless they use all the functions of the basis. Finally,
each Chebyshev polynomials are alternatively odd and even such the first poly-
nomials have a specific signification in term of colour processing, as presented in
Table 1.

Table 1. Polynomial basis for 3D-LUT: a signification for the first degrees

Degree Effect

0 colour offset
1 identy function
2 brightness/gain
3 contrast

3.2 Chebyshev Polynomial Basis

The Chebyshev polynomials are a sequence of orthogonal functions defined for
x ∈ [−1, 1] as:

Tn(x) =
(x−

√
x2 − 1)n + (x+

√
x2 − 1)n

2

They can also be expressed recursively with:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x) − Tn−1(x)

Figure 1 depicts the first Chebyshev polynomials.
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T0(x) = 1
T1(x) = x

T2(x) = 2x2
− 1

T3(x) = 4x3
− 3x

T4(x) = 8x4
− 8x2 + 1

T5(x) = 16x5
− 20x3 + 5x

T6(x) = 32x6
− 48x4 + 18x2

− 1
T7(x) = 64x7

− 112x5 + 56x3
− 7x

T8(x) = 128x8
− 256x6 + 160x4

− 32x2 + 1
T9(x) = 256x9

− 576x7 + 432x5
− 120x3 + 9x

Fig. 1. Left: the first Chebyshev polynomials. Right: their graphical representation

3.3 3D-LUT Representation

Without loss of generality, we consider in the rest of this paper that the colour
levels range from 0 to 1. We define a 3D-LUT f that transforms three input
colours r, g and b into three output colours (r′, g′, b′)⊤ = f(r, g, b) with the
following formula:

⎛
⎜⎜⎜⎝

r′

g′

b′

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

∑n

i=0

∑n

j=0

∑n

k=0 α
r
i,j,kTi(r).Tj(g).Tk(b)

∑n

i=0

∑n

j=0

∑n

k=0 α
g
i,j,kTi(r).Tj(g).Tk(b)

∑n

i=0

∑n

j=0

∑n

k=0 α
b
i,j,kTi(r).Tj(g).Tk(b)

⎞
⎟⎟⎟⎠ (1)

where n is the higher polynomial degree used and αc
i,j,k is the coefficient associ-

ated to the polynomial Ti(x)×Tj(y)×Tk(z), for the output colour channel c. An
illustration of a 2-dimension Chebyshev basis functions is depicted in Figure 2.

Fig. 2. A representation of the 2-dimensional Chebyshev basis with the 6 first levels,
where each block Tij(x, y) = Ti(x)×Tj(y). A coefficient αc

i,j is associated to each block
(in 3-dimension in our case) to represent a signal g(x, y) =

∑
i,j

αi,jTij(x, y).

The look-up table representation is defined by 3×n3 coefficients associated to
the first n Chebyshev polynomials for the three channels r, g and b. A standard



Colorimetric Correction for Stereoscopic Camera Arrays 211

3-dimension lookup table with n colour levels (i.e. 256 or 32) would involve 3×n3

variables. This representation also requires 3 × n3 parameters, but the number
n can be drastically diminished (e.g. n = 7). Moreover, the main response of
the 3D-LUT is concentrated on the channel considered. Indeed, in (r, g, b), r is
more significant than g and b to compute r′ (respectively for g and b). Thus, it
is possible to associate a higher accuracy for the channel considered rather than
for the two other channels.

The conversion from the polynomial representation to the standard form is
computed by applying equation (1) to all the lookup table elements.

4 Initialization

The 3D-LUTdefault initialization is the identity function, i.e. (r, g, b)⊤ = f(r, g, b).
This configuration is obtained by using only the L1(x) = x polynomial for the
channel related to the colour being processed. In term of coefficients, identity cor-
responds to: ⎧

⎨
⎩

αr
1,0,0 = α

g
0,1,0 = αb

0,0,1 = 1

αc
i,j,k = 0 otherwize

(2)

It is also possible to convert an existing standard 3D-LUT to our model. Indeed,
setting the initial function f with a good estimation of the expected lookup table
will decrease the number of iterations required to reach convergence. Given a 1-
dimensional lookup table g(x) such that:

g(x) =

∞∑

k=0

ckLk(x)

the coefficients ck can be found by ([20], p.67):

ck =
4

π

∫ 1

−1

g(x).Tk(x)√
1− x2

dx

except for c0 that should be divided by 2.
The discreet form with n discretization steps is:

ck =
4

πn

n−1∑

i=1

g(2 i
n
− 1).Tk(2

i
n
− 1)√

1− (2 i
n
− 1)2

Actually, a much faster estimation of ck is given by:

ck ≃ 2

n+ 1

n∑

i=0

g
(
cos

πi

n

)
. cos

πki

n
(3)

still with c0 divided by 2.

To perform this stage with a 3-dimensional lookup table, the previous method
should be repeated on the three dimensions.
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5 Non-Linear Process

5.1 Image Descriptors

Let {Ii=1...k} be a set of k images and the vector x = D(I) a representation of
the colorimetric properties of an image I. The vector xi is a concatenation of
measures on the image Ii. The purpose of the minimization process is to find the
3D-LUT such the transformed images provide similar vectors x. As a minimal
setup, we propose the following measures:

– image average color: returns a value (in [0, 1]) for each r, g and b channel.
– image saturation: returns a single value (in [0, 1]) corresponding to the

average saturation per pixel. A pixel saturation is computed as the variance
of the r, g and b channels.

– image contrast: returns a single value (in [0, 1]) corresponding to the vari-
ance of the image 3D histogram.

In this paper, we mainly focus on these three measures, however any other
measures satisfying distances properties can be added in the vector x.

5.2 Minimization

The non-linear process consists in finding the parameters αc
i,j,k representing a

3D-LUT that transforms the input images Ii=1...k such the xi=1...k become simi-
lar. Thus, this process is equivalent to minimize the cost function M({xi=1...k}):

M({xi=1...k}) = ‖σ(xi)i=1...k‖ (4)

Where σ(xi) denotes the variance of the vectors xi. This approach makes the
corrected images to have their descriptors converging to an average value x̂.
Another possibility is to select a reference image Ir whose descriptor xr will be
considered as a target for the other images during the minimization process. The
function Mr({Ii=1...k}) becomes:

Mr({xi=1...k}) =
k∑

i=1
i�=r

(
xi − xr

)2

(5)

5.3 Point Correspondences

The minimization process can be performed on the whole images but can also
be restricted on a set of selected areas. In that situation, point correspondences
can be found using usual techniques such SIFT [14] or SURF [21]. Applying the
minimization on a restricted set of areas on the images presents some advantages
about robustness. Indeed, if a colour appears only on an image but not on the
others, this colour will not be selected and hence will not contribute to the
colorimetric correction. However, the risk of this method is to limit the diversity
of colours encountered in the areas and hence to decrease the accuracy of the
colorimetric correction.
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6 Optimizations

The minimization process is sometimes long to compute, hence we propose in
the following sections some optimizations to speedup the process to reach con-
vergences. None of these methods affect the accuracy of the final results.

6.1 Initialization

As described in section 4, the initial parameters αc
i,j,k are setup with equa-

tion (2) such the resulting 3D-LUT represents the identity function. An alter-
native is to start the iterative process from a solution that is fast to compute
and not too far from the expected solution. In practice, we first compute an his-
togram equalization for each r, g and b channels, resulting in three 1-dimensional
LUT. The corresponding coefficients αc

i,j,k are extracted from these LUTs using
equation (3).

6.2 Histogram Domain

Most of the descriptors presented in section 5.1 require the computation of a
3D histogram and the remaining descriptors can be computed from these his-
tograms. Hence, the successive 3D-LUT computed during the non-linear process
are directly applied on the histograms rather than to apply them on the images
and then extract the histograms. Moreover, the 3D histogram data is stored on
a 1D array with size equal to the number of the different colours appearing in
the image. Thus, in the worth case (all pixels have different colours), this array
has the same size as the image. Since a LUT is a surjective function, the size
of the array will never increase during the iterative process. Finally, avoiding to
apply the lookup tables to the images makes the computation time independent
from the images’resolution and hence makes possible to work on high resolution
images.

6.3 Pyramidal 3D Histograms

Finally, we use a pyramidal method on the iterative process. During the first
iterations, the 3D histograms are quantized to decrease their size of 80%, involv-
ing a fast but inaccurate convergence. The quantization effect is progressively
decreased during the iterations such that the last iterations become slower but
use the image data with full details. The effect of this pyramidal method is first
to speed up the computation during the first iterations and second to speed up
total convergence.

7 Tests and Results

We implemented our minimization method in C++, with Levenberg-Marquardt
minimization algorithm as described in [22] (p. 600). We tested our method on
a set of images with different colorimetric properties and geometrically rectified
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Table 2. Computation time with and without optimizations presented in section 6.
The image resolution for the RGB and non-optimized version are reduced to 400× 266
to get acceptable computation time, whereas the optimized version run on 2300×1533
resolution images. Moreover, using only 3 × 73 parameters for the RGB-LUT leads to
unsatisfactory results.

number standard without pyramidal pyramidal
of variables RGB optimization histogram histogram

3D-LUT + initialization

3× 33 18 min 13 min 5 min 5 min
3× 53 230 min 124 min 58 min 54 min
3× 73 960 min 416 min 331 min 177 min

with [12]. Figure 4 depicts a result using the Chebyshev basis function with the
degree 7, with a reference image as in equation (5). The resulting 3D-LUT for
some images is shown in Figure 5 and clearly underline the non-independence
between each channels.

The computational time is still long, Table 2 presents the computational time
of our method, with and without the optimizations presented in section 6. As a
comparison, our optimized method with 7 polynomials takes less than 3 hours
to compute high resolution images when the direct RGB-3D-LUT computation

Fig. 3. Convergence speed with 3 × 73 polynomials for the methods using just the
Chebyshev polynomial basis, the method with the 3D-histogram optimization and the
method that also includes a 1D-LUT initialization
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Fig. 4. Left: four input images with different colorimetric properties. Right: the cor-
rected images with 7 polynomials using the top left image as a reference, with equa-
tion (5 ).

with 3 × 73 elements and low resolution images takes more than 16 hours, for
very low quality results.

Figure 3 shows the minimization convergence speed comparison between our
methods with or without the 3D histogram optimization and the initialization,
for 3×73 polynomials. The use of the initialization drastically decreases the num-
ber of iterations required to reach convergence. The 3D-histogram optimization
does not decrease the number of iterations, but reduces the computation time of
an iteration. During the tests, we tried our method using L*a*b* colour space
instead of rgb but we didn’t noticed any changes in the results neither on the
computation time.
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Fig. 5. 3D-LUT corresponding to the three corrected images of Figure 4

8 Conclusion

This paper presents a method to perform a colorimetric correction for a set of
images captured with different cameras for stereoscopic purposes. The method
produces a 3D lookup table that can be used in real-time on the GPU. This
lookup table is represented by a basis function to reduce the number of required
parameters. These parameters are computed by a non-linear method to minimize
the difference of the colorimetric properties between the considered images.

In order to speedup the minimization process, we consider a compact form of
the 3D histogram of the images rather than the images by them-self. This tech-
nique makes the process much faster and independent of the images resolution.
The minimization process can start from the identity 3D lookup table or from
any lookup table. Our tests show that using a fast 1D lookup table as an approx-
imation of the results makes a very suitable starting point for our minimization
process and produces a very fast convergence.
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