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Synopsis 

This paper is focused on the theoretical modeling of the rheological properties of the magnetic 

suspensions in shear flows under an external magnetic field aligned with the streamlines. The 

conventional theory postulates that the field-induced aggregates of magnetic particles are 

highly anisotropic and aligned with the flow direction. Therefore, no substantial variation in 

suspension viscosity would be expected in the presence of field. However, experiments reveal 

a strong Bingham rheological behavior of the suspensions with a dynamic yield stress of the 

same order of magnitude that the one measured in the magnetic fields perpendicular to the 

flow. We explain the high level of shear stress, generated in longitudinal magnetic fields, by 

stochastic rotary oscillations of the aggregates caused by many-body magnetic interactions 

with neighboring aggregates. The inter-aggregate interactions are accounted for by an 

effective rotational diffusion process with a diffusion constant proportional to the mean 

square interaction torque � a net magnetic torque exerted to a given aggregate by all the 

neighboring aggregates. Using the equations for the orientation tensors coupled with the 

balance of forces acting on aggregates, we find the orientation distribution and size of the 

aggregates as function of the magnetic field intensity and shear rate. Our theory, developed 

for semi-dilute regime, reproduces the Bingham behavior observed experimentally and fits the 
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experimental data reasonably well in a wide range of particle concentrations. We find that the 

yield stress increases quadratically with the magnetic field strength and exhibits a cubic 

growth with respect to the particle volume fraction. A part from resolving a particular 

rheological problem, the new concept of magnetically induced diffusion reveals the 

importance of long-range non-hydrodynamic interactions in the rotary diffusion process and 

could probably contribute to the understanding of this process in other concentrated systems 

subject to non-hydrodynamic interactions.  

I. Introduction 

Non-Brownian magnetic dispersions, conventionally called magnetorheological (MR) fluids, 

are suspensions of magnetized micron-sized particles in a dispersing liquid. When an external 

magnetic field is applied, the particles acquire magnetic moments, attract to each other due to 

dipolar forces and form anisotropic aggregates aligned preferably with the magnetic field 

direction. Thus, upon a field application MR fluids undergo a reversible jamming responsible 

for a several order of magnitude increase in effective viscosity and appearance of a yield 

stress � threshold mechanical stress required for onset of flow [Ginder (1998)]. This 

phenomenon, referred to as magnetorheological effect, is being effectively used in numerous 

smart engineering applications [Carlson et al. (1996), Kordonski and Jacobs (1996)]. The 

coupling between field-induced structuring and hydrodynamic interactions gives rise to 

various striking non-linear phenomena, such as flow-induced shear banding and structural 

transitions [Cutillas et al. (1998), Volkova et al. (1999)], formation of honeycomb and foam 

structures [Martin et al. (2004)]. Extensive reviews on microstructure and rheology of MR 

fluids are given by Shulman and Kordonski (1982), Ginder (1998), Bossis et al. (2002a). 

Most of the studies in mechanics of magnetic dispersions were focused on their flows in the 

presence of the magnetic field perpendicular to the flow geometry � presumably, the case of 
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the largest practical interest. At such conditions, macroscopic mechanical behavior of the 

suspension followed, most often, a Bingham behavior with the shear stress being a sum of a 

solvent contribution 0η γ�  and a field-dependent aggregate stress, σY, constant with shear rate, 

γ� , namely 0Yσ σ η γ= + � , with η0 being the solvent viscosity. A number of theoretical models 

has been proposed to describe such behavior [Shulman et al. (1986), Martin and Anderson 

(1996), Zubarev and Iskakova (2006)] but all of them give the similar explanation for the 

independence of the aggregate stress on shear rate. First, this stress scales roughly as 2

0 erη γ� , 

with re being the ratio of major to minor aggregate axes, called aspect ratio. Second, the 

aggregate length decreases with the increasing shear rate because of destructive action of 

hydrodynamic forces ( 2 1

er γ −∝ � ), therefore, shear rate vanishes in the aggregate stress and the 

latter is referred to as dynamic yield stress. 

In magnetic fields parallel to channel walls, the particle aggregates are expected to be oriented 

along the stream-lines and be (in theory) infinitely long because they are not subject to tensile 

hydrodynamic forces. At such conditions, the suspension should undergo a Newtonian 

behavior with a viscosity of the order of magnitude of the solvent viscosity. However the 

stress level, developed in parallel fields, is relatively high and the suspension develops a 

strong Bingham behavior, which does not corroborate with the assumption of alignment of 

aggregates in flow direction. In particular, Shulman and Kordonsky (1982) and Kuzhir et al. 

(2003) have found that, in the pipe flows with a longitudinal magnetic field, concentrated 

magnetic suspensions developed a dynamic yield stress, which was only a few times smaller 

than the one in a perpendicular field. Takimoto et al. (1999) have reported a similar effect in a 

simple shear flow between two parallel plates. Bossis et al. (2002-b) have studied a shear flow 

of an MR fluid between two concentric cylinders in the presence of an axial magnetic field 

parallel to the fluid vorticity. In this geometry, the aggregates should be, a priori, stably 
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aligned in the vorticity direction and should not cause significant viscous dissipation. 

Nevertheless, the MR fluid showed again a Bingham behavior with a yield stress almost the 

same as the one in the case of a magnetic field applied perpendicularly to the walls. Until 

now, none of these effects have been clearly explained or modeled. Furthermore, the 

concentration dependence of the observed MR effect has never been reported.  

The scope of the present paper is to provide new experimental results and also a theoretical 

explanation of the appearance of large Bingham stress in longitudinal magnetic fields and 

develop a theoretical model predicting both the field- and concentration dependencies of this 

stress. Obviously, high mechanical stresses may only appear if the MR structures are 

misaligned relative to the fluid streamlines. For instance, if aggregate rotation is restricted to 

the shear plane, the aggregate shear stress scales as 2 2 2

0 cos sinerσ η γ θ θ∝ < >�  [Batchelor 

(1971)], with θ being an angle between the aggregates and the streamlines, angle brackets 

denote averaging over all possible orientations. Thus, even a small angle deviation of 

aggregate orientation from the flow direction may generate a non-negligible stress, if the 

aggregate aspect ratio is high. Contrary to flow-aligned aggregates, a misaligned aggregate 

should have a large but finite length defined by the equilibrium between the tensile 

hydrodynamic force and the magnetic cohesive force. Thus, the aggregate aspect ratio is 

expected to follow the same shear rate dependence as in the case of the perpendicular 

magnetic field, 2 1

er γ −∝ � . This condition, verified by our theory [cf. Section II], could explain 

the appearance of the dynamic yield stress in longitudinal fields. The main question now is 

what mechanism can be responsible for aggregate misalignment. The main hypothesis of the 

present study is that the aggregates can deviate from their orientation along the streamlines 

because of magnetic dipole interactions with the neighboring aggregates. Since the aggregates 

are randomly spaced in the suspension, under shear flow, they will change their mutual 
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positions and orientations in irregular way. Together with many-body interactions, this may 

cause a stochastic variation in dipolar forces and torques experienced by the aggregates and 

could produce some fluctuations in their orientations. This process can be regarded as a 

magnetically induced rotational diffusion of aggregates, by analogy with Brownian rotational 

diffusion [Van de Ven (1989)] or flow-induced rotational diffusion of elongated particles 

caused by their collisions or short-range hydrodynamic interactions in sheared suspensions 

[Folgar and Tucker (1984), Férec et al. (2009)] or granular media [Otto et al. (2006)]. 

Stochastic torques coming from many-body magnetic interactions tend to randomize the 

aggregate orientation, while a shear flow and a restoring magnetic torque, exerted to 

aggregates by an external field, tend to align the aggregates with the flow. So, the fluctuations 

in aggregate orientation are not necessarily large and might not lead to collisions. In this case, 

we shall deal with a weak rotational diffusion caused solely by long-range dipole interactions. 

In support of this hypothesis, weak orientation fluctuations have recently been observed in 

experiments on kinetics of aggregation of diluted magnetic suspensions
�
.  

Incorporating this new rotational diffusion mechanism into standard micromechanical models 

of MR fluids, we hope to give, for the first time, correct quantitative estimations of the 

Bingham stresses developed in longitudinal magnetic fields. In particular, in this paper, we 

consider theoretically a simple shear flow of a magnetic suspension under an external 

magnetic field collinear with the fluid velocity. Dynamics of aggregates and suspension 

viscoelastic properties are determined by means of the slender body theory [Batchelor (1970, 

1971)] with taking into account magnetically induced rotational diffusion and long-range 

hydrodynamic interactions [Shaqfeh and Fredrickson (1990)]. In order to validate our theory, 

we perform a detailed experimental study of this flow using a capillary rheometer and 

                                                            
† These experiments are currently being carried out in our research group and have not been published yet. 
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compare experimental stress-vs.-field and stress-vs.-concentration dependencies with the 

predicted ones. Even though, we apply our theory to a particular problem of the 

magnetorheology, we hope it may be used for a more general purpose of understanding the 

role of long-range non-hydrodynamic interactions in rotational diffusion observed in 

particulate systems, when interparticle collisions are not mandatory. 

This paper is organized as follows. In the next section II, we describe in details our theoretical 

model and give the final expressions for suspension viscoelastic properties. Experimental 

technique and procedures is described in the Section III. Both theoretical and experimental 

results are reported and compared in the Section IV. Finally, in the Section V, we outline the 

main conclusions of this work and some ideas for further improvement of the present model. 

II. Theory 

Let us consider a simple shear flow of a semi-dilute MR fluid with a linear velocity profile, 

2( ,0,0)xγ=v � , as depicted in Fig. 1. An external magnetic field, of intensity H, is oriented 

along the fluid streamlines, i.e. along the Ox1-axis. We are looking for the shear stress, σ12, 

developed in the suspension as function of the shear rate, γ� , and magnetic field strength H. 
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Fig.1. Geometry of the simple shear flow in the presence of the longitudinal magnetic field. A sketch of the 

forces acting between two aggregates is presented on the right part of the figure: F+− , F++ , F−−  and F−+ stand 

for the forces between each pair of poles of two neighboring aggregates. These forces induce a so-called 

interaction torque Tint on both aggregates that makes them turn in the clockwise direction. In shear flow, the 

upper aggregate moves faster than the lower aggregate, the forces between poles vary as the aggregates displace. 

The interaction torque also varies and changes its direction when the upper aggregate overruns the lower one; 

this make them turn in the opposite direction. Thus, when the upper aggregate displaces approximately by two 

times its length, both aggregates will perform one angular oscillation. In the presence of many aggregates 

moving at different velocities the dipolar forces and interaction torques will vary stochastically and will result in 

stochastic angular oscillations of aggregates. 

The following assumptions are introduced: 

1. In the presence of the magnetic field, the particles are supposed to form long cylindrical 

aggregates aligned with the field direction, as usually observed in quiescent suspensions 

[Bossis et al. (2002-a)]. As already stated, the aggregates can deviate from their initial 

orientation because of magnetic interactions with the neighboring aggregates. Under shear 

flow, random mutual positions of aggregates with respect to each other will cause a stochastic 

variation in dipolar forces and torques and thus will produce some fluctuations in their 

orientations. Since the aggregates are subject to multi-body magnetic interactions, their 

rotational dynamics is a complex phenomenon required a detailed study by numerical 

simulations. At the present stage, we propose to describe this dynamics by a rotational 

diffusion process, which is supposed to be Gaussian delta-correlated process, similar to the 

Brownian rotational motion. The fluctuations of aggregate orientation can be seen as a 

random walk when the aggregates perform irregular jumps with the mean amplitude ∆θ and 
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the mean jump duration ∆t. According to the random walk model [Van de Ven (1989)], the 

rotational diffusion constant scales as 

2
2( )

rD t
t

θ ω∆ ≈ ∆∆∼ ,    (1) 

where 2ω  is the mean square angular velocity of the aggregates. Note that, in the case of 

classical Brownian motion, the formula (1) gives the correct result for the rotational diffusion 

constant of Brownian particles up to a numerical constant. Doi and Edwards (1986) have also 

used the same reasoning [Eq. (1)] in their tube model for rotational diffusion of semi-dilute 

polymer solutions. 

2. In our case, the mean jump duration can be estimated by considering the mutual 

displacement of two neighboring aggregates in shear flow. Suppose two aggregates displace 

parallel to each other along the streamlines spaced at the distance d (Fig.1). The upper 

aggregate moves faster than the lower one, so, both aggregates will perform one angular 

oscillation when the upper aggregate overtakes the lower one and has moved by the distance 

4L relatively to its neighbor. The mean jump duration corresponds approximately to a half-

period of the aggregate oscillation: 2 /( )t L dγ∆ �∼ .  

3. The amplitude of orientational fluctuations is measured by a torque, Tint, created by many-

body magnetic interactions with neighboring aggregates and called hereinafter interaction 

torque. The mean square angular velocity of the stochastic motion of aggregates can be 

estimated as 2 2 2

int / rT fω ≈ , with 2

intT  being the mean square interaction torque and fr � 

a rotational friction coefficient. Thus, the expression (1) for rotational diffusion constant reads 

2

int

2

2
r

r

T L
D

f dγ⋅∼
�

     (2) 
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4. The aggregates are considered to be dipoles with both poles situated on their extremities 

[Fig. 1]. Thus, the interaction force between two aggregates is the sum of four forces acting 

between the pair of poles of the two aggregates. For the estimation of the mean square 

interaction torque, 2

intT  created by these forces, we can consider a particular case of the 

aggregate mutual position shown on the right part of Fig. 1. We consider that the upper 

aggregate displaces above the lower aggregate with the relative velocity dγ� , and we neglect 

the angular deviation of the aggregates� orientation from the flow direction. The interaction 

torque acting on the upper aggregate is induced by four forces of interaction between the 

poles of both aggregates, F+− , F++ , F−− , F−+  [Fig.1], namely, 

int ( )T F F F F L⊥ ⊥ ⊥ ⊥+− ++ −− −+= − + − , where the superscript �⊥ � denotes the force component 

perpendicular to the aggregate axis. The expression for the forces of interactions between 

poles reads [Rosensweig (1985)]: 2 2

0/(4 )i iF p rπµ= , consequently, 2 3

0/(4 )i iF p d rπµ⊥ = , 

where , , ,i = +− + + − − − + ; ri is the pole-to-pole distance, /(2 )p m L=  is the intensity of the 

magnetic pole, µ0=4π·10
-7

H/m is the magnetic constant, 0 a am M Vµ=  is the aggregate 

magnetic moment induced by an external magnetic field of intensity H, a aM Hχ=  is the 

aggregate magnetization, χa is the aggregate magnetic susceptibility and 22aV A Lπ=  is the 

aggregate volume with A being the aggregate radius. Squaring the interaction torque and 

averaging the result over the position of the upper aggregate along the flow direction (over x1 

coordinate for the aggregate displacement of the order of its length) we obtain that the mean 

square torque scales as  

2 2

int int 0

d
T T

L
⋅∼ ,      (3) 
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where 2 2 2 2 4 2

int 0 0 0/(4 ) /aT p L d H A L dπµ µ χ= ∼  is the maximal absolute value of the 

interaction torque for the mutual position of the aggregates, at which the front of the upper 

aggregate is at the same position x1 as the back of the lower aggregate. The mean distance d 

between thin (aspect ratio / 1er L A= � ) quasi-aligned aggregates can be estimated as 

1/ 2( / )ad A −Φ Φ∼ , where the ratio / aΦ Φ  stands for the volume fraction of porous aggregates 

in the suspension, with Φ being the volume fraction of particles in the suspension and Φa � 

the volume fraction of particles inside the aggregates. Performing the necessary substitutions, 

we get the following expression for the mean square interaction torque, up to a numerical 

constant: 

    

2

2 2 2

int 0 a a

a

d
T H V

L
µ χ⎛ ⎞Φ ⋅⎜ ⎟Φ⎝ ⎠∼     (4) 

5. We neglect eventual collisions between aggregates and short-range hydrodynamic 

interactions but account for their long-range hydrodynamic interaction according to the theory 

of Shaqfeh and Fredrickson (1990), which leads to the following expressions for the linear 

density of hydrodynamic force on slender aggregates and for their rotational friction 

coefficient: 

   02
( )

ln( )
f v v

πη
ξ ∞= −& & & , 04

( )
ln( )

f v v
πη

ξ ∞⊥ ⊥ ⊥= −     (5) 

     
3

08

3ln( )
r

L
f

πη
ξ= ,       (6) 

where η0 is the viscosity of a Newtonian liquid-carrier of the MR fluid, ξ is the screening 

length normalized by the aggregate radius A and is a logarithmic function of / aΦ Φ , ∞
v  and 

v  are, respectively, velocities of the undisturbed flow and of the aggregate at a given position 
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along its major axis, subscripts �&� and �⊥ � stand for the force and velocity components 

along the major and the minor aggregate axes, respectively. Strictly speaking this approach 

can be applied safely for the semi-dilute concentration limit 1/ a er
−Φ Φ �  [Shaqfeh and 

Fredrickson (1990)], which is not satisfied for our experimental systems. However, in 

suspensions of quasi-aligned aggregates with presumably small collision rate, the short range 

hydrodynamic forces are expected to give a non-negligible but not decisive contribution to 

overall forces and torques experienced by aggregates. Therefore, the semi-dilute limit 

approach is expected to give correct estimations for the hydrodynamic forces and stresses. 

Substituting Eqs. (4) and (6) into Eq. (2), we obtain the final expression for the rotational 

diffusion constant, up to some numerical constant α: 

    

2
2 2

0

0

1a
r

a

H
D

µ χα η β γ
⎛ ⎞Φ= ⎜ ⎟Φ⎝ ⎠ �

     (7) 

where [ ]24 / 3ln( )erβ ξ=  is a form factor.  

6. Note that both the mean square interaction torque 2

intT  [Eq. (4)] and the mean jump 

duration ∆t were estimated in the limit of pair magnetic interactions between two aggregates 

and without taking into account angular deviations of aggregates from the flow direction. 

These approximations could affect the value of the diffusion constant. Therefore, the 

numerical factor α in the expression (7) can be seen as a correction factor for many-body 

interactions and is called hereinafter interaction constant. The constant α is taken as a free 

parameter of our model. 

7. In order to evaluate the suspension stress, we must first determine the orientation 

distribution of aggregates, or rather the second and the fourth moments of the distribution 
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function, i ke e  and i k l me e e e , where e  is the unit vector along the aggregate major axis and 

ie  is its component along the axis Oxi, i=1,2,3. The common way of solving this problem 

consists of two steps: (i) determination of the angular distribution function by integration of 

the convective-diffusion equation [Van de Ven (1989)] and (ii) averaging the moments of the 

distribution function over all possible orientations. The alternative way allows direct 

determination of the desired quantities i ke e  and i k l me e e e  by solving a set of simple 

equations describing temporal evolution of the statistical moments i ke e . These equations are 

simply obtained from the convective-diffusion equation by multiplying it by 3 i k ike e δ−  

(with ikδ  being the Kronecker delta) and averaging over all possible orientations [Doi and 

Edwards (1986), Pokrovskiy (1978)]. The first method gives more rigorous results but 

requires numerical solution of the convective-diffusion equation. The second method gives 

simple approximate solutions but requires some closure approximation concerning a 

relationship between the fourth and the second moments of the distribution function: 

( )i k l m i ke e e e f e e= . A rigorous numerical simulation would be useless, given the level of 

approximation used for the determination of the diffusion coefficient, therefore, we choose 

the second method of determination of the statistical moments using the evolution equations 

for i ke e , given, in the most general form, by Pokrovskiy (1978) for axisymmetric particles 

subject to both shear flow and external torques. In the case of slender aggregates with 

hydrodynamic screening, this expression takes the following form: 

2 2

0

0

2

2 3
2

i k

il l k i l lk il l k i l lk i k l m lm

m ma
i l lk k l li r ik i k

a

d e e
e e e e e e e e e e e e

dt

H
e e T e e T D e e

ω ω γ γ γ
µ χ δη β χ

⎡ ⎤ ⎡ ⎤= − + + −⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− + + −⎣ ⎦⎣ ⎦+

  (8) 
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where t is time, (1/ 2) ( / / )ik i k k iv x v xγ = ⋅ ∂ ∂ + ∂ ∂  and (1/ 2) ( / / )ik i k k iv x v xω = ⋅ ∂ ∂ − ∂ ∂  are rate-

of-strain and vorticity tensors, respectively, m
T  is the magnetic torque applied to aggregates 

by the external magnetic field. For slender porous magnetic aggregates this torque is given by 

the following expression:  

   [ ]2
2

0
2

m a
ik a i l l k k l l i

a

T H V h h e e h h e e
χµ χ= −+ ,    (9) 

with / H=h H  being a unit vector oriented along the magnetic field direction. 

8. To solve the equation (8) with respect to i ke e , we introduce the quadratic closure 

approximation, first postulated by Doi and Edwards (1986) when studying the dynamics of 

rigid rod-like polymers: 

    i k l m i k l me e e e e e e e≡      (10) 

This expression becomes exact in the limit of perfect alignment of rod-like particles (or 

aggregates). In the case of non-perfect alignment, the exactness of this approximation 

decreases with decrease in degree of alignment of particles. So, the Eq. (10) can be applied, 

with a presumably small uncertainty, for our case of magnetic aggregates strongly aligned by 

shear and external magnetic fields. A variety of other closure approximations has been 

proposed in literature for non-Brownian fiber suspensions, liquid crystals, rigid polymers 

[Hinch and Leal (1976), Advani and Tucker (1987), Cintra and Tucker (1995), Chaubal and 

Leal (1998), Grosso et al. (2000), Chung and Kwon (2001)]. In our particular case, the choice 

of the closure approximation will not change qualitatively the final result � appearance of the 

dynamic yield stress in the longitudinal magnetic fields; it may only affect its numerical 

value. Testing different closure approximations is not of the scope of our paper; we restrict 

our analysis to the simplest approximation � the quadratic closure (10) � and focus our 
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attention on the mechanism of the appearance of the yield stress rather than on the rigorous 

prediction of its numerical value. 

9. The system of equations (7) � (10) is not yet closed because it contains another unknown 

quantity � the friction factor [ ]24 / 3ln( )erβ ξ= , which depends on the aggregate aspect ratio 

re=L/A. As already mentioned, the aggregates misaligned with the streamlines experience 

tensile hydrodynamic forces that tend to break them but, inside the aggregates, magnetic 

particles are subjected to magnetic attractive forces that consolidate the aggregates. Both 

hydrodynamic and magnetic forces depend on the aggregate orientation, so, they vary when 

the aggregate oscillates under the action of random torques. At some given orientation, 

hydrodynamic forces can overcome the magnetic ones and the aggregates will break. At other 

moments, the magnetic forces will dominate and the broken parts of the aggregates may join 

each other. Thus, the aggregates are expected to undergo a continuous 

fragmentation/aggregation process, and their aspect ratio should constantly fluctuate with the 

time around some mean value. Nevertheless, at this stage we neglect kinetics of this process 

and assume that all the aggregates have the same aspect ratio defined by the balance of the 

mean hydrodynamic and mean magnetic forces. In more details, the average aspect ratio of 

the aggregates is obtained as for the case of single chains [Martin and Anderson (1996)] 

supposing that the number of chains per unit area of the aggregate corresponds to a simple 

cubic packing of particles; in this case, the cohesive force can be estimated as: 

2 2(3 / 2) cosm m

aF A fπ θ= Φ . Here Φa=π/6 is the particle volume fraction inside the 

aggregates, mf  is the magnetic force between two particles aligned with the external field per 

unit particle cross-section, 2aπ , a is the particle radius and θ is the angle between the 

magnetic field and the aggregate major axis; 2cos l s l sh h e eθ = . The interparticle force per unit 
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cross-section mf  depends on the intensity of the external magnetic field as well as on particle 

magnetic properties. The hydrodynamic tensile force acting on aggregates is obtained by 

integration of the linear force density, f&  [first expression in Eq. (5)], over the half of the 

aggregate length. Under the present assumptions, the balance of the mean magnetic and mean 

hydrodynamic forces reads: 

   
2

2

0

3

ln( ) 2

m

ik i k a l s l s

L
e e A f h h e e

π η γ πξ = Φ     (11) 

For the given geometry presented in Fig. 1, the components of the quantities , ,i ik ikh γ ω  along 

the coordinates axes Ox1, Ox2 and Ox3 (intervening into Eqs. (8), (9), (11)) take the values as 

follows: 1 1h = , 2 3 0h h= = , 12 21 / 2γ γ γ= = � , 12 21 / 2ω ω γ= − = � , 0 at 12, 21ik ik ikγ ω= = ≠ . 

Taking these relations into account and using the Eq. (11), we obtain the following expression 

for aggregate aspect ratio, or rather the form factor β: 

     

2

1

0 1 2

2 m

a f e

e e
β η γ

Φ=
�

     (12) 

Substituting the last expression into the Eq. (7), we obtain that the rotational diffusion 

constant is linear in shear rate: 

    

2
2 2

1 2 0

22

1
2

a
r m

a

e e H
D C

fe

µ χα γ γ⎛ ⎞Φ⎜ ⎟= ≡⎜ ⎟Φ⎝ ⎠
� �     (13) 

Such shear rate dependence comes from the two opposite effects. First, the duration of 

angular jumps of aggregates scales as 1γ −� , so the diffusion constant must decrease inversely 

proportionally to the shear rate. Second, the aggregate length decreases with the shear rate. 

This decreases the viscous friction of aggregates proportionally to the shear rate and gives a 
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quadratic growth of the diffusion constant with the shear rate. The product of both effects 

gives the linear dependence: rD Cγ= � . Note, that the same shear rate dependence was 

postulated by Folgar and Tucker (1984) for the rotational diffusion of non-Brownian rod-like 

particles induced by their collisions in sheared suspensions. However, the physics is quite 

different because, in the latter situation, the random orientional walk was only dictated by the 

rate of collisions proportional to the shear rate, whereas, in our case, it is the interplay 

between long range dipolar forces and shear rate, which produces the same scaling.  

Substituting the Eqs. (9), (10), (12), (13) into Eq. (8) and considering the steady state regime 

with / 0i kd e e dt = , we obtain the system of equation for each of 9 components i ke e of the 

second statistical moment tensor. Because of the symmetry of the problem with respect to the 

coordinate plane Ox1x2 [Fig. 1], we pose 1 3 2 3 0e e e e= = . Thus, taking into account the 

symmetry of this tensor, the number of unknown components reduces to four, namely, 

2 2 2

1 2 1 2 3, , ,e e e e e , and the three last of them are related by the expression 

2 2 2

1 2 3 1e e e+ + = , which comes from the fact that the norm of the unit vector e  is equal 

to one. Thus, we obtain from the Eq. (8) the system of four algebraic equations, as follows:  

( ) ( )
( )

( )

2

21 2 1 22 2 2 2

1 2 1 1 2 2 1 1 1 12 2

1 1

2

1 2 1 22 2 2 2

2 1 2 2 1 2 1 22 2

1 1

2

2 1 2 1 22 2
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where 
2

2 2 2

1 0 /(2 )m

a aC H fα µ χ⎡ ⎤= Φ Φ⎣ ⎦  and 2 2

2 0 /[2 (2 )]m

a a aC H fµ χ χ= Φ +  are 

dimensionless factors independent of shear rate. Note that, because of the relations rD Cγ= �  

and 1β γ −∝ � , all the terms on the right-hand side of the Eq. (8) become linear with the shear 

rate. Therefore, in the steady state regime, the shear rate disappears from the Eqs. (8), (14), so, 

the aggregate orientations are independent of shear rate. Analysis shows that, in our 

experiments, the parameters C1 and C2 take the values 0.05<C1<1 and 0.04<C2<0.12. So, in 

general case the system (14) is solved numerically. However, in the wide range of magnetic 

fields and concentrations (H<15 kA/m and Φ<0.3), the parameter C1 remains relatively small 

(C1<0.2) and the system (14) admits, within the 10% error, an approximate analytical 

solution, as follows: 

2 2
2 2 21 1 1

1 2 2 3 12 2

2 2 2 2 2 2

2
, , 1

(1 )(2 ) (1 ) (2 ) (1 ) (2 )

C C C
e e e e e

C C C C C C
= = = = −+ + + + + +    (15) 

The diagonal components 2

ie  of the second statistical moment can be seen as the mean 

square cosines of the angle between the aggregate major axis and the Oxi coordinate axis. For 

example, 2

1e  is the mean square cosine of the angle that the aggregate makes with the flow. 

At small magnetic fields and particle concentrations, the 1 2e e  component can be interpreted 

as a mean sine of the angle between the aggregates and the flow. 

Let us now estimate the shear stress developed in the suspension. The most general expression 

for the stress tensor of a dilute suspension composed of axisymmetric aggregates subject to 

both an external torque (magnetic torque m
T  in our case) and rotational diffusion is given by 

Pokrovskiy (1978). In more concentrated suspensions, long-range hydrodynamic interactions 

between aggregates will enhance viscous dissipation but we can still use the expression 
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derived for the dilute suspensions upon replacing the form factor β by the appropriate value, 

[ ]24 / 3ln( )erβ ξ= . A similar trick has been used by Bird et al. (1977) when computing the 

stress in a semi-dilute solution of rod-like polymer. For the suspension of slender aggregates 

the expression for the stress tensor reduces to: 
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 (16) 

where p is the pressure. Replacing the magnetic moment m

ikT  by the Eq. (9) and taking into 

account the Eqs. (10), (12), (13) for i k l me e e e , β and Dr, we obtain the following expression 

for the shear stress σ12: 
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  (17) 

The first term in the right-hand side of this equation stands for the solvent contribution to the 

stress and the last three terms stand for the aggregate contribution. Among these three terms, 

the first one corresponds the hydrodynamic part of the aggregate stress, the second one comes 

from the external magnetic torque (magnetic stress) and the last one arises from the random 

interaction torques inducing random fluctuations of aggregate orientations (defined by Leal 

and Hinch (1972) as diffusion stress). All the three contributions of the aggregate stress 

appear to be independent of the shear rate, so, their sum is considered as a dynamic yield 
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stress. Furthermore, analysis shows that the magnetic stress gives a negligible contribution, so 

the final expression for the yield stress reads: 
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Y m
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As expected, this stress appears to be independent of shear rate due to the fact that the 

hydrodynamic stress is proportional to 2

0 erη γ�  and the diffusion stress is proportional to 

2

0 e rr Dη  with 2 1

er γ −∝ �  and rD Cγ= � . In conclusion, our theory predicts a linear Bingham-like 

rheological law, 12 Yσ σ ηγ= + � , for the magnetic suspension in the presence of longitudinal 

magnetic field. The plastic viscosity, ( )0 1 2 / aη η= + Φ Φ  appears to be field-independent and 

proportional to the solvent viscosity, η0. This conclusion is, however, valid for the aggregates 

long enough, for which the slender body approach, used in our theory, remains valid. This 

corresponds to the form factor 2

erβ ∼ I100, or, with the help of the Eq. (12), we obtain: 

0 / mfη γ� ○
1

1 2100 e e
−⎡ ⎤⎣ ⎦ . We have checked that this condition is satisfied in our experiments.  

For the quantitative estimations of the shear stress we need to estimate the magnetic 

susceptibility of the aggregates, χa and the magnetic force mf  per unite cross-section of 

particles composing the aggregates. We should keep in mind that closely spaced magnetic 

particles inside the aggregates mutually bias each other and thus cannot be considered as point 

dipoles. It has been shown that the dipolar approach underestimates the interparticle forces by 

one or two orders of magnitudes [Clercx and Bossis (1993), Ginder and Davis (1994)]. It also 

gives understated values of the magnetic susceptibility of aggregates [Clercx and Bossis 

(1993)]. Therefore, in order to predict at least a correct order of magnitude for the yield stress, 
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we must use more precise approaches for calculations of mf  and χa. In more details, we 

estimate both quantities for a simple cubic arrangement of particles in the aggregates by 

calculating first the magnetic field distribution in the aggregates aligned with the magnetic 

field. After that, we derive the interparticle force by integrating the Maxwell stress tensor over 

the particle surface and, finally, we estimate the magnetic susceptibility of aggregates as 

/a a aM Hχ = , where aM  and aH  are, respectively, the magnetization and the 

magnetic field intensity in the aggregate, both averaged over the aggregate volume. The 

numerical simulations are carried out using finite element method and a more detailed 

description of the calculation procedure can be found in [Ginder and Davis (1994)]. In our 

simulations, we suppose that the particle surfaces are separated from each other by a small 

nonmagnetic gap of 4 nm (about 0.0013 of the particle diameter), which corresponds to the 

double thickness of the surfactant layer on the particle surface. Actually, at such small 

separation, the interparticle force is only a few percent smaller than the one in the case of a 

close contact of particles. We also use a Fröhlich-Kennelly non-linear magnetization law for 

the carbonyl iron magnetic particles [Jiles (1991)]: /( )p i S p S i pM M H M Hχ χ= +  with Mp and 

Hp being the magnetization and the magnetic field intensity inside the particles, 130iχ ≈  and 

1360SM ≈ kA/m � the initial magnetic susceptibility and saturation magnetization of particles 

[Bossis et al. (2002-a)]. The calculated quantities mf  and χa are functions of the magnetic 

field intensity and, in the range of magnetic fields, 2<H<20 kA/m, are approximated by the 

following polynomials: 

  

2

5 3 2

0( ) 1.34 10 3.62 10 162m

S S

H H
f H H

M M
µ⎛ ⎞⎛ ⎞⎜ ⎟= − ⋅ − ⋅ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

   (19) 
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2

3( ) 2.77 10 23.4 9.22a

S S

H H
H

M M
χ ⎛ ⎞= − ⋅ − +⎜ ⎟⎝ ⎠    (20) 

To validate our theory, we perform a detailed experimental study of magnetic suspension flow 

in the presence of a longitudinal magnetic field. In the following Section III, we present 

experimental techniques as well as data treatment methods.  

III. Experimental 

Experimental realization of simple shear flows with the magnetic field aligned with the fluid 

streamlines remains problematic. The use of sliding-plate rheometers is limited by technical 

problems with realization of steady-state flows [Macosko (1994)]. In standard rotational 

rheometers, circular flows are induced between rotating disks or concentric cylinders, but it is 

not trivial to create a circular homogeneous magnetic field. A non-homogeneous circular 

field created by an electric current of a cylindrical conductor would cause a substantial 

migration of magnetic particles towards the conductor. These technical problems push us to 

use a pressure-driven flow through a cylindrical channel instead of the simple shear flow 

studied theoretically. The velocity profile is not linear in capillary flows, so the shear rate 

varies from zero at the channel axis to a maximum value at the wall. However, using our 

model, we estimate that the shear rate variation, γ∆ � , along the aggregates is negligible, 

except for a narrow central flow region: 

1/ 2

1 2 0( ) / ( ) sin / ( / ) /( ) 1mr r L r a r f e eγ γ θ η γ⎡ ⎤∆ ≈ ⋅ ⎣ ⎦� � �∼ �  for r/RI0.1, with r being radial 

coordinate, R � channel radius, a � particle radius and θ - the angle between the channel axis 

and the aggregate�s major axis [Fig. 1]. In the last expression, we replaced sinθ by 1 2e e  and 

estimated the aggregate length as 1/ 2L a β⋅∼  with β given by the Eq. (12). So, we expect that 

the rheological behavior observed in the pressure-driven flow should be similar to that in a 
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drag shear flow with linear velocity profile. We also expect that our theory, developed for 

linear shear flows, can be applied safely for capillary flows, at least, within the range of 

experimental parameters used in the present work. 

Pressure-driven flow through cylindrical channels was realized using the capillary rheometer 

Rosand RH7 (Malvern Instruments). The apparatus allows applying a flow rate, Q, in a step-

wise manner and the pressure difference, ∆p, between both extremities of the channel, is 

measured by a strain gauge pressure transducer. The duration of the flow-rate steps was 

sufficiently long to achieve a stable steady-state pressure response, at which fluctuations in ∆p 

did not exceed two per cent of the mean value. Flow channels, of two different diameters (0.5 

and 0.75 mm) and five different lengths (0.25, 0.5, 1, 2 and 4 mm), were fabricated from 

aluminum cylinders by micro-drilling. A homogeneous magnetic field of an intensity, H0, 

ranging from 0 to 15 kA/m and parallel to the channel axis, was generated by a pair of 

Helmholtz coils placed co-axially around the channel. Once, the pressure-flow rate curves are 

measured, we determine the shear stress versus shear rate dependences � flow curves � by 

using the standard procedure [Macosco (1994)]. Bagley and Mooney-Rabinowitch corrections 

were applied for calculations of the flow curves in order to exclude the effects of entry and 

exit flows and to correct the shear rate for non-Newtonian flows. Possible effects of wall slip 

are checked by using the channels of two different diameters. The coincidence of the flow 

curves for the channels of both diameters in the whole range of experimental parameters 

allows us to not consider this effect [Macosco (1994)]. 

The MR fluids used in this work were composed of spherical iron particles (AnalaR 

Normapur; Prolabo®; VWR International) of mean diameter of 2a=3 µm and magnetization 

saturation, MS=1360 kA/m. These particles were dispersed in a silicon oil (Rhodorsil ®; VWR 

International; dynamic viscosity at 25
0
C is η0=0.479 Pa·s) at three volume fractions, Φ=0.2, 
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0.3 and 0.4, and stabilized against aggregation by an appropriate amount of aluminum stearate 

(Sigma-Aldrich). 

In the capillary rheometer, the MR fluid is pushed from a large cylindrical container into a 

narrow capillary coaxial with respect to the container. Since the magnetic field lines are 

partially �confined� within the flow pass of the MR fluid, the mean magnetic flux density in 

the MR fluid inside the capillary will be higher than that inside the container. We have 

performed numerical simulations of the magnetic field distribution in the experimental 

geometry and found that the mean magnetic field intensity H inside the capillary is about 1.5 

times the intensity H0 of the external magnetic field created by the Helmholtz coils. 

Nevertheless, the magnetic field inside the capillary varied around the mean value H only by a 

few per cent and was therefore considered as uniform. The main variation of the magnetic 

field occurred in the container in the vicinity of the capillary entrance, so, the field gradients 

may affect the entrance pressure loss. However, this should not influence the results for the 

shear stress in the capillary because we subtract the entrance pressure loss from the total 

measured pressure difference ∆p performing the Bagley correction. The entrance flows of MR 

suspensions have been considered in details by Kuzhir et al. (2009). In what follows, we 

analyze the field effects on the aggregate orientation and on the suspension stress with regard 

to the mean magnetic field inside the capillary, 01.5H H≈ .   

IV. Results and discussion 

The experimental flow curves obtained for the capillary flow in the presence of a longitudinal 

magnetic field are shown in Fig. 2 for the particle volume fraction Φ=0.3. As is seen from this 

figure, the flow curves, obtained for different magnetic field intensities are linear and parallel 

to each other within the whole experimental range of shear rates, 1500 3000γ −< <�  s
-1

. The 
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increase in the magnetic field intensity causes an increase in the stress level of the suspension 

such that the flow curves are shifted upwards but their slopes remain the same. So, these 

curves can be interpolated by a linear rheological law, 12 Yσ σ ηγ= + �  with σY being a field-

dependent dynamic yield stress (an intercept of extrapolated curves onto zero shear rate) and 

η � a field independent plastic viscosity. Note that our theory predicts the similar Bingham 

like behavior with field-independent plastic viscosity [Eq. (17)]. Therefore, both in theory and 

in experiments, the dynamic yield stress of the suspension appears to be the major rheological 

property influenced by a magnetic field. In what follows, we shall concentrate our attention 

on this particular property. 

 

Fig. 2. Experimental flow curves of the MR fluid in the presence of an external longitudinal magnetic field of 

different intensities. These curves were obtained for a pressure-driven flow using the capillary rheometer. The 

particle volume fraction of the suspension was Φ=0.3.  

Experimental and theoretical dependencies of the dynamic yield stress on the magnetic field 

intensity are presented in Fig.3 for the magnetic suspensions of different volume fractions. 

The theoretical dependencies were fitted to experimental ones by using the least square 

method with a single free parameter, α - interaction constant intervening into the Eq. (13) for 

the diffusion constant. Interestingly, the three presented curves for three different volume 
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fractions of the MR fluid are fitted reasonably well by a single value of the interaction 

constant α=1.5. Possible reasons for a relatively small discrepancy between theoretical and 

experimental curves at Φ=0.4 and H>18 kA/m (upper curve in Fig.3) are discussed below. 

As is seen from Fig. 3, the yield stress is an increasing function of both magnetic field 

intensity and the suspension volume fraction. The increasing field-dependence of the yield 

stress can be easily understood by the two mechanisms, as follows. First, the magnetic 

interactions between aggregates increase with the increasing magnetic field. This leads to 

larger fluctuations of aggregate orientation and therefore to a larger viscous dissipation. This 

mechanism appears in the Eq. (18) for the yield stress through the statistical moment 1 2e e , 

which should be a growing function of the magnetic field intensity as will be discussed below 

[cf. Fig. 6c]. Second, magnetic interactions between particles, composing the aggregates, also 

increase with a growing magnetic field. The aggregates become more resistive against 

destructive shear forces, their length increases with the field, so, they generate higher stresses. 

In more details, the hydrodynamic stress on aggregates is proportional to the aggregate aspect 

ratio squared, re
2
, and the later is proportional to the interparticle magnetic force per unit 

particle cross-section, mf , which is increasing function of the magnetic field intensity. 

Finally, these two mechanisms contribute simultaneously into the increasing field-response of 

the yield stress. 
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Fig. 3. Theoretical and experimental dependencies of the dynamic yield stress of the MR fluids on the magnetic 

field strength at different particle volume fractions. Points correspond to experimental data and lines � to the 

theory. 

The concentration dependence of the dynamic yield stress is presented in Fig.4 for the 

magnetic field strength H=15 kA/m. The theoretical values of the yield stress were calculated 

using the appropriate value of the free parameter, α=1.5 found previously by fitting 

theoretical field dependencies of the yield stress to the experimental ones. Again, we obtain a 

reasonably good correspondence with experiments. As is seen from Fig. 4, both theory and 

experiments show that the yield stress increases with the particle volume fraction stronger 

than linearly. Such nonlinear behavior could be easily explained by concentration-enhanced 

interactions between aggregates. In more details, the mean distance between aggregates and, 

consequently, the magnetic interaction torque increase with the particle volume fraction. 

Therefore, the aggregates will be subjected to stronger fluctuations of their orientation and 

will generate a stronger viscous dissipation.  
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Fig.4. Theoretical and experimental dependencies of the dynamic yield stress on the particle volume fraction for 

the magnetic field strength H=15 kA/m.  

For a more quantitative analysis of the field and concentration effects on the yield stress, let 

us inspect these effects on two separate components of the computed yield stress � 

hydrodynamic aggregate stress and diffusion stress. The magnetic stress appears to be 

negligible in our model and is not worth attention. The concentration dependence of both 

components of the stress is shown in Fig. 5a for the magnetic field intensity, H=15 kA/m. As 

is seen in this figure, the hydrodynamic stress dominates over the diffusion stress, however, 

the later shows a stronger concentration behavior. For example, at the volume fraction Φ=0.3, 

the relative contributions of the diffusion and hydrodynamic terms to the total yield stress are 

12 and 88 percents, respectively, but at the volume fraction Φ=0.4, these contributions are 32 

and 68 percents. Thus, the relative importance of the diffusion stress increases with the 

particle concentration. This can be easily understood by analyzing the expression (18) for the 

yield stress. According to this equation, the hydrodynamic stress Hσ  is proportional to 

2

1 2 1e e eΦ  and the diffusion stress Dσ  is proportional to 
23 2

1 2 1/e e eΦ . At relatively low 

concentrations, when the approximate expressions (15) hold, 2

1 1e ∼  and 2

1 2 1e e C ∝ Φ∼ , 
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therefore, the hydrodynamic stress varies as 3

Hσ ∝ Φ  and the diffusion stress shows even 

stronger power-law dependence on concentration: 7

Dσ ∝ Φ . In fact, the component 1 2e e  of 

the second statistical moment can be roughly seen as the mean angle θ between the aggregate 

and the flow [Fig. 1]. With the growing concentration, the magnetic interactions between the 

aggregates become stronger, and this leads to stronger deviations of the aggregate orientation 

from the flow direction, hence, to higher values of the mean angle 2

1 2e eθ ≈ ∝ Φ  and to 

higher hydrodynamic stresses. An unexpectedly strong concentration effect on the diffusion 

stress can be interpreted in terms of the concentration behavior of the diffusion constant. 

According to the Eq. (13), ( )2 6

1 2rD e e∝ Φ ∝ Φ . This behavior shown in Fig. 5b comes from 

the two effects as follows. On the one hand, the diffusion is enhanced by the magnetic 

interactions between aggregates, which become stronger with the growth in concentration, 

such that 2 2

intrD T∝ ∝ Φ  [cf. Eqs. (2), (4)]. On the other hand, with increasing orientation 

fluctuations, the destructive shear forces increase and the mean aggregate length decreases, 

which facilitates the diffusion process and 
22 2 4

1 2r rD f e eβ− −∝ ∝ ∝ ∝ Φ  [cf. Eqs. (2), (7), 

(12)]. Both these effects amplify each other and lead to the final dependence 6

rD ∝ Φ . 
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Fig. 5. Theoretical concentration-dependencies of the hydrodynamic and diffusion components of the yield stress 

(a), of the diffusion constant normalized by the shear rate γ�  (b) and of the components of the second statistical 

moment (c). The magnetic field intensity is H=15 kA/m. The log-log scale of the Dr versus Φ dependence allows 

one to visualize the Φ6 law for the rotary diffusivity (inset of the figure (b)). 
Note that we constructed our model assuming relatively small angular fluctuations, such that 

the space, within which an aggregate oscillates, does not overlap the �space of activity� of any 

other aggregate. Quantitatively, this restriction corresponds to the condition 
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1 2e e ○ 1/ 2/ ( / )( / )ad L A L −Φ Φ∼  with d being the mean distance between aggregates [cf. 

Fig.1]. The aggregate aspect ratio is estimated using the Eq. (12): 

( ) 1/ 2
1/ 2

0 1 2/ /m

er L A f e eβ η γ⎡ ⎤= ⎣ ⎦�∼ ∼ . So, the condition, at which the angular fluctuations of 

aggregates are not restricted by the presence of neighboring aggregates, takes the final form, 

as follows: 0 / mfη γ� I 1 2e eΦ . Together with the restriction on aggregate length [cf. 

discussion below Eq. (18)], the range of validity of our model becomes: 

1 2e eΦ ○ 0 / mfη γ� ○
1

1 2100 e e
−⎡ ⎤⎣ ⎦ . Estimations show that this condition is verified for the 

concentrations Φ○0.3 in the whole range of the experimental shear rates and magnetic fields. 

For higher concentration, Φ=0.4, this condition is satisfied at H<12 kA/m for any shear rate 

(in estimations, zero-field suspension viscosity was used for η0). At higher magnetic fields 

and concentrations, the angular fluctuations will be hindered by direct contacts between 

aggregates. This effect should weaken the diffusion process. For instance, the diffusion 

constant of rod-like polymers decreases by two orders of magnitude between the dilute and 

concentrated regimes. Doi and Edwards (1986) proposed a tube model, which accounts for the 

topological constraints to the angular displacement of rod-like polymers through an effective 

diffusion constant, 
2

2� / ( / ) sinr rD D L A φ⎡ ⎤= Φ⎣ ⎦ , where sinφ  is the mean sine of the angle 

between the axes of two neighboring particles. Applying this model to our case, we find that, 

at high concentrations and magnetic fields, the effective diffusion constant becomes 

independent of concentration. This means that the effect of the mechanical constraint cancels 

completely both above mentioned effects leading to Φ6
-behavior of Dr. This could maybe 

explain a discrepancy between the experimental and the theoretical field dependences of the 

yield stress at Φ=0.4 and H>18 kA/m [upper curve in Fig. 3]. According to the above 
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mentioned estimations, at this concentration and magnetic fields, the aggregates are expected 

to collide with each other that would decrease the intensity of diffusion and generate a lower 

stress than the one predicted by our model. However, collisions between aggregates would 

significantly enhance the short-range hydrodynamic interactions and generate a 

supplementary stress, at least, proportional to Φ2
 [Férec et al. (2009)]. Furthermore, a simple 

interpolation of Doi and Edward�s theory to magnetic non-Brownian suspensions is not 

obvious. First, the rotational diffusion of aggregates will be mostly governed by collisions 

between them and by short-range hydrodynamics [Folgar and Tucker (1984)] rather than by 

the mechanism proposed by Doi and Edwards (1986). Second, colliding aggregates may break 

in collision points because of high concentration of hydrodynamic stress at these points. Thus, 

the aggregates are expected to constantly break during collisions and reform between 

collisions that could randomize their orientation. Because of complexity of the problem, we 

are not able, at the present time, to indicate concentration behaviors of the diffusion constant 

and of the suspension stress in high concentration/field limit. This question requires a detailed 

numerical study and will be considered in future. 

Finally, we present the concentration dependencies of each component of the statistical 

moment i ke e  in Fig. 5c for the magnetic field intensity H=15 kA/m. We see that the 2

1e -

component (mean square cosine of the angle between the aggregate and the flow) decreases 

gradually from unity at low concentrations to 0.88 at Φ=0.4. This means that the aggregates 

become less aligned with the flow with growing concentrations. Both 2

2e  and 1 2e e  

components increase with the particle concentration, and the 1 2e e  component (mean sine of 

the angle between the aggregates and the flow) is always larger than the 2

2e -component 

(mean square cosine between the aggregate and velocity gradient axis Ox2 [Fig. 1]). The 
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interpolation of these curves to higher concentrations would give more or less isotropic 

orientations of aggregates. However, keep in mind, that the present model cannot be applied 

safely at Φ>0.4 for the considered magnetic field. As already mentioned, at higher 

concentrations, the diffusion is hindered and we expect only a moderate variation of 1 2e e , 

2

1e  and 2

2e  with Φ. 

Let us inspect now the magnetic field effect on the two components of the yield stress, as well 

as on the diffusion constant and on the components of the second statistical moment. These 

dependencies are shown in Figs. 6a, b and c for the particle volume fraction Φ=0.3. Similarly 

to the concentration behavior, the hydrodynamic stress dominates over the diffusion stress and 

the latter increases faster with the magnetic field intensity than the former. The field behavior 

of the hydrodynamic stress is well fitted by a second power-law, 2

H Hσ ∝  while the diffusion 

stress is fitted by a fourth-order polynomial of H. Such non-quadratic behavior of the 

diffusion stress comes from the non-linear magnetization of magnetic particles composing the 

MR suspension. If the particles were linearly magnetized (had a constant magnetic 

permeability), the aggregate susceptibility χa, the diffusion constant Dr and the aggregate 

orientations i ke e  would be field independent, and the interparticle magnetic force mf  and 

both components of the yield stress would scale as 2

0Hµ , as follows from Eqs. (13), (14), 

(18)-(20). In the present case of non-linear magnetization, the neighboring aggregates bias 

each other to a lesser extent than the particles inside the aggregates. Therefore, the 

interparticle magnetic force saturates faster than the interaction torque between aggregates as 

the magnetic field increases. This leads to an increasing field dependence of the interaction 

torque � to interparticle force ratio, 2 2

0 / m

a H fµ χΩ ≡ . Since the diffusion constant varies as 

Ω2
, it also increases with the magnetic field strength [Fig. 6b] and results in a strong field 
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behavior of the diffusion stress. Similarly to the diffusion constant, the statistical moments are 

defined by the ratio Ω. In highly aligned state of aggregate orientation, we get from the Eq. 

(15): 2

1 2e e ∝ Ω  and 
2 4

2e ∝ Ω . This explains a stronger field dependence of the moment 

2

2e  as compared to 1 2e e  [Fig. 6c]. Consequently, the mean-square cosine of the angle 

between the aggregate and the flow is a strongly decreasing function of the magnetic field 

2 4

1 1e λ≈ − Ω , with λ being a constant. Thus, at strong enough magnetic fields, we could 

expect an isotropic orientation of the aggregates. However, the interpolation of the field 

dependencies of the statistical moments to higher magnetic fields (H>25 kA/m for Φ=0.3) is 

not correct because of collisions between aggregates and their possible collision-induced 

destruction. 
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Fig. 6. Theoretical field-dependencies of the hydrodynamic and diffusion components of the yield stress (a), of 

the diffusion constant normalized by the shear rate γ�  (b) and of the components of the second statistical 

moment (c). The particle volume fraction is Φ=0.3 
It is worth to mention that, whatever the case, the mean sine of the angle between the 

aggregates and the flow 1 2e e  is positive, meaning that the aggregates spend more time in the 

first quarter of the shear plane Ox1x2 [Fig. 1]. In fact, the shear flow tends to rotate the 
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aggregates along the vorticity, in the clockwise direction, while the stochastic interaction 

torque tends to randomize their orientation and causes their back-diffusion against the 

vorticity, in the counterclockwise direction. This leads to an asymmetry about the flow 

direction in aggregate orientation distribution. Similar effect has been observed 

experimentally in shear flows of semi-diluted fiber suspensions [Stover et al. (1992)]. The 

asymmetry of fiber orientations with respect to the streamlines was attributed to collisions 

between fibers, which were accounted for by an effective rotary diffusive process [Folgar and 

Tucker (1984)]. 

Finally note that our theory does not cover possible solid-like behaviour of the MR fluid at 

zero shear rates. Prediction of the static yield stress (threshold stress required for onset of 

flow) is out of scope of the model. As mentioned above, the theory is valid for shear rates 

high enough ( 0 / mfη γ� I 1 2e eΦ ) such that the aggregates are relatively short and assumed to 

not interact with the walls neither collide with each other. Under such condition, the shear 

stress in the suspension is mainly defined by the viscous drag on the aggregates and elastic 

effects should not play a significant role. Nevertheless, the theory can be extended to quasi-

static deformation regime and account for adhesion between MR structures and channel walls, 

which could be responsible for the elastic behavior of the suspension and for the appearance 

of the static yield stress. 

 

Conclusions 

In this work, we have proposed a new theoretical model allowing us to explain, for the first 

time, a strong Bingham rheological behavior of magnetic suspensions in shear flows under a 

magnetic field parallel to the flow. This model is based on the new concept of magnetically 
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induced rotational diffusion caused by long range magnetic interactions between magnetic 

aggregates present in the suspension. To check our theory, we have carried out experiments 

on pressure-driven flows of MR fluids in the longitudinal magnetic field at different magnetic 

field intensities and various particle concentrations of the MR fluids. The main results of this 

study can be summarized as follows: 

1. High level of stress generated in longitudinal magnetic fields is explained by a 

misalignment of particle aggregates from the streamlines. This misalignment is induced by 

many-body magnetic interactions between aggregates, which induce stochastic oscillations of 

the aggregate orientation. Random fluctuations in aggregate orientation are mimicked by an 

effective rotational diffusion process. The rotary diffusivity, rD , is estimated using a random 

walk model and is found to be proportional to the mean square interaction torque, 2

intT  � a 

net magnetic torque exerted to a given aggregate by all the neighboring aggregates. The 

theory predicts that the diffusion constant is linear in shear rate, rD Cγ= � . This comes from 

the fact that the magnetic aggregates are destructible by shear forces, and, at higher shear 

rates, they oppose less hydrodynamic resistance to the diffusion process. 

2. Our theory predicts that the hydrodynamic stress generated by misaligned aggregates is 

independent of shear rate in the range of Mason numbers, 

1 2e eΦ ○ 0 / mMa fη γ= � ○
1

1 2100 e e
−⎡ ⎤⎣ ⎦ , covered in our experiments. Such behavior of the 

stress is explained by a compromise between two opposite shear rate effects � enhancement of 

viscous dissipation, on the one hand, and decrease in the aggregate length with increasing 

shear rate, on the other hand. This suggests a Bingham behavior of the magnetic suspension in 

the presence of the longitudinal magnetic field, 12 Yσ σ ηγ= + � , with the dynamic yield stress, 

σY depending on the magnetic field strength. Such behavior has been well reproduced in our 
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experiments, and the experimental values of the yield stress were obtained by a linear 

extrapolation of the flow curves onto zero shear rate. 

3. In experiments, the dynamic yield stress was found to increase almost quadratically with 

the magnetic field strength 2

Y Hσ ∝ , at magnetic field intensities H<15 kA/m. The 

theoretical field dependencies of the yield stress [cf. Eq. (18)] were fitted to the experimental 

ones by adjusting a single free parameter α - interaction coefficient, physically standing for 

the averaging of the interaction torque over all possible mutual orientations of aggregates. 

This coefficient was found of the order of unity (α=1.5) and did not depend on the particle 

volume fraction of the suspension. Both experiments and theory suggest a strong 

concentration dependence of the yield stress ( 3

Yσ ∝ Φ at 0.3Φ < and H<15 kA/m) which is 

attributed to a strong concentration dependence of the rotary diffusivity. In fact, an increase in 

the particle volume fraction diminishes the mean lateral spacing between aggregates and, 

consequently, enhances magnetic interactions between them. This produces stronger 

fluctuations of the aggregate orientation. At concentrations 0.3 0.4< Φ <  and H<15 kA/m, 

the diffusion stress coming from the random interaction torques became significant and gave a 

supplementary contribution to the yield stress proportional to Φ7
. However, at higher 

magnetic fields and particle concentrations (Φ>0.4 and H>15 kA/m), the aggregates are 

expected to collide with each other. On the one hand, the constraint, that the aggregates 

cannot cross each other, could attenuate the diffusion process, on the other hand, the 

aggregates are expected to constantly break during collisions and reform between collisions; 

this could enhance their rotational diffusion and randomize their orientation.  

In perspective, a theoretical or numerical study of collision dynamics of aggregates will be 

carried out in order to cover a broader range of concentrations and magnetic fields. Applied to 
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the shear flows under a magnetic field collinear with the vorticity, our theory will probably be 

able to explain unexpected stress enhancement observed experimentally in this geometry 

[Bossis et al. (2002-b)]. In a general sense, the new concept of magnetically induced diffusion 

may not only be restricted to particular rheological problems, but used for the general purpose 

of understanding the role of long-range non-hydrodynamic interactions in rotational diffusion 

observed in concentrated suspensions or granular gases. 
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