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Three-dimensional Rayleigh—Bénard instabilities in binary fluids with Soret effect are
studied by linear biglobal stability analysis. The fluid is confined transversally in a
duct and a longitudinal throughflow may exist or not. A negative separation factor
¥ = —0.01, giving rise to oscillatory transitions, has been considered. The numerical
dispersion relation associated with this stability problem is obtained with a two-
dimensional Chebyshev collocation method. Symmetry considerations are used in the
analysis of the results, which allow the classification of the perturbation modes as S
modes (those which keep the left—right symmetry) or R, modes (those which keep the
symmetry of rotation of s about the longitudinal mid-axis). Without throughflow, four
dominant pairs of travelling transverse modes with finite wavenumbers k have been
found. Each pair corresponds to two symmetry degenerate left and right travelling
modes which have the same critical Rayleigh number Ra.. With the increase of the
duct aspect ratio A, the critical Rayleigh numbers for these four pairs of modes
decrease and closely approach the critical value Ra. = 1743.894 obtained in a two-
dimensional situation, one of the mode (a S; mode called mode A) always remaining
the dominant mode. Oscillatory longitudinal instabilities (k & 0) corresponding to
either S; or R, modes have also been found. Their critical curves, globally decreasing,
present oscillatory variations when the duct aspect ratio A is increased, associated
with an increasing number of longitudinal rolls. When a throughflow is applied, the
symmetry degeneracy of the pairs of travelling transverse modes is broken, giving
distinct upstream and downstream modes. For small and moderate aspect ratios A,
the overall critical Rayleigh number in the small Reynolds number range studied is
only determined by the upstream transverse mode A. In contrast, for larger aspect
ratios as A =7, different modes are successively dominant as the Reynolds number is
increased, involving both upstream and downstream transverse modes A and even the
longitudinal mode.
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1. Introduction

Laminar forced and mixed convection of binary fluids in a horizontal duct heated
from below has many practical technological applications such as the cooling process
of electronic devices and the techniques of chemical vapour deposition (CVD) for
the production of magnetic and optic data storage devices in the electronics industry.
It also leads to a variety of spatiotemporal patterns, the study of which has great
theoretical interest. In fact, the spatiotemporal behaviour of the dissipative structures
appearing in binary mixture convection (Cross & Hohenberg 1993) has been revealed
to be complex due to the combination of thermal forcing (characterized by the
Rayleigh number Ra) and Soret coupling between temperature and concentration fields
(characterized by the separation factor yr); and the externally imposed throughflow
(characterized by the Reynolds number Re) will further break the symmetries existing
in the pure Rayleigh-Bénard case.

Jung, Liicke & Biichel (1996) were the first to investigate how a horizontal plane
Poiseuille shear flow changes linear convection properties in binary fluid layers heated
from below. They solved the full linear stability equations by a shooting method
for realistic top and bottom boundary conditions. For negative Soret coupling, they
elucidated the throughflow lifting of the Hopf symmetry degeneracy of left and right
travelling waves (TWs). They also showed how the frequencies, bifurcation thresholds
and structural properties of the two TW solution branches, as well as the stationary
overturning convection (SOC), were dramatically changed when a throughflow was
applied. Later, Biichel & Liicke (2000a) investigated the effect of a horizontal
Poiseuille throughflow on stationary and TW convective patterns that appear for
negative Soret coupling. The numerical calculations in a two-dimensional periodic
box containing two counter-rotating near-critical transverse rolls are performed with
a Galerkin expansion or a finite-difference numerical method. Bifurcation diagrams
of various quantities such as the Nusselt number, frequency and mixing behaviour
are determined as functions of heating rate and wavenumber for several throughflow
rates and Soret coupling strengths for ethanol-water parameters. They also studied the
growth dynamics of small convective perturbations into different, strongly nonlinear
convective states and the transition between them. Concerning the characterization
of the absolute or convective nature of the instabilities in such flows, the boundary
curves separating these two types of instabilities for both negative separation factors
(corresponding to the two TW solutions) and positive separation factors (corresponding
to the SOC solution) are first plotted as a function of the throughflow rate in
the paper of Jung et al. (1996). Biichel & Liicke (2000b) then studied the linear
spatiotemporal properties of spatially localized convective perturbations for heated
binary fluid layers, with or without throughflow. Fronts and pulse-like wave packets
formed out of the three relevant perturbations (two oscillatory ones and a stationary
one) are analysed after evaluating the appropriate saddle points of the three respective
dispersion relations of the linear stability equations over the complex wavenumber
plane. Some comparisons with pulses and fronts obtained by numerical simulation are
also given. Finally, Jung & Liicke (2005) investigated the nonlinear evolution of TW
fronts and localized TW convection in binary fluid mixtures with strongly negative
Soret coupling. They used numerical simulations performed in two-dimensional long-
extent cavities to point out and elucidate the differences in the evolutions of fronts
and localized waves. By using the Chebyshev collocation method to solve the full
linear stability equations, Hu, Ben Hadid & Henry (2007) extended the study of the
temporal and spatiotemporal instabilities in the Poiseuille-Rayleigh—Bénard flow with
Soret effect to larger Reynolds numbers. They considered both positive and negative
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separation factors in the usual situation when heating is from below, but also negative
separation factors when heating is from the top. They pointed out parameter ranges
where transitions between different critical wave patterns may occur. Thanks to two-
dimensional numerical simulations initiated by pulse-like disturbances, Hu et al. (2009)
then showed the coexistence of different wave packets, which separate or not, in these
parameter ranges.

The previous studies have considered a plane Poiseuille flow and two-dimensional
perturbations. Thanks to a Squire transformation (Jung et al. 1996; Hu et al
2007), the thresholds associated with more general three-dimensional perturbations
can also be deduced. But further studies were needed for real three-dimensional
Poiseuille-Rayleigh—Bénard (PRB) flows. Most of these are concerned with pure fluids.
In such three-dimensional PRB flows, it has been shown (Gage & Reid 1968; Luijkx,
Platten & Legros 1981; Platten & Legros 1984; Nicolas, Luijkx & Platten 2000) that
there exist two main unstable modes which correspond to thermoconvective transverse
roll and longitudinal roll patterns. In the case of ducts of infinite lateral extension, the
longitudinal rolls appear first since the critical Rayleigh number for these longitudinal
rolls, which is independent of the Reynolds number and Prandtl number, is always
smaller than the critical Rayleigh number for the transverse rolls, which in contrast
increases with the increase of both the Reynolds and Prandtl numbers. For finite
rectangular ducts, the lateral confinement tends to stabilize both of these modes, but
the threshold (i.e. the critical Rayleigh number) of the longitudinal rolls increases
much faster with the confinement than the threshold of the transverse rolls. The
consequence is that, for finite rectangular ducts, the transverse rolls appear first at
small Reynolds number while the longitudinal rolls appear first at large Reynolds
number. Concerning the convective and absolute instability studies, Miiller, Liicke
& Kamps (1992) and Miiller, Tveitereid & Trainoff (1993) have first determined
the transition curve between the convective and absolute instability zones (AI/CI
boundary curve) for the transverse rolls by using a weakly nonlinear theory based
on a Ginzburg-Landau equation. Ouazzani, Platten & Mojtabi (1990) and Ouazzani
et al. (1995), experimentally, and Nicolas, Mojtabi & Platten (1997), numerically,
have shown that the transition between the basic flow and the transverse rolls exactly
corresponds to the AI/CI boundary curve, provided that the flow is not continuously
perturbated at the inlet. Furthermore, for infinite extent system, by evaluating the
longtime behaviour of the Green function in the horizontal plane, Carriere &
Monkewitz (1999) theoretically revealed that the mode reaching zero group velocity
at the convective—absolute transition always corresponds to transverse rolls, while the
system remains convectively unstable with respect to pure streamwise (longitudinal)
rolls for all non-zero Reynolds numbers.

In addition to the determination of the linear instability or absolute instability
thresholds, it is also important to predict the spatiotemporal patterns that appear in
PRB flows, because it is well known that these convection patterns play an important
role in CVD reactors where they greatly influence the uniformity of the deposited
film thickness. On a linear basis, it is shown that there must exist a cross-over point
between the stability boundary curves of both the longitudinal rolls and the transverse
rolls in the Re—Ra plane, and near the cross-over point, the two modes can set in
simultaneously (for an infinite extent system, the cross-over point occurs at Re = 0). In
the neighbourhood of the cross-over point, however, the linear stability theory loses its
ability to predict convection patterns. This is because a nonlinear interaction between
the two coexisting modes plays a significant role in pattern selection. To clarify that,
Kato & Fujimura (2000) derived the amplitude equations for the interaction between
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the longitudinal and the transverse rolls on the basis of a weakly nonlinear theory.
The coefficients in the equations are determined numerically for a wide range of
parameters. The longitudinal rolls are found to bifurcate supercritically, while the
transverse rolls may bifurcate subcritically or supercritically, depending on the Prandtl
number, the aspect ratio of the channel, and the boundary conditions on the sidewalls.
The different stable convection patterns can then be classified in the parameter space.
Note that a mixed mode pattern, which is a mixture of the longitudinal and transverse
rolls, is found to be stable for some sets of parameters. These theoretical results
greatly supplement those of the linear stability analysis.

So far, it has been reviewed that most studies on the three-dimensional PRB
flows concern pure fluids and that, in contrast, the studies devoted to binary fluids
consider two-dimensional situations. With the continuous advances in algorithms for
the numerical solution of large non-symmetric real/complex generalized eigenvalue
problems alongside with the continuous computing hardware improvements, the
instability of flows developing in two inhomogeneous and one homogeneous spatial
directions can now be analysed (biglobal instability analysis). These biglobal or even
triglobal instability analyses have become more and more popular during these recent
years for all kinds of flow problems. Such analyses, devoted to different applications,
are reviewed by Theofilis (2003, 2011). In this paper, the linear biglobal stability
analysis is applied to the Rayleigh-Bénard problem for binary fluids with Soret effect,
first in cases without throughflow and then in real PRB situations. The objective is to
see the influence of both the throughflow and the confinement on the Rayleigh—Bénard
instabilities in binary fluids with negative separation factors. The results can also
be compared with those obtained for PRB flows in pure fluids. The formulation of
the problem is given in §2. The biglobal instability analysis is then presented in
§3 together with some validations. The results are finally given in the two next
sections, first in the case without throughflow and then in the more general PRB
situation. Both transverse roll and longitudinal roll structures have been considered.
Without throughflow, a given transverse roll structure remains the dominant mode,
whereas with throughflow different dominant modes can be found depending on the
confinement and the Reynolds number.

2. Formulation
2.1. Governing equations for PRB duct flows

We consider a rectangular duct with height H (along z) and width L (along y) which is
filled with a binary mixture and is heated from below (a temperature 7, is applied at
the upper wall and T, > T, is applied at the bottom; see the schematic representation
in figure 1). A steady laminar flow may be generated inside the duct by imposing
a constant pressure gradient along the homogeneous spatial x-direction. Owing to the
influence of the gravitational effect, the binary mixture may become unstable under the
influence of vertical temperature and concentration gradients. To take this into account,
the density variations are considered, but, according to the Boussinesq approximation,
they are restricted to the buoyancy term and are expressed as a linear law,

p = poll = Br(T — To) — Bc(C — Co)l, 2.1)

where By and B¢ are the thermal and solutal expansion coefficients; pg, 7y and Cj
are reference values for density, temperature and concentration, respectively, which are
taken as the mean initial values of the respective fields.
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FIGURE 1. Schematic representation of the PRB model.

The Soret effect, which arises as the contribution of the temperature gradient
to the mass flux, is considered here, whereas the Dufour effect, which arises as
the contribution of the concentration gradient to the heat flux, is neglected. This
assumption is valid for liquid mixtures. The mass flux J. and the heat flux Jr are then

JC = —,O()Dcvc - ,00D5VT, (22&)
Jp = —DyVT, (2.2b)

where D¢, Dy and D7 are the solutal diffusion coefficient, Soret diffusion coefficient
and thermal conductivity, respectively. The conductive steady state will then
correspond to linear variations along the vertical z-direction for both the temperature
and the concentration, leading to a concentration difference AC = —DgAT /D¢
induced by the applied temperature difference AT =T, — T,.

The flow in this system is modelled by the Navier—Stokes equations coupled to
an energy equation and a concentration equation. In these equations, length, velocity,
time and pressure are scaled by H, «/H, H?*/k and pok?/H?, respectively (k is the
thermal diffusivity). The dimensionless temperature € and concentration ¢ are defined
as (T — Ty)/AT and (C — Cy)/AC. Thus, the dimensionless governing equations of the
three-dimensional PRB flow are

V.v=0, (2.3a)
9
a—’: 4+ @-V)v=—Vp+PrVv+RaPr( + yoe, (2.3b)
36 )
o tv-vo=vo, (2.3¢)
ac ) )
E—i—v-Vc:Le(Vc—V@), (2.3d)

where v = (u, v, w) is the three-dimensional dimensionless velocity vector, e, is the
unit vector in the vertical direction, and the operators are defined as V = (9,, 9y, 9;)
and V* = 97487 40. The dimensionless parameters appearing in the governing system
(2.3) are the Prandtl number, Pr = v/k, the Rayleigh number, Ra = BrgH> AT /kv, the
separation factor, ¥ = —BcDs/BrDc and the Lewis number, Le = D¢/k. Here, v
is the kinematic viscosity. Ethanol-water mixtures are very convenient for studying
Soret-driven flows, because the separation factor can be varied over a wide range
by changing the average ethanol concentration. For typical experimental conditions,
5 <Pr <11 and Le ~ 0.01, so that Pr = 10 and Le = 0.01 are usually used to
represent the values of the Prandtl number and Lewis number for ethanol-water
mixtures. These are the values we will choose in our study. The separation factor v
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will be chosen as negative, a case where symmetric left and right TWs are found for
Re =0, and its value will be fixed to v = —0.01.

The section of the rectangular duct is now defined in dimensionless units by
2 =yel0,A] x z€[0,1], where A =L/H is the aspect ratio of the duct. The
boundary conditions associated with (2.3) are then

no-slip conditions: u=v=w=0 atz=0,1andy=0,A, (2.4a)
thermal conditions: 6=0.5 at z=0, (2.4b)

6 =-0.5 atz=1, (2.4c¢)

9,0 =0 aty=0,A, (2.4d)

mass impermeability: 9,0 —d.c=0 atz=0,]1, (2.4e)
0,0 —dyec=0 aty=0,A, (2.41)

where 0, and 9, denote 0/0, and 9/9,, respectively. The non-dimensional basic
steady state can easily be obtained by setting the linearly distributed temperature
and concentration field along the bounded z-direction

0(z) =0.5—z, (2.5)
¢(z) =0.5—z, (2.6)

and by imposing a constant pressure gradient in the unbounded x-direction with a
linear profile of pressure gradient in the gravitational z-direction,

Vp = —12RePr’e, + Ra Pr(1 + ¥)(0.5 — 2)e., 2.7)

which drives a steady laminar flow, i.e. the Poiseuille flow. Thus, the basic streamwise
velocity is solved by the Poisson equation

1
V2i=—09p=—12RePr, 2.8
244 Pr P err (2.8)

where V;, =97 + d.. The boundary conditions for the basic velocity field are

u@y,z=0=uly,z=1)=u(y=0,2 =u(y=A4,2) =0. 2.9)
The above Poisson problem may be solved in series form (Rosenhead 1963), which
gives

u(y,z) = Re Pr [6z(1 — )

48 &L cosh[(2n + Dm(y — A/2)] cos[(2n + Dr(z — 1/2)]

w (=)™ (2n 4 1)’ cosh[(2n + 1)A /2]

. (2.10)

The plane Poiseuille flow result, u(z) = 6Re Pr(1 — z)z, is recovered from this
expression in the limit A — oco. (In fact, this is true for the whole domain £2
except for the two regions very close to the boundaries y =0 and y = A.) Here,
Re = UyH/v is the Reynolds number and U, is the dimensional mean velocity
obtained by integration over the channel height for the plane situation.

2.2. Symmetries of the problem

The duct is considered as infinite in the x-direction and the basic flow does not
depend on x. The problem is thus invariant under translations 7, by length x, along
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the x-axis. The group generated by the translations is the group E(1). The problem
admits two supplementary symmetries: a reflection symmetry S;, with respect to the
horizontal mid-plane (at z =0.5) (up—down symmetry) and a reflection symmetry S,
with respect to the longitudinal vertical mid-plane (the plane along the x-direction, at
y=A/2, denoted as the V; plane) (left-right symmetry). The combination of these
two reflection symmetries gives a symmetry of rotation of s about the longitudinal
mid-axis (axis parallel to the x axis at z=0.5, y=A/2), which we denote by R,. Here
Si, Sy and R, are defined, respectively, as

-0, —c¢), 2.1D)
—v,w,0,0), (2.12)
, —w, —0, —c).(2.13)
Each symmetry S, S; and R, defines a Z, group. The symmetry group of our problem,
generated by T, S, and S, is isomorphic to E(1) x Z, x Z,. All of these symmetries

may be broken at the instability thresholds where bifurcations to new flow states will
occur.

Sh: (x,y,Z»t)*(X,y,l_Z,l), (M7 U,W,G,C)_)(u, v, =W,
St ey, > A=y 20,

Rx: (xvyvz9t)_)(x7A_ysl_Z7t)’

(u,v,w,0,c) = (u,
(u,v,w,0,c) = (u, —v

2.3. Linear stability equations for PRB duct flows

The disturbed three-dimensional PRB flow with Soret effect can be decomposed as
u=u+u,v=v,w=w,p=p+p,0=60+86"and c = c+ ¢, where the primes refer
to small perturbation quantities. After substituting these variables into the governing
equations (2.3) and neglecting the terms which are quadratic with respect to the
perturbations, we can obtain the linearized perturbation equations,

ou' 9 9
w0 Wy, (2.140)
0x 8y 0z
ou _ou du du ap’
— t i+ —V + —Ww =——— + Prviu, 2.14b
o e Tt T T T (2.145)
v’ 811 8p 5,
L L Prvy (2.14¢)
at 8x ay
ow'  _ow 8p
+u = w + RaPr (0’ + ¥ '), (2.144d)
at ox 90z
il + el + a0 =V, (2.14e)
e —w = dae
ot dz
o0 a2, dE — Le(V3 — V) (2.14f)
— 4 u—+—w=Le . .
ot ox dz
The corresponding boundary conditions are
no-slip conditions: ' =v'=w'=0 atz=0,1andy=0,4, (2.15q)
thermal conditions: 6'=0 atz=0,1, (2.15b)
3,0 =0 at y=0,A, (2.15¢)
mass impermeability:  9.0' — 9.c’=0 atz=0,1, (2.15d)
9,0 —d,c'=0 aty=0,A. (2.15¢)

The perturbation quantities can further be expanded as normal modes,

W, v, W, p, 0, ) = [a(y, 2, D, 2), B, 2, P, 2), 63, 2), 80y, D explilhx — wi)],
(2.16)
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where k is a real wavenumber and w a complex frequency. Substituting these
expressions (2.16) in the governing system, we obtain the linear stability equations
expressed as

ikit + Dyb + D.v =0, (2.17a)

—iwit 4 ikitii + (Dyit)d + (D.)W = —ikp + Pr(D* — k)i, (2.17b)
—iwd + ikud = —D,p + Pr(D* — k*)?, (2.17¢)

—iwW + ikt = —D.p + Pr(D* — K>)W + Ra Pr(9 + ¥¢), (2.17d)
—iwl + ikif + (D,0)W = (D* — k), (2.17¢)

—iwf + ikih = (D* — k)0 + Le(D* — k)7, (2.17f)

where =6 — ¢, D, =9,, D, =0, and D* = 83 + 92. For simplicity, the linear stability
equations are abbreviated as

ikit + D0 + D.v = 0, (2.18q)

Lyit — (Dyit)d — (D.it)W — ikp = —iwi, (2.18b)
LY — D,p = —iw?, (2.18¢)

Liw — D.p+ Ra Pr[(1 + )8 — yij] = —iww, (2.18d)
L0 — (D)W = —iwh, (2.18¢)

Liii + (D — k)0 = —iwh, (2.18f)

where L, = Pr(D? — k*) — iki, L, = (D* — k*) — ikiu and Ly = Le(D* — k*) — iku. The
corresponding boundary conditions are

no-slip conditions: u=0=w=0 atz=0,1andy=0,4, (2.19q)
thermal conditions: 6=0 atz=0,1, (2.19b)
DA =0 aty=0, A, (2.19¢)

mass impermeability: D.p=0 atz=0, 1, (2.19d)
Dy =0 at y=0,A. (2.19¢)

The linear stability (2.17) are two-dimensional partial differential equations, and if
there exists a non-trivial solution for the equations, a corresponding dispersion relation

D(k, w; Ra, Re, Y, Pr, Le) =0 (2.20)

should be satisfied, and we need to solve a biglobal eigenvalue problem. Because it
is impossible to find the explicit analytical dispersion relation if there is no further
simplification, the dispersion relation has to be obtained numerically. In this paper,
the two-dimensional Chebyshev spectral collocation method (Canuto et al. 2006) is
used to discretize the eigenvalue problem and the implicitly restarted Arnoldi method
(Lehoucq & Sorensen 1996) is used to solve the resulting general eigenvalue problem.
The algorithms will be described in detail in the next section.

3. Biglobal instability analysis
3.1. Chebyshev spectral collocation method

First, the physical domain considered here is the domain £ = {y € [0, A]} X
{z € [0,1]}, which should be transformed into the computational domain



224 J. Hu, D. Henry, X.-Y. Yin and H. BenHadid
2. =1{§ € [—1, 1]} x {¢ € [1, 1]} through a linear transformation relation
E=Q2y/A) -1, ¢=2z—-1. (3.1)
Thus, on the computational domain §2., we can expand the eigenfunctions in a two-
dimensional Chebyshev series such as
Ny N
C0R D =YY amT(E)Ta(@). (3.2)
n=0 m=0

Here, T,(§) and T,,(¢) are n and m order Chebyshev polynomials and N,+1 and N,+1
are the numbers of Chebyshev polynomials in the y- and z-directions, respectively. The
derivatives of the eigenfunctions are obtained by differentiating the expansion above.
For example, for the second derivatives, we obtain

d2 2 Ny N
Tﬁe(y’ Z>=< ) DO amT O Ta), (3.3a)

n=0 m=0

d2 2 Ny N;
dzze(yvz)=< > ZZaann(é)T’/(i) (3.3b)

n=0 m=0

Ny Ny

S0 = () ( )ZZ am T, (E)T,,(0), (3.30)

n=0 m=0

and we do similarly for higher derivatives. The collocation method is used to solve
the problem. The collocation points &; and ¢; used to discretize the partial differential
stability equations and the linear boundary conditions are the extrema of Ty, and Ty,
given by

i Jjit
& = cos ﬁy gj = cos ﬁz (34
We obtain a generalized eigenvalue problem in a matrix form
Ax = wBx 3.5

(where A and B are non-symmetric complex matrices) which is solved with the well-
known shift-and-invert algorithm. First a shift x4 is chosen close to where we want to
find the eigenvalues. If we subtract uBx from the eigenvalue equation (3.5), we get

(A— uB)x = (w — u)Bx. (3.6)

If we then multiply with the inverse of this shifted matrix, we get

(w—p) 'x=(A—-uB) "' Bx (3.7)
which is a standard eigenvalue problem
Kx = 6x, (3.3)

with the matrix K defined by K = (A — uB)™' B and the eigenvalues 0;, j=1,...,n
given by 0, = (w; — w)~'. The largest eigenvalues 0; of the transformed matrix K now
correspond to those eigenvalues w; = 4 1/6; of the original pencil (A, B) which are
the closest to the shift u. The shifted and inverted matrix K can be computed by an
LU factorization of (A — uB),

P(A— uB)Q=LU, (3.9)
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which can be done by using the sparse MATLAB command ‘lu” (P and Q are
permutations that make the triangular factors L and U sparse and the factorization
numerically stable). In fact, the matrix K can also be computed with the MATLAB
command ‘K = linsolve((A — uB), B)’, which uses LU factorization with partial
pivoting when (A—uB) is square and QR factorization with column pivoting otherwise.
The standard eigenvalue problem (3.8) is solved with the implicitly restarted Arnoldi
method (with MATLAB command ‘eigs’) to obtain the eigenvalues with largest
magnitudes (i.e. ‘Im’ option for ‘eigs’).

As mentioned by Theofilis (2003), the major challenge associated with the biglobal
instability analysis is the size of this generalized non-symmetric, in general complex,
matrix eigenvalue problem. For the problem considered here, there exist six two-
dimensional eigenfunctions involved in the linear stability equations (2.17). With
complex values stored in 16 bytes and for N,+1 =N, +1 =N, the storage requirement
for the full dense complex matrices A and B is

2x6%x N*x 16 x 107° GB. (3.10)

For N = 64 (value which is commonly used for typical boundary layer flows), this
gives about 9.6 GB. This large storage requirement would limit the computation speed
of eigenvalues and eigenfunctions. Present computer facilities, however, can satisfy this
requirement and are able to solve biglobal instability problems. In our approach, we
found two techniques to reduce the storage requirement. The first technique is simply
to adopt a sparse matrix storage for our discretized non-symmetric complex matrices
A and B, which will reduce the storage by half. The second technique is to reduce
the number of two-dimensional eigenfunctions from six to five by eliminating the
streamwise velocity eigenfunction i. For that we combine (2.184) and (2.18)) and get

iL; (Dyd + D,W) — k(Dyit)d — k(D)W — ik’p = w (D,0 + D.W) . (3.11)

It is clear that the third derivatives of the eigenfunctions v and W appear in the
new derived equation. This is a small disadvantage because high-order derivatives are
sensitive to numerical discretization errors at modest resolution. The corresponding
no-slip boundary conditions for & (2.194) can be changed into

D,2o+Dw=0, atz=0,1andy=0,A. (3.12)
Finally, the streamwise velocity eigenfunction & can be recovered from
= i(D},ﬁ 1 D) (3.13)

for k # 0. It should be noted that the reduced linear stability equations may produce
spurious eigenvalues for kK = 0 because equation (3.13) is not valid in this case. In this
paper, only TWs with k # 0 are considered, so that spurious eigenvalues will not affect
our analysis.

From the spectra obtained by solving (3.5), we will compute neutral curves (values
of Ra for which an eigenvalue w has its imaginary part w; equal to zero whereas all of
the other eigenvalues have negative imaginary parts) depending on k, but also critical
Rayleigh numbers Ra. by minimization along k. Note that when different eigenmodes
are close to critical in a certain domain of the governing parameters, we will often
define a neutral curve and a critical Rayleigh number for each of these modes, but it is
clear that the true neutral curve and Ra. value will be given by the minimum of these
different curves and values.
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Resolution Mode A Mode B

24 x 24 +1.4332535922 + 1.38441315771 +1.7006743356 + 1.2496657103i
28 x 28 +1.4332537142 + 1.3844131715i1 +1.7006746271 4 1.24966554841
32 x 32 +1.4332537421 + 1.38441317471 +1.7006746820 + 1.2496655193i
36 x 36 +1.4332537504 + 1.3844131762i +1.7006746989 + 1.2496655130i
40 x 40 +1.4332537534 + 1.38441317671 +1.7006747054 + 1.2496655106i1
44 x 44 +1.4332537596 + 1.3844131715i1 +1.7006747069 + 1.2496655102i
48 x 48 +1.4332537553 + 1.3844131768i +1.7006747094 + 1.24966550861
Resolution Mode C Mode D

24 x 24 +2.1119229402 + 0.82499306601 +2.4525308870 + 0.0436264770i
28 x 28 42.1119248269 + 0.8249915138i +2.4525304703 4 0.0436271347i1
32 x 32 +2.1119253499 + 0.82499114021 +2.4525309750 + 0.0436268660i
36 x 36 42.1119255169 + 0.82499102061 +2.4525310423 4 0.0436267111i
40 x 40 +2.1119255771 + 0.8249909772i +2.4525310608 4 0.04362666591
44 x 44 +2.1119256066 + 0.82499095111 +2.4525310707 4 0.0436266482i
48 x 48 +2.1119256116 + 0.82499095151 +2.4525310718 + 0.0436266406i

TABLE 1. Tests of accuracy for the eigenvalues corresponding to the first four unstable
oscillatory modes found for k =3.14, A =5, Ra =2000, Re =0, Pr =10, Le = 0.01 and
Y =—0.01.

3.2. Validation for the numerical dispersion relation

The pure Rayleigh—-Bénard situation for binary fluids (Pr = 10, Le = 0.01, ¥ = —0.01)
in a duct without throughflow is first considered by setting Re = 0. In such a case
with negative Soret effect, unstable oscillatory modes, corresponding to symmetry
degenerate left and right travelling modes are found. The first four modes found for
A =5, Ra=2000 and k = 3.14, are labelled as A, B, C and D. The convergence of
the four corresponding eigenvalues with the grid size is shown in table 1. We see that
the least stable modes have fastest convergence, and that for the mode D with the
slowest convergence, there is already five valid digits in the eigenvalue for the 32 x 32
resolution. Such a 32 x 32 grid has been used for most computations in this paper.

The linear temporal growth rates of these four unstable oscillatory modes are plotted
as a function of the wavenumber k for the same situation (A =5, Re =0, Ra = 2000,
Pr =10, Le = 0.01 and ¢ = —0.01) in figure 2. We see that, for this case, the unstable
modes B and C appear even when the real wavenumber k& — 0, thus giving modes
which will be referred to as longitudinal modes, while the unstable modes A and D
only occur at moderate wavelengths. For the modes A and D, there exists only one
maximum growth rate which occurs at k ~ 3.18 and k =~ 2.57, respectively. In contrast
for the mode B, there exist two local maximum growth rates which occur at k = 0 and
k ~2.954, and one local minimum growth rate at k ~ 1.746. Finally for the mode C,
there exist two local maximum growth rates which occur at k & 2.374 and k ~ 2.725,
between which there is a local minimum growth rate at k & 2.62, and there is another
local minimum growth rate at k = 0.

4. Results in the case without throughflow (Re = 0)
4.1. Neutral curves

As shown in the previous section, without throughflow four oscillatory modes,
corresponding to symmetry degenerate left and right unstable travelling modes, have
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FIGURE 2. Linear temporal growth rates for the first four unstable oscillatory modes as a
function of the real wavenumber kK when A =5, Ra = 2000, Re =0, Pr = 10, Le = 0.01 and
Y =—0.01.

been found for A =5 and Ra = 2000. The neutral curves for these four modes, plotted
in the parameter plane k—Ra, are given in figure 3 for different duct aspect ratios A.
We see that with the increase of the aspect ratio, the four neutral curves for these
modes become closer and the parts of these curves corresponding to longitudinal
modes (weak k values) eventually disappear from the graph (they could, however, exist
for larger Ra values). This seems to indicate that the four curves would merge to give
a single neutral curve for A — oo, i.e. in the two-dimensional limiting case. In fact,
for the corresponding two-dimensional Rayleigh—Bénard situation with Soret effect
(Pr =10, Le = 0.01 and ¥ = —0.01), the critical Rayleigh number is Ra. = 1743.894,
the critical wavenumber is k. = 3.117 and the critical angular frequency (denoted as
w.) 1s w, = 1.930. The different curves seem to all evolve towards these critical values
as A is increased. The curve of mode A, however, evolves more quickly and the
critical values for this mode are already quite close to the two-dimensional critical
values for A =5.

The spatial structure of these four modes is shown in figure 4 through their
temperature distributions at their critical values for a large aspect ratio, A = 10.
These spatial structures are given at a fixed time and are obtained from the
eigenvectors at threshold (w; = 0). If the discretized eigenvector is denoted as
X = X, + iX;, the perturbation for £ and w, non-equal to zero will be given by
Re(Xel® =)y = X, cos(kx — w,t) — X;sin(kx — w,t), where Re denotes the real part.
For example, for t = 0, the perturbation would be X, cos(kx) — X;sin(kx), i.e. X, for
x=0, =X; for x=A/4, =X, for x=1/2 and X; for x = 31/4, where A = 2n/k is the
wavelength. For t =T/4, t =T/2 and t = 3T /4 (where T = 2n/|w,| is the period), we
would get perturbations deduced from the perturbation at t = 0 by a translation of A/4,
A/2 and 3A /4, respectively (downstream TW for w, > 0).

We see that the four modes shown in figure 4 are clearly different as they have
different spatial structures in the cross-section. More precisely, modes A, B, C and
D have two, three, four and five roll structures in the cross-section, respectively. It
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FIGURE 3. Neutral curves for the more unstable oscillatory modes in the parameter plane
k—Ra for: (a) A=5; (b)) A=17;(c) A=10; and (d) A = 15, when Re =0, Pr = 10, Le = 0.01
and ¥ = —0.01. The first four unstable modes found at finite wavenumber (labelled as A, B,
C and D modes) are shown, together with the two S, and R, modes which are dominant at
small wavenumbers for A = 10 and 15.

is interesting to consider the symmetries of these modes. As explained in §2.2, the
symmetry group of our problem is generated by T, S, and §;. Each eigenmode with
finite wavelength (k # 0) breaks the translation invariance T,,. All of the eigenmodes
obtained here also break the up—down S, symmetry. In contrast, the eigenmodes may
break the left-right S, symmetry or not. Among the four modes considered here,
modes A and C keep the S, symmetry (the temperature perturbation is even under
reflection at the plane y = L/2), whereas modes B and D break the S, symmetry (the
temperature perturbation is odd under reflection at the plane y = L/2). The two last
modes are in fact symmetric under R,. We will then denote all of these modes as
S; modes (as A and C modes; these modes will have an even number of rolls) or
R, modes (as B and D modes; these modes will have an odd number of rolls). We
will keep, however, the notation A, B, C, D modes for the four modes which are
dominant at finite wavenumber where they correspond to structures in the y—z plane
with two, three, four and five rolls, respectively. Finally, note that the critical values
given for each mode for A = 10 in the caption of figure 4 also confirm that the critical
values for the mode A are the closest to those corresponding to the two-dimensional
Rayleigh—Bénard situation with Soret effect.
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FIGURE 4. Temperature eigenstructure for the first four unstable travelling transverse modes
at their critical points for A = 10: (a) Ra = 1744.38, k = 3.100, w, = 1.932 (mode A with
S; symmetry and two rolls in the cross-section); (b) Ra = 1745.90, k = 3.048, w, = 1.935
(mode B with R, symmetry and three rolls in the cross-section); (c) Ra = 1748.55, k = 2.957,
o, = 1.940 (mode C with S, symmetry and four rolls in the cross-section); (d) Ra = 1752.50,
k=2.817, o, = 1.943 (mode D with R, symmetry and five rolls in the cross-section), when
Re =0, Pr =10, Le =0.01 and ¥ = —0.01.

The neutral curves shown in figure 3 indicate that both longitudinal modes (k = 0)
and transverse modes (k # 0) issued from the modes A, B, C and D may exist for
moderate aspect ratios such as A =15 and A =7. It is interesting to analyse the neutral
curves which are continuous from moderate to small k& values. Those obtained for
A =35 (figure 3a) correspond to the B and C modes. As shown before, the B mode
is an R, mode with a three roll structure around the minimum of the neutral curve at
moderate k. This B mode evolves as k is decreased and changes to a five roll structure,
which appears near the maximum of the neutral curve and is well established for
k=~ 0. The C mode is an S§; mode with a four roll structure which will begin to
evolve to a six roll structure near the maximum of the neutral curve at k = 0. The
interesting neutral curves in figure 3(b) correspond to the C and D modes. Similarly,
the C mode has a four roll structure near the main minimum of the neutral curve,
which evolves to a six roll structure at the next minimum for smaller £ and begin to
evolve to a eight roll structure near the maximum at k = 0. Finally, the D mode is an
R, mode with a five roll structure near the main minimum of the neutral curve and
a seven roll structure near the minimum at k = 0. All this indicates that the number
of rolls of the dominant eigenstructure at long wavelength (k = 0) changes when A
is changed (for example, from five to seven when A is changed from five to seven).
We looked for the existence of such long-wavelength eigenstructures for larger values
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FIGURE 5. Critical curves for the dominant oscillatory modes as a function of the aspect
ratio A: (a) longitudinal modes (calculated for k = 0.01); and (b) transverse modes, when
Re =0, Pr =10, Le = 0.01 and ¢ = —0.01.

of A (A=10 and A = 15) and found new disconnected neutral curves. The neutral
curves corresponding to the first two dominant modes in the small k range are plotted
in figure 3(c,d) for A =10 and A = 15, respectively. For A = 10, the dominant mode at
small k is a 10 roll S; mode followed by a 9 roll R, mode in transition to 11 rolls, and
for A = 15, the dominant mode at small k is a 14 roll S, mode followed by a 13 roll R,
mode in transition to 15 rolls. The coexistence of longitudinal and transverse dominant
modes makes it necessary to calculate the critical curves for these two types of modes.

4.2. Critical curves

The critical curves for the longitudinal and transverse modes, plotted in the A—Ra,
plane, are shown in figure 5. Note that the curves for the longitudinal modes are
calculated for k= 0.01.

4.2.1. Longitudinal modes

The critical curves for the longitudinal modes (figure 5a) present oscillatory
variations with respect to the aspect ratio A. Two main curves determine the minimum
values of the critical Rayleigh number Ra.. One of them is associated with S; modes
and the other with R, modes. The regular crossings of the curves as A is increased
indicate that the S, and R, modes are alternately the dominant mode. These modes
cannot be easily related to the A, B, C and D modes defined previously, as we have
shown that the dominant longitudinal modes for A =5 and 7, which both belong to
the R, mode critical curve, come from the neutral curves of the B and D modes,
respectively (see figure 3).

Precisions on the structure of the dominant modes can be obtained from the plots
of the temperature eigenfunctions (real part) given in figure 6. These eigenfunctions
are taken at the true critical threshold (smallest value of Ra.) for different values of A.
As already mentioned, for A =5 and 7 these thresholds belong to the R, mode critical
curve, whereas for A = 6 and 8 they belong to the S; mode critical curve. The critical
eigenfunctions shown in figure 6 indicate that the number of rolls of the perturbations
increases with A: more precisely, we obtain five, six, seven and eight roll structures
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FIGURE 6. Temperature eigenfunction (real part) for the dominant longitudinal modes
(calculated for k = 0.01) at threshold for different aspect ratios: (a) A =5, Ra = 1821.35,
w, = 2.018 (R, mode); (b) A =6, Ra = 180221, w, = 2.003 (S, mode); (c) A =7,
Ra =1790.01, w, = 1.992 (R, mode); and (d) A =8, Ra = 1781.76, w, = 1.983 (S; mode),
when Re =0, Pr = 10, Le = 0.01 and ¢ = —0.01.

when A is five, six, seven and eight, respectively. We can also check that the size of
the rolls is nearly unchanged when A is increased from five to eight.

In fact, the two main curves in figure 5(a) are associated with eigenvectors with
different symmetries (they break or not the S, symmetry), so that they can cross at
codimension-two bifurcation points. Along each curve, the number of rolls (either
odd for the R, mode critical curve or even for the §; mode critical curve) changes
by two at the different maxima via the creation or annihilation of two rolls which
are initially infinitesimally small. Concerning the upper critical curves, they have a
minimum which is just above a maximum of the lower curve with the same symmetry.
The gap between such minimum and maximum is due to the phenomenon of avoided
crossings between same-symmetry critical curves. This phenomenon, characteristic of
convection problems with no-slip lateral boundaries, is expected to occur for pure
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longitudinal modes with k = 0. The critical curves shown in figure 5(a), however, have
been calculated for non-zero k& (k= 0.01), so that the curves at large A are found to
cross each other, which is associated with the disappearance of the expected small gap.
Note that for these longitudinal modes with k ~ 0, the perturbation for an eigenvector
denoted as X = X, + iX; will be given by Re(Xe ') = X, cos(w,t) + X; sin(w,t), so
that the perturbation for w, > 0 would be X, for t =0, X; for t =T/4, —X, for
t=T/2 and —X; for + =3T/4. If we compare the imaginary and real parts of the
eigenvectors, we find that they are really similar. For the temperature perturbation,
for example, similar positive and negative zones only varying in intensity and slightly
in size and position are found. For these longitudinal modes, the oscillations will
then correspond to standing waves with counter-rotating rolls periodically changing
direction and pulsating in size.

The critical angular frequency w. for these oscillatory longitudinal modes is given
in table 2. We only give the values associated with the dominant modes for entire
values of the aspect ratio A. We see that stronger angular frequencies are obtained
for small duct widths, but this could be connected to the fact that they are associated
with stronger values of Ra.. The angular frequency decreases as the aspect ratio A is
increased stepwise. For A — 0o, we can expect an asymptotic convergence towards
the value w, = 1.930 corresponding to the two-dimensional Rayleigh—-Bénard situation
with Soret effect. This convergence seems quite slow, with for example a value for
A =10 which is w. = 1.9722. This slow convergence can be associated with the slow
convergence of the thresholds (table 2).

4.2.2. Transverse modes

In contrast, the critical curves for the transverse modes (figure 5b) are monotonous
and decrease as A is increased. The critical Rayleigh numbers associated with the first
four critical modes are quite different for small aspect ratios as A = 3. However, when
A is increased, they clearly converge to the same value, which is the critical threshold
for the two-dimensional Rayleigh-Bénard situation with Soret effect (Ra. = 1743.894).
Mode A, for which the slowest variation of the threshold with the aspect ratio is
found, remains, however, the dominant mode (smallest Ra.) for all aspect ratios. (The
good convergence for the mode A when A is increased is also shown in table 3.)
These thresholds are also smaller than those found for the longitudinal modes, which
indicates that transverse roll structures related to the mode A (i.e. with two rolls in
the cross-section) will be the first to appear in these Rayleigh-Bénard flows with Soret
effect (Y < 0).

The critical wavenumber k. and angular frequency o, for these oscillatory transverse
modes are given in table 3. We see that when A is increased, there is, for all modes,
a good convergence towards the values k. = 3.117 and w, = 1.930 corresponding to
the two-dimensional Rayleigh—Bénard situation with Soret effect, the best convergence
being, however, obtained for mode A. We find stronger values of the angular frequency
w. and smaller values of the wavenumber k. for small duct widths. This indicates that,
at the onset of the instability, waves with a stronger wave velocity w./k. are obtained
for smaller width ducts.

Note finally that the wavelength A; for the dominant longitudinal modes is about two
(one more roll when A is increased by one, i.e. A;/2 = 1), which gives a wavenumber
k; =~ m. Similar values are also found for the wavenumber of the dominant transverse
modes if A is not too small (see table 3). Such a value of the wavenumber is in fact
the value corresponding to the usual pure Rayleigh-Bénard situation (¢ =0, Re = 0).



A 1 2 3 4 5 6 7 8 9 10

Ra. 2664.35 2065.77 1916.58 1853.93 1821.35 1802.21 1790.01 1781.76 177591 1771.61
. 2.1344 21040 2.0682 2.0395 2.0183 2.0029 19916 1.9832 19770 19722

TABLE 2. Critical Rayleigh number and angular frequency for the dominant oscillatory longitudinal mode (calculated for k = 0.01) for
different aspect ratios A, when Re =0, Pr = 10, Le = 0.01 and i = —0.01.
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k. W, Ra,
Mode A Mode B Mode C Mode D Mode A Mode B Mode C Mode D Mode A

29839 2.6994 26501 23034 19818 2.1028 2.2147 2.2678 1781.37
3.0475 2.8309 23273 25413 19399 19677 19835 2.1633 1749.38
3.0816 29702 27578 23717 1.9340 19435 19505 19514 1745.54
10 3.1000 3.0480 29567 2.8168 1.9315 19353 1.9400 1.9429 1744.38
15 3.1097 3.0873 3.0493 29950 19307 1.9318 19336 1.9358 1744.02

N W

TABLE 3. Critical wavenumber and angular frequency for the four dominant oscillatory
transverse modes for different aspect ratios A, when Re =0, Pr = 10, Le = 0.01 and
¥ = —0.01. The critical Rayleigh number for the dominant mode A is also given.

4.2.3. Comparison with previous results

A similar stability study was done by Luijkx & Platten (1981) in the case of a
pure fluid (¥ = 0). In that case, the thresholds are not oscillatory thresholds but steady
thresholds. Luijkx & Platten (1981) give the variation of the thresholds with the duct
aspect ratio A for both longitudinal and transverse modes. It is interesting to see
that they obtain critical curves similar to the curves presented in figure 5, i.e. with
a wavy variation for the dominant longitudinal mode (associated with flow structures
with an increasing number of rolls) and with a monotonous decrease for the dominant
transverse mode, which also has two rolls in the cross-section. In their study, the
wavenumber for the dominant transverse mode is also found to increase with the duct
aspect ratio in the range 3 <A < 15.

5. Results in the case with throughflow (Re # 0)

We now investigate the throughflow effect on the critical Rayleigh number for the
different dominant modes obtained without throughflow (§4). We first consider this
effect for the four dominant transverse modes at A =5 and then extend the analysis to
the different dominant modes for varying A.

5.1. Effect of Re on the instability of the transverse modes at A =5

The critical curves for the first four unstable oscillatory transverse modes A, B, C and
D as a function of the Reynolds number Re are given for small |Re|] and A =5 in
figure 7(a). We recall that for Re = 0 these oscillatory transverse modes correspond
to symmetry degenerate left and right travelling modes. This symmetry is broken
by the throughflow, which has a different influence on the thresholds of the left
and right travelling modes. In the following, in presence of the throughflow, these
left and right travelling modes will rather be presented as upstream and downstream
travelling modes, respectively, and they will be often simply denoted as upstream and
downstream modes.

The results presented in figure 7(a) have been obtained for modes travelling in
the positive x-direction and for throughflows either in the positive (Re > 0) or
negative (Re < 0) x-direction. If we now refer to the direction of the throughflow,
the results obtained for Re > 0 (Re < 0) will be those associated with the effect of
the throughflow on the downstream (upstream) modes. For the downstream modes
(Re > 0), the increase of the throughflow from Re = 0 induces a continuous increase
of their critical Rayleigh numbers. In contrast, for the upstream modes (Re < 0), when
the throughflow is increased from Re = 0 (increase of |Re|) the critical thresholds first
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FIGURE 7. Critical Rayleigh number Ra. (a), wavenumber k. (b), angular frequency w. and
phase velocity w,./k. for the first four unstable travelling transverse modes as a function of the
Reynolds number Re when A =5, Pr = 10, Le = 0.01 and ¥ = —0.01.

decrease, reach a minimum value and then increase more quickly. Note that the critical
values associated with the transverse mode A remain the smallest in the Re range
studied here, indicating that this mode A is still the dominant transverse mode.

For these transverse modes, the variations with Re of the critical wavenumber k.,
angular frequency w. and phase velocity w./k. are shown in figure 7(b—d). The
wavenumber k. (figure 7b) has only small variations with Re. Here k. is even almost
constant in the case of the dominant mode A, and the corresponding values are
stronger than those obtained for the other modes. The angular frequency w,. (figure 7¢)
increases almost linearly with Re, the increase rate being slightly stronger for mode
A, followed by mode B, and then modes C and D. Finally, the phase velocity w,/k.
(figure 7d) also increases almost linearly with Re, but the increase rate is now similar
for the different modes. The phase velocities are slightly smaller for the dominant
mode A than for the other modes.

Concerning the longitudinal modes (k = 0), they are not influenced by the
throughflow, so that their critical thresholds do not depend on Re. In fact, as we
have calculated these thresholds for & = 0.01, they might very slightly depend on Re.
We choose, however, to consider these thresholds as constant and equal to the values
already obtained without throughflow in § 4 (figure 5a).
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5.2. Change of dominant modes for varying Re and A

To better see the selective influence of the throughflow on the instabilities, we now
compare the critical thresholds obtained for the different dominant modes, i.e. the
downstream and upstream transverse modes A and the dominant longitudinal mode
(estimated for k = 0.01). The critical curves for these three modes are plotted as a
function of Re (Re > 0) for three values of the aspect ratio A (A =3, 5 and 7) in
figure 8. For A =3 (figure 8a), the critical curve for the upstream transverse mode is
below that for the downstream transverse mode and also below the critical value for
the longitudinal mode (Ra. =~ 1916.58, slightly outside the Ra. range considered in the
figure). For A = 3, the upstream transverse mode is then the dominant mode and its
critical curve is the true critical curve within the Re range studied (Re < 0.4).

For A =15 (figure 8b), the dominant mode in the Re range studied is still the
upstream transverse mode. However, the critical curve for the downstream transverse
mode is now almost in contact with the critical curve for the upstream transverse mode
for Reynolds numbers in the range 0.1 < Re < 0.16. Moreover, the horizontal line
corresponding to the critical value for the longitudinal mode (Ra, &~ 1821.35) intersects
the critical curve for the downstream transverse mode at Re = 0.258, indicating that
beyond this value, the longitudinal mode is more dangerous than the downstream
transverse mode.

Finally, for A =7 (figure 8c), due to different intersections between the critical
curves, the dominant mode will depend on the value of Re. For small values of Re
(0 < Re £0.09), the dominant mode is still the upstream transverse mode. In the range
0.1 < Re < 0.19, because of the crossings between the transverse mode curves, the
downstream transverse mode becomes the dominant mode. The upstream transverse
mode is again the dominant mode in a small range 0.2 < Re < 0.22. Finally, for the
larger values of Re considered in the graph (0.23 < Re < 0.4), the longitudinal mode
becomes the dominant mode because its critical threshold Ra. ~ 1790.01 is now below
the thresholds for the two transverse modes.

In figure 8(c), we also give the critical curves for the dominant modes in the
two-dimensional situation (A — o0). We can see that the critical curves for the
upstream and downstream transverse modes do not change much for A > 7. There
is however a more important crossing between these curves, so that the cross-points
which were around Re = 0.092 and Re = 0.191 for A =7 are around Re = 0.085
and Re = 0.239 for A — oo. In contrast, there is a clear decrease of the critical
value for the longitudinal mode, which changes from Ra.~ 1790.01 for A =7 to
Ra. = 1743.894 for A — oco. As a consequence, the four critical Re zones with
different unstable modes found for A =7 in the range 0 < Re < 0.4 will quickly
evolve to three zones for larger values of A: a zone at small Re with the upstream
transverse mode, a second zone with the downstream transverse mode, and a final zone
with the longitudinal mode. The next and final step for larger values of A will be to
have only two critical Re zones, a small zone at small Re with the upstream transverse
mode, and a large zone with the longitudinal mode.

Note that in the limiting two-dimensional case (a case corresponding to the dashed
curves in figure 8(c) and showing two different critical Re zones), Hu et al. (2007)
used a Squire transformation to show that the really expected outcome would be to
have a first zone corresponding to 0 < Re < Re,, with the upstream transverse mode
(Re,, is the Reynolds number corresponding to the minimum of the critical curve for
the upstream mode, Ra,; Re, is close above 0.05) and a second zone with oblique
waves. These oblique waves would appear for Re > Re,, at a fixed threshold Ra,,, but
with an angle o varying as cos(«) = Re,,/Re, i.e. from o =0 to m/2 as Re is increased
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FIGURE 8. Critical curves for the dominant upstream and downstream transverse modes
(mode A) and the dominant longitudinal mode (k = 0.01) as a function of the Reynolds
number Re: (a) A =3; (b) A=5; and (¢) A =7, when Pr = 10, Le = 0.01 and ¢ = —0.01.
The critical curves for these dominant modes in the two-dimensional situation (A — c0) are
also given as dashed lines in (c).

from Re,, to co. These oblique waves would then evolve from the upstream transverse
instability (for Re = Re,,) to the longitudinal instability (for Re > Re,,). A question
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FIGURE 9. Temperature eigenfunction (real part) at threshold for the dominant transverse
mode at Re = 0 (a,d) and the dominant downstream (b,e) and upstream (c,f) transverse
modes at Re = 0.3 for A =7 when Pr = 10, Le = 0.01 and ¥ = —0.01. The isovalues of
the temperature are given in the horizontal mid-plane in the upper plots and in the vertical
mid-plane V; in the lower plots. For Re = 0, the downstream mode is shown, although both
downstream and upstream modes are equivalent (symmetry degeneracy).

could now be raised: Is it possible to find such oblique waves in ducts with large
aspect ratios? We have not yet found clear answers to this question.

Such changes of critical modes as Re is increased also occur in the case without
Soret effect (Nicolas et al. 2000). There is, however, only one transition between a
downstream transverse mode obtained at small Re and a steady longitudinal mode in
this case. The Reynolds number at which this transition occurs is found to increase as
the duct aspect ratio increases.

Precisions on the structure of the downstream and upstream transverse modes
obtained with throughflow are given in figures 9 and 10 with plots of the temperature
and concentration eigenfunctions, respectively. We plot the eigenstructures of the
downstream and upstream transverse modes at threshold for A =7 and Re = 0.3
and compare them with those obtained for the dominant transverse mode at Re =0
(the downstream mode is shown in the figures, although both downstream and
upstream modes are equivalent at Re = 0 (symmetry degeneracy)). The isovalues
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FIGURE 10. Concentration eigenfunction (real part) at threshold for the dominant transverse
mode at Re = 0 (a,d) and the dominant downstream (b,e) and upstream (c,f) transverse
modes at Re = 0.3 for A =7 when Pr = 10, Le = 0.01 and ¥ = —0.01. The isovalues of
the concentration are given in the horizontal mid-plane in the upper plots and in the vertical
mid-plane V; in the lower plots. For Re = 0, the downstream mode is shown, although both
downstream and upstream modes are equivalent (symmetry degeneracy).

of temperature and concentration in the vertical mid-plane V; look similar to those
obtained in the two-dimensional case and shown in the paper of Jung er al. (1996).
We see the different phase shifts between the concentration and temperature fields
for the downstream and upstream modes. The temperature fields in the V; plane for
the different modes look roughly similar. In contrast, the concentration fields look
different. The effect of the throughflow induces an arrow shape for the concentration
field in the V; plane. This effect is less pronounced for the downstream mode, which
has concentration variations rather confined in the bulk. The effect is strong for the
upstream mode, which has more extended concentration variations in the V; plane. Our
results also allow to see the variations of the eigenstructures along the duct width. The
temperature and concentration fields appear to be bent along the transverse direction
by the throughflow in the case of the downstream transverse mode. Such a bending
is not found in the case of the upstream transverse mode and the temperature and
concentration fields appear less extended in the transverse direction.



240 J. Hu, D. Henry, X.-Y. Yin and H. BenHadid

6. Conclusions

In this paper, the three-dimensional Rayleigh—-Bénard instabilities in a binary fluid
with negative Soret coefficient have been studied by linear biglobal stability analysis
in the case of a finite width duct, with and without throughflow. The numerical
dispersion relation associated with this stability problem has been obtained with a two-
dimensional Chebyshev collocation method, and neutral and critical curves have thus
been calculated. Using symmetry considerations, the associated critical perturbation
modes, which are all oscillatory modes, have been classified as S; modes (those which
keep the left-right symmetry) or R, modes (those which keep the symmetry of rotation
of ;t about the longitudinal mid-axis).

Without throughflow, four dominant pairs of symmetry degenerate travelling
transverse modes with finite wavenumbers k£ have been found. These pairs of modes
have different numbers of rolls in the duct cross-section. With the increase of the duct
aspect ratio A, the critical Rayleigh numbers for these four pairs of modes decrease
monotonously and closely approach the critical value Ra. = 1743.894 obtained in
a two-dimensional situation. One of these modes (a §; mode called mode A and
with two rolls in the cross-section) is the really dominant transverse mode. This
mode A corresponds to the smallest critical values and has the quickest convergence
towards the two-dimensional thresholds. Oscillatory longitudinal modes (corresponding
to k ~ 0) have also been found for increasing aspect ratios. The dominant longitudinal
modes belong to two wavy critical curves globally decreasing and corresponding to
either S; modes with an even number of rolls or R, modes with an odd number of
rolls. These two curves interlace with each other so that the true critical thresholds
for these longitudinal modes correspond to modes with an increasing number of
longitudinal rolls. In this case without throughflow, the smaller thresholds are found
for the travelling transverse mode A, which is then expected to be observed.

When a throughflow is applied (three-dimensional PRB flow with Soret effect), the
symmetry degeneracy of the pairs of travelling transverse modes is broken, giving
distinct upstream and downstream travelling modes, as it was already observed for
the two-dimensional PRB flows. The throughflow modifies the thresholds of both the
upstream and downstream travelling transverse modes, eventually increasing them. In
contrast, it has no effect on the longitudinal mode thresholds. As a consequence,
a competition between the different modes can be expected. It is found that for
small and moderate aspect ratios A, the overall critical Rayleigh number in the
small Reynolds number range studied (0 < Re < 0.4) is only determined by the
upstream transverse mode A. In contrast, for larger aspect ratios different modes are
successively dominant as the Reynolds number is increased, involving both upstream
and downstream transverse modes A and even the longitudinal mode. Four different Re
zones corresponding to different critical modes are found for A = 7. The number of
zones is reduced to three, and then to two when the aspect ratio is further increased.
Note that the upstream transverse mode A is always the critical mode for small
Reynolds numbers whatever the value of the aspect ratio A. And for large values of
A, the longitudinal mode eventually becomes the critical mode when the Reynolds
number is increased. Note finally that the crossings between the different critical
curves indicate the existence of Re regions where different transverse and longitudinal
modes become unstable simultaneously. From the work of Kato & Fujimura (2000),
it can be expected that a complex nonlinear interaction between the coexisting modes
would play a significant role in pattern selection around these Re regions.

This three-dimensional PRB flow situation involving binary fluids with negative
Soret coefficients has appeared to be a very rich situation. Depending on the values
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of the governing parameters, principally the duct aspect ratio, the Reynolds number
and the Soret coefficient, very different oscillatory perturbations, either longitudinal
or transverse, upstream or downstream, are expected to be triggered. It would be
now very interesting to perform three-dimensional simulations to confirm all of these
results.
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