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This study is a linear stability analysis of the flows induced by ultrasound acoustic waves (Eckart streaming)
within an infinite horizontal fluid layer heated from below. We first investigate the dependence of the instability
threshold on the normalized acoustic beam width Hb for an isothermal fluid layer. The critical curve, given by the
critical values of the acoustic streaming parameter, Ac, has a minimum for a beam width Hb ≈ 0.32. This curve,
which corresponds to the onset of oscillatory instabilities, compares well with that obtained for a two-dimensional
cavity of large aspect ratio [Ax = (length/height) = 10]. For a fluid layer heated from below subject to acoustic
waves (the Rayleigh-Bénard-Eckart problem), the influence of the acoustic streaming parameter A on the stability
threshold is investigated for various values of the beam width Hb and different Prandtl numbers Pr. It is shown
that, for not too small values of the Prandtl number (Pr > Prl), the acoustic streaming delays the appearance of the
instabilities in some range of the acoustic streaming parameter A. The critical curves display two behaviors. For
small or moderate values of A, the critical Rayleigh number Rac increases with A up to a maximum. Then, when
A is further increased, Rac undergoes a decrease and eventually goes to 0 at A = Ac, i.e., at the critical value of
the isothermal case. Large beam widths and large Prandtl numbers give a better stabilizing effect. In contrast,
for Prandtl numbers below the limiting value Prl (which depends on Hb), stabilization cannot be obtained. The
instabilities in the Rayleigh-Bénard-Eckart problem are oscillatory and correspond to right- or left-traveling
waves, depending on the parameter values. Finally, energy analyses of the instabilities at threshold have indicated
that the change of the thresholds can be connected to the modifications induced by the streaming flow on the
critical perturbations.

DOI: 10.1103/PhysRevE.86.016312 PACS number(s): 47.20.Bp, 47.20.Ft, 47.11.Kb

I. INTRODUCTION

Acoustic streaming is a stationary (time-independent) flow
occurring in fluids (gases or liquids) subjected to a high-
intensity sound field [1]. Acoustic streaming is relevant to
some industrial applications such as the pumping of fluids in
microflow systems [2] or the mixing of liquids in a closed
container (confined medium), which could be of a high
efficiency when the flow of the acoustic streaming is used in
an adequate pattern [3]. Acoustic streaming is also well known
for its transport properties: the fluid flows without any external
mechanical contact and can enhance rate-limited processes
such as diffusion or heat and mass transfer.

Acoustic streaming is a nonlinear effect that owes its origin
to the action of the Reynolds stresses (mean momentum
flux due to the ultrasound wave) and the dissipation of the
acoustic energy flux [1,4]. This dissipation could be connected
to the presence of boundaries and generate what is called
Rayleigh-Schlichting streaming, or it could be related to the
attenuation of the wave in the bulk fluid and generate Eckart
streaming. For the Eckart acoustic streaming we will consider
here, the fluid flows away from the ultrasound source in
the same direction as the ultrasound wave propagation. The
hydrodynamic characteristics of the flow are dictated by the
acoustic intensity excitations. Low acoustic intensity excita-
tions generate low-speed flows, and high acoustic intensity
excitations generate high-speed flows. If the fluid is bounded
by solid walls, the geometric parameter of importance is the
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relative width of the acoustic beam compared to the fluid layer
depth.

Despite the thorough characterization of fluid motions in
the Eckart as well as in the Rayleigh-Schlichting streaming
situations, to our knowledge there is no work dealing with
the stability of such flows including convective heat transfer
between horizontal heated plates, but only some studies on
the interaction between the streaming flows and the heat
transfer. In heated situations, the Prandtl number (Pr = ν/κ)
appears as a nondimensional characteristic parameter for the
system. Vainshtein et al. [5] analytically investigated the effect
of Rayleigh-Schlichting streaming on the heat transferred
between two horizontal parallel plates that are kept at dif-
ferent temperatures (hot plate above). They found a marked
enhancement of the heat transfer due to the Rayleigh streaming
and derived asymptotic relations expressing the mean Nusselt
number variations. Hyun et al. [6] performed experimental
and numerical studies to measure the enhancement of the
convective heat transfer due to acoustic streaming induced
by a vibrating beam (Rayleigh-Schlichting streaming). Their
results obtained for a heat transfer from above show that, for
an open gap, a vibrating beam at 28.4 kHz with a vibration
amplitude of 10 μm causes after 4 min a temperature drop
of 30 ◦C, and with a vibration amplitude of 25 μm the
maximum temperature drop reaches 40 ◦C. In a closed gap,
the achieved temperature drop is 10% less than for the open
gap. The numerical calculations are able to reproduce the
acoustic streaming flow and quantitatively confirm the drop
in the temperature observed when the acoustic vibrations are
applied. Some other studies considered the heat transfer in
air between a lower hot plate and an upper cold plate, but still
for acoustic standing waves (Rayleigh-Schlichting streaming).
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Nabavi et al. [7] experimentally studied the modifications
induced on the streaming velocity fields by such differentially
heated horizontal walls. They found that when the temperature
difference is increased, the streaming velocities are increased
too and the originally symmetric streaming vortices are
deformed to give asymmetric vortices. Aktas and Ozgumus
[8] numerically studied a similar configuration with a two-
dimensional approximation. They point out that the transverse
temperature gradient strongly affects the acoustic streaming
structures and velocities. They also mention an enhancement
of the overall heat transfer due to the acoustic streaming.
Finally, we have to mention the recent studies concerning
Eckart streaming applied in a side-heated cavity, a situation
often referred to as the Bridgman configuration in the field of
crystal growth [9,10].

In this study, we are concerned with the stability of the
Rayleigh-Bénard configuration modified by a forced flow
induced by Eckart streaming. This problem is a general
theoretical issue and at the same time it could be interesting
for different applications such as crystal growth, heat transfer
between plates, and Soret separation devices. For this study, we
consider a fluid layer of height h heated from below and subject
to a constant pressure radiation force caused by an ultrasound
beam of width hb < h oriented along the horizontal x axis.
Without acoustic streaming, the Rayleigh-Bénard base state
consists of a stagnant fluid layer with a linear temperature
variation from the hot bottom to the cold top, and the first
instability involves a transition to a steady flow. In our case,
the base state still involves the linear vertical temperature
variation, but it also comprises a horizontal velocity profile
generated by Eckart streaming. The linear stability analysis of
this base state has been carried out using accurate numerical
methods to determine the neutral curves with minimization
with regard to the wave number and then to find the variation
of the critical parameter, namely the critical Rayleigh number
Rac, as a function of the acoustic intensity parameter A

for given normalized beam widths Hb. We have extended
our results to different values of the Prandtl number and
performed energy analyses in order to highlight the stabilizing
mechanisms.

II. GOVERNING EQUATIONS

We first consider a rectangular cavity of height h and
length l (aspect ratio Ax = l/h) filled with a homogeneous
Newtonian fluid and subject to a vertical temperature gradient
and to the effect of an ultrasound source located in the middle
of the left end wall of the cavity. The ultrasound waves
propagate in the horizontal x direction inside a beam of
characteristic width hb (hb < h) in the vertical y direction
(negligible divergence of the beam [9]). The right end wall
of the cavity is an absorber, so that the ultrasound waves are
traveling waves. The body force due to the attenuation of
the wave is equal to the spatial variation of the Reynolds
stress. It is given by Nyborg [1] as F = −ρ〈(u1 · ∇)u1 +
u1(∇ · u1)〉, where ρ is the constant equilibrium density, u1

is the fluctuating velocity in the sound wave, and 〈〉 means a
time average over a large number of cycles. For a plane wave
propagating in the x direction, this body force is oriented in
the x direction and its intensity is given by F = ργV 2

a e−2γ x ,

where γ is the sound wave spatial attenuation factor and
Va is the sound wave velocity amplitude. Now, provided the
attenuation of the wave is sufficiently weak, the body force can
be considered as constant inside the beam (F = ργV 2

a ) and
zero outside. The top and bottom horizontal walls are perfectly
conducting and held at different temperatures, respectively
Tc and Th with generally Th > Tc, whereas the vertical walls
are adiabatic. We assume that the physical properties of the
fluid are constant (kinematic viscosity ν, thermal diffusivity
κ , density ρ) except for the fluid density in the buoyancy
term, which obeys the Boussinesq approximation, ρ = ρ0[1 −
β(T̄ − Tm)], where β is the thermal expansion coefficient and
Tm = (Tc + Th)/2 is a reference temperature. Using h, h2/ν,
ν/h, and (Th − Tc) as scales for length, time, velocity, and
temperature, respectively, the governing equations that are the
Navier-Stokes equations coupled to the energy equation can
be written in a dimensionless form as

∇ · V = 0, (1)

∂V
∂t

+ (V · ∇)V = −∇P + ∇2V + Ra

Pr
T ey + f (y) ex,

(2)

∂T

∂t
+ (V · ∇T ) = 1

Pr
∇2T , (3)

where the dimensionless variables are the velocity vector [V =
(U,V )], the pressure P , and the temperature T defined by
T = (T̄ − Tm)/(Th − Tc). f (y) = Aδb is the dimensionless
force inducing the acoustic streaming (deduced from F ),
and δb is a function of the y coordinate; its value is 1
inside the acoustic beam and 0 outside. In these equations,
Ra = β g(Th − Tc)h3/κν is the Rayleigh number, Pr = ν/κ

is the Prandtl number, and A = γV 2
a h3/ν2 is the acoustic

streaming parameter. The dimensionless beam width is given
by Hb = hb/h.

III. ONE-DIMENSIONAL MODEL: BASIC FLOW

The one-dimensional model corresponds to an infinite
horizontal liquid layer of thickness h subject to ultrasound
acoustic waves propagating in the x direction inside a beam of
width hb. We assume that the characteristics of the acoustic and
hydrodynamic fields remain unchanged along the x direction
in such a way that their dependence on the x coordinate can be
neglected. For an isothermal liquid layer (Ra = 0), the system
(1)–(3) reduces to a system similar to that already used by
Rudenko and Sukhorukov [11] for a cylindrical configuration
or by Dridi et al. [10]. This system is given by

d2U0

dy2
= f (y) − ∂P

∂x
and

∂P

∂y
= 0, (4)

U0|y=0 = U0|y=1 = 0 and
dU0

dy

∣∣∣∣
y=0.5

= 0, (5)

where U0 = U0(y) is the dimensionless base-state acoustic
streaming velocity directed along x. Under these conditions
and assuming mass conservation, the system admits a unidi-
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rectional parallel flow solution:

U0(y) = −A

4
Hby

[(
Hb

2 − 3
)
y − (

Hb
2 − 1

)]

for 0 � y � 0.5 − Hb/2, (6)

U0(y) = −A

8
(Hb − 1)2[2(Hb + 2) (y2 − y) + 1]

for 0.5 − Hb/2 � y � 0.5 + Hb/2, (7)

U0(y) = −A

4
Hb (y − 1)

[(
Hb

2 − 3
)
y + 2

]

for 0.5 + Hb/2 � y � 1. (8)

Note that the magnitude of the streaming velocity is a function
of the beam width Hb and is proportional to the acoustic
streaming parameter A.

When a temperature difference is applied between the upper
and lower plates, a conductive temperature profile linear in y

is created, given in its dimensionless form by T0(y) = 0.5 −
y. This basic temperature profile will not modify the basic
velocity profile created by acoustic streaming.

IV. NUMERICAL METHODS

The two-dimensional calculations were performed with the
spectral element code with continuation techniques developed
by Henry and Ben Hadid [12]. Both the two-dimensional
steady flow solutions taking into account the acoustic force
and the transition thresholds to oscillations were obtained with
this code.

For the one-dimensional approach, we considered the basic
state corresponding to the acoustic streaming flow with veloc-
ity U0(y) and the temperature profile T0(y) that is created in the
fluid layer between the infinite plates at y = 0 and 1. Let (u,v)
be the components of a two-dimensional velocity perturbation
v and let θ be the temperature perturbation. The stability
of the basic state is examined by disturbing all dependent
variables, linearizing the governing equations with respect to
the perturbations, and introducing normal mode perturbations
given by (v,p,θ )(x,y,t) = (v,p,θ )(y) exp(σ t + iαx), where
α = 2π/λ is the real wave number and λ is the wavelength
in the x direction, σ = σr + iω is a complex eigenvalue
(the real part of which, σr , is an amplification rate and the
imaginary part, ω, is an oscillation frequency), and ω/α is
the phase speed. With the characteristic scales defined above,
the pertinent system of equations and boundary conditions
describing the evolution of the perturbations may be written
as

iαu + Dv = 0, (9)
σu + iαU0u + (DU0)v = −iαp + (D2 − α2)u, (10)

σv + iαU0v = −Dp + (D2 − α2)v + Ra

Pr
θ, (11)

σθ + iαU0θ − v = 1

Pr
(D2 − α2)θ, (12)

where D = ∂/∂y indicates a differentiation with respect to
y. The boundary conditions are u = v = θ = 0 at the solid
walls. The system of Eqs. (9)–(12) is discretized by the spectral
Tau Chebyshev method already described in Kaddeche et al.
[13]. The resulting generalized algebraic eigenvalue problem
is numerically solved by the QZ eigenvalue solver of the

Numerical Algorithms Group (NAG) library. A sufficiently
large number of Chebyshev polynomials (taken as 81 in this
study) is needed to ensure the required numerical accuracy
when acoustic streaming is involved. According to the linear
theory, the flow is stable if, for given values of Hb, A, and
Ra, the amplification factor σr is negative for all values of
α. Conversely, the flow is unstable if σr is positive for some
values of α. The states for which the amplification factor is
zero are called states of neutral stability. Finally, the neutral
state for which the governing parameter, A or Ra, is minimum
as a function of α is called the critical state. Note that our
results have been checked by comparison with a completely
different pseudospectral collocation method using Chebyshev
series and developed on MATLAB.

V. KINETIC ENERGY BUDGETS

To better understand the stabilizing or destabilizing mech-
anisms that will affect the Rayleigh-Bénard situation when
acoustic streaming is applied, we will perform kinetic energy
analyses based on the critical eigenvectors at threshold. The
equations of fluctuating kinetic energy budget are derived
from the linear stability equations (10) and (11): Eq. (10) is
multiplied by u∗ and Eq. (11) by v∗; we then add them and
take the real part (Re and the superscript ∗ denote the real part
and the complex conjugate, respectively).

The equation expressing the rate of change of the fluctuating
kinetic energy (defined as k = vv∗/2) is given by

∂k

∂t
= σr (uu∗ + vv∗) = ks + kd + kb + kp, (13)

where ks = Re[−v(DU0)u∗] represents the production of
fluctuating kinetic energy by shear of the basic flow, kd =
Re[(D2u)u∗ + (D2v)v∗ − α2(uu∗ + vv∗)] represents the vis-
cous dissipation of fluctuating kinetic energy, kb =
Re[(Ra/Pr)θv∗] represents the production of fluctuating ki-
netic energy by buoyancy, and kp = −Re[iαpu∗ + (Dp)v∗]
represents the redistribution of fluctuating kinetic energy by
the pressure fluctuations. We can also define the total (or
volume integral) fluctuating kinetic energy as K = ∫

y
k dy.

The rate of change of K is given by an equation similar to
Eq. (13), which involves the volume integral energy terms
(denoted by K),

∂K

∂t
= Ks + Kd + Kb. (14)

Note that the volume integral pressure term is zero and has
therefore not been included in Eq. (14). At threshold, the
critical eigenvector is associated with an eigenvalue of zero
real part. This implies that ∂k/∂t and ∂K/∂t are both equal
to zero at marginal stability. Kd is stabilizing by nature and
is thus a negative term. The kinetic energy equations are then
normalized by |Kd |. At threshold, and if the normalized terms
are denoted with a prime, we get

k′
s + k′

d + k′
b + k′

p = 0 (15)

and

K ′
s + K ′

b = 1. (16)
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For any instability at its critical threshold, the calculation of
all the individual total energy contributions [Eq. (16)] by using
the corresponding critical eigenvector enables us to determine
which term plays a dominant role in triggering the instability
through production of fluctuating energy. The corresponding
spatial fields [Eq. (15)] can in turn be analyzed to locate the
production regions.

A complementary approach is based on the expression
of the critical Rayleigh number as a function of energetic
contributions. For that, we use the fact that the expression of
K ′

b depends linearly on Ra. At the threshold, we can write
K ′

b = RacK
′′
b . And from Eq. (16), we get RacK

′′
b = 1 − K ′

s ,
which, for A = 0, i.e., in the pure buoyancy case, gives
Ra0K

′′
b0

= 1, where the subscript 0 refers to the case A = 0 and
Ra0 = Rac(A = 0). Finally, the ratio of these two equations
gives

Rac

Ra0
=

Rs︷ ︸︸ ︷
(1 − K ′

s)(
K ′′

b /K ′′
b0

)
︸ ︷︷ ︸

Rb

, (17)

which indicates that the variation of Rac with A can be
expressed through the ratio of the two quantities, Rs and Rb, the
first quantity being connected to the shear of the basic flow due
to acoustic streaming and the second quantity to buoyancy. For
A = 0, Rs and Rb are equal to 1 and Rac = Ra0. Note finally
that U0 is proportional to A and can be written as U0 = AU0A

.
As a consequence we can also define K ′′

s , which is such that
K ′

s = AK ′′
s .

VI. RESULTS

The instability of the Rayleigh-Bénard problem (A = 0)
is one of the prototype problems in laminar transition, and it
has been studied extensively. In this case, the critical value of
the Rayleigh number is Ra = 1707.762 and the critical wave
number is α = 3.117. We are concerned in this study with the
effect of a slight longitudinal confinement on the stability of the
Eckart streaming flow in a layer, and also the modifications
the Eckart flow is able to introduce in the stability of the
Rayleigh-Bénard problem.

A. Isothermal fluid (Ra = 0)

Without thermal heating (Ra = 0), steady numerical solu-
tions of the system (1)–(3) in a two-dimensional cavity of
aspect ratio Ax = 10 have been obtained for different beam
widths Hb. The velocity vector plot of the solution obtained
for a beam width Hb = 0.8 and A = 5200 is given in Fig. 1.
In this figure, the typical stationary streaming structure of the

 0

 0.2

 0.4

 0.6

 0.8

 1

-15 -10 -5  0  5  10  15
u

y 1D
2D

FIG. 2. Comparison between the velocity profiles u(y) obtained
analytically with a one-dimensional model [Eqs. (6)–(8), solid curve]
or numerically in a two-dimensional cavity with Ax = 10 at x =
Ax/2 (crosses) for the flow induced by an ultrasound source with
Hb = 0.8 and A = 5200. The dot-dashed lines indicate the limits of
the acoustic beam.

Eckart flow is shown: in the sound beam, the flow is directed
away from the sound source, and in the periphery of the layer,
it is directed toward the source. Note also that the vertical
velocity is significant only in the end regions where the flow
changes direction.

In Fig. 2, for Hb = 0.8 and A = 5200, we compare the
velocity profile obtained at x = Ax/2 in the two-dimensional
cavity with Ax = 10 to that obtained in an infinite layer
and given by Eqs. (6)–(8). It is clear that the two profiles
agree very well. In fact, special attention has to be paid to
the two-dimensional simulations to get this good agreement.
Indeed, if the acoustic force (associated with δb = 1) is applied
between the two points along the y direction, nd and nu, the first
idea would be to consider Hb as y(nu) − y(nd ). In fact this does
not work well, as the force does not go sharply to zero at nd

and nu. Instead, a good agreement is obtained by considering
Hb as [y(nu) + y(nu + 1)]/2 − [y(nd ) + y(nd − 1)]/2, i.e.,
the mean value of the distance between the extreme points
with δb = 1 [y(nu) − y(nd )] and the distance between the first
neighboring points with δb = 0 [y(nu + 1) − y(nd − 1)]. As
the spatial discretization used in our spectral element code
is obtained through well defined Gauss-Lobatto-Legendre
point distributions, Hb = 0.8 (with the previous definition of
Hb) cannot be matched precisely for any number of points.
Nevertheless, two point distributions with 53 and 87 points
along the vertical enable a well defined acoustic beam with
Hb = 0.8 corresponding to 31 and 51 points in the beam,
respectively.

From Fig. 2, which was obtained with the 53-point
distribution, we can note that the region where the flow is

FIG. 1. Velocity vector field for the flow induced by an ultrasound source with Hb = 0.8 and A = 5200 in a two-dimensional cavity with
aspect ratio Ax = 10.
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INSTABILITIES IN THE RAYLEIGH-BÉNARD-ECKART . . . PHYSICAL REVIEW E 86, 016312 (2012)

oriented in the same direction as the acoustic propagating
waves (positive part of the velocity profile) is smaller than
the width of the ultrasound beam Hb. In contrast, for small
values of the beam width as Hb = 0.3, this region is found to
be larger than the beam width. Our results also show that for
Hb = 0.8, the maximum of the streaming velocity is located
in the reverse flow, while for small values of the beam width
this streaming velocity has a maximum in the central part of
the layer. The changes of curvature in the profiles occur in any
case at the limits of the beam, and the points where they occur
are then displaced toward the walls when the beam width is
increased.

The stability of the isothermal and incompressible Eckart-
streaming flow, which is governed by the system (9)–(11)
with Ra = 0, has been investigated by Dridi et al. [10]. These
authors determined the critical values of the acoustic streaming
parameter, Ac, and the corresponding critical wave number
and angular frequency as a function of the beam width Hb.
Their results show that the stability of the acoustic stream
depends strongly on the beam width Hb. In fact, the critical
modes appear to be strongly stabilized for small or large values
of Hb, and the more unstable conditions are reached when
the beam nearly occupies the third of the liquid layer, i.e.,
for Hb ≈ 0.32. For this particular value of the acoustic beam
width, the critical parameters are given by Dridi et al. [10] as
Ac = 5143, αc ≈ 4.5, and ωc ≈ 21.

The stability of the two-dimensional base flow was consid-
ered for an extended cavity of aspect ratio Ax = 10. For this
large aspect ratio, the parallel one-dimensional flow prevails
in the whole cavity except in small regions near the end walls.
The calculations with the spectral element code have been done
with a fine grid with 101 points in the horizontal direction and
83 points in the vertical direction. Different beam widths have
been considered corresponding to an odd number of points
along the vertical in the beam increasing from 3 to 51. We have
also used the definition of Hb previously given. The critical
stability curve corresponding to the first oscillatory transitions
is given in the (Hb, Ac) plane in Fig. 3. We see that, owing to the
confinement effect, the two-dimensional critical stability curve

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

10
-4

A
c

Hb

2D
1D

FIG. 3. Critical curves for the onset of oscillatory instabilities in
the Eckart flow as a function of the beam width Hb. Comparison
between the thresholds Ac obtained for a one-dimensional base flow
in an infinite fluid layer (open circles) and for a two-dimensional base
flow in a cavity with Ax = 10 (solid circles).

is located slightly above that of the one-dimensional base flow
(infinite horizontal layer). This critical curve clearly shows that
the stability of the two-dimensional acoustic stream depends
strongly on the beam width Hb and evolves in the same way
as the stability of the one-dimensional base flow. We note that
for small beam widths corresponding to Hb � 0.2, a steady
threshold is found slightly below the oscillatory threshold.

B. Heated fluid

We now study the effect of the acoustic stream on the
stability of a fluid layer heated from below (Rayleigh-Bénard-
Eckart problem). For that, we have to solve the system of
hydrodynamic equations (9)–(11) together with the energy
equation (12). For a fluid layer between two horizontal, rigid,
and perfectly heat conducting boundaries, subject to a vertical
temperature gradient, the linear stability theory predicts that
such a problem, known as the Rayleigh-Bénard problem, is
linearly stable if Ra is less than Ra0 = 1707.762 and that, when
a throughflow is applied as in the Poiseuille-Rayleigh-Bénard
problem, the initial increase in the Reynolds number delays
the onset of the two-dimensional Rayleigh-Bénard instability
(transverse rolls) [14].

The critical stability curves obtained for the Rayleigh-
Bénard-Eckart problem are given in Fig. 4 in the (A, Rac/Ra0)
plane for Pr = 1 and several values of the beam width Hb. The
Rayleigh-Bénard stability threshold, which is independent of
the Prandtl number, is given by Rac/Ra0 = 1 and is represented
in the figure by a horizontal dashed line. The regions of
increased stability will then be above this line. We see that
for Pr = 1, the typical shape of the critical stability curves
does not change much when the ultrasound width Hb is
changed. The critical Rayleigh number Rac increases for small
A, reaches a maximum Ram for Am, decreases for larger A,
and eventually crosses the axis Rac = 0 at A = Ac (solid
circles). These values A = Ac, which correspond to pure
hydrodynamic thresholds without any coupling between the
velocity field and the thermal field, are exactly those obtained

-2

 0

 2

 4

 6

 8

 10

 12

 0  5000  10000  15000  20000  25000

R
a c/

R
a 0

A

Hb=0.7

0.6

0.4

0.3 0.15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

R
a c

/R
a m

A/Ac

0.7

0.15

FIG. 4. Critical curves for the onset of instability in the Rayleigh-
Bénard-Eckart problem in an infinite layer, expressed as Rac/Ra0 as a
function of A. Different beam widths Hb are considered and Pr = 1.
The dashed line (with an open circle) gives the Rayleigh-Bénard
threshold and the solid line (with solid circles) gives the Eckart-
streaming thresholds Ac. Inset: normalized critical curves expressed
as Rac/Ram as a function of A/Ac.
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in the case of an isothermal layer by Dridi et al. [10] and shown
as a function of Hb in Fig. 3. Note also that all the critical curves
still exist beyond A = Ac but correspond to negative values of
Rac. This indicates thresholds of instabilities due to acoustic
streaming in situations heated from above that are thus stably
stratified.

If there is a typical shape for the critical curves, there is
also a clear influence of Hb. The existence range, from 0 to
Ac, has a minimum for Hb ≈ 0.32 and increases for smaller
and larger Hb (see the thresholds Ac given in Fig. 3), whereas
the maximum critical values Ram, reached for A = Am,
increase with Hb. Concerning the effective stabilization of the
Rayleigh-Bénard situation, we can see that it depends strongly
on both the acoustic streaming parameter A and the acoustic
beam width Hb. The range of A over which the acoustic
streaming has a stabilizing effect (from A = 0 to the value
of A at which the curves cross the dashed line corresponding
to Rac/Ra0 = 1) also has a minimum close to Hb = 0.32 and
increases for smaller and larger Hb. (For Pr = 1, this range
has an upper bound given by 0 � A � Ac and corresponding
to the domain below the one-dimensional critical curve Ac in
Fig. 3.) Large beam widths, however, seem more interesting
as the increase of the stabilization range is accompanied by an
increase of the stabilization effect (increase of Ram). In any
case, for a given value of Hb, the best would be to choose a
value of A close to Am. Finally, the inset in Fig. 4 displays the
critical curves expressed as Rac/Ram as a function of A/Ac.
With such a normalization, we see that the critical curves have
similarities: they all reach their maximum for A/Ac ≈ 0.6, and
the decrease from this maximum to zero at A = Ac is similar
for all the curves.

The curves for the critical wave number αc as a function
of the acoustic streaming parameter A are given in Fig. 5 for
different beam widths and Pr = 1. We can see that for small
and moderate beam widths (Hb � 0.6), the wave-number
curves for the critical disturbance continuously increase with
A (with only some changes of curvature), while for larger
beam width (Hb > 0.6), the increase of the wave-number
curves is interrupted by an intermediate oscillatory variation.
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FIG. 5. Critical wave number at the onset of instability in the
Rayleigh-Bénard-Eckart problem in an infinite layer, expressed as
αc as a function of A. Different beam widths Hb are considered and
Pr = 1. The dashed line with the solid circles gives the critical wave
number for the pure Eckart flow.
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FIG. 6. Critical angular frequency at the onset of instability in
the Rayleigh-Bénard-Eckart problem in an infinite layer, expressed
as ωc as a function of A. Different beam widths Hb are considered
and Pr = 1. The dashed line with the solid circles gives the critical
angular frequency for the pure Eckart flow.

In any case, the curves eventually reach the wave number
corresponding to the pure acoustic streaming case (Ra = 0,
A = Ac), given in the figure by the dashed line with solid
circles. Note that for the pure acoustic streaming case, the
wave number decreases continuously when increasing the
acoustic beam width Hb. Beyond A = Ac, i.e., in the domain of
negative values of Rac, the wave number continues to increase
with the increase of A. The observed increase of the wave
number corresponds to a decrease of the wavelength, which
indicates that shorter perturbation patterns are obtained when
A is increased.

The instability found for A > 0 corresponds to oscillatory
transverse cells. The corresponding critical angular frequency
ωc for these combined Rayleigh-Bénard/Eckart streaming
situations is displayed as a function of A for different values
of Hb and Pr = 1 in Fig. 6. We see that, as A is increased,
the frequency first takes negative values, reaches a minimum,
and then increases toward positive values of ωc, which
eventually reach the value corresponding to the pure acoustic
streaming case on the dashed line with solid circles. The
minimum negative values reached by ωc increase in absolute
value when Hb is increased. These values are around −1.12,
−1.68, −2.45, −6.00, and −9.71 for Hb = 0.15, 0.3, 0.4,
0.6, and 0.7, respectively. Beyond A = Ac, the values of
ωc continue to increase for large beam widths (Hb � 0.6)
but quickly decrease for small beam widths and eventually
become negative again. The streaming flow then changes the
Rayleigh-Bénard steady pattern to traveling waves. Moreover,
the negative and positive values of ωc indicate that these
traveling waves can move to the right or to the left depending on
the value of A, in contrast with the Poiseuille-Rayleigh-Bénard
flow, where the waves can only move downstream. Note that
with the choice made in this study, the modes at threshold will
vary as exp[i(ωt + αx)], so that negative values of ω will
correspond to waves traveling to the right (in the positive
x direction) whereas positive values of ω will correspond
to waves traveling to the left (in the negative x direction).
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FIG. 7. (a) Maximum value of the Rac curve expressed as
Ram/Ra0 as a function of the Prandtl number Pr for two beam widths,
Hb = 0.6 (solid curve and solid circle) and 0.3 (dashed curve and
open circle). The circles indicate the limit values Prl of the Prandtl
number below which the maximum is obtained at Ra0 for A = 0 (no
increase of Rac in these cases). These limit values Prl are given as a
function of the beam width Hb in (b).

We found a mistake in Dridi et al. [10] where, with the
same notations, the negative (positive) values of ω have been
wrongly associated with left- (right-) traveling waves.

The previous results have been obtained for a specific value
of the Prandtl number, Pr = 1. As we know that these results,
contrary to the pure Rayleigh-Bénard situation, depend on
the Prandtl number, it would be interesting to have some
indications on the effect of Pr. For that, rather than to compute
again critical curves that would all begin at Ra0 for A = 0 and
end at Rac = 0 for A = Ac, we chose to focus on the maximum
value Ram reached for A = Am. The variation with Pr of this
maximum value given as Ram/Ra0 is shown in Fig. 7(a) for
two values of the beam width Hb. We see that for both beam
widths, we have an increase of Ram with Pr, indicating a better
stabilizing effect. Moreover, this increase is linear for large
values of Pr (for about Pr � 1 for Hb = 0.6 and Pr � 5 for
Hb = 0.3). Conversely, Ram will decrease with decreasing Pr
and will eventually reach Ra0 at some limiting value Prl of the
Prandtl number (given by circles in the figure). This means
that for Pr numbers below this limiting value Prl , there will
be no more increase of the thresholds Rac with A and then no
more stabilizing effect induced by acoustic streaming on the
Rayleigh-Bénard situation. We have calculated the variation of

this limiting value Prl with the beam width Hb. The results are
shown in Fig. 7(b). We see that Prl decreases as Hb is increased,
which means that larger beam widths enable stabilizing effects
in a larger range of Pr values. The curve of Prl is difficult to
calculate for low values of Prl . Nevertheless, the curve seems
to go to zero for 0.7 < Hb < 0.72. All this indicates that for
low Prandtl number fluids (for example 0.01 � Pr � 0.03),
a stabilizing effect is difficult to obtain, but it ought to be
obtained for very large beam widths as Hb � 0.72. For small
beam widths, the curve seems to reach an asymptotic value
Prl ≈ 0.235. This indicates that for values of Pr larger than
0.235, a stabilizing effect can be obtained for any beam width.
Note finally that during the decrease of Ram with decreasing
Pr, the associated value Am (which gives the position of this
maximum) remains roughly constant before a strong decrease
to zero when the Prandtl number approaches Prl .

C. Kinetic energy analyses

To better understand the stabilizing effect that can be in-
duced by acoustic streaming in the Rayleigh-Bénard situation,
we performed kinetic energy analyses of the instabilities using
the different kinetic energy budgets presented in Sec. V. We
first present the results obtained for Pr = 1. We then extend
our analysis to other values of Pr.

1. Cases with Pr = 1

As the critical curves have similar characteristics for Pr = 1,
we will mainly focus our analysis on the case corresponding
to Hb = 0.3. For any instability at its critical threshold,
the different contributions to the kinetic energy budgets are
calculated by using the corresponding critical eigenvector.
Such critical eigenvectors are shown in Fig. 8 in the case
Hb = 0.3 and Pr = 1 for A = 0 (left plots) and A = 3000
(right plots). We give two-dimensional plots in the vertical
(x, y) plane along a wavelength λ of the perturbation, and
these plots show the velocity vector field (upper plots) and the
isovalues of the temperature field (lower plots). We see that the
critical eigenvector is much changed when acoustic streaming
is applied: the roughly circular rolls of the Rayleigh-Bénard
instability are deformed with acoustic streaming, and the very

+ − + + − +

FIG. 8. Critical eigenvectors obtained for Hb = 0.3, Pr = 1, A =
0 (real eigenvector, left plots), and A = 3000 (real part of the complex
eigenvector, right plots). The velocity vector field is plotted in the
upper part and the isovalues of the temperature field in the lower part.
The plots are given in the vertical (x, y) plane along a wavelength λ

of the perturbation.
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FIG. 9. Variations of the contributions to the total fluctuating
kinetic energy budget [K ′

s (shear, long-dashed curve), K ′
b (buoyancy,

short-dashed curve)] for the critical perturbations at threshold as a
function of the acoustic streaming parameter A for Hb = 0.3 and
Pr = 1. The corresponding variation of Rac/Ram (solid curve) is also
given.

symmetric temperature perturbation patterns evolve toward
arrowhead shapes. Note that the eigenvector obtained for
A = Ac is very similar to that shown for A = 3000.

The variations with A of the different contributions to the
total kinetic energy budget at threshold [Eq. (16)] are shown in
Fig. 9 for Hb = 0.3 and Pr = 1. We see that both buoyancy and
shear terms are destabilizing (positive values), and together
they balance the stabilizing dissipation term (negative values).
The shear term K ′

s increases from 0 at A = 0 to 1 at A =
Ac, while the buoyancy term K ′

b decreases from 1 to 0. This
indicates that the instability evolves regularly from buoyancy
induced at A = 0 to shear induced at A = Ac. At A = Am,
corresponding to the maximum value of the critical Rayleigh
number Ram, the shear contribution is already larger than the
buoyancy contribution.

The spatial fields associated with these kinetic energy
contributions and involved in the local kinetic energy budget
[Eq. (15)] are shown as y profiles given for different values
of A in Fig. 10. For A = 0 (thick solid lines), we see the
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FIG. 10. Contributions to the fluctuating kinetic energy budget: y

profiles of the local energy contributions [k′
s (shear), k′

b (buoyancy),
k′

d (viscous dissipation)] for the critical perturbations at threshold for
Hb = 0.3, Pr = 1, and different values of A [A = 0 (thick solid lines),
A = 1000, 2000, 3000, 4000, and A = Ac = 5157 (thick dashed
lines)].
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FIG. 11. Variations of the factors Rs (connected to shear, long-
dashed lines) and Rb (connected to buoyancy, short-dashed lines) as
a function of A/Ac for Hb = 0.3 and 0.6 and Pr = 1. Rs and Rb are
such that Rac/Ra0 = Rs/Rb.

strong destabilizing contribution of buoyancy at the center
of the layer and the stabilizing contribution of the viscous
dissipation, principally along the walls. When A is increased,
the shear contribution k′

s connected to acoustic streaming
appears with two symmetric peaks located at the limits of the
acoustic beam (|y − 0.5| ≈ 0.15), which grow progressively.
k′
s is zero at y = 0.5 because, due to the symmetry properties

of the perturbation velocity field, u is zero at midheight of the
layer. The increase of A induces a decrease of the buoyancy
contribution and a change of its shape with the appearance of
two symmetric maxima. The viscous dissipation contribution
also changes with peaks growing at the limits of the acoustic
beam. Finally, for A = Ac (thick dashed lines), we have strong
shear peaks associated with peaks in the viscous contribution
and no further buoyancy contribution. For clarity of the figure,
the pressure contribution was not plotted: in all cases, it enables
the local energy equilibrium by transferring energy from the
production zones to the dissipation zones.

The last approach is based on the expression of the critical
Rayleigh number as a function of energetic contributions,
with Rs connected to shear and Rb connected to buoyancy
[Rac/Ra0 = Rs/Rb, Eq. (17)]. The variation with A of these
two quantities Rs and Rb is shown in Fig. 11 for Pr = 1
and two beam widths Hb = 0.3 and 0.6. Rs and Rb decrease
continuously as A is increased, but Rs decreases from 1 for
A = 0 to 0 for A = Ac whereas Rb decreases from 1 to
0.0548, a small but nonzero limiting value. Moreover, the
initial decrease of Rs is small, corresponding to a small initial
shear destabilization, whereas the initial decrease of Rb is
strong, corresponding to a strong decrease of the destabilizing
buoyancy contribution K ′′

b . These initial evolutions leading
to Rs >> Rb explain the initial increase of Rac, i.e., the
stabilizing effect. We see that this effect is enhanced for
Hb = 0.6 compared to Hb = 0.3 due to a still slower decrease
of Rs and a stronger decrease of Rb. The curves of Rs and
Rb eventually cross (which corresponds to Rac = Ra0), which
enables the ultimate decrease of Rac toward 0 for A = Ac.

The variation of the critical thresholds has been shown to
depend on the evolution of Rs and Rb, which are directly
connected to K ′

s and K ′′
b , respectively. A detailed analysis of

these two energy terms may then be useful. This analysis is
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FIG. 12. y profile of (−dU0A
/dy) for Hb = 0.3 (a). y profiles of (b) [Re(v u∗)/Kd ], (c) k′′

s and (d) k′′
b for the critical perturbations at

threshold for Hb = 0.3, Pr = 1, and different values of A [A = 0 (thick solid lines), A = 1000, 2000, 3000, 4000, and A = Ac = 5157 (thick
dashed lines)]. The shear energy term k′′

s is obtained by multiplying the velocity fluctuation term [Re(v u∗)/|Kd |] by the basic velocity gradient
(−dU0A

/dy). k′
s = Ak′′

s is given in Fig. 10.

presented in Fig. 12 through y profiles of important quantities.
K ′

s = AK ′′
s is the integral of the spatial field k′

s = Ak′′
s , and

k′′
s [Fig. 12(c)] can be decomposed as a product of two terms,

one related to the intrinsic basic flow (independent of A),
(−dU0A

/dy) [Fig. 12(a)], and the other related to the velocity
perturbations at the critical threshold Rac, [Re(v u∗)/|Kd |]
[Fig. 12(b)]. K ′′

b is the integral of the spatial field k′′
b shown

in Fig. 12(d). The profiles of [Re(v u∗)/|Kd |], k′′
s , and k′′

b are
given for increasing values of A from 0 to Ac. For convenience,
the profiles for A = 0 are plotted as thick solid lines and those
for A = Ac as thick dashed lines.

Concerning the velocity derivative (−dU0A
/dy)

[Fig. 12(a)], it is a piecewise linear function in y, which is
odd with respect to y = 0.5. There is then a change of sign
between the upper and lower parts of the layer, but also a
change of sign within each half-layer, and the maximum
absolute values are reached at the limits of the acoustic beam
at y = 0.5 ± 0.15.

The term related to the velocity perturbations,
[Re(v u∗)/|Kd |] [Fig. 12(b)], is also odd with respect to
y = 0.5. It has a positive (negative) peak in the upper (lower)
part of the layer, these peaks being centered at the limits of the
acoustic beam. This term is zero without acoustic streaming

(A = 0) due to the symmetry properties of the perturbation
flow field in this case (Fig. 8). It first increases as A is increased
and then remains approximately constant beyond A = 3000
[the maximum amplitude curve in Fig. 12(b) corresponds to
A = 4000]. k′′

s obtained by multiplying [Re(v u∗)/|Kd |] by
(−dU0A

/dy) is then an even function with respect to y = 0.5,
with two positive peaks centered at the limits of the acoustic
beam. Negative values are found closer to the boundaries, in
connection with the changes of sign of (−dU0A

/dy), but these
values are very small due to the weak values of [Re(v u∗)/|Kd |]
in these places. Similarly to [Re(v u∗)/|Kd |], k′′

s has peaks that
are zero for A = 0, increase as A is increased, and remain
approximately constant beyond A = 3000. As a consequence,
k′
s (which is equal to Ak′′

s and is shown in Fig. 10) is
approximately proportional to A beyond A = 3000, but it
evolves much more slowly for small values of A. Similar
variations are found for K ′

s (the integral of k′
s), and this explains

the small initial decrease of Rs = 1 − K ′
s .

Finally, the term connected to buoyancy, k′′
b =

Re [(1/Pr) θ v∗] [Fig. 12(d)], decreases strongly as A is
increased. It evolves from the bell-shaped profile at A = 0 to-
ward symmetric two-peak profiles. The decrease is particularly
strong for small values of A (A � 2000); it is still effective but
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smaller for larger values of A until the nonzero limiting profile
obtained for A = Ac. The strong decrease can be explained
by the changes that affect the velocity and temperature
perturbations when A is increased (Fig. 8). For A = 0, the
maximum positive (minimum negative) vertical velocities
v are very well correlated with the maximum (minimum)
temperature fluctuations θ , in large domains centered at
midheight of the layer. On the contrary, when A is nonzero
(as can be seen for A = 3000), the deformations induced by
acoustic streaming on the perturbations lead to v and θ fields,
which are much less well correlated. As an example, we can
see that the maximum (minimum) temperature fluctuations
θ are not associated with strong positive (negative) vertical
velocities v.

2. Other values of Pr

We have seen that the critical curves are strongly dependent
on the Prandtl number: we have an increase of the maximum
critical Rayleigh number Ram with Pr for not too small
Pr values, and below some limiting value Prl decreasing
critical curves are found. To better understand these behaviors,
the energy analysis was performed for Hb = 0.3 for two
other values of Pr, a stronger value Pr = 10 and a smaller
value, below Prl , Pr = 0.1. The factors Rs and Rb have been
calculated for Pr = 0.1, 1, and 10. We found that the variation
with A of the factor Rs does not change much when Pr
is changed. On the contrary, the curves of Rb, shown in
Fig. 13, are strongly modified when Pr is changed. Compared
to the case Pr = 1, the decrease observed for Pr = 10 is much
stronger, which explains the very good stabilization observed
in this case, whereas the decrease observed for Pr = 0.1 is
markedly weaker. For Pr = 0.1, the curve of Rb is also above
that of Rs , which explains the constant decrease of the critical
curve in this case. Note that the curves of Rb all decrease to a
nonzero limiting value for A = Ac.

Finally, we want to connect these observations on Rb to
particularities of the critical perturbation fields. For that we
give the critical velocity and temperature fields obtained for
A = Ac, Hb = 0.3, and Pr = 0.1, 1, and 10 in Fig. 14. For this
particular value of A, the instability is purely hydrodynamic
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FIG. 13. Variations of the factor Rb (connected to buoyancy,
dashed lines) as a function of A (from A = 0 to Ac) for Hb = 0.3 and
different values of Pr. The curve of Rs for Hb = 0.3 and Pr = 0.1
(dotted line) is given for comparison.
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FIG. 14. Real parts of the complex critical eigenvectors obtained
for Hb = 0.3, A = Ac, and different values of the Prandtl number.
The velocity vector field does not depend on Pr. The isovalues of
the temperature field are given for Pr = 0.1, 1, and 10. The plots
are given in the vertical (x, y) plane along a wavelength λ of the
perturbation.

and does not depend on Pr. The velocity perturbation is then
independent of Pr, whereas the temperature perturbation is the
limit perturbation obtained for A = Ac for each value of Pr.
We know that the intensity of the Rb factors is connected to
the amplitude of the k′′

b profiles, and then to the degree of
correlation between the v and θ perturbations. This is what
we observe here. For Pr = 0.1, the temperature perturbation
field is not much deformed and the correlation between the
v and θ perturbations remains good. On the contrary, for
Pr = 1, the temperature perturbation field is much deformed
with maximums that are no longer at midheight and the
correlation is strongly reduced. All this is still accentuated for
Pr = 10 leading to a still poorer correlation. We can conclude
that the influence of Pr on the critical curves is mainly con-
nected to the changes that affect the temperature perturbation
fields.

VII. CONCLUSION

We have presented results of a detailed analysis of
the Rayleigh-Bénard-Eckart instabilities for various acoustic
beam widths Hb, a wide range of acoustic streaming parameter
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A, and different values of the Prandtl number Pr. The analytical
solution for the steady-state velocity of a one-dimensional
flow resulting from the action of the ultrasound source has
been first determined and the profiles thus obtained compare
well with the velocity profiles obtained from two-dimensional
direct numerical calculations in a long cavity. The destabilizing
thresholds Ac of the Eckart flows in such two-dimensional
situations are similar to the thresholds of the one-dimensional
flow, but a little higher due to the confinement.

Concerning the linear stability results of the Rayleigh-
Bénard-Eckart configuration, it has been found that the acous-
tic streaming flow modifies the stability of the fluid layer heated
from below. More precisely, for not too small values of the
Prandtl number (Pr > Prl), the onset of instability is delayed
when the acoustic streaming is applied, which corresponds to
a critical Rayleigh number Rac increasing with the acoustic
streaming parameter A and thus reaching higher values than
the critical value Ra0 of the Rayleigh-Bénard problem at
A = 0. In some cases, this stabilization could be very strong,
especially for large values of the beam width Hb and large
values of the Prandtl number Pr. Nevertheless, increasing A

beyond some specific value Am (mainly depending on Hb)
lowers the value of Rac, the instability threshold eventually
reaching the pure acoustic streaming threshold Ac at Ra = 0.
In contrast, for small values of the Prandtl number (Pr � Prl),
there is no stabilizing effect and the thresholds Rac decrease
from Ra0 to 0. The limiting value Prl has been found to
decrease with the increase of Hb, from 0.235 for small Hb

to zero for Hb ≈ 0.72. This indicates that larger beam widths
enable stabilizing effects in a larger range of Pr values, and
that for Pr > 0.235 or for Hb > 0.72, stabilizing effects are
always obtained. The instabilities that are triggered correspond
to oscillatory transverse rolls, which are characterized by a
wave number and an angular frequency depending on A, Hb,
and Pr. The main observation is that the angular frequency
values change from negative to positive when A is increased,
indicating a change from right-traveling to left-traveling
waves.

Finally, information on the stabilizing and destabilizing
mechanisms has been obtained from the kinetic energy analy-
ses of the instabilities at threshold. When A is increased from 0
to Ac, it is found that the destabilizing buoyancy contribution
decreases while the destabilizing shear contribution due to
acoustic streaming increases, indicating a continuous change
of the instability from thermally induced to shear induced. A
deeper analysis shows that the initial increase of the instability
thresholds can be connected to the modifications induced
by the streaming flow on the critical perturbations. When
the streaming flow is enhanced (A > 0), these modifications
influence differently the velocity perturbation product (v u)
involved in the shear energy term, which slowly increases,
and the perturbation product (θ v) involved in the buoyancy
energy term, which strongly decreases, and this can be shown
to induce the increase of the critical Rayleigh number. The
increase of the thresholds with Pr can also be connected to the
influence of Pr on the perturbation product (θ v).
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