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Tree Automaton Completion for Static

Analysis of Functional Programs

Thomas Genet∗ Yann Salmon†

February 5, 2013

Tree Automata Completion is a family of techniques for computing or approxi-
mating the set of terms reachable by a rewriting relation. For functional programs
translated into TRS, we give a sufficient condition for completion to terminate. Sec-
ond, in order to take into account the evaluation strategy of functional programs,
we show how to refine completion to approximate reachable terms for a rewriting
relation controlled by a strategy. In this paper, we focus on innermost strategy
which represents the call-by-value evaluation strategy.

1 Introduction

Computing or approximating the set of terms reachable by rewriting finds more and more
applications. For a Term Rewriting System (TRS) R and a set of terms L0 ⊆ T (Σ), the set of
reachable terms is R∗(L0) =

{
t ∈ T (Σ)

∣∣∣ ∃s ∈ L0, s→∗R t
}
. This set can be computed for specific

classes of R but, in general, it has to be approximated. Applications of the approximation of
R∗(L0) are ranging from cryptographic protocol verification [GK00, ABB+05], to static analysis
of various programming languages [BGJL07, KO11] or to TRS termination proofs [Mid02,
GHWZ05]. Most of the techniques compute such approximations using tree automata as the
core formalism to represent or approximate the (possibly) infinite set of terms R∗(L0). Most
of them also rely on a Knuth-Bendix completion-like algorithm to produce an automaton
A∗ recognising exactly, or over-approximating, the set of reachable terms. As a result, these
techniques can be refered as tree automata completion techniques [Gen98, TKS00, Tak04,
FGVTT04, BCHK09, GR10, Lis12].

In this paper, we investigate the application of tree automata completion techniques to the
static analysis of functional programs. The objective of such an analysis is to over-approximate
the set of possible results of higher-order functional programs [OR11, KO11]. First, like the
standard Knuth-Bendix completion, tree automata completion is not guaranteed to terminate.
For TRS extracted from functional programs, we show that termination of automata completion
is guaranteed using natural constraints on the definition of the approximation. Second, we
show that completion can take the rewriting strategy into account, i.e. over-approximate terms
reachable by rewriting under a strategy. In this paper, we focus on the innermost strategy
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which corresponds to the call-by-value strategy that is at the heart of several functional
programming languages, such as Ocaml [LDG+12].

Surprisingly, very little effort has been done on computing or over-approximating R∗strat(L0),
i.e. set of reachable terms when R is applied with a strategy strat. To the best of our knowledge,
Pierre RÃľty’s work [RV02] is the only one to have tackled this goal. He gives some sufficient
conditions on L0 and R for R∗strat(L0) to be recognised by a tree automaton A∗, where strat can
be the innermost or the outermost strategy. However, those restrictions on R and L0 are strong
and generally incompatible with the analysis of functional programs. In this paper, we define
a tree automata completion algorithm over-approximating the set R∗in(L0) for all left-linear
TRS R and all regular set of input terms L0.

This paper is organised as follows: Section 2 recall some basic notions about TRS and tree
automata. Section 3 defines tree automata completion. Section 4 shows how to guarantee the
termination of completion when analysing TRS obtained from functional programs. Section 5
presents some experiments. Finally, Section 6 explains how to tune completion so as to take
innermost strategy into account.

2 Basic notions and notations

2.1 Terms

Definition 1 (Signature).
A signature is a set whose elements are called function symbols. Each function symbol has

an arity, which is a natural integer. Function symbols of arity 0 are called constants. Given a
signature Σ and k ∈ N, the set of its function symbols of arity k is noted Σk . 1J

Definition 2 (Term, ground term, linearity).
Given a signature Σ and a set X whose elements are called variables and such that Σ∩X = ∅,

we define the set of terms over Σ and X , T (Σ,X ), as the smallest set such that :

1. X ⊆ T (Σ,X ) and

2. ∀k ∈ N,∀f ∈ Σk ,∀t1, . . . , tk ∈ T (Σ,X ), f (t1, . . . , tk) ∈ T (Σ,X ).

Terms in which no variable appears, i.e. terms in T (Σ,∅), are called ground; the set of
ground terms is noted T (Σ).

Terms in which any variable appears at most once are called linear.1 2J

Definition 3 (Substitution).
A substitution over T (Σ,X ) is an application from X to T (Σ,X ). Any substitution is induc-

tively extended to T (Σ,X ) by σ (f (t1, . . . , tk)) = f (σ (t1), . . . ,σ (tk)). Given a substitution σ and a
term t, we note tσ instead of σ (t). 3J

Definition 4 (Context).
A context over T (Σ,X ) is a term in T (Σ ∪X , {�}) in which the variable � appears exactly

once. A ground context over T (Σ,X ) is a context over T (Σ). The smallest possible context, �,
is called the trivial context. Given a context C and a term t, we note C[t] the term Cσt, where
σt :� 7→ t. 4J

1In particular, any ground term is linear.
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Definition 5 (Position).
Positions are finite words over the alphabet N. The set of positions of term t, Pos(t), is

defined by induction over t:

1. for all constant c and all variable X, Pos(c) = Pos(X) = {Λ} and

2. Pos(f (t1, . . . , tk)) = {Λ} ∪
k⋃
i=1

{i}.Pos(ti). 5J

Definition 6 (Subterm-at-position, replacement-at-position).
The position of the hole in context C, Pos�(C), is defined by induction on C:

1. Pos�(�) =Λ

2. Pos�(f (C1, . . . ,Ck)) = i.Pos�(Ci), where i is the unique integer in J1 ; kK such that Ci is a
context.

Given a term u and p ∈ Pos(u), there is a unique context C and a unique term v such
that Pos�(C) = p and u = C[v]. The term v is noted u|p, and, given another term t, we note
u[t]p = C[t]. 6J

2.2 Rewriting

Definition 7 (Rewriting rule, term rewriting system).
A rewriting rule over (Σ,X ) is a couple (`, r) ∈ T (Σ,X )× T (Σ,X ), that we note `→ r, such

that any variable appearing in r also appears in `. A term rewriting system (TRS) over (Σ,X ) is
a set of rewriting rules over (Σ,X ). 7J

Definition 8 (Rewriting step, redex, reducible term, normal form).
Given a signature (Σ,X ), a TRS R over it and two terms s, t ∈ T (Σ), we say that s can be

rewritten into t by R, and we note s→R t if there exist a rule `→ r ∈ R, a ground context C
over T (Σ) and a substitution σ over T (Σ,X ) such that s = C[`σ ] and t = C[rσ ].

In this situation, the term s is said to be reducible by R and the subterm `σ is called a redex
of s. A term s that is not reducible by R is a normal form of R. The set of normal forms of R is
noted Irr(R).

We note→∗R the reflexive and transitive closure of→R. 8J

Definition 9 (Set of reachable terms).
Given a signature (Σ,X ), a TRS R over it and a set of terms L ⊆ T (Σ), we note R(L) =

{t ∈ T (Σ) | ∃s ∈ L,s→R t} and R∗(L) =
{
t ∈ T (Σ)

∣∣∣ ∃s ∈ L,s→∗R t}. 9J

Definition 10 (Left-linearity).
A TRS R is said to be left-linear if for each rule `→ r of R, the term ` is linear. 10J

Definition 11 (Constructors and defined symbols, sufficient completeness).
Given a TRS R over (Σ,X ), there is a partition (C,D) of Σ such that all symbols occurring

at the root position of left-hand sides of rules of R are in D. D is the set of defined symbols
of R, C is the set of constructors. Terms in T (C) are called data-terms. A TRS R over (Σ,X ) is
sufficiently complete if for all s ∈ T (Σ), R∗({s})∩ T (C) ,∅. 11J

3



2.3 Equations

Definition 12 (Equivalence relation, congruence).
A binary relation over some set S is an equivalence relation if it is reflexive, symmetric and

transitive.
An equivalence relation ≡ over T (Σ) is a congruence if for all k ∈ N, for all f ∈ Σk, for all

t1, . . . , tk , s1, . . . , sk ∈ T (Σ) such that ∀i ∈ J1 ; kK, ti ≡ si , we have f (t1, . . . , tk) ≡ f (s1, . . . , sk). 12J

Definition 13 (Equation, ≡E).
An equation over (Σ,X ) is a pair of terms (s, t) ∈ T (Σ,X )×T (Σ,X ), that we note s = t. A set E

of equations over (Σ,X ) induces a congruence ≡E over T (Σ) which is the smallest congruence
over T (Σ) such that for all s = t ∈ E and for all substitution θ : X → T (Σ), sθ ≡E tθ. The classes
of equivalence of ≡E are noted with [·]E . 13J

Definition 14 (Rewriting modulo E).
Given a TRS R and a set of equations E both over (Σ,X ), we define the R modulo E rewriting

relation,→R/E , as follows. For any u,v ∈ T (Σ), u→R/E v if and only if there exist u′ ,v′ ∈ T (Σ)
such that u′ ≡E u, v′ ≡E v and u′→R v

′.
We define→∗R/E , (R/E)(L) and (R/E)∗(L) for L ⊆ T (Σ) as in Definitions 8 and 9. 14J

2.4 Tree automata

Definition 15 (Tree automaton, delta-transition, epsilon-transition, new state).
An automaton over Σ is someA = (Σ,Q,QF ,∆) where Q is a finite set of states, QF is a subset

of Q whose elements are called final states and ∆ a finite set of transitions. A delta-transition
is of the form f (q1, . . . , qk)� q′ where f ∈ Σk and q1, . . . , qk ,q

′ ∈Q. An epsilon-transition is of
the form q� q′ where q,q′ ∈Q. A configuration of A is a term in T (Σ,Q).

A state q ∈Q that appears nowhere in ∆ is called a new state. A configuration is elementary
if each of its subconfigurations at depth 1 (if any) is a state. A configuration is trivial if it is
just a state. 15J

Remark. We simply write A to denote an automaton, write QA for the set of states of A. We
assimilate an automaton with its set of transitions. When taking a “new state”, we silently
expand QA if needed. We are only rarely interested in QF , the set of final states.

Definition 16.
Let A = (Σ,Q,QF ,∆) be an automaton and let c,c′ be configurations of A. We say that A

recognises c into c′ in one step, and note c�
A
c′ if there a transition τ� ρ in A and a context

C over T (Σ,Q) such that c = C[τ] and c′ = C[ρ]. We note
∗
�
A

the reflexive and transitive closure

of�
A

and, for any q ∈Q, L (A,q) =
{
t ∈ T (Σ)

∣∣∣∣∣ t ∗�A q
}
. We extend this definition to subsets of

Q and note L (A) = L (A,QF). 16J

Definition 17 (Determinism, Completeness).
An automaton is deterministic if it has no epsilon-transition and for all delta-transitions

τ� ρ and τ ′� ρ′, if τ = τ ′ then ρ = ρ′. An automaton is complete if each of its non-trivial
configurations is the left-hand side of some of its transitions. 17J
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Definition 18 (Colours).
Transitions may have “colours”, like R for transition q

R
� q′, and we denote by A�R the

automaton obtained from A by removing all transitions coloured with R. 18J

Definition 19.
Given two states q, q′ of some automaton A and a colour E, we note q

E
��
A
q′ when we have

both q
E
�
A
q′ and q′

E
�
A
q. 19J

Remark. q
E,∗
��
A
q′ is stronger than (q

E,∗
�
A
q′ ∧ q′

E,∗
�
A
q).

E,∗
��
A

is an equivalence relation over QA.

This relation is extended to a congruence relation over T (Σ,Q). The equivalence classes are
noted with [·]E.

Definition 20.
Let A = (Σ,Q,QF ,∆) be an automaton and E a colour. We note A/E the automaton over Σ

whose set of states is Q/E, whose set of final states if QF/E and whose set of transitions is{
f ([q1]E , . . . , [qk]E)�

[
q′
]
E

∣∣∣ f (q1, . . . , qk)� q′ ∈ ∆
}

∪
{
[q]E�

[
q′
]
E

∣∣∣ q� q′ ∈ ∆∧ [q]E ,
[
q′
]
E

}
. 20J

Remark. For any configurations c,c′ of A, we have c
∗
�
A
c′ if and only if [c]E

∗
�
A/E

[
c′
]
E. So the

languages recognised by A and A/E are the same.

We now give notations used for pair automata, the archetype of which is the product of two
automata.

Definition 21 (Pair automaton).
An automaton A = (Σ,Q,QF ,∆) is said to be a pair automata if there exists some sets Q1 and

Q2 such that Q =Q1 ×Q2. 21J

Definition 22 (Product automaton).
Let A = (Σ,Q,QF ,∆A) and B = (Σ,P ,PF ,∆B) be two automata. The product automaton of A

and B is A×B = (Σ,Q × P ,QF × PF ,∆) where

∆ =
{
f (〈q1,p1〉 , . . . ,〈qk ,pk〉)�

〈
q′ ,p′

〉 ∣∣∣ f (q1, . . . , qk)� q′ ∈ ∆A ∧ f (p1, . . . ,pk)� p′ ∈ ∆B
}

∪
{
〈q,p〉�

〈
q′ ,p′

〉 ∣∣∣ q� q′ ∈ ∆A ∧ p� p′ ∈ ∆B
}
. 22J

Definition 23 (Projections).
LetA = (Σ,Q,QF ,∆) be a product-like automaton, let τ� ρ be one of its transitions and 〈q,p〉

be one of its states. We define Π1 (〈q,p〉) = q and extend Π1 (·) to configurations inductively:
Π1 (f (γ1, . . . ,γk)) = f (Π1 (γ1) , . . . ,Π1 (γk)). We define Π1 (τ� ρ) =Π1 (τ)�Π1 (ρ). We define
Π1 (A) = (Σ,Π1 (Q) ,Π1 (QF) ,Π1 (∆)). Π2 (A) is defined on all these objects in the same way for
the right components. 23J

Remark. Using Π1 (A) amounts to forgetting the precision given by the right components of
the states. As a result, L (Π1 (A) ,q) ⊇L (A,〈q,p〉).
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2.5 Innermost strategies

In general, a strategy over a TRS R is a set of (computable) criteria to describe a certain
subrelation of→R. In this paper, we will be interested in innermost strategies. In these strate-
gies, commonly used to execute functional programs (“call-by-value”), terms are rewritten by
always contracting one of the lowest reducible subterms.

Definition 24 (Innermost strategy).
Given a TRS R and two terms s, t, we say that s can be rewritten into t by Rwith an innermost

strategy, and we note s→Rin
t, if s→R t and each strict subterm of s is a R-normal form. We

define→∗Rin
, Rin(L) and R∗in(L) as in Definitions 8 and 9. 24J

Remark. It is in fact sufficient to check whether subterms of s at depth 1 are in normal form
to decide whether s can be rewritten with an innermost strategy.

To deal with innermost strategies, we will have to discriminate normal forms. This is
possible within the tree automaton framework when R is left-linear.

Theorem 25 ([CR87]).
Let R be a left-linear TRS. There is a deterministic and complete tree automaton IRR(R)

such that L (IRR(R)) = Irr(R) and with a distinguished state pred such that L (IRR(R),pred) =
T (Σ)r Irr(R). 25�

Remark. From determinism and the property of pred follows that for any state p different
from pred, L (IRR(R),p) ⊆ Irr(R).

3 Classical equational completion

Equational completion of [GR10] is an iterative process on automata that is not guaranteed
to terminate. Each iteration comprises two parts: (exact) completion itself, then equational
merging. The former tends to incorporate descendants by R of already recognised terms
into the recognised language; this leads to the creation of new states. The latter tends to
merge states in order to ease termination of the overall process, at the cost of precision of the
computed result. Some transition added by equational completion will have colours R or E; it
is assumed that the transitions of the input automaton A0 do not have any colour and that A0
does not have any epsilon-transition.

3.1 Exact completion

Exact completion is about resolving critical pairs. A critical pair represents a situation where
some term is recognised by the current automaton, but not its descendants by R. Its resolution
consists in adding transitions to let the descendants be recognised as well. This process can
create new critical pairs.

Definition 26 (Critical pair).
A pair (`→ r,σ ,q) where `→ r ∈ R, σ : X →QA and q ∈QA is critical if (see Figure 1(a))

1. `σ
∗
�
A
q and
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2. rσ
�
��
∗
�
A
q. 26J

We will want to add transitions rσ � q′ and q′ � q′. However, doing the former is not
generally possible in one step, as rσ might be a non-elementary configuration. We will have to
normalise this configuration by adding intermediate states. For example, to set f (g(a,b))� q′,
we will first add a� qa, then, b� qb, g(qa,qb)� qg and finally f (qg )� q′, exploring f (g(a,b))
with a postfix traversal. At each of these steps, we will look whether we could reuse an already
existing transition; if not, we will add a new state.

Definition 27 (NormA(c,q)).
LetA be an automaton, c be a non-trivial configuration and q be any state. LetΞ = (ξ1, . . . ,ξK )

be a postfix traversal of c (ξK is the root position). With ∆ the set of transitions of A, let us use
an auxiliary function:

NormA(c,q) =NormAuxΞ,1∆ (c,q). (1)

Now let us define NormAuxΞ,i· . For i ranging from 1 to K − 1, for any set of transitions ∆ and
any configuration d such that d|ξi is an elementary configuration, let

NormAuxΞ,i∆ (d,q) = {d|ξi � q′} ∪NormAuxΞ,i+1
∆∪{d|ξi�q′}(d

[
q′
]
ξi
,q) (2)

where q′ is a production of d|ξi in ∆ (or, if d|ξi is not productive in ∆, q′ is a new state, distinct
from q). Also, for any set of transitions ∆ and any elementary configuration d, let

NormAuxΞ,K∆ (d,q) = {d� q}. (3)

27J

Remark. It is necessary to consider equivalence by E when searching for an already existing

transition. Suppose we work with some f (q1) and have q1
E
��
∆
q2 and f (q2)�

∆
q′: we do not

want to create a new state here, but reuse q′ and set f (q1)� q′.

Definition 28 (Completion of a critical pair).
A critical pair CP = (` → r,σ ,q) in automaton A is completed by first computing N =

NormA�R(rσ ,q′) where q′ is a new state, then adding to A the new states and the transitions

appearing in N as well as the transition q′
R
� q. If rσ is a trivial configuration (ie. r is just a

variable), only transition rσ
R
� q is added. 28J

`σ rσ

q q′

R

A ∗ A′∗

A′
R

(a) A critical pair

sθ tθ

q1 q2

E

A ∗ A∗
E

A′

(b) Situation of ap-
plication

Figure 1: A critical pair and a situation of application of an equation
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Definition 29 (Step of completion).
The automaton resulting from completion of a list comprising one critical pair CP is noted

J (CP )
R (A). For a list of zero critical pair, we set J ()

R (A) =A and for any list LCP of critical pairs

(of A) whose head is CP and tail is LCP ′, J LCPR (A) = J LCP
′

R

(
J (CP )
R (A)

)
. A step of completion

of automaton A consists in producing automaton CR (A) = J CPR (A), where CP is a list of all
critical pairs of A. 29J

Example 30.
Let Σ be defined with Σ0 = {n,0}, Σ1 = {s,a, f }, Σ2 = {c} where 0 is meant to represent integer

zero, s the successor operation on integers, a the predecessor (“antecessor”) operation, n the
empty list, c the constructor of lists of integers and f the function on lists that filters out integer
zero. Let R = {f (n)→ n,f (c(s(X),Y ))→ c(s(X), f (Y )), f (c(a(X),Y ))→ c(a(X), f (Y )), f (c(0,Y ))→
f (Y ), a(s(X))→ X,s(a(X))→ X}. Let A0 = {n� qn,0� q0, s(q0)� qs, a(qs)� qa, c(qa,qn)�
qc, f (qc)� qf }.
We have L (A0,qf ) = {f (c(a(s(0)),n))} and R(L (A0,qf )) = {f (c(0,n)), c(a(s(0)), f (n))}.

There is a critical pair CP1 in A0 with the rule f (c(a(X),Y ))→ c(a(X), f (Y )), the substitution
σ1 = {X 7→ qs,Y 7→ qn} and the state qf . It is resolved by adding transitions to recognise
c(a(qs), f (qn)) into qf . Normalisation finds and reuses the transition a(qs)� qa. It has to create
a new state qN1 such that f (qn)� qN1, and qN2 such that c(qa,qN1)� qN2. We then add

qN2
R
� qf , and have produced J (P C1)

R (A0).
Another critical pair is CP2 in A0 with the rule a(s(X))→ X, the substitution σ2 = {X 7→ q0}

and the state qa. It is resolved by adding to J (P C1)
R (A0) the transition q0

R
� qa, producing

J (P C1,P C2)
R (A0).

There is no more critical pair in A0: thus CR (A0) = J (P C1,P C2)
R (A0). There is a new critical

pair in CR (A0) with f (n)→ n, the empty substitution and state qN1. 30C

3.2 Equational merging

Since completion of a critical pair can create new critical pairs, the process fuels itself, which
is problematic for obtaining a fix-point. Equational merging is a way of countering this
phenomenon at the cost of precision that is parametrised by equations over T (Σ).

Definition 31 (Situation of application of an equation).
Given an equation s = t, an automaton A, a θ : X → QA and states q1 and q2, we say that

(s = t,θ,q1,q2) is a situation of application in A if (see Figure 1(b))

1. sθ
∗
�
A
q1,

2. tθ
∗
�
A
q2 and

3. q1
�
�
�E��
A
q2. 31J
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Definition 32 (Application of an equation).
Given (s = t,θ,q1,q2) a situation of application in A, applying the underlying equation in it

consists in adding transitions q1
E
� q2 and q2

E
� q1 to A. This produces a new automaton A′

and we note A;E A′. 32J

Remark. In [GR10], q1 and q2 were merged by “renaming” q2 into q1, ie. removing q2 from
QA and replacing every occurrence of q2 by q1 in the transitions of A. This is equivalent to
applying our method, then considering automaton A/E (see definition 20) and finally choosing
a representative (here q1 for the class {q1,q2}) of each equivalence class of states.

Definition 33 (Simplified automaton).
Given an automaton A and a set of equations E, we call simplified automaton of A by E and

note SE (A) the automaton resulting from the successive application of all applicable equations
in A. 33J

Remark (;E is confluent). Indeed, there is a unique automaton A! that differs from A only
by its E-transitions and is such A�R ;∗E (A!)�R and there is no more situation of application of
equations in (A!)�R.

Definition 34 (Step of equational completion).
A step of equational completion is the composition of a step of exact completion, then

equational simplification: CER,E (A) = SE (CR (A)). 34J

The following notion is part of an easier discourse about the R/E-coherence notion of [GR10].

Definition 35 (Coherent automaton).
Let A0 = (Σ,Q,QF ,∆) be a tree automaton and E a set of equations. The automaton A0 is

said to be E-coherent if for all q ∈Q, there exists s ∈L (A0,q) such that L (A0,q) ⊆ [s]E . 35J

3.3 Known results

We now recall the two main theorems of [GR10].

Theorem 36 (Correction).
Let A0 be some automaton. Assume the equational completion procedure defined above

terminates when applied to A0. Let A∗ be the resulting fix-point automaton. If R is left-linear,
then the calculated over-approximation is correct, that is

L (A∗) ⊇ R∗(L (A0)). 36�

We will make usage of E-coherence for the precision theorem.

Lemma 37.
Let A0 be a E-coherent automaton, R a left-linear TRS and A be an automaton obtained

from A0 after several steps of equational completion with R,E. Then A�R is E-coherent and
moreover, for all state q of A, there exists s ∈L (A�R,q) such that L (A,q) ⊆ (R/E)∗(s). 37�

Such an automaton is said to be R/E-coherent. The intuition behind this is the following: in
the tree automaton, R-transitions represent rewriting steps and transitions of A�R recognize
E-equivalence classes. More precisely, in a R/E-coherent tree automaton, if two terms s, t

9



are recognized into the same state q in A�R then they belong to the same E-equivalence class.
Otherwise, if at least one R-transition is necessary to recognize, say, t into q then at least one
step of rewriting was necessary to obtain t from s. In [GR10], the following theorem made an
assumption of R/E-coherence for A0, but, given that A0 does not have any R-transition, A0 is
R/E-coherent if and only if it is E-coherent.

Theorem 38 (Upper bound).
Let E be a set of equations, A0 a E-coherent tree automaton and R a left-linear TRS. If A is

an automaton produced from A0 after several steps of equational completion with R,E, then

L (A) ⊆ (R/E)∗(L (A0)) 38�

4 Termination of completion for functional programs

Now, we consider functional programs viewed as TRSs. We assume that such TRSs are left-
linear, which is a common assumption on TRS obtained from functional programs [BN98]. In
this section, we will restrict ourselves to sufficiently complete constructor-based TRSs and will
refer to them as functional TRSs. For the moment, types used in the functional program are
not taken into account in the TRS, but they will be in a next section. First, we state a sufficient
condition for completion to terminate and, next, we will specialize it for functional TRS.

Remark. In this section, we will be interested in counting the states of A/E, where A is
produced by equational completion. As we remarked just after definition 32, dealing with
A/E amounts to act as if applying an equation would effectively merge (or rename) states.

Therefore, we will assimilate A/E with A and consider that states in relation modulo
E,∗
��
A

are

merged. Note that with this convention, A�R (that is indeed (A/E)�R) has no epsilon-transition.

4.1 Ensuring termination of completion

In this section, we show that if T (Σ)/≡E is finite then completion terminates by proving that
completion produces no more new states than E-equivalence classes. Doing so is not possible
for an arbitrary E because equational completion does not take reflexivity of ≡E into account
and there may exist q , q′ such that s�

A
q and s�

A
q′.2 We will enrich E with a set of reflexivity

equations that solve this difficulty without altering ≡E .

Definition 39 (Set of reflexivity equations Er).
For a given set of symbols Σ, Er = {f (x1, . . . ,xk) = f (x1, . . . ,xk) | k ∈ N∧ f ∈ Σk}. 39J

Note that for all set of equations E, the relation ≡E is the same as ≡E∪Er . However, simpli-
fication with Er transforms all automaton into an automaton A whose states coincide with
equivalence classes of ≡E and such that A�R is deterministic, as stated in the following lemmas.

Lemma 40.
Let A be some automaton, s = t be some equation of E and θ : X → QA. If sθ

∗
�
SE(A)

q and

tθ
∗
�
SE(A)

q′, then q
∗
�
SE(A)

q′ or q′
∗
�
SE(A)

q. If SE (A) has no epsilon-transition, then q = q′. 40�

2This behaviour is sometimes useful for solving verification problems.
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Proof.
This translates the fact that, by definition, there cannot be a situation of application for

equation s = t in SE (A), and we chose a representation of automata where states in relation

modulo
E,∗
��
A

are merged. �

Lemma 41.
For all tree automaton A without epsilon-transition and all set of equations E, if E ⊇ Er ,

then SE (A) is deterministic. 41�

Proof.
Since A has no epsilon-transition, neither does SE (A). We prove this lemma by induction

on the terms recognized by SE (A). Let a be a constant such that a
∗
�
SE(A)

q and a
∗
�
SE(A)

q′: by

Lemma 40, q = q′. For the inductive case, let t = f (t1, . . . , tk) such that t
∗
�
SE(A)

q and t
∗
�
SE(A)

q′.

By induction hypothesis, for each i ∈ J1 ; kK, there exists a unique state qi such that ti
∗
�
SE(A)

qi .

Hence f (q1, . . . , qk)
∗
�
SE(A)

q and f (q1, . . . , qk)
∗
�
SE(A)

q′. Since f (x1, . . . ,xk) = f (x1, . . . ,xk) ∈ Er , by

Lemma 40, q = q′. �

Corollary 42.
Let A be an automaton produced by some steps of equational completion with E ⊇ Er . The

automaton A�R is deterministic. 42�

Definition 43 (Set Ec
F of contracting equations for F ).

Let F ⊆ Σ. The set of equations EcF is contracting (for F ) if its equations are of the form
u = u|p with u linear and p ,Λ and if the set of normals forms of T (F ) w.r.t. TRS

−−→
EcF =

{
u→ u|p

∣∣∣ u = u|p ∈ EcF
}

is finite. 43J

Contracting equations define an upper bound on the number of states of a simplified automa-
ton.

Lemma 44.
Simplification of a tree automaton A using a set E of equations such that E ⊇ Er ∪ EcΣ

with EcΣ contracting ends up on an automaton SE (A) having no more states than terms in

Irr(
−−→
EcΣ ). 44�

Proof.
Assume that no term of Irr(

−−→
EcΣ ) is recognised by SE (A). Then, for all term s such that

s
∗
�
SE(A)

q, we know that s is not in normal form w.r.t.
−−→
EcΣ . As a result, the left-hand side of an

equation of EcΣ can be applied to s. This means that there exists an equation u = u|p, a ground

context C and a substitution θ such that s = C[uθ]. Furthermore, since s
∗
�
SE(A)

q, we know

that C[uθ]
∗
�
SE(A)

q and that there exists a state q′ such that C[q′]
∗
�
SE(A)

q and uθ
∗
�
SE(A)

q′. From
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uθ
∗
�
SE(A)

q′, we know that all substerms of uθ are recognised by at least one state in SE (A).

Thus, there exists a state q′′ such that u|pθ
∗
�
SE(A)

q′′. We thus have a situation of application of

the equation u = u|p in the automaton. Since SE (A) is simplified, we thus know that q′ = q′′.

As mentioned above, we know that C[q′]
∗
�
SE(A)

q. Hence C[u|pθ]
∗
�
SE(A)

C[q′]
∗
�
SE(A)

q. If C[u|pθ]

is not in normal form w.r.t.
−−→
EcΣ then we can do the same reasoning on C[u|pθ]

∗
�
SE(A)

q until

getting a term that is in normal form w.r.t.
−−→
EcΣ and recognised by the same state q. Thus, this

contradicts the fact that SE (A) recognises no term of Irr(
−−→
EcΣ ) are disjoint.

Then, by definition of EcΣ , Irr(
−−→
EcΣ ) is finite. Let {t1, . . . , tn} be the subset of Irr(

−−→
EcΣ ) recognised

by SE (A). Let q1, . . . , qn be the states recognising t1, . . . , tn respectively. We know that there is a
finite set of states recognising t1, . . . , tn because E ⊇ Er and Corollary 42 entails that SE (A)�R

is deterministic. Now, for all term s recognised by a state q in SE (A), i.e. s
∗
�
SE(A)

q, we can

use a reasoning similar to the one carried out above and show that q is equal to one state of

{q1, . . . , qn} recognising normal forms of
−−→
EcΣ in SE (A). Finally, there are at most card(Irr(

−−→
EcΣ ))

states in SE (A). �

Now it is possible to state the Theorem guaranteeing the termination of completion if the
set of equations E contains Er and a set of contracting equations EcΣ .

Theorem 45.
Let A be a tree automaton, R a left linear TRS and E a set of equations. If E ⊇ Er ∪EcΣ with

EcΣ contracting then completion of A by R and E terminates. 45�

Proof.
For completion to diverge it must produce infinitely many new states. This is impossible

with sets of equation EcΣ and Er as shown in Lemma 44. �

Remark. Note that if E contains Er and a set of contracting equations, ≡E is of finite index
(there are finitely many equivalence classes in T (Σ)/≡E). However, finiteness of T (Σ)/≡E alone is
not enough to guarantee termination of equational completion as defined in Section 3. For
instance, if Σ = {f ,g,a} and E = {f (x) = g(x), g(x) = x} then T (Σ)/≡E is finite but completion of a
tree automaton recognising f (a) with f (x)→ f (f (x)) will not terminate because terms having
g symbols will not be recognised and g(x) = x will not be applied.

For TRS representing functional programs, defining contraction equations of EcC on C rather
than on Σ is enough to guarantee termination of completion. This is more convenient and also
closer to what is usually done in static analysis where abstractions are usually defined on data
and not on function applications. Since the TRSs we consider are sufficiently complete, any
term of T (Σ) can be rewritten into a data-term of T (C). As above, using equations of EcC we
are going to ensure that the data-terms of the computed languages will be recognised by a
bounded set of states. To lift-up this property to T (Σ) it is enough to ensure that ∀s, t ∈ T (Σ) if
s→R t then s and t are recognised by equivalent states. This is the role of the set of equations
ER.
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Definition 46 (ER).
Let R be a TRS, the set of R-equations is ER = {l = r | l→ r ∈ R}. 46J

Theorem 47.
Let A be a tree automaton, R a sufficiently complete left-linear TRS and E a set of equations.

If E ⊇ Er ∪EcC ∪ER with EcC contracting then completion of A by R and E terminates. 47�

Proof.
Firstly, we can use a reasoning similar to the one used in the proof of Lemma 44 to show

that the number of states recognising terms of T (C) are in finite number. Let G ⊆ T (C) be the

set of normal forms of T (C) w.r.t.
−−→
EcC . Since E ⊇ Er ∪EcC, like in the proof of Lemma 44, we can

show that in any completed automaton, terms of T (C) are recognised by no more states than
terms in G. Secondly, since R is sufficiently complete, for all term s ∈ T (Σ) \T (C) we know that
there exists a term t ∈ T (C) such that s→∗R t. The fact that E ⊇ ER guarantees that s and t will
be recognised by equivalent states in the completed (and simplified) automaton. Since the
number of states necessary to recognise T (C) is finite, so is the number of states necessary to
recognise terms of T (Σ). �

4.2 Ensuring termination of completion for functional TRS with types

To exploit the types of the functional program, we now see Σ as a many-sorted signature
whose set of sorts is S . Each symbol f ∈ Σ is associated to a profile f : S1 × . . . × Sk 7→ S
where S1, . . . ,Sk ,S ∈ S and k is the arity of f . Well-sorted terms are inductively defined as
follows: f (t1, . . . , tk) is a well-sorted term of sort S if f : S1 × . . . × Sk 7→ S and t1, . . . , tk are
well-sorted terms of sorts S1, . . . ,Sk, respectively. We denote by T (Σ,X )S , T (Σ)S and T (C)S

the set of well-sorted terms, ground terms and constructor terms, respectively. Note that
we have T (Σ,X )S ⊆ T (Σ,X ), T (Σ)S ⊆ T (Σ) and T (C)S ⊆ T (C). We assume that R and E are
sort preserving, i.e. that for all rule l→ r ∈ R and all equation u = v ∈ E, l, r,u,v ∈ T (Σ,X )S , l
and r have the same sort and so do u and v. Again, this assumption on R is natural if R is
the translation of a well-typed functional program. We still assume that the (sorted) TRS is
sufficiently complete, which is defined in a similar way except that it holds only for well-sorted
terms, i.e. for all s ∈ T (Σ)S there exists a term t ∈ T (C)S such that s→∗R t. We slightly refine
the definition of contracting equations as follows. For all sort S, if S has a unique constant
symbol we note it cS .

Definition 48 (Set Ec
F ,S of contracting equations for F and S ).

Let F ⊆ Σ. The set of well-sorted equations EcF ,S is contracting (for F ) if its equations are
of the form (a) u = u|p with u linear and p ,Λ, or (b) u = cS with u of sort S, and if the set of
normal forms of T (F )S w.r.t. the TRS

−−−−→
EcF ,S =

{
u→ v

∣∣∣ u = v ∈ EcF ,S ∧ (v = u|p ∨ v = cS )
}

is finite. 48J

The termination theorem for completion of the sorted TRSs is close to the previous one
except that that it takes into account the refined version of contracting equations and that
it needs E-coherence of A0. This is useful to ensure that terms recognised by completed
automata are well-sorted.
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Theorem 49.
Let A0 be a tree automaton recognising well-sorted terms, R a sufficiently complete sort-

preserving left-linear TRS and E a sort-preserving set of equations. If E ⊇ Er ∪EcC,S ∪ER with
EcC,S contracting and A0 is E-coherent then completion of A0 by R and E terminates. 49�

Proof.
Let A be any tree automaton obtained by completion of A0 by R and E. As in Lemma 44,

from finiteness of the set normal forms of T (C)S w.r.t.
−−−→
EcC,S , we can obtain finiteness of the set

of states recognising terms of T (C)S in the completed automaton. The only slight difference

comes from rules of the form u = cS . If a term s ∈ T (C)S is not in normal form w.r.t.
−−−→
EcC,S

because the rule u → cS applies then we have: s = C[uσ ]
∗
�
A
q. Thus there exists a state q′

such that uσ
∗
�
A
q′. Since cS is the only constant of sort S and since uσ is of sort S, we know

that cS is necessarily a subterm of uσ . Thus there exists a state q′′ such that cS
∗
�
A
q′′ and

since completed automata are simplified, q′ = q′′ and finally C[cS ]
∗
�
A
q. As in Lemma 44, we

can iterate the process until finding a normal form of
−−−→
EcC,S . This entails the finiteness of the

set of states recognising terms of T (C)S in A. Then, as in the proof of Theorem 47 we can
use the fact that E ⊇ ER to have that terms of T (Σ)S are recognised in A using a finite set of
states. What remains to be proved is that A recognises only well-sorted terms, i.e. that it
recognises no term of T (Σ) \ T (Σ)S . This is true because A0 is E-coherent, and by Theorem 38,
L (A) ⊆ (R/E)∗(L (A0)). Besides, R and E being sort-preserving, so is R/E. Thus, terms of L (A)
are all well-sorted. �

5 Experiments

All completions were performed using Timbuk and TimbukCEGAR [BBGL12]. All the IRR(R) au-
tomata constructions and automata intersections were performed using Taml. All completion
results have been certified by Coq [BC04] using the Coq-extracted completion checker [BGJ08].
All those tools are freely available on Timbuk web site [Tim12].

5.1 An introductory example

Ops append:2 rev:1 nil:0 cons:2 a:0 b:0
Vars X Y Z U Xs
TRS R
append(nil,X)->X rev(nil)->nil
append(cons(X,Y),Z)->cons(X,append(Y,Z)) rev(cons(X,Y))->append(rev(Y),cons(X,nil))

Automaton A0 States q0 qla qlb qnil qf qa qb Final States q0 Transitions
rev(qla)->q0 cons(qb,qnil)->qlb cons(qa,qla)->qla nil->qnil
cons(qa,qlb)->qla a->qa cons(qb,qlb)->qlb b->qb

Equations E Rules
append(nil,X)=X a=a b=b nil=nil cons(X,cons(Y,Z))=cons(Y,Z)
append(cons(X,Y),Z)=cons(X,append(Y,Z)) cons(X,Y)=cons(X,Y)
rev(nil)=nil append(X,Y)=append(X,Y)
rev(cons(X,Y))=append(rev(Y),cons(X,nil)) rev(X)=rev(X)
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In this example, the TRS R encodes the classical reverse and append functions. The language
recognised by automaton A0 is the set of terms of the form rev(la) where la can be any non
empty list of the form [a,a, . . . ,b,b, . . .]. Note that there is at least one a and one b in the list.
We assume that S = {T , list} and sorts for symbols are the following: a : T , b : T , nil : list,
cons : T ×list 7→ list, append : list×list 7→ list and rev : list 7→ list. Now, to use Theorem 49, we
need to prove each of its assumptions. The set E of equations contains ER, Er and EcC,S . The set

of Equations EcC,S is contracting because the automaton IRR(
−−−→
EcC,S ) recognises a finite language.

This automaton can be computed using Taml: it is the intersection between the automaton
AT (C)S

3 recognising T (C)S and the automaton IRR({cons(X,cons(Y ,Z))→ cons(Y ,Z)}):

States q2 q1 q0 Final States q0 q1 q2 Transitions b->q2 a->q2 nil->q1 cons(q2,q1)->q0

It is easy to see that E and R are sort preserving and that A0 recognises well-sorted terms.
We can also prove sufficient completeness of R on L (A0) using, for instance, Maude [CDE+09]
or even Timbuk [Gen98] itself. The last assumption of Theorem 49 to prove is that A0 is E-
coherent. This can be shown by remarking that each state A0 recognises at least one term and

that for all state q such that s
∗
�
A0

q and t
∗
�
A0

q then s ≡E t. For instance cons(b,cons(b,nil))
∗
�
A0

qlb

and cons(b,nil)
∗
�
A0

qlb and cons(b,cons(b,nil)) ≡E cons(b,nil). Thus, completion is guaranteed

to terminate: after 4 completion steps (7 ms) we obtain the following fixpoint automaton A∗:

States q5 q7 q8 q11 Final States q11 Transitions
b -> q8 nil -> q5 rev(q5) -> q5 append(q5,q11) -> q11
append(q11,q11) -> q11 cons(q7,q5) -> q11 cons(q7,q11) -> q11 cons(q8,q5) -> q11
cons(q8,q11) -> q11 rev(q11) -> q11 a -> q7

To restrain the language to normal forms, it is necessary to compute the intersection with
Irr(R).Since we are dealing with sufficiently complete TRSs, we know that Irr(R) ⊆ T (C)S .
Thus, we can use again the tree automaton AT (C)S . If we compute the intersection of A∗ with
the automaton AT (C)S we obtain the automaton:

States q3 q2 q1 q0 Final States q3 Transitions
a->q0 nil->q1 b->q2 cons(q0,q1)->q3 cons(q0,q3)->q3 cons(q2,q1)->q3 cons(q2,q3)->q3

which recognises any (non empty) flat list of a and b. Thus, our analysis preserved the property
that the result cannot be the empty list but lost the order of the elements in the list. This is
not surprising if we have a closer look to our set of equations E. In particular, the equation
cons(X,cons(Y ,Z)) = cons(X,Z) makes cons(a,cons(b,nil)) equal to cons(a,nil). It is possible to
refine by hand EcC,S as follows:

cons(a, cons(a,X))=cons(a,X) cons(b,cons(b,X))=cons(b,X) cons(a,cons(b,cons(a,X)))=cons(a, X)

This set of equations avoids the previous problem. Again E verifies the conditions of
Theorem 49 and completion is thus guaranteed to terminate. The result is the automaton:

3Such an automaton can be automatically defined. It has one state per sort and one transitions per constructor. For
instance, on our example AT (C)S will have transitions: a→ qT , b→ qT , cons(qT ,qlist)→ qlist and nil→ qlist.
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States q0 q1 q5 q7 q8 q11 q17 Final States q0 Transitions
nil -> q5 rev(q5) -> q5 append(q5,q11) -> q11 append(q11,q11) -> q11 cons(q8,q5) -> q11
cons(q8,q11) -> q11 rev(q11) -> q11 append(q5,q17) -> q17 append(q17,q17) -> q17
cons(q7,q5) -> q17 cons(q7,q17) -> q17 cons(q7,q1) -> q1 cons(q7,q11) -> q1
b -> q8 append(q0,q17) -> q0 append(q11,q17) -> q0 cons(q8,q0) -> q0
cons(q8,q17) -> q0 rev(q1) -> q0 a -> q7

This time, intersection with AT (C)S gives:

States q4 q3 q2 q1 q0 Final States q4 Transitions
a->q1 b->q3 nil->q0 cons(q1,q0)->q2 cons(q1,q2)->q2 cons(q3,q2)->q4 cons(q3,q4)->q4

This automaton exactly recognises lists of the form [b,b, . . . , a,a, . . .] with at least one b and one
a, as expected. However, equation tuning by hand is difficult. Hopefully, this can be automated
using a tree automata completion equipped with a counter-example guided approximation
refinement (a.k.a. CEGAR) [BBGL12]. This is what we do in the following example.

5.2 Higher-order function example

Here we show how to take higher-order functions into account and the benefit of a CEGAR
for approximation refinement. We choose to illustrate the two aspects on an example taken
from [OR11]. The encoding of higher-order functions into first order terms is borrowed
from [Jon87]: defined symbols become constants, constructor symbols remain the same, and
an additional application operator ’@’ of arity 2 is introduced. For instance, the function nz
testing if a natural is different from 0 and the higher-order function f ilter filtering out all
elements that do not satisfy a predicate are represented by the following TRS:

@(nz,zero)→ f alse
@(nz,s(X))→ true
@(@(f ilter,X),nil)→ nil
@(@(f ilter,X), cons(Y ,Z))→ if (@(X,Y ), cons(Y ,@(@(f ilter,X),Z)),@(@(f ilter,X),Z))
if (true,X,Y )→ X
if (f alse,X,Y )→ Y

The objective of [OR11] is to compute an approximation of all possible results of the function
call (f ilter nz l) where l is any list of naturals. To respect the presentation used in [OR11], we
also give the initial set of terms as a grammar generating terms of the form (f ilter nz l) with l
any list of naturals. As a result, the initial automaton recognises only a non terminal symbol
genS and the TRS contains the rules used to generate the language. The corresponding Timbuk
specification is the following, where app stands for @.

Ops app:2 filter:0 zero:0 s:1 nz:0 nil:0 cons:2 if:3 true:0 false:0 genl:1
Vars F X Y Z U Xs X2 X3 Y2 Z2
TRS R
app(nz,zero) -> false app(nz,s(X)) -> true
if(true,X,Y) -> X if(false,X,Y) -> Y app(app(filter,X),nil) -> nil
app(app(filter,X),cons(Y,Z)) -> if(app(X,Y),cons(Y,app(app(filter,X),Z)),app(app(filter,X),Z))

genS -> app(app(filter,nz),genl(zero)) genl(X) -> cons(X,genl(zero))
genl(X) -> nil genl(X) -> genl(s(X))

Automaton A0 States qf Final States qf Transitions genS -> qf
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Equations E Rules
if(true,X,Y)=X app(X,Y)=app(X,Y) s(X)=zero
if(false,X,Y)=Y filter=filter cons(X,Y)=Y
app(nz,zero)=false zero=zero s(X)=s(X)
app(nz,s(X))=true nz=nz nil=nil
app(app(filter,X),nil)=nil cons(X,Y)=cons(X,Y)
app(app(filter,X),cons(Y,Z))= if(X,Y,Z)=if(X,Y,Z)

if(app(X,Y2),cons(Y,app(app(filter,X2),Z)), true=true false=false
app(app(filter,X3),Z2)) genl(X)=genl(X)

Automaton Bad States ql ql0 q1 qz qnil Final States ql0 Transitions
cons(qz,ql)->ql0 cons(q1,ql)->ql cons(q1,qnil)->ql cons(q1,ql0)->ql0 s(qz)->q1
cons(qz,ql0)->ql0 cons(qz,qnil)->ql0 nil->qnil s(q1)->q1 zero->qz

Automaton ATCS States qnat qlist Final States qnat qlist Transitions
zero->qnat s(qnat)->qnat nil->qlist cons(qnat,qlist)->qlist

As in previous example, we can check that R, E and A0 respect the assumptions of Theo-
rem 49. Note that contracting equations of EcC,S are very drastic: the effect of the equation
s(X) = zero is to merge all naturals together and the effect of cons(X,Y ) = Y is to scramble
all lists together. The Bad automaton defines the language of undesirable terms: any list of
naturals where there is at least one 0. As soon as automatic refinement is used, termination is
no longer guaranteed. This is a common limitation of all CEGAR techniques like in [OR11].
However, within 58ms TimbukCEGAR achieves 8 completion steps, 5 refinement steps and
produces a completed tree automaton that have no term in common with L (Bad). Its product
with the automaton AT (C)S gives the automaton recognising lists of naturals strictly greater to
0, which is the expected result:

States q3 Final States q3 Transitions
nil->q2 nil->q3 zero->q0 s(q0)->q1 s(q1)->q1 cons(q1,q3)->q3 cons(q1,q2)->q3

This automaton recognizes lists of naturals strictly greater than 0 which is the expected
language of normal forms of the higher-order call (f ilter nz l) with l any list of naturals.
Example 8 of [OR11] can be solved in the same way.

\Ops app:2 map2:0 kzero:0 kone:0 one:0 zero:0 nil:0 cons:2 genS:0
\Vars F X Y Z U X2

\TRS R1
app(app(app(map2, X), Y), nil) -> nil
app(app(app(map2, X), Y), cons(Z, U)) ->

cons(app(X, Z), app(app(app(map2, Y), X), U))

app(kzero, X) -> zero
app(kone, X) -> one

genS -> nil
genS -> cons(zero,genS)

\Set A0
app(app(app(map2, kzero), kone),genS)

\Automaton Bad
\States qf q0 q1 qok0 qok1 qnil
\FinalStates qf
\Transitions
cons(q1,qok1) -> qf cons(q0,qok0) -> qf cons(q0,qf) -> qf cons(q1,qf) -> qf
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cons(q0,qok1) -> qok0 cons(q1,qok0) -> qok1 cons(q0,qnil) -> qok0 cons(q1,qnil) -> qok1
nil -> qnil zero -> q0 one -> q1

\Equations Simple
\Rules
app(app(app(map2, X), Y), nil) = nil app(X,Y)=app(X,Y) cons(X,Y)=Y
app(app(app(map2, X), Y), cons(Z, U)) = zero=zero

cons(app(X, Z), app(app(app(map2, Y), X2), U)) one=one
app(kzero, X) = zero nil=nil
app(kone, X) = one cons(X,Y)=cons(X,Y)

kone=kone
kzero=kzero

On this example, timbukCEGAR achieves 4 completion steps and 2 refinement steps and
gives in 36ms the following tree automaton with 24 transitions:

\Automaton Acomp
\States q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16 q17 q18
\FinalStates q6
Transitions
cons(q10,q16) -> q14 app(q11,q1) -> q12 app(q0,q3) -> q11 app(q1,q8) -> q10
genS -> q9 cons(q8,q9) -> q9 zero -> q8 nil -> q7
app(q4,q9) -> q6 app(q2,q3) -> q4 kone -> q3 app(q0,q1) -> q2
one -> q17 app(q3,q8) -> q17 kzero -> q1 app(q12,q9) -> q16
cons(q17,q6) -> q16 map2 -> q0 q14 -> q6 q10 -> q8
q8 -> q10 q7 -> q16 q7 -> q9 q7 -> q6

Again, the intersection of this automaton with AT (C) results in the automaton:

States q5:0 q4:0 q3:0 q2:0 q1:0 q0:0
Final States q5
Transitions
nil -> q1 nil -> q4 nil -> q5 one -> q2 zero -> q3
cons(q3,q1) -> q5 cons(q3,q1) -> q0 cons(q3,q4) -> q0 cons(q2,q0) -> q4 cons(q2,q1) -> q4
cons(q2,q5) -> q4 cons(q3,q4) -> q5

This automaton recognizes lists of the form [zero,one,zero,one...], which is the expected
result.

6 Adaptation to innermost strategies

6.1 Introduction

The classical equational completion procedure with a left-linear TRS R produces a correct
over-approximaton of R∗(L0) whenever it terminates. As R∗in(L0) ⊆ R∗(L0), this is a correct
over-approximation of R∗in(L0) as well. Still, we would like to refine this procedure to deal more
precisely with Rin. Indeed, there are some critical pairs that we would not want to complete
because they do not correspond to any innermost rewriting situation.

Example 50.
Let us look at Example 30. The rewriting of f (c(a(s(0)),n)) into c(a(s(0)), f (n)) does not

conform to innermost strategy because a(s(0)) is not a normal form. We would like to abstain
from completing CP1 of Example 30. 50C
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Due to the definition of innermost rewriting, we will need to discriminate between nor-
mal forms and terms reducible by R. To do so is possible using the automaton IRR(R) (see
Theorem 25). It is possible to build a product between A and IRR(R), the tree automaton
recognising the normal forms of R. Let A◦ be an automaton recognising the initial language.
Completion will start with A0 =A◦ ×IRR(R). This automaton enjoys the following property,
which we will be useful to prove correctness.

Definition 51 (Consistency with IRR(R)).
A pair automaton A is said to be consistent with IRR(R) if, for any configuration c and

any state 〈q,p〉 of A, Π2 (c) is a configuration and p is a state of IRR(R), and if c
∗
�
A
〈q,p〉 then

Π2 (c)
∗
�
IRR(R)

p. 51J

The problem is, then, to update this product after each completion step: each completion step
produces new states and new transitions that are not inA and thus not covered by the product.
A naive way to do this would be to re-compute the product after each new completion step.
However, this is rather inefficient: if NA is the number of transitions ofA and NI is the number
of transition of IRR(R), the product automaton can have NA ×NI transitions, and this product
will be done after each step of completion. Hence, for n steps of completion, the number of
transitions can be exponential w.r.t. n, i.e. NA × (NI )

n. We propose a more efficient solution
where completion only produces transitions of the product automaton.

In the next subsections, we will restate the definitions used by equational completion to
adapt them to our new framework of pair automata. The TRS R is always supposed left-linear.
Some parts of them might look tricky, and they are indeed tricks to preserve the property of
consistency with IRR(R).

6.2 Equational simplification

Definition 52 (Situation of application of an equation).
Given an equation s = t, an automaton A, a θ : X →QA and states 〈q1,p1〉 and 〈q2,p2〉, we

say that (s = t,θ,〈q1,p1〉 ,〈q2,p2〉) is a situation of application in A if

1. sθ
∗
�
A
〈q1,p1〉,

2. tθ
∗
�
A
〈q2,p2〉,

3. 〈q1,p1〉
�
�
�E��
A
〈q2,p2〉 and

4. p1 = p2. 52J

Definition 53 (Application of an equation).
Given (s = t,θ,〈q1,p1〉 ,〈q2,p1〉) a situation of application inA, applying the underlying equa-

tion in it consists in adding transitions 〈q1,p1〉
E
� 〈q2,p1〉 and 〈q2,p1〉

E
� 〈q1,p1〉 to A. 53J

Lemma 54.
Applying an equation preserves consistency with IRR(R). 54�
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Proof.
Let A be a consistent with IRR(R) automaton whose set of states is Q, let B result from the

adjunction of transition 〈q1,p1〉� 〈q2,p1〉 toA due to the application of some equation. Notice
that this is sufficient because of the symmetry between q1 and q2. We proceed by induction

on k, the number of times the transition 〈q1,p1〉� 〈q2,p1〉 occurs in the path c
∗
�
B
〈q,p〉 where

c is a configuration and 〈q,p〉 is a state of B. If there is no occurrence, then c
∗
�
A
〈q,p〉 and by

consistency of A, Π2 (c)
∗
�
IRR(R)

p.

Suppose the property is true for some k and there is a context C on T (Σ,Q) such that

c
∗
�
A
C[〈q1,p1〉]�

B
C[〈q2,p1〉]

∗
�
B
〈q,p〉 with the last part of the path using less than k times

the new transition. First, there is a configuration c1 such that c = C[c1] and c1
∗
�
A
〈q1,p1〉,

and therefore Π2 (c1)
∗
�
IRR(R)

p1. Second, by induction hypothesis, Π2 (C[p1])
∗
�
IRR(R)

p. Finally,

Π2 (c)
∗
�
IRR(R)

Π2 (C[p1])
∗
�
IRR(R)

p. �

Remark. The condition 4 (p1 = p2) of definition 52 is obviously necessary for this lemma. We
will explain why consistency is important after having defined the notion of innermost critical
pair (Definition 55).

6.3 Exact completion

Definition 55 (Innermost critical pair).
A pair (`→ r,σ ,〈q,p〉) where `→ r ∈ R, σ : X →QA and 〈q,p〉 ∈QA is critical if

1. `σ
∗
�
A
〈q,p〉,

2. there is no p′ such that rσ
∗
�
A

〈
q,p′

〉
and

3. for each subconfiguration γ at depth 1 of `σ , the state
〈
qγ ,pγ

〉
such that γ

∗
�
A

〈
qγ ,pγ

〉
in

the recognition path of condition 1 is with pγ , pred. 55J

Remark. Because a critical pair denotes a rewriting situation, the p of definition 55 is neces-
sarily pred as long as A is consistent with IRR(R).

Remark. We can now explain why consistency is important and what would happen if
we allowed equations to be applied without regard for condition 4 of Definition 52. Take
R = {f (a)→ w,g(f (b))→ c}, E = {a = b} and A◦ = {a� qa,b� qb, f (qa)� qf a, g(qf a)� qgf a}.
We have

IRR(R) = {a� pa,b� pb, c� pc,w� pc,

f (pa)� pred, f (pb)� pf b, f (pc)� pc,

g(pf b)� pred, g(pc)� pc}
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We omit the transitions whose left-hand side contains pred: they always have pred as a right-
hand side.

Remark that c ∈ Rin(g(f (b))). However, g(f (b)) is not recognised by A◦ into any state and
thus not by A◦ × IRR(R) either, so we are not interested in its successors. But let us apply
the equation a = b without taking condition 4 of definition 52 into account: in particular,
we add the transition 〈qb,pb〉� 〈qa,pa〉. Therefore we now have g(f (b))� g(f (〈qb,pb〉))�
g(f (〈qa,pa〉))� g(

〈
qf a,pred

〉
)�

〈
qgf a,pred

〉
. We have g(f (b)) ∈L (A,

〈
qgf a,pred

〉
) and are thus

now interested in its successors: we would like to have some critical pair involving g(f (b)) and
c. But we do not, because the only recognition path of g(f (b)), the one we just created, does
not fulfil condition 3 of definition 55.

`σ rσ

f (q1, . . . , qk)

q q′

R

A ∗

A

A′∗

A′
R

(a) Classical

`σ rσ

f (〈q1,p1〉 , . . . ,〈qk ,pk〉)

〈q,pred〉
〈
q′ ,prσ

〉
〈q,prσ 〉

Rin

A ∗

A p1, . . . ,pk , pred

A′∗

A′
R

(b) Innermost

Figure 2: Comparison of classical and innermost critical pairs

Definition 56 (Normalisation).
This is like in Definition 27, except we deal with pairs 〈q,p〉 instead of just q. In particular,

when searching for a
〈
q′ ,p′

〉
to set d|ξi �

〈
q′ ,p′

〉
, we take q′ to be either the left component of

some d|ξi �∆/E

〈
q′ ,p′′

〉
or a new state, and p′ to be the state such that Π2

(
d|ξi

) ∗
�
IRR(R)

p′. 56J

Definition 57 (Completion of an innermost critical pair).
A critical pair (` → r,σ ,〈q,p〉) in automaton A is completed by first computing N =

NormA�R(rσ ,
〈
q′ ,p′

〉
) where q′ is a new state and Π2 (rσ )

∗
�
IRR(R)

p′, then adding to A the new

states and the transitions appearing in N as well as the transition
〈
q′ ,p′

〉 R
�

〈
q,p′

〉
. If rσ is a

trivial configuration (ie. r is just a variable), only transition rσ
R
� 〈q,Π2 (rσ )〉 is added.

Afterwards, we execute the following supplementary operations. For any transition

f (. . . ,〈q,pred〉 , . . . )�
〈
q′′ ,p′′

〉
,

we add (if it is not present) a transition

f (. . . ,
〈
q,p′

〉
, . . . )�

〈
q′′ ,p′′′

〉
with f (. . . ,p′ , . . . ) �

IRR(R)
p′′′. These new transitions are in turn recursively considered for the

supplementary operations. 57J
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Definition 58 (Step of exact completion).
This is the same definition as Definition 29, but using Definition 57 instead of Definition 28

for each critical pair. 58J

Example 59.
Let us look again at Example 30. We have Rin(L (A0,qf )) = {f (c(0,n))}. Note that IRR(R) has

states p0,pa,ps,pn,pc,p?,pred and transitions

{n� pn,0� p0, s(pa)� pred, a(ps)� pred}

∪
⋃
p,pa

{s(p)� ps}

∪
⋃
p,ps

{a(p)� pa}

∪
⋃
p

{c(p0,p)� pc, c(ps,p)� pc, c(pa,p)� pc, c(pn,p)� p?, c(p?,p)� p?}

∪ {f (pn)� pred, f (pc)� pred}

∪
⋃

p,pn,pc

{f (p)� p?}.

The critical pair corresponding to CP1 of Example 30, with rule f (c(a(X),Y ))→ c(a(X), f (Y )),
the substitution σ1 = {X 7→ 〈qs,ps〉 ,Y 7→ 〈qn,pn〉} and the state

〈
qf ,pred

〉
, is not an innermost

critical pair because the recognition path is

f (c(a(〈qs,ps〉),〈qn,pn〉))� f (c(〈qa,pred〉 ,〈qn,pn〉))
� f (〈qc,pred〉)

�
〈
qf ,pred

〉
,

and so there is a pred at depth 1. 59C

Lemma 60.
Let A be an automaton obtained from some A◦ × IRR(R) after some steps of innermost

completion. A is consistent with IRR(R). 60�

Proof.
A◦ × IRR(R) is consistent with IRR(R) by construction. Lemma 54 shows that applying an

equation preserves this. It remains to show that a step of exact completion does so as well.
The first steps of normalisation are preserving because the new

〈
q′i ,p

′
i

〉
are precisely chosen

such that Π2

(
d|ξi

) ∗
�
IRR(R)

p′i . The last step of normalisation is preserving too, as well as the

remaining operations of the completion of a critical pair, because, again, we choose p′ such

that rσ
∗
�
IRR(R)

p′.

The same goes for the supplementary operations. �

Lemma 61.
Let A be an automaton consistent with IRR(R), (`→ r,σ ,〈q,p〉) a critical pair in A, let prσ be

the state of IRR(R) such that rσ
∗
�
IRR(R)

prσ and B be the automaton resulting from the completion
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of this critical pair. Let C be a context on T (Σ) and 〈q1,p1〉 a state of A such that C[〈q,p〉]
∗
�
A

〈q1,p1〉. Then there exists a state p2 of IRR(R) such that C[〈q,prσ 〉]
∗
�
B
〈q1,p2〉. 61�

Proof.
Note that we have p = p1 = pred. We have to show that all the transitions used in the path

C[〈q,pred〉]
∗
�
A
〈q1,pred〉 have some counterpart starting from C[〈q,prσ 〉]. First, observe that

all transitions used to recognise subterms at positions of C that are parallel to the position
of the hole can remain unchanged. Second, if some transition only comprises states the left
component of which are in A◦, then it has a counterpart for any choice of right components in
IRR(R) because our automaton contains the whole product A◦ ×IRR(R). It remains to be shown
that the transitions involving new states added by the normalisation during the completion of
the considered critical pair also have their counterpart: they exist thanks to the supplementary
operations of definition 57. �

Remark. The supplementary operations are necessary for this lemma. Indeed, take R =
{g(f (b))→ g(f (a)), f (a)→ c},A◦ = {b� qb, f (qb)� qf b, g(qf b)� qgf b}. We have IRR(R) = {a�
pa,b� pb, c� pc, f (pa)� pred, g(pa)� pc, f (pb)� pf b, g(pf b)� pred, f (pc)� pc, g(pc)� pc}.
There is a critical pair P C1 = (g(f (b))→ g(f (a)),∅,

〈
qgf b,pred

〉
) inA◦×IRR(R), which is resolved

by adding transitions a� 〈qN1,pa〉, f (〈qN1,pa〉)� 〈qN2,pred〉, g(〈qN2,pred〉)� 〈qN3,pred〉 and
〈qN3,pred〉�

〈
qgf b,pred

〉
, thereby producing automaton A1. The supplementary operations do

not create any new transition here.
There is a critical pair P C2 = (f (a)→ c,∅,〈qN2,pred〉) in A1, which is resolved by adding

transitions c� 〈qN4,pc〉 and 〈qN2,pc〉, thereby producing automaton A\2. The supplementary
operations are detailed further down and produce automaton A2.

Now consider that g(c) ∈ Rin(g(f (a))) and g(f (a)) ∈L (A\2,
〈
qgf b,pred

〉
) because we completed

P C1. But all what we have is g(c)�
A\2
g(〈qN4,pc〉)�

A\2
g(〈qN2,pc〉), this last configuration being

not productive. As a result, g(c) <L (A\2,
〈
qgf b,p

′
〉
) for any p′.

The supplementary operations are made after completion of P C2. Since there is a transition
g(〈qN2,pred〉)� 〈qN3,pred〉, we add a transition g(〈qN2,pc〉)� 〈qN3,pc〉. Then, since qN3 <A◦
either, and there is a 〈qN3,pred〉 �

〈
qgf b,pred

〉
, we add 〈qN3,pc〉 �

〈
qgf b,pc

〉
. No further

transition needs to be added. These transitions allow g(c) ∈L (A2,
〈
qgf b,pc

〉
).

6.4 Proof of correctness

Definition 62 (Correct automaton).
An automaton A is correct wrt. Rin if for all state 〈q,pred〉 of A, for all u ∈L (A,〈q,pred〉)

and for all v ∈ Rin(u), either there is a state p of IRR(R) such that v ∈ L (A,〈q,p〉) or there
is a critical pair (` → r,σ ,〈q0,p0〉) in A for some 〈q0,p0〉 and a context C on T (Σ) such that

u
∗
�
A
C[`σ ]

∗
�
A
C[〈q0,pred〉]

∗
�
A
〈q,pred〉 and v

∗
�
A
C[rσ ]. 62J

Lemma 63.
Any automaton produced by innermost completion starting from someA◦×IRR(R) is correct

wrt. Rin. 63�
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Proof.
Let A be such an automaton; it is consistent with IRR(R). Let 〈q,pred〉 be a state of A,

u ∈L (A,〈q,pred〉) and v ∈ Rin(u). By definition of innermost rewriting, there is a rule `→ r
of R, a substitution µ : X → T (Σ) and a context C such that u = C[`µ], v = C[rµ] and each
strict subterm of u is a normal form. Let u0 = `µ and v0 = rµ. There is a 〈q0,pred〉 such that

u0 ∈L (A,〈q0,pred〉) and C[〈q0,pred〉]
∗
�
A
〈q,pred〉.

Since ` is linear, there is a σ : X → QA such that `µ
∗
�
A
`σ

∗
�
A
〈q0,pred〉 and rµ

∗
�
A
rσ . This

entails that u
∗
�
A
C[`σ ]

∗
�
A
C[〈q0,pred〉]

∗
�
A
〈q,pred〉 and v

∗
�
A
C[rσ ].

Assume that there is no p0 such that v0 ∈L (A,〈q0,p0〉) and show that (`→ r,σ ,〈q0,pred〉) is

a critical pair in A. First, by assumption, there is no p such that rσ
∗
�
A
〈q0,p〉. Conditions 1

and 2 of definition 55 are thus met. Suppose ` = f (γ1, . . . ,γk) and show that condition 3 of

definition 55 holds.4 For each i ∈ J1 ; kK, let 〈qi ,pi〉 be the state of A such that γiµ
∗
�
A
γiσ

∗
�
A

〈qi ,pi〉 in the path of recognition of `σ . Then, by consistency with IRR(R), for each i ∈ J1 ; kK,
γiµ

∗
�
IRR(R)

pi . Since strict subterms of `µ are strict subterms of u as well, they are normal forms,

thus pi , pred, which validates condition 3 of definition 55.
Assume now that v0 ∈ L (A,〈q0,p0〉) and show that there is a p such that v ∈ L (A,〈q,p〉).

This is obvious at the initial step A◦ ×IRR(R), and this property is conserved by completion as
shown by lemma 61. �

Theorem 64 (Correction).
Assuming R is left-linear, the innermost equational completion procedure defined above

produces a correct result whenever it terminates and produces some fixpoint Ain∗:

L (Ain∗) ⊇ R∗in(L (A◦ ×IRR(R))). 64�

Proof.
Let Ain∗ be the calculated fixpoint automaton. By lemma 60, Ain∗ is consistent with IRR(R),

and therefore, by lemma 63, Ain∗ is correct wrt. Rin. Since this automaton is a fixpoint, the
case of definition 62 where there remains a critical pair cannot occur, and therefore, for all
state 〈q,pred〉 of A, for all u ∈ L (Ain∗,〈q,pred〉) and for all v ∈ Rin(u), there is a p′ such that
v ∈ L (Ain∗,〈q,p〉). Thus, Ain∗ is Rin-closed: Rin(L (Ain∗)) ⊆ L (Ain∗). Since the completion
process only adds transitions, L (Ain∗) ⊇L (A◦ ×IRR(R)), which concludes the proof. �

6.5 Other results

Theorem 65.
If, given some left-linear R, some E and some A◦, the classical equational completion

terminates, producing fixpoint A∗, as well as the innermost equational completion, producing
Ain∗, then

L (Ain∗) ⊆L (A∗ ×IRR(R)). 65�

4If ` is a constant, then condition 3 is vacuously true.
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Proof.
This because we complete less critical pairs and apply equations less often: to any innermost

critical pair corresponds a classical one, and the same goes for situations of application. �

Innermost completion solves less critical pairs and thus adds fewer new states. In practice,
it is thus likely to stop as often as standard completion. However, since it also performs less
equational simplifications, we do not yet benefit of the theoretical guarantee of Theorem 49.
This is mainly due to Definition 52 that requires that p1 = p2 when applying an equation
to states 〈q1,p1〉 and 〈q2,p2〉. We can nevertheless state the following theorem that covers
the ’reverse’ example with the second set of contracting equations. The definition of a more
general termination theorem for innermost completion needs further investigation and is left
for future work.

Lemma 66.
Let R be a well-sorted, sufficiently complete TRS. Let u,v ∈ T (C)S be two data-terms having

the same sort. For any context C over T (Σ)S , C[u] and C[v] are either both reducible or both
normal forms of R. 66�

Proof.
Let C be a context over T (Σ)S . Since u and v have the same sort, C[u] is well-sorted if and

only if C[v] is well-sorted. If these terms are not well-sorted, they are both irreducible. Let us
now suppose C[u] and C[v] are both well sorted. Let ξ� be the position of the hole in C.

Suppose there is a position ξ prefix of ξ� such that the symbol at position ξ is in D. Let
u′ = C[u]|ξ and v′ = C[v]|ξ . Since u′ ,v′ ∈ T (Σ)S rT (C)S and R is sufficiently complete, they are
both reducible, and thus so are C[u] and C[v].

If there is no ξ defined as above, then the potential redexes are at positions parallel to ξ�,
and thus do not depend on u or v. �

Lemma 67.
There is an automaton IRR(R) verifying the properties of Theorem 25 that has exactly one

state pS for each sort S as well as two states p? and pred. 67�

Proof.
By well-sortedness of R, any bad-sorted term is a normal form as long as it has no reducible

strict subterm. All these terms can be recognised into state p?. All the other states will
recognise only well-sorted terms.

By sufficient completeness, any well-sorted term in which occurs a defined symbol is
reducible, and will be recognised into pred.

Let S be a sort and consider u,v ∈ T (C)S of sort S. If there are two states pu ,pv such that
u ∈L (IRR(R),pu) and v ∈L (IRR(R),pv), then, by Lemma 66, pu and pv will play exactly the
same role in IRR(R). We can therefore merge them. �

Lemma 68 (Condition 4 of Definition 52 is free).
Let s = t be a sort-preserving equation over T (C)S such that s and t have the same variables,

A be an automaton consistent with an automaton IRR(R) as defined in Lemma 67, θ : X →QA
be a substitution and 〈q1,p1〉, 〈q2,p2〉 be states such that

1. sθ
∗
�
A
〈q1,p1〉 and
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2. tθ
∗
�
A
〈q2,p2〉.

Then p1 = p2. 68�

Proof.
By consistency of A with IRR(R), Π2 (sθ)

∗
�
IRR(R)

p1 and Π2 (tθ)
∗
�
IRR(R)

p2. If there is a variable X

of s or t such that Π2 (Xθ) ∈ {pred,p?}, then p1 and p2 are both pred or p?.
Else, there is a substitution µ : X → T (C)S such that for all variable X of the domain of θ,

Xµ
∗
�
IRR(R)

Xθ. Since s = t is sort-preserving, sµ and tµ are in T (C)S and both have the same sort

S. Thus, by construction of IRR(R), p1 = p2 = pS . �

Theorem 69.
If R is left-linear, well-sorted and sufficiently complete, the equations of E are over T (C)S ,

sort preserving and between terms using the same variables, and classical equational comple-
tion terminates, then so does innermost equational completion. 69�

Proof.
Classical completion terminates on A◦ × IRR(R) as well. Innermost completion considers

and completes less critical pairs than classical completion (i.e. to each critical pair in the
innermost process corresponds a critical pair in the classical completion of A◦ ×IRR(R)), but,
by Lemma 68, applies equations as often as classical completion. �

7 Related work

There is a recent and renewed interest for Data flow analysis of higher-order functional
programs [OR11, KO11] that was initiated by [Jon87]. The latter was using tree grammars
for the analysis and the former are using specific formalisms: pattern matching recursion
schemes and ILTGs. In [Jon87], the approximation is hard-coded in the completion-like
algorithm and it is defined by complex algorithms in [OR11, KO11]. This is not the case here
where approximations are defined in a declarative and formal way using term equations. The
technique we propose is able to cover all the examples of [OR11] with the same precision (and
all the simple examples of [Jon87] with a better precision, as [OR11] do). On the opposite,
since tree automata completion is based on regular languages, it cannot handle “non regular
properties” covered by ILTGs [KO11]. However, we have shown that tree automata completion
can take strategies into account. In all aforementioned work, evaluation strategies of functional
programs are not taken into account. For instance, in Example 30 all those techniques will
consider the term c(a(s(0)), f (n)) as reachable, though it is not with innermost strategy. As
shown in Example 59, this is not the case with innermost completion.

Dealing with reachable terms and strategies was first addressed in [RV02] in the exact case
for innermost and outermost strategies but only for some restricted classes of TRSs. As far
as we know, the technique we propose is the first to over-approximate terms reachable by
innermost rewriting for any left-linear TRS. For instance, the examples of Section 5.1 and 5.2
are in the scope of innermost completion but are outside of the class of [RV02]. The first one
because a right-hand side of a rule has two nested defined symbols and the second one because
it is not right linear.
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8 Conclusion

In this paper, we propose to use tree automata completion for the static analysis of higher-
order functional programs. The first contribution is a proof that completion is guaranteed
to terminate if the set E of approximation equations contains contraction equations for T (C).
The second contribution is a completion algorithm taking into account the rewriting strategy.
The obtained algorithm minimizes the set of added transitions by completing the product
automaton (between A◦ and IRR(R)), instead of computing this product after each completion
step.

The tree automata completion framework seems to provide a simple and competitive al-
ternative to other analysis techniques for functional programs. Firstly, and unlike ILTG, it
uses basic algorithms (namely intersection and emptiness decision) which are known to be
polynomial [CDG+08]. The efficiency of completion has been shown in practice with the
approximation of R∗(L0) for huge TRSs (thousand of rewrite rules) [BBGL12]. Secondly, having
a simple formalism makes certification of the computation possible. All the examples of this
paper are certified by Coq, using the external completion checker [BGJ08]. Certification is
important because efficient implementation of such analysers require low level optimisations
that can threaten their correction. Thirdly, defining approximations using equations is declara-
tive and formal. Their declarative nature makes it possible to adapt approximations by tuning
equations by hand or using an automatic refinement principle. Their formal nature makes
it possible to precisely characterize their precision using Theorem 38 and, as shown in this
paper, have a simple syntactical criterion ensuring termination of the analysis.

Besides, innermost completion should provide finer criteria for innermost termination
proofs of TRSs. Approximations of sets of ancestors or descendants can improve existing
termination techniques [Mid02, GHWZ05], such as the dependency pairs. In particular, one
can prune edges in a dependency graph using such approximations. Dependency graphs
can prove innermost termination [GTSKF06]. Thus, a precise approximation of innermost
descendants should prune the innermost dependency graph, and provide a finer innermost
termination criterion.

For further work, we want to study if the innermost completion covers the decidable classes
of [RV02], like standard completion does for many decidable classes [FGVTT04]. Another
objective is to define a completion for the outermost strategy and thus deal with the call-by-
need evaluation strategy, used in Haskell5. We think that it is also possible to change the
simplification algorithm so that finiteness of T (Σ)/≡E (or T (C)/≡E ) would be sufficient to have
a terminating completion. In particular, this should make the definition of a termination
theorem for innermost completion easier.
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