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Abstract

We present a new regression method derived from standard PLSR which has

a geometric point of view and consists of two projections. In the first, scores

are obtained after an oblique projection of the spectra onto the loadings. In

the second, the vector of response values is projected orthogonally onto the

scores. A metric is introduced for the oblique projection and a new algorithm

for calculating the loadings into the variable space is proposed. This work also

puts forward a new parameter, a vector, whose different values lead to different

regression models with their own prediction abilities, and one of them is the

exact form of standard PLSR. This method (called vector orientation decided

through knowledge assessment, or VODKA regression) is another way to build

least squares regressions using only a few latent variables. We propose two
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applications to illustrate its performance capabilities.

Keywords: PLSR; metric; orthogonal; oblique; projection; Vodka

1. Introduction1

Many current analytical methods are based on spectroscopic techniques such2

as near-infrared (NIR), mid-infrared(MIR) or raman spectroscopy. The data3

consist of a set of observations, such as spectra acquired from several samples,4

and a set of the corresponding analytical results obtained using generally time-5

consuming analytical techniques. The observations form a first matrix, and the6

analytical results form a second matrix, which contains the quantitative amounts7

of one or more compounds of interest, the response variables. The prediction8

of the response variables can be done using the observations associated with9

the calibration method. This is a main goal for the development of online, fast10

and non-destructive analytical methods. Among the proposed methods, partial11

least squares regression or projection to latent structures regression (PLSR)12

is the most popular. PLSR is a linear indirect calibration method. PLSR-13

1 and PLSR-2 are associated with the prediction of one or several response14

variables respectively. This work concerns only PLSR-1 which is noted PLSR15

for simplification.16

The nonlinear iterative partial least squares (NIPALS) algorithm was pro-17

posed by H.Wold for principal component analysis (PCA) calculations [1]. Mod-18

ifications of this algorithm led H.Wold, S.Wold and H.Martens to develop the19

first PLSR algorithm [2], which is referred to as ¨ standard PLSR ¨ [3, 4] to20

avoid confusion with NIPALS for PCA. Later, other algorithms were proposed,21
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such as non-orthogonalized scores PLSR by Martens [5] [6], and SIMPLS by22

De Jong [3]. The goal of most PLSR algorithms including PLSR-1 has been to23

produce results close to standard PLSR, at least for PLSR-1. As a consequence,24

Andersson [7] compared the respective performances of nine PLSR algorithms25

for speed and the numerical stability. Standard PLSR belonged to the four most26

stable algorithms, and thus confirmed its status as a reference method.27

Standard PLSR has been presented from different points of view, such as an28

application of the Heisenberg uncertainty principle [8], statistical modeling [9],29

and its geometry [4]. However, most presentations have concerned the algorithm30

itself [2, 7, 10, 11] and the calculation of different parameters, such as loadings P31

and c, weights W and scores T. The parameters { wi, ti,pi, ci} are calculated32

simultaneously for a latent variable i, then { wi+1, ti+1,pi+1, ci+1} are calcu-33

lated for the latent variable i+ 1, and so on. We show that the same algorithm34

can be written differently such that each item is calculated separately. A metric35

Σ is defined as the Moore-Penrose pseudo-inverse of X′X. The loadings P are36

obtained using two elements: a square matrix X′X and a vector r = X′y, but37

in a manner different from the Krylov sequence. Then, the matrix T and the38

regression vector b are obtained with P and Σ. Neither W nor c are necessary,39

so they are not calculated.40

VODKA regressions, which comprise a new family of regression methods, are41

derived from this new presentation of standard PLSR. The vector r = X′y is42

considered to be a parameter, which can be replaced by any other vector of the43

same dimension to calculate the loadings. Each value of r is associated with a44

3
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different regression model whose accuracy depends strongly on a relevant choice45

for r. Several approaches are proposed for choosing r and two applications46

illustrate the proposed method.47

2. Theory48

The theory is divided into three parts: the standard PLSR algorithm; a49

rewriting of the standard PLSR including a new algorithm for the calculation50

of the loadings into the variable space; and the proposal of a new regression51

method. Vectors are noted in bold lowercase, matrices in bold uppercase, scalars52

in normal uppercase, variables in normal characters. A spectrum is represented53

as a column vector, but several spectra form the rows of a matrix, e.g. in X or54

XG. On the other hand, vectors issued from calculations form the columns of55

the matrices which gather them, e.g. P or W. The transposed forms of vector56

m and matrix M are respectively noted m′ and M′. Table B.1 summarizes the57

main notations. In the general case, if optional pretreatments are necessary, e.g.58

centering, smoothing, orthogonal projection, they should be applied to the raw59

data previously to yield the calibration dataset (X,y).60

A data X of dimension (N×P ) can be explained into the RN space spanned61

by its P column vectors of dimensions (N×1), or into the RP space spanned by62

its N line vectors of dimensions (P × 1). We will focus on this second issue. A63

metric represented by a square and symmetrical matrix Σ of dimensions (P×P )64

is associated with RP to form a vectorial space, and is used to calculate inner65

(dot) products and distances as well as to perform projections. To simplify the66

4

Author-produced version of the article published in Chemometrics and Intelligent Laboratory Systems, 2013, 120, 116-125. 
The original publication is available at http://www.sciencedirect.com 
DOI : 10.1016/j.chemolab.2012.11.002 



notations, the term metric is also used for pseudo-metric, that is, when Σ is not67

of full rank. The usual Euclidian space is associated with the identity: Σ = IP68

and with orthogonal projections. Oblique Euclidian spaces are associated with69

Σ 6= IP and with oblique projections. Two types of projectors can handle70

both orthogonal and oblique projections: projectors onto a subspace, and anti-71

projectors to a subspace. For example, the oblique Σ projector onto the subspace72

spanned by the column vectors of M is: PM = ΣM(M′ΣM)−1M′, and the73

oblique Σ anti-projector to the subspace spanned by the column vectors of M74

is: P⊥M = IP − PM . The terms P and T designate projectors; P⊥ and T ⊥75

designate anti-projectors. Due to the context, P and P⊥ are defined into RP
76

with the metric Σ, whereas T and T ⊥ are defined into RN with the usual77

Euclidian metric.78

2.1. The standard PLSR algorithm79

Standard-PLSR has been described several times, for instance by Geladi80

[11]. It aims at building a model for A latent variables. To start, X1:0 = X and81

y1:0 = y. Then a loop calculates the PLSR parameters at each iteration. For82

i = 1, 2, 3...A:83

wi = X′1:i−1y1:i−1 (1)

‖ wi ‖ = 1 (2)

ti = X1:i−1wi (3)

ci = y′1:i−1ti(t
′
iti)
−1 (4)

5
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pi = X′1:i−1ti(t
′
iti)
−1 (5)

X1:i = X1:i−1 − tip
′
i = (IN − ti(t

′
iti)
−1t′i)X1:i−1 (6)

y1:i = y1:i−1 − tic
′
i = (IN − ti(t

′
iti)
−1t′i)y1:i−1 (7)

then the algorithm returns to equation (1) incrementing i by 1. After A84

iterations, the A weight vectors wi, the A loadings-for-X vectors pi, the A score85

vectors ti and the A loadings-for-y scalars ci are gathered into the respective86

matrices and vector W, P, T and c. The calibration model for A latent variables87

is represented by a regression vector of b-coefficients b which verifies: y =88

Xb + e, with a vector of errors e . Let b̂ be an estimation of b, and let ŷ be89

the estimation of y using b̂. Thus, ŷ = Xb̂, with:90

b̂ = W(P′W)−1c (8)

2.2. Rewriting standard PLSR91

PLSR decomposes a matrix X into matrices T, P and a residual matrix E92

such that: X = TP′ + E = XU + E, where XU represents the information93

from X which is useful for the prediction of y. Several properties of standard94

PLSR, recalled or demonstrated, are reported in Appendix A. Let Σ be the95

Moore-Penrose pseudo-inverse of (X′X); Σ = (X′X)+. In Property 5, Eq. A.696

gives a new expression of T, that is: T = XΣP(P′ΣP)−1. So:97

XU = TP′ = XΣP(P′ΣP)−1P′ (9)

6
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This means that the useful information from X is obtained by an oblique98

projection of X onto the loadings P into RP . The matrix T contains the scores99

of the observations in the basis of the useful space spanned by the column-100

vectors of P. PLSR is also a regression (or orthogonal projection into RN ) of101

the reference values y onto the scores T, i.e. ŷ = T(T′T)−1Ty [4]. The new102

expression of T leads to a new expression of b̂ (see property 6, appendix A):103

b̂ = ΣP(P′ΣP)−1P′ΣX′y (10)

From a geometric point of view, standard PLSR consists of two projections104

(see Fig.B.1):105

• First, an oblique projection into the variable space RP
106

The vector pi is the ith element of a basis of the subspace of RP which107

contains the relevant information for the prediction of y. The A first vec-108

tors pi form the loading matrix P of dimensions (P×A). The information109

from X which is useful for the prediction of y is extracted by an oblique110

Σ projection of X onto P, yielding XU ; the scores of its observations into111

the basis { p1,p2, ...pA} are given by T.112

• Then, an orthogonal projection into the observation space RN
113

The predicted vector ŷ is the orthogonal projection of y onto T. The114

regression vector b̂ is deducted from this last equation.115

The calculation of Σ is straightforward. Thus, P remains the only parameter116

to calculate to obtain a PLSR model. According to Eq. 6, the deflation of X at117

7
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step i is performed into RN by multiplying the anti-projector orthogonal to T1:i118

by X. Thus, the calculation of the loadings pi implies successive steps into RN
119

and into RP . However, it is shown in Property 7 and Eq. A.7 that the deflation120

of X at step i can also be performed into RP :121

X1:i = T ⊥1:iX = XP⊥1:i

Thus, the calculation steps into RN are no longer mandatory, and it becomes122

possible to rewrite standard PLSR as a calculation of the loadings only into RP
123

and independently from the parameters T, W or c. An algorithm is obtained124

and described in Appendix B. This new approach for the calculation of the125

loadings raises the following issues.126

• Geometric building of the pi127

Let z be a point of RP and q the vector from the origin of RP to z. Let128

γ be a positive scalar. The set of points z which verify: q′X′Xq = γ129

form an ellipsoid. The value of γ tunes the size of the ellipsoid. We are130

more interested in the shape of the ellipsoid, whose main directions are the131

eigenvectors of X′X. According to Fig. B.2 adapted from [4], the direction132

of p1 is the result of a tangent rotation of X′y towards the main direction133

of the ellipsoid, i.e. the eigenvector associated with the largest eigenvalue134

of X′X. The other loadings pi are calculated similarily using the deflated135

forms of X′X and X′y (see Appendix B). They are compromises between136

the main spectral information and the spectral information that explains137

8
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y.138

• The Krylov sequences139

The Krylov sequences can yield the matrix P directly [12]. A sequence140

is obtained by the multiplication of two terms, X′X and X′y for the141

loadings, the first being risen to power i for loading i. For example,142

pK,1 = X′XX′y, pK,2 = X′XX′XX′y and so on; pK,i = (X′X)iX′y.143

The loadings obtained by the Krylov sequence have no particular proper-144

ties, moreover they can be highly (but not completely) colinear, so it is145

convenient to replace them by vectors vi obtained after a Gram-Schmidt146

orthogonalization of the pK,i [3]. One difference between standard PLSR147

and the Krylov sequence is that the vi are orthogonal with a Euclidian148

metric: v′ivj = 0 for i 6= j, whereas the pi are orthogonal with the Σ149

metric: p′iΣpj = 0 for i 6= j. The pi and the vi span the same subspaces,150

but only the pi constitute a Σ orthonormal basis, according to Eq. 10.151

Thus the proposed algorithm for the loadings calculation is not based on152

the Krylov sequences.153

• The weights W154

The relationships between the vectors pi and wi can be determined di-155

rectly from the standard PLSR algorithm or from [13]. However, they156

remain complex and it has not been possible to identify a relationship157

between the matrices P and W of same dimension (P × A). The ap-158

parent proximity between Eqs. 8 and 10 is misleading because (P′W) is159

a bidiagonal matrix [14] and (P′ΣP) is strictly diagonal (see Appendix160

9
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A, Property 4). Therefore, clearly W 6= ΣP and W is neither used nor161

explained here.162

• Properties of Σ163

If Σ is the identity or if Σ is built such that Σ = M′M for any matrix M,164

the inner or dot product defined by f (u,v) = u′Σv verifies the conditions165

of a metric or pseudo-metric. Using the singular value decomposition, it166

applies also to Σ = (M′M)+. So, under our conditions Σ = (X′X)+ has167

the position and the properties of a metric. Moreover, it is a metric asso-168

ciated with a Mahalanobis distance [15]. Each observation i is represented169

by a point i into RP , or a vector xi between the origin and the point i. In170

the particular case where X has been previously centered, (X′X)/N is the171

variance-covariance matrix of the P spectral variables and Σ = (X′X)+172

represents its pseudo-inverse, the coefficient 1/N can be dropped. The173

origin is located at the center of the cloud of points representing the ob-174

servations of X. It is important to note that this metric depends on the175

data, which is not the case for several other regression methods such as176

Multiple Linear Regression (MLR) or Principal Component Regression177

(PCR). If spectra are removed or added to X, then the metric and the178

inner product are changed. As a consequence, the scores and loadings are179

different. For instance, suppose that two PLSR models are built: the first180

one with (X,y) for A latent variables, yielding the loadings P1; the sec-181

ond one with XU defined above and y, yielding P2. The two metrics are182

different, (X′X)+ and (XU ′XU )+ respectively, and so are the two models.183

10
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It is not possible to recover the same models, as reported previously [16],184

but this is logical and not an artifact. With orthogonal and oblique pro-185

jections, standard PLSR is based on very simple and basic rules of matrix186

algebra, and its calculation is correct [16, 17].187

The added value of a generalized Euclidian metric such as Σ is to remove or188

decrease the weights associated with certain directions of the space. Thus,189

these directions become more weak. The Mahalanobis distance lightens190

the weights of the variables which are the most variable and also takes into191

account their relationships with the other variables. This property is rele-192

vant for prediction problems, in which spectral variables of low variability193

may be good predictors. The Mahalanobis metric can accentuate them194

whereas the usual Euclidian metric, used in PCR for instance, cannot.195

Other multivariate methods based on the Mahalanobis distance, such as196

the Hotelling test [15], are perfectly in accord with standard PLSR.197

• The regression vector b198

In studying the geometry of PLSR [4], Phatak concluded that ¨ the PLS199

estimator of the vector of b-coefficients...is an oblique projection of the200

ordinary least square (OLS) estimator ¨ . If Σ is of full rank, the OLS201

estimator is b̂OLS = ΣX′y [6, 4]. From Eq. 10, it is straightforward202

that the oblique projector is ΣP(P′ΣP)−1P′. Thus, the PLSR regression203

vector is the oblique Σ projection of b̂OLS onto the space spanned by the204

loadings pi.205
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• The scores ti and the prediction of new observations206

In the standard PLSR algorithm, a score ti is calculated before the corre-207

sponding loading pi, which suggests that the loadings calculation depends208

on the scores [16]. In fact, the reciprocal is true: from Eq. A.4, scores also209

depend on the loadings for their calculation. To conclude, scores and load-210

ings are calculated together and they depend on each other. An example211

has been shown previously for SIMPLS [3]: standardization of the scores212

in SIMPLS simultaneously standardizes the loadings. It is also concluded213

from Eq. 9 that the so-called scores are true scores: for an observation x214

and for i = 1 to i = A, the score value ti represents the expansion of the215

loading pi.216

For a new observation xv which does not belong to X, the prediction ŷv217

is deduced from Eq. 10 :218

ŷv = x′vΣP(P′ΣP)−1P′ΣX′y

ŷv = x′
U
v ΣX′y (11)

The prediction can be viewed as two steps:219

– First step: an oblique Σ projection of xv onto P, yielding the useful220

part of xv which is xU
v ; the scores of xU

v in the basis { p1,p2, ...pA}221

are: tv = xvΣP(P′ΣP)−1;222

12
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– Second step: ŷv is the Σ inner product between xU
v and X′y.223

The term X′y appears in the regression coefficients of PLSR, PCR and224

OLSR [4, 6]. However, it also has a specific place in PLSR when build-225

ing the loadings, as seen in Appendix B, which leads us to propose the226

following method.227

2.3. VODKA regressions: an outcome of the new presentation of standard PLSR228

PLSR aims at determining scores that maximize (t′iy)2 under the condition:229

‖ wi ‖= 1 [18]. Using Eq. A.4 and the normalization of the ti in the proposed230

algorithm, this constraint can be switched from RN to RP and expressed as:231

maximizing p′iΣX′y under the condition p′iΣpi = 1. The question is whether232

X′y is truly the best vector? Would another vector r of the same dimension be233

more representative of the relevant information from X which explains y?234

This issue has been discussed previously in a context independent from235

PLSR. The net analyte signal (NAS) [19] is the most condensed spectral in-236

formation about the compound to be predicted, and it also constitutes the237

principle of direct calibration [20]. Two definitions of the NAS have been pro-238

posed [21]: (1) the NAS for a component is the part of its pure spectrum which is239

orthogonal to the pure spectra of the other constituents; (2) The NAS is the part240

of the gross spectrum that is useful for prediction. According to the first defini-241

tion, if the pure spectrum k of the compound to be quantified is known, and if242

all other influences have been characterized as spectra or loadings and merged243

into the matrix D, the NAS can be estimated: snas = (IP −D(D′D)−1D′)k.244

13
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The regression coefficients obtained from PLSR or other regression models con-245

stitute another estimation of the NAS [21]. Moreover, in certain conditions, the246

regression vector of PLSR can be exactly the NAS [9]. Therefore, if a good247

approximation of the NAS can be obtained with additional information, this248

justifies using the NAS for value of r.249

When no other information than (X,y) is available, this vector r can be built250

using only X and y. Moreover, r is set in the form: r = X′g(y), where g(y) is251

a vector function of y. The vector X′y from standard PLSR with g(y) = y is252

collinear to the mean of the observations, weighted by the concentrations of the253

response variable. The higher the concentrations are, the more the correspond-254

ing spectra will contribute to r. When X or y are centered, the intermediate255

values in y are not well represented in r, which is obtained mainly by subtracting256

the spectra associated with the lowest values of the response variable from the257

spectra associated with the highest values of the response variable. A different258

weighting is possible which is useful for taking into account the nonlinearities259

between the response variable and the observations, or for simply overexpressing260

the contribution of the response variable. For example, four different functions261

g(y) can be developed along with several other possibilities. Let g1(y) = y2,262

g2(y) = exp(y), g3(y) =
√

(y) and g4(y) = log(y) be four functions in which263

each result is a vector obtained after: raising each of the elements of y to the264

power of 2 (g1); taking the exponential of the elements of y (g2); the square265

root of the elements of y (g3); or the logarithm of the elements of y (g4). If we266

suppose that all the elements of y are larger than 1, then using g1(y) or g2(y)267

14
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will accentuate the weight of the highest concentrations whereas using g3(y) or268

g4(y) will reduce the weight of the highest concentrations.269

New regression models can be obtained by switching the vector X′y of stan-270

dard PLSR with another vector r of the same dimension. The loadings are first271

calculated with the following algorithm derived from Appendix B:272

• Step 1:273

p1 = X′Xr

p1 = p1(p′1Σp1)−0.5

• Step i+ 1:274

pi+1 = P ′⊥1:iX′XP ′
⊥
1:ir

pi+1 = pi+1(p′i+1Σpi+1)−0.5

Other parameters, such as scores and regression coefficients are obtained275

with Eqs. A.6 and 10 respectively. From Figure B.2, it is straightforward that a276

choice for r different from X′y leads to a new orientation of the pi vectors and of277

the useful space they span. For the models to be relevant, however, the choice of278

r cannot be left to chance. It is advisable to first review the available knowledge279

regarding the data to be processed, and then to choose the most useful elements280

(e.g. an estimation of the NAS) to build r. This step is summarized in the281

proposed name for this method: vector orientation decided through knowledge282

assessment (VODKA) regression.283
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3. Applications284

We used VODKA in two applications: the quantification of ethanol in fer-285

menting wines and of mannoproteins in polysaccharide extracts. These appli-286

cations presented several respective differences: the samples were liquid and287

powder, the spectra were NIR and MIR, and they employed different numbers288

of samples for calibration. However, the main difference was in the nature of289

the compounds of interest: ethanol is a single compound, whereas the manno-290

proteins are a family of similar molecules with slight differences.291

3.1. Material and methods292

For each of the two applications, spectra X were centered, but not the ref-293

erence values y which contained the raw values. Four models were calculated294

depending on the choice of the vector r, see Table B.2. For the classical PLSR295

model mplsr, g(y) = y, so r was set to X′y, which is exactly the same whether296

y is centered or not, provided X is centered. Two other functions were chosen,297

leading to the model my2 with g(y) = y2 and r = X′y2, and model mexp(y)298

with g(y) = exp(y) and r = X′exp(y). Finally, for model mnas, r = snas where299

snas is an estimation of the NAS. The root-mean square error of cross-validation300

(RMSECV ) was calculated for each of the four models and used to determine301

the optimal number of latent variables, which were chosen among the lowest302

values and according to the shape of the RMSECV . All the calibration mod-303

els were applied to the validation dataset (XV ,yV ), then characterized by the304

root-mean square error of prediction (RMSEP ) and the norm of the regression305

16

Author-produced version of the article published in Chemometrics and Intelligent Laboratory Systems, 2013, 120, 116-125. 
The original publication is available at http://www.sciencedirect.com 
DOI : 10.1016/j.chemolab.2012.11.002 



vectors b. Low RMSEP values and low norms for b are expected for the best306

models.307

3.1.1. Application 1: quantification of the ethanol concentration in fermenting308

musts309

This application aimed at quantifying ethanol in wines using near-infrared310

spectroscopy. Spectra were acquired with a Jasco spectrophotometer (optical311

length 1 mm, wavelength range 500−2500 nm, acquisition step 2 nm, water ref-312

erence) at the Skalli-Fortant de France winery (Sète, France). The wavelength313

range was reduced to 500 − 1898 nm such that P = 700 spectral variables, for314

reasons of compatibility with fiber optics. A vertical shift of baselines was per-315

formed such that each corrected absorbance at 1170 nm was null. The original316

data was split into two datasets: (1)X: the N first 480 samples of ferment-317

ing musts, for calibration; and (2) XV : the last 1000 samples of fermenting318

musts, for validation. A subset of X was called Xm and contained 165 musts319

before fermentation, without ethanol. The reference values were expressed as320

a percent volume, e.g. 12% vol., and were measured with a WineScan MIR321

spectrophotometer (Foss) whose standard error of prediction was estimated to322

be 0.2%. The two datasets formed vectors y and yV of dimensions (480 × 1)323

and (1000 × 1) respectively, and were associated with X and XV . These data324

were completed by the pure spectra of ethanol, water, glycerol and lactic acid325

(ketch,kwater,kglyc,klact) acquired against air using the same Jasco spectropho-326

tometer.327

Matrices X and XV were centered around the row mean of X. The pure328
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spectrum of ethanol yielded k. A matrix D of dimensions (700×7) gathered all329

the influences to remove: the first four eigenvectors of a PCA performed onto330

Xm; and the spectra kwater,kglyc and klact. The NAS represented by the vector331

snas was calculated using k and D, as described above. The RMSECV and332

the RMSEP were calculated from 1 to 20 latent variables.333

3.1.2. Application 2: quantification of mannoproteins in wines334

Wines produced from healthy grapes contain three main families of polysac-335

charides: arabinogalactan-proteins (AGPs), rhamno-galacturonan II (RG-II)336

and mannoproteins (MPs). We were interested in quantifying the MPs which337

impact on the physical and sensory properties of wines.338

The calibration dataset of 40 samples was built with powder mixtures of339

four pure fractions: RG-II, neutral MP (MP0), neutral (AGP0) and acidic340

(AGP4) AGPs, as previously described [22]. The validation dataset consisted341

of powdered polysaccharide extracts from 65 wines. Spectra acquisition were342

performed with an Avatar 360 MIR spectrophotometer (Nicolet) equipped with343

an attenuated total reflectance cell and germanium crystal. The spectra in the344

range of 950− 1850 cm−1 were standardized to adjust the absorbance to 0 and345

1 for the respective wavenumbers of 1850 cm−1 and 1035 cm−1, with the latter346

corresponding to the highest glucoside bond absorbance peak. MP reference347

values were deduced for the calibration dataset from the experimental design,348

and were obtained for the validation dataset by a chemical method involving349

hydrolysis and quantification by gas chromatography of the alditol acetates of350

the neutral sugars. The raw data were X, (40× 951), and XV , (65× 951), with351
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the associated response variables y and yV . The NAS was estimated with k,352

the pure spectrum of MP0, and D, which contained the spectra of RG-II and353

seven different fractions of AGPs.354

3.2. Results355

3.2.1. Application one356

Standard errors of cross validation and of prediction. According to theRMSECV357

values, the optional numbers of latent variables chosen for models mplsr, mnas,358

my2 and mexp(y) were 10, 10, 5 and 10 respectively (Table B.3). The corre-359

sponding RMSEP were similar: 0.92, 0.92, 0.92 and 0.90. The chosen number360

of latent variables was optimal for PLSR because it corresponded to the lower361

RMSEP . However this was not the case for the three other models, which362

presented their best RMSEPs for several latent variables within a range equiv-363

alent to or slightly better than the best one of mplsr. Thus, a small amount of364

error in the number of latent variables may be less serious for mnas, my2 and365

mexp(y) than for mplsr.366

Comparison of the regression vectors b. For each of the four models, the regres-367

sion vectors leading to the lower RMSEPs are presented in Figure B.3. It is368

noteworthy that the vectors of models mplsr and my2 are very similar, but not369

equal; they seem to converge towards the same optimal solution. On the other370

hand, the b-coefficients vector for mexp(y) presents certain common peaks with371

the mplsr and the my2 vectors, but its global shape is very different. The shape372

of the b-coefficients vector for mnas has nothing in common with the three oth-373
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ers; but it is very close to the NAS (Figure B.3(b)). Thus three different (but374

equivalent in terms of prediction) solutions were identified by the four models.375

The shape of r provides little information about the shape of the b-coefficients376

and the quality of prediction. For example, although r and b are very different377

for mplsr and very similar for mnas, these two models are nevertheless equivalent378

in terms of prediction errors.379

The norms of the regression vectors for the four models and different latent380

variables are compared in Table B.4. In general, the norms increase with the381

number of latent variables. However, the standard PLSR model is the only382

model for which the norm increases steadily. For the three other models, the383

norm can decrease locally, for example mnas and mexp(y) decrease between 10384

and 11 latent variables. As a consequence, models with high numbers of latent385

variables can yield regression vectors of low norm, in contrast to standard PLSR.386

3.2.2. Application two387

Standard errors of cross validation and of prediction. The results are summa-388

rized in Table B.5. The RMSECV values of the four models, calculated for389

1 to 30 latent variables, decrease steadily. The choice for A should be close to390

30, which is not reasonable for only 40 samples. Thus, the RMSECV cannot391

be used here for the determination of A. However, RMSEP values shows that392

good predictions were obtained with a low number of latent variables. In this393

example, the lowest RMSEP for standard PLSR is 0.058 for seven latent vari-394

ables. The model mnas is difficult to compare to mplsr, since it presents lower395

RMSEP values but was obtained with a higher number of latent variables. On396
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the other hand, it is obvious that my2 and mexp(y) perform better than mplsr:397

they present equivalent or lower RMSEP values in a range of 12 latent vari-398

ables, compared to the unique latent variable for mplsr in the same range of399

RMSEP values.400

Comparison of the regression vectors. We compared the vector X′y and the401

NAS to the regression vectors resulting from the four models, Figure B.4. Two402

spectral regions were identified: (1) 1200− 950 cm−1, in which the same peaks403

are found in all six examples, that is X′y, the NAS and the four regression404

vectors; and (2) 1850 − 1200 cm−1, in which X′y and the NAS have similar405

shapes, but the b-coefficients resemble noise near the baseline, with mplsr being406

the most noisy.407

In this application, the regression vectors tended towards a unique optimal408

solution, in contrast to Application one in which several solutions were identi-409

fied. We suspect that the spectral information of each chemical compound in410

the Application two is more precise, specific peaks more localized within the411

spectrum and thus more easily identified in the MIR spectra than in the NIR412

spectra of Application one, leading to a unique solution. The relevant informa-413

tion in the 1200 − 950 cm−1 region appears to be treated in the same way by414

the four models. Thus, the differences in their predictive abilities lie in the way415

noise is minimized in the 1850− 1200 cm−1 region.416

We compared the norms of the regression vectors for the four models and the417

different latent variables (Table B.6) and found the comparisons to be similar418

to those made for Application one. Moreover, for the selected latent variables,419
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the regression vector of standard PLSR had the highest norm, which is not a420

good characteristic.421

4. Discussion and conclusion422

We have written a new algorithm for standard PLSR. We introduced a new423

parameter, a matrix Σ which has the position of a metric or pseudo-metric. We424

also dropped two parameters: the weights W and the loadings c for y. We425

showed that the deflation of X into RN can be replaced by a deflation into RP
426

by means of the loadings and the metric Σ. These results have several con-427

sequences. Firstly, the extraction of the useful information from X is the Σ428

oblique projection of X onto the latent structures represented by the loadings,429

according to PLSR. The work of Phatak is completed by the identification of430

the metric and the space. Secondly, from a mathematical point of view, a metric431

and a basis of a subspace are independent elements of a vectorial space. Either432

Σ or P can be replaced into Eqs. A.6 and 10 by another metric or another433

matrix containing an other basis respectively, and the mathematics remain cor-434

rect. This point specifically addresses the metric that attempts to weight the435

variables and to take into account their collinearity. The more comprehensive436

the observational data are within the space spanned by the spectra, the bet-437

ter the metric will be defined. Suppose that the observations associated with438

a response variable and represented by X have been extracted from a much439

larger database Xt. For example, the whole database of a spectrometer that440

has been used for years for calibration is Xt. Then, if a new parameter is cali-441
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brated, the response values are only available for a small subset of Xt which is442

X. Since a much better representation of the space spanned by the spectra can443

be obtained from Xt than from X, Σt = (X′tXt)
+ is a better estimation of the444

metric to be applied than Σ = (X′X)+. Thus the PLSR should be built with445

the metric Σt rather than Σ. This applies also to the cross-validation, which446

consists of extracting observations for prediction and calculating a model with447

the remaining observations. Instead of calculating a new metric at each loop, it448

seems mathematically more logical to determine a unique metric which is used449

independently from the set of observations being processed at any given time.450

This also would increase the calculation speed.451

This new presentation of standard PLSR allows the deflation of X into RP ,452

yielding a new algorithm for the building of the loadings. This puts forward an453

inner parameter, a vector r whose value is X′y for standard PLSR. We show454

that it is also a tool for orienting the calculation of the loadings, that is, the455

information contained within the spectra used by the model for prediction. The456

choice of r = X′y is very likely to yield good predictions, but in certain cases457

other choices for r may be possible and yield VODKA regressions. Like stan-458

dard PLSR, VODKA models use orthogonal scores and Σ-orthogonal loadings.459

Among the first motivation of the authors of PLSR was to find relevant latent460

variables (orthogonal scores into RN , loadings into RP ) that could explain an461

observation [23]. Our proposed modification aims at doing that also, but dif-462

ferent choices for r can lead to dramatically different solutions, whereas the463

different PLSR algorithms tend to converge towards the same solution [7]. To464
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avoid confusion, the PLSR acronym has not been linked to VODKA, even if465

standard PLSR is one of its particular solutions.466

Standard PLSR and VODKA both use orthogonal scores into RN associated467

with orthogonal loadings into RP with the metric Σ to identify latent variables468

relevant for prediction. However, these two methods are different in terms of469

means. When calculating the loadings by the new algorithm, standard PLSR470

seeks into (RP ,Σ) vectors of norm 1 whose inner product with X′1:iy is maxi-471

mal; and Vodka seeks into (RP ,Σ) vectors of norm 1 whose inner product with a472

vector ri is maximal, with ri = P ′⊥1:ir. The results of the two methods can differ.473

Standard PLSR takes into account all the information within the observations474

which is correlated to the response variable; that is, direct information from the475

response variable itself, plus indirect information provided by other compounds476

correlated to the response variables. This property is a strength because good477

models are often obtained with the indirect information, and sometimes without478

any contribution by the direct information. It is also a weakness because un-479

expected modifications in the correlations among the different compounds will480

modify the predictions and lead to lower robustness. VODKA can be a solution481

to these situations. One strength is that it allows the introduction of external482

and selected knowledge to be introduced in the calculation process of the regres-483

sion, and this enhances performance. In the two applications examined here,484

VODKA was able to produce models with prediction errors equivalent to or485

slightly lower than the errors associated with standard PLSR models. Perhaps486

the best result of VODKA has been to yield large ranges of the best prediction487
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errors, which implies that these models are more stable near the optimal number488

of latent variables.489

In our first application of VODKA, we obtained three different models with490

comparable performances. This raises the question of the unicity of a best re-491

gression model. According to definition 1 of the NAS, one unique and best492

solution should exist. However definition 2 allows a wider interpretation and is493

more in accordance with the functioning of PLSR. If several compounds con-494

tribute to the prediction of the compound of interest, increasing the contribution495

of one will decrease the contribution of the others, so several equivalent solutions496

may exist. An other possible explanation lies in the nature of the spectra, for497

example NIR vs MIR, as suggested by the second application. However, we do498

not have enough elements or applications to identify the most likely hypothesis499

for these differences.500

To conclude, VODKA regression provides an opportunity to take into ac-501

count all the available information, not just that from the calibration dataset,502

allowing regression models to be built which can present some advantages over503

those produced by standard PLSR.504
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Appendix A. Properties of standard PLSR562

Several properties of standard PLSR are recalled or developed. They are563

logically ordered to demonstrate the seventh and last property, each of them564

relying on the previous ones.565

• Property 1: the projection of the ti onto the space spanned by the columns566

of X567

The ti belong to the subspace of RN spanned by the columns of X [10].568

Thus their orthogonal projection onto X is invariant:569

X(X′X)+X′ti = ti (A.1)
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• Property 2: the relationship between (t′iti) and (p′iΣpi)570

571

Equation 5 can be simplified [24] leading to:572

pi = X′ti(t
′
iti)
−1 (A.2)

Thus:573

p′iΣpi = (t′iti)
−1t′iX(X′X)+X′ti(t

′
iti)
−1

574

p′iΣpi = (t′iti)
−1 (A.3)

In his presentation of SIMPLS [3], De Jong wrote a similar equation:575

P′ΣP = T′T = IA, which was developed under the hypothesis that the ti576

had been normed and thus, for this particular case, (t′iti)
−1 = (t′iti) = 1.577

However, for standard PLSR and current versions of SIMPLS for which578

the scores are not normed, only Equation A.3 is valid.579

• Property 3: expression of ti in terms of X, pi and Σ580

581

Each term of Equation A.2 is multiplied on the left by XΣ, that is582

X(X′X)+; the terms are permuted and simplified according to Equation583

A.1 and then Equation A.3:584

ti = XΣpi(p
′
iΣpi)

−1 (A.4)
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• Property 4: Σ-orthogonality of the pi585

586

For i 6= j [10]:587

p′iΣpj = 0 (A.5)

Moreover the matrix P′ΣP is diagonal and the nonzero term at the ieme
588

line and ieme column is p′iΣpi.589

• Property 5: expression of T in terms of X, P and Σ590

591

Because of Property 4, Equation A.4 leads to the Property 5:592

T = XΣP(P′ΣP)−1 (A.6)

• Property 6: expression of the b-coefficients using X, y, Σ and P593

594

ŷ is obtained after an orthogonal projection of y onto T [4], then the595

value of T is replaced by its value from Equation A.6 and the expression596

simplified:597

ŷ = XΣP(P′ΣP)−1P′ΣX′y

Equation 10 is straightforward.598
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• Property 7: The relationship between XP⊥1:i and T ⊥1:iX599

600

Let P⊥1:i be the oblique Σ anti-projector to P1:i, and T ⊥1:i the orthogonal601

anti-projector to T1:i. Due to Property 4:602

P⊥1:i = IP −
k=i∑
k=1

Σpk(p′kΣpk)−1p′k

The matrix X1:i can be written by means of two expressions. From Equa-603

tion 6, it is obvious that X1:i = T ⊥1:iX. Using the values of ti from Equa-604

tion A.4, it is possible to substitute the ti into Equation 6. Thus, a new605

expression of X1:i is deduced:606

X1:i = X1:i−1 −XΣpi(p
′
iΣpi)

−1p′i

= X−
k=i∑
k=1

XΣpk(p′kΣpk)−1p′k

= XP⊥1:i

Finally:607

X1:i = T ⊥1:iX = XP⊥1:i (A.7)

The anti-projection of X orthogonally to T into RN gives the same result608

as its oblique Σ anti-projection to P into RP .609
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Appendix B. New calculation of the pi into RP from standard PLSR610

The deflation of y is not necessary when X is deflated [25], so equation 1611

can first be simplified and then written using T ⊥1:i:612

wi+1 = X′1:iy

= X′T ⊥1:iy

The combination of Equations 1, 3 and 5 from standard PLSR plus Equation613

A.7 leads to:614

pi+1 = αi+1X
′T ⊥1:iT ⊥1:iXX′T ⊥1:iy (B.1)

= αi+1X
′T ⊥1:iXX′T ⊥1:iy (B.2)

= αi+1P ′
⊥
1:iX

′XP ′⊥1:iX′y (B.3)

with αi+1 a nonzero scalar associated to pi+1. The value of αi+1 is not615

important because it is simplified into Equation 10, but vectors pi should have616

small norms to improve the stability of the calculation. For this reason, the617

pi are Σ-normalized to 1 such that they form a Σ-orthonormal basis of the618

subspace of RP containing the useful information. The new algorithm for the619

calculation of the pi is thus written:620

• Step 1:621

p1 = X′XX′y

p1 = p1(p′1Σp1)−0.5
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• Step i+ 1:622

pi+1 = P ′⊥1:iX′XP ′
⊥
1:iX

′y

pi+1 = pi+1(p′i+1Σpi+1)−0.5
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X XU

 XU =  X ∑P (P'∑P)-1P'

  T

y    ŷ

 ŷ =  T (T' T)-1T' y

( P, Σ)

( T, IN)

Figure B.1: Standard PLSR as a double projection. The upper panel shows an oblique Σ-

projection of X onto P yielding XU and its scores T. The lower panel shows an orthogonal

projection of y onto T yielding ŷ.
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X matrix (N × P ), N observations and P spectral variables

y vector (N × 1), the response variable

X1:i anti-projection of X orthogonally to { t1, t2, ...ti}

y1:i anti-projection of y orthogonally to { t1, t2, ...ti}

T matrix (N ×A), scores for X

P matrix (P ×A), loadings for X

T1:i, P1:i matrices containing the i first columns of T and P

W matrix (P ×A), weights for X

c vector (A× 1), loadings c1, c2, ...cA for y

Σ Moore-Penrose pseudo-inverse of (X′X)

IN , IP identity matrices for RN and RP spaces

r vector (P × 1)

T ⊥1:i (N ×N) orthogonal anti-projector to { t1, t2, , ...ti}

P⊥1:i (P × P ) oblique anti-projector to { p1,p2, ...pi} with the metric Σ

ti score vector at step i of standard PLSR; also ith column vector of T

pi loading vector at step i of standard PLSR; also ith column vector of P

wi weight vector at step i of standard PLSR; also ith column vector of W

b regression vector, or vector of b-coefficients, for A latent variables

A number of latent variables; also dimension of the PLSR model and rank of T,W and P

Table B.1: Main notations
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Figure B.2: Geometric building of the loadings pi using standard PLSR (from Figure 13 of

Phatak [4])
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Model Data Reference r

values

mplsr X y X′y

mnas X y snas

my2 X y X′y2

mexp(y) X y X′exp(y)

Table B.2: The four models obtained using VODKA regression with different values for r.
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Latent RMSECV RMSEP

variables mplsr mnas my2 mexp(y) mplsr mnas my2 mexp(y)

4 0.96 1.07 0.68 1.36 1.76 1.99 1.04 2.59

5 0.89 0.99 0.61 1.25 1.50 1.90 0.92 2.31

6 0.73 0.90 0.62 1.22 1.20 1.76 0.91 2.17

7 0.68 0.72 0.61 1.12 1.06 0.87 0.90 2.22

8 0.67 0.68 0.58 1.02 0.99 0.89 0.96 2.19

9 0.64 0.64 0.57 0.72 0.93 0.92 0.96 1.11

10 0.56 0.56 0.56 0.63 0.92 0.92 0.94 0.90

11 0.56 0.56 0.56 0.61 0.95 0.94 0.94 0.89

12 0.56 0.56 0.55 0.57 1.02 0.99 0.96 0.93

Table B.3: Application 1: The standard errors of cross-validation (RMSECV ) and prediction

(RMSEP ) for the four models and a range including the lower latent variables. RMSEP

values less than or equal to 0.92 are represented in bold.
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Latent mplsr mnas my2 mexp(y)

variables

4 52.8 137.7 51.6 50.7

5 56.3 114.3 54.2 50.1

6 63.7 105.7 57.9 50.9

7 68.8 117.8 81.9 51.3

8 70.8 190.2 94.3 64.7

9 76.7 189.4 100.1 144.5

10 98.4 204.9 98.8 99.3

11 116.0 147.9 110.8 95.2

12 152.2 206.8 142.4 139.9

Table B.4: Application 1: The norms of the regression vectors b for models mplsr, mnas, my2

and mexp(y) of Application 1. Values corresponding to the selected number of latent variables

are shown in bold
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Figure B.3: Spectra and b-coefficient vectors for Application 1. Spectra of X′y (a) and snas

(b). The coefficient vectors for models mplsr (c), mnas (d), my2 (e) and mexp(y) (f) were

calculated with 10, 7, 7 and 11 latent variables, respectively.
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Latent RMSECV RMSEP

variables mplsr mnas my2 mexp(y) mplsr mnas my2 mexp(y)

6 0.076 0.059 0.056 0.069 0.073 0.15 0.17 0.069

7 0.083 0.060 0.048 0.051 0.058 0.19 0.058 0.050

8 0.053 0.059 0.051 0.062 0.076 0.15 0.058 0.050

9 0.049 0.049 0.048 0.041 0.079 0.12 0.051 0.049

10 0.042 0.047 0.047 0.046 0.090 0.089 0.059 0.047

11 0.039 0.040 0.041 0.038 0.088 0.084 0.059 0.051

12 0.039 0.042 0.042 0.043 0.096 0.071 0.054 0.050

13 0.037 0.039 0.042 0.043 0.095 0.061 0.053 0.050

14 0.035 0.039 0.035 0.036 0.096 0.060 0.053 0.045

15 0.029 0.041 0.035 0.033 0.095 0.059 0.053 0.046

16 0.029 0.033 0.031 0.030 0.094 0.059 0.050 0.049

17 0.029 0.036 0.029 0.029 0.094 0.056 0.052 0.056

18 0.027 0.028 0.029 0.028 0.094 0.054 0.054 0.059

19 0.027 0.030 0.028 0.027 0.094 0.057 0.065 0.058

Table B.5: The standard errors of cross-validation (RMSECV ) and prediction (RMSEP ) for

the four models and a range including the lower latent variables of Application 2. RMSEP

values less than or equal to 0.058 are represented in bold.
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Latent mplsr mnas my2 mexp(y)

variables

6 1.44 1.31 1.16 1.15

7 1.52 1.14 1.17 1.15

8 1.61 1.21 1.22 1.19

9 1.71 1.23 1.25 1.20

10 1.77 1.21 1.24 1.25

11 1.8 1.21 1.28 1.24

12 1.85 1.25 1.30 1.24

13 1.86 1.28 1.31 1.32

14 1.86 1.34 1.30 1.36

15 1.86 1.46 1.31 1.34

16 1.86 1.42 1.39 1.50

17 1.86 1.42 1.41 1.52

18 1.86 1.42 1.42 1.52

19 1.86 1.44 1.41 1.53

Table B.6: The norms of the regression vectors b for models mplsr, mnas, my2 and mexp(y)

of Application 2. Values corresponding to the selected number of latent variables are shown

in bold.
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Figure B.4: Spectra and b-coefficient vectors for Application 2. Spectra of X′y (a) and snas

(b). The b-coefficient vectors for models mplsr (c), mnas (d), my2 (e) and mexp(y) (f) were

calculated with 7, 18, 9 and 10 latent variables, respectively.
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