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Competitive exclusion for chemostat equations

with variable yields∗

Tewfik Sari †

tewfik.sari@irstea.fr

Abstract

In this paper, we study the global dynamics of a chemostat model
with a single nutrient and several competing species. Growth rates are
not required to be proportional to food uptakes. Our approach is based
on the construction of Lyapunov functions. The Lyapunov functions ex-
tend those used by Hsu [SIAM J. Appl. Math. (1978) 34:760-763] and by
Wolkowicz and Lu [SIAM J. Appl. Math. (1992) 57:1019-1043] in the case
when growth rates are proportional to food uptakes. Our result general-
izes a large variety of previous results obtained by Lyapunov techniques.
Keywords Chemostat, Competitive exclusion principle, Lyapunov func-
tion, Global asymptotic stability, Variable yield

1 Introduction and main result

The aim of this paper is to show that under certain conditions the Competi-
tive Exclusion Principle (CEP) holds for the following competition for a single
resource model

S′ = D[S0 − S]−
N∑
j=1

pj(S)xj ,

x′
i = [qi(S)−Di]xi, i = 1 · · ·N,

(1)

where S(t) and xi(t), i = 1 · · ·N , denote respectively the nutrient concentra-
tion and the concentration of the ith competing species at time t. The input
concentration S0 and the removal rates D and Di are assumed to be constant.
The uptake rate pi(S) satisfies

pi(0) = 0 and pi(S) > 0 for S > 0. (2)
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The growth rate qi(S) satisfies

qi(0) = 0 and qi(S) > 0 for S > 0. (3)

The functions yi(S), defined by

yi(S) =
qi(S)

pi(S)
, i = 1 · · ·N, (4)

are the growth yields. The model (1) was considered by Arino, Pilyugin and
Wolkowicz [2] as an extension of the classical chemostat model

S′ = D[S0 − S]−
N∑
i=1

qi(S)

Yi
xi,

x′
i = [qi(S)−Di]xi, i = 1 · · ·N,

(5)

for which the yields yi(S) = Yi are constant. The model (5) occupies a central
place in mathematical ecology, see the monograph of Smith and Waltman [22].
It is a model of the dynamics of microbial competition. Basically, the chemostat
consists of a nutrient input, pumped at a constant rate into a well-mixed culture
vessel. The culture vessel contains the microorganisms that are growing and
competing for the nutrient. Volume is kept constant by pumping the mixed
contents out at the same rate. The smallest positive value of the concentration
substrate S = λi defined by the condition qi(S) = Di, where the growth qi(S)
of xi is balanced by the removal rate Di is called the break-even concentration
for the ith species.

Let us denote fi(S) = qi(S)−Di, then (1) reduces to the model

S′ = D(S0 − S)−
N∑
j=1

pj(S)xj

x′
i = fi(S)xi, i = 1 · · ·N,

(6)

considered by Fiedler and Hsu [7]. The growth rate fi(S) satisfies

fi(S) < 0 for 0 ≤ S < λi and fi(λi) = 0, (7)

where λi are the break-even concentrations. Without loss of generality (see
Section 2), we assume that D = 1 and S0 = 1 in (6). The system becomes

S′ = 1− S −
N∑
j=1

pj(S)xj ,

x′
i = fi(S)xi, i = 1 · · ·N.

(8)

Coexistence of the N species is a fundamental question on the model (8) of
competition for a single resource. Looking for coexistence at positive equilibria
we have to solve equations fi(S) = 0 simultaneously for all i = 1 · · ·N . In
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general, for N ≥ 2, these equations cannot be solved for the same value of S.
Thus, generically, (8) can have the following equilibria: the washout equilibrium

E0 = (1, 0, · · · , 0), (9)

where all species go extinct, and equilibria Ei, i = 1 · · ·N , where all components
of Ei vanish, except for the first and the (i+ 1)th, which are

S = S∗, xi =
1− S∗

pi(S∗)
,

where S∗ ∈]0, 1[ satisfies fi(S
∗) = 0. Hence, at any equilibrium point Ei, all

but one species go extinct.
Since f(λi) = 0, the break-even concentration S∗ = λi gives rise to an

equilibrium point Ei for the system, if and only if λi < 1. A well-known open-
problem in the theory of the chemostat is to prove the global asymptotic stability
of the equilibrium point Ei with the lowest break-even concentration. If this
equilibrium is globally asymptotically stable (GAS), then the CEP holds: only
one species survives, namely the species which makes optimal use of the resource.
The reader is referred to [23], for complements and details on the CEP. Most of
the results on the CEP for (1) and (5) have been based on Lyapunov functions
[3, 9, 14, 20, 21, 25, 26] . For a survey of constructing Lyapunov functions in
the chemostat, the reader is referred to [10]. We simply recall here that Hsu [9]
proved the CEP for the Monod case of (5), when the growth functions are

qi(S) =
aiS

bi + S
, (10)

and Wolkowicz and Lu [25] extended the result of [9] to (5) with more general
growth functions.

Instead of a Lyapunov function approach, Fiedler and Hsu [7] applied a
multi-dimensional Bendixon-Dulac criterion to exclude periodic solutions. Un-
der some technical conditions on the functions fi and pi they proved that (8)
does not possess positive non-stationary periodic orbits. In our previous works
[20, 21], we showed that both Lyapunov functions used by Hsu [9] and Wolkow-
icz and Lu [25] can be extended to the variable yields case model (1). The aim of
this paper is to show that these Lyapunov functions can also be used to obtain
the CEP for (8).

A necessary condition to avoid washout of the species, and global conver-
gence towards the washout equilibrium E0 defined by (9), is that λi < 1 for at
least one species. Assume that the species are labeled so that 0 < λ1 < 1. Then

E∗
1 = (λ1, x

∗
1, 0, · · · , 0), (11)

where x1 = x∗
1 = P1(λ1) is an equilibrium. Here

P1(S) =
1− S

p1(S)
. (12)

Using linearization of (8) about E∗
1 one proves that:
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Lemma 1. The equilibrium (11) is locally exponentially stable if and only if
f ′
1(λ1) > 0 and P ′

1(λ1) < 0.

We consider the global asymptotic stability of E∗
1 . Our main result is

Theorem 1. Assume that (2) and (7) hold. Assume that λ1 < 1 and for all
0 < S < 1,

(S − λ1)f1(S) > 0, for S �= λ1, (13)

(S − λ1)(P1(S)− P1(λ1)) < 0, for S �= λ1, (14)

where P1(S) is defined by (12). Assume that there exist constants αi > 0 for
each i ≥ 2 satisfying λi < 1, such that for all 0 < S < 1,

f1(S)pi(S) > αifi(S)(1 − S). (15)

Then the equilibrium E∗
1 is GAS for (8) with respect to the interior of the positive

cone.

The proof is given in Section 3. Notice that the following property holds.

Lemma 2. The conditions λ1 < 1 and (15) imply that λ1 < λi for all i ≥ 2.

Proof. Assume that there exists i ≥ 2 such that λi < λ1. Then, there exists
S ≤ λ1 such that fi(S) > 0. Hence, since S ≤ λ1 < 1, fi(S)(1−S) > 0. On the
other hand, using (7), f1(S) ≤ 0. Hence, the inequality (15) is violated.

This lemma shows that the winning species x1 of Theorem 1 has the lowest
break-even concentration, in accordance with the CEP for models of competition
for a single resource [23].

The paper is organized as follows. In Section 2 we give some preliminary
lemmas. In Section 3 we show how the Lyapunov function of Wolkowicz and
Lu [25] can be extended to (8) and used to obtain Theorem 1. We show in this
section that the result of [20] for (1), which extends the result of [25] for (5), is a
corollary of Theorem 1. We give also graphical interpretations of the conditions
(13), (14) and (15). In Section 4, we show how the Lyapunov function of Hsu [9]
can be extended to (8) and used to obtain Theorem 2, which is another global
asymptotic stability result of E∗

1 for (8). Theorem 2 can be obtained also as a
corollary of Theorem 1 (see Proposition 1). We show in this section that the
result of [9] for (5) with Monod functions (10), and the result of [21] for (1) are
corollaries of Theorem 2. In Section 5 we discuss the single species case N = 1.
In Section 6 we apply our result to the model with Monod growth functions
(10) and linear yields. In Section 7 we discuss some of the CEP results based
on Lyapunov functions and we compare Theorem 1 with the results of [7] based
on a Bendixon-Dulac approach.
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2 Preliminary results

Let us prove first that we can we assume that D = 1 and S0 = 1 in (6). Indeed,
under the change of variables

S =
S

S0
, t = Dt, pi(S) =

pi(S
0S)

S0D
, f i(S) =

fi(S
0S)

D
,

equations (6) take the form

dS

dt
=

1

S0D

dS

dt
= 1− S −

N∑
j=1

pj(S)xj ,

dxi

dt
=

1

D

dxi

dt
= f i(S)xi, i = 1 · · ·N.

Dropping the bars, one obtains (8). Recall that fi(0) < 0, so that the concen-
tration of the species xi is decreasing when the concentration of nutrient is too
small. The smallest positive zero S = λi of fi is the break-even concentration of
the ith species xi. We adopt the convention λi = ∞ if fi(S) < 0 for all S > 0.
We need the following lemmas.

Lemma 3. The non-negative cone is invariant under the flow of (8) and all
solutions are defined and remain bounded for all t ≥ 0.

This lemma is simply Theorem 4.1 in [2].

Lemma 4. If for some species xi, the inequality (S − λi)fi(S) > 0 is satisfied
for all 0 < S < 1, S �= λi, then S(t) < 1 for all sufficiently large t and all initial
condition .

This lemma can be obtained using arguments similar to that given in the
proofs of Lemma 2.9 in [2] and Lemma 2.1 in [25].

Lemma 5. For all solutions of (8), if λi ≥ 1 then xi(t) → 0 as t → ∞.

This lemma can be obtained using arguments similar to that given in the
proofs of Lemma 4.2 in [2] and Lemma 2.2 in [25].

3 Extension of the Lyapunov function of Wolkow-
icz and Lu

The Lyapunov function used by Wolkowicz and Lu [25] in the constant yields
case (5) is

VWL =
S0 − λ1

D1

∫ S

λ1

q1(σ)−D1

S0 − σ
dσ +

1

Y1

∫ x1

x∗
1

ξ − x∗
1

ξ
dξ +

N∑
i=2

ci
Yi

xi. (16)
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with suitable constant ci > 0. Using the notations in (8), and since S0 was

rescaled to 1, the function in the first integral of (16) is simply equal to f1(σ)
1−σ .

Multiplying (16) by the constant D1

1−λ1
= Y1

x∗
1
, gives the following function

V =

∫ S

λ1

f1(σ)

1− σ
dσ +

1

x∗
1

∫ x1

x∗
1

ξ − x∗
1

ξ
dξ +

N∑
i=2

αixi, (17)

where αi are constants to be determined. This is a Lyapunov function for (8)
which permits to prove Theorem 1 as shown below.

Proof. (Theorem 1) From Lemmas 4 and 5 it follows that there is no loss of
generality to assume that λi < 1 for i = 1 · · ·N and to restrict our attention
to 0 < S < 1. Consider the function V = V (S, x1, · · · , xN ) given by (17)
where αi are positive constants satisfying (15). The function V is continuously
differentiable for 0 < S < 1 and xi > 0 and positive except at point E∗

1 . The
derivative of V along the trajectories of (8) is

V ′ =
f1(S)

1− S
S′ +

x1 − x∗
1

x∗
1x1

x′
1 +

N∑
i=2

αix
′
i.

Since x∗
1 = P1(λ1) and using (8), V ′ is written

V ′ =
f1(S)

1− S

[
1− S −

N∑
i=1

pi(S)xi

]
+

1

P1(λ1)
[x1 − P1(λ1)]f1(S) +

N∑
i=2

αifi(S)xi.

The terms f1(S)
1−S (1−S) and − 1

P1(λ1)
P1(λ1)f1(S) are canceled. Hence, using (12),

V ′ = x1f1(S)

[
1

P1(λ1)
− 1

P1(S)

]
+

N∑
i=2

xi
αifi(S)(1− S)− f1(S)pi(S)

1− S
.

Using (13) and (14), the first term of the above sum is non-positive for 0 < S < 1
and equals 0 if and only if S = λ1 or x1 = 0. Using (15), the second term is
non-positive for 0 < S < 1 and equals 0 if and only if xi = 0 for i = 2 · · ·N .
Hence V ′ ≤ 0 and V ′ = 0 if and only if xi = 0 for i = 1 · · ·N or S = λ1 and
xi = 0 for i = 2 · · ·N . Using the Krasovskii-LaSalle extension theorem, the
ω-limit set of the trajectory is E∗

1 .

Theorem 1 was previously obtained in [20], in the particular case when the
function fi has at most two positive zeros λi and μi, with λi ≤ μi ≤ +∞, such
that

fi(S) < 0 if S /∈ [λi, μi], and fi(S) > 0 if S ∈]λi, μi[, (18)

with the convention that μi = ∞ if equation fi(S) = 0 has only one solution
and λi = ∞ if it has no solution. This class of functions corresponds to the case
when fi(S) = qi(S)−Di and

qi(S) < Di if S /∈ [λi, μi], and qi(S) > Di if S ∈]λi, μi[.
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It was often considered in the literature [4, 14, 25, 26]. For this class of systems
the main result in [20] is

Corollary 1 (Theorem 2.1 in [20]). Assume that (2), (7) and (18) hold. Assume
that

λ1 < λ2 ≤ · · · ≤ λN , and λ1 < 1 < μ1, (19)

(S − λ1)(P1(S)− P1(λ1)) < 0, for S �= λ1, (20)

where P1(S) is defined by (12). Assume that there exist constants ci > 0 for
each i ≥ 2 satisfying λi < 1, such that

max
0<S<λ1

hi(S) < ci < min
λi<S<ρi

hi(S), (21)

where hi(S) =
1−λ1

p1(λ1)
f1(S)pi(S)
fi(S)(1−S) and ρi = min(μi, 1). Then the equilibrium E∗

1 is

GAS for (8) with respect to the interior of the positive cone.

Proof. Assume that (19), (20) and (21) hold. Let us prove that (13), (14) and
(15) hold. First, note that (20) is the same as (14), and condition λ1 < 1 < μ1

in (19) is equivalent to (13). If λ1 < S < λi then fi(S) < 0 and f1(S) > 0 so
that (15) is satisfied for any choice of αi > 0. Similarly if μi < 1 and μi < S < 1
then fi(S) < 0 and f1(S) > 0 so that (15) is satisfied for any choice of αi > 0.
On the other hand, if 0 < S < λ1 then fi(S) < 0 and, using hi(S) < ci in (21),

f1(S)pi(S) > ci
p1(λ1)

1− λ1
fi(S)(1 − S).

Finally, if λi < S < ρi, then fi(S) > 0 and, using hi(S) > ci in (21),

f1(S)pi(S) > ci
p1(λ1)

1− λ1
fi(S)(1 − S).

Thus (15) is satisfied for αi = ci
p1(λ1)
1−λ1

. The result follows from Theorem 1.

Condition (13) means that S = λ1 is the only zero of the growth function
f1(S) for 0 < S < 1. Condition (14) means that S = λ1 is the only zero of the
function P1(S) given by (12), for 0 < S < 1. The technical condition (15) is
trivially satisfied in the single species N = 1. Following [21, 25] we give now a
graphical interpretation of (15). For each i ≥ 2 such that λi < 1, consider the
function

gi(S) =
fi(S)

f1(S)

1− S

pi(S)
. (22)

The functions gi is defined on (0, λ1)∪ (λ1, 1]. It tends to ±∞ when S tends λ1.
Notice that the function hi in Corollary 1 is simply a multiple of the reciprocal
of gi. We use gi instead of hi, since the zeros of fi on [0, 1] are not known as for
the class of functions fi considered in Corollary 1. Since f1(S) < 0 over [0, λ1)
and f1(S) > 0 over [λi, 1], the condition (15) is equivalent to

min
0<S<λ1

gi(S) >
1

αi
> max

λi<S<1
gi(S). (23)
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Hence, the condition (15) in Theorem 1 can be easily depicted graphically:
plot simply the graph of gi(S) over [0, 1] and see if there is a gap between
min0<S<λ1 gi(S) and maxλi<S<1 gi(S), see Fig. 5.

It was shown in [20] that the main result (Theorem 2.3) of [25] is a conse-
quence of Corollary 1. Hence, it is also a corollary of Theorem 1.

4 Extension of the Lyapunov function of Hsu

The Lyapunov function VH used by Hsu [9] in the Monod case of (5), where the
growth functions are of the form (10), is

VH =

∫ S

λ1

σ − λ1

σ
dσ + c1

∫ x1

x∗
1

ξ − x∗
1

ξ
dξ +

N∑
i=2

cixi, (24)

with constants

ci =
1

Yi

ai
ai −Di

, i = · · ·N, and λ1 =
b1D1

a1 −D1
.

It is readily checked that the function in the first integral of (24) is given by
S−λ1

S = c1
f1(S)
p1(S) , where

f1(S) =
a1S

b1 + S
−D1, p1(S) =

1

Y1

a1S

b1 + S
.

Hence, multiplying (24) by the constant 1/c1 gives the following function

V =

∫ S

λ1

f1(σ)

p1(σ)
dσ +

∫ x1

x∗
1

ξ − x∗
1

ξ
dξ +

N∑
i=2

cixi. (25)

where the constants ci/c1 in the last sum are simply denoted by ci to avoid
unnecessary new notations. Under some technical conditions, this function is a
Lyapunov function for (8) and permits to obtain the global asymptotic stability
of the equilibrium point E∗

1 as stated in the following result.

Theorem 2. Assume that (2) and (7) hold. Assume that λ1 < 1 and for all
0 < S < 1,

(S − λ1)f1(S) > 0, for S �= λ1, (26)

(S − λ1)(P1(S)− P1(λ1)) < 0, for S �= λ1, (27)

where P1(S) is defined by (12). Assume that there exist constants ci > 0 for
each i ≥ 2 satisfying λi < 1, such that for all 0 < S < 1,

f1(S)pi(S) > cifi(S)p1(S). (28)

Then the equilibrium E∗
1 is GAS for (8) with respect to the interior of the positive

cone.
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Proof. From Lemmas 4 and 5 it follows that there is no loss of generality to
assume that λi < 1 for i = 1 · · ·N and to restrict our attention to 0 < S < 1.
Consider the function V = V (S, x1, · · · , xN ) given by (25) where ci are positive
constants satisfying (28). The function V is continuously differentiable in the
positive cone and positive except at point E∗

1 , where it is equal to 0. The
derivative of V along the trajectories of (8) is

V ′ =
f1(S)

p1(S)
S′ +

x1 − x∗
1

x1
x′
1 +

N∑
i=2

cix
′
i.

Since x∗
1 = P1(λ1) and, using (8), V ′ is written

V ′ =
f1(S)

p1(S)

[
1− S −

N∑
i=1

pi(S)xi

]
+ [x1 − P1(λ1)]f1(S) +

N∑
i=2

cifi(S)xi.

The terms − f1(S)
p1(S)p1(S)x1 and x1f1(S) are canceled. Therefore, using (12),

V ′ = f1(S) [P1(S)− P1(λ1)] +
N∑
i=2

xi
cifi(S)p1(S)− f1(S)pi(S)

p1(S)
.

Using (26) and (27), the first term of the above sum is non-positive for 0 < S < 1
and equals 0 if and only if S = λ1. Using (28), the second term is non-positive
for 0 < S < 1 and equals 0 if and only if xi = 0 for i = 2 · · ·N . Hence V ′ ≤ 0
and V ′ = 0 if and only if S = λ1 and xi = 0 for i = 2 · · ·N . By the Krasovskii-
LaSalle extension theorem, the ω-limit set of the trajectory is E∗

1 .

We have the following property.

Lemma 6. The conditions λ1 < 1 and (28) imply that λ1 < λi for all i ≥ 2.

Proof. If fi(S) > 0 for some S ≤ λ1, then f1(S) ≤ 0, so that the inequality (28)
is violated.

This lemma shows that the winning species x1 in Theorem 2 has the lowest
break-even concentration. Actually Theorem 2 is a consequence of Theorem 1.

Proposition 1. Theorem 2 is a corollary of Theorem 1.

Proof. Assume that (26), (27) and (28) hold. Notice that (26) is the same as
(13) and (27) is the same as (14). Let us prove that (15) holds. If fi(S) < 0 and
f1(S) > 0 (which occurs if λ1 < S < λi and may occur also for λi < S < 1), then
(15) holds for any choice of αi > 0. If 0 < S < λ1 then, by (27), P1(S) > P1(λ1)

and, since fi(S) < 0, fi(S)
P1(S) >

fi(S)
P1(λ1)

. Finally, if λi < S < 1 and fi(S) > 0 then,

by (27), P1(S) < P1(λ1), and hence, fi(S)
P1(S) > fi(S)

P1(λ1)
. Therefore, in both cases

λi < S < 1 and 0 < S < λ1,

fi(S)

P1(S)
>

fi(S)

P1(λ1)
.
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Thus, using (28),

f1(S)pi(S) > cifi(S)p1(S) = ci
fi(S)

P1(S)
(1− S) > ci

fi(S)

P1(λ1)
(1 − S).

Thus, (15) holds for αi =
ci

P1(λ1)
. Hence, (27) and (28) imply (15).

Theorem 2 recovers the classical case Monod case [9]. Indeed, consider the
particular case of (5), when the growth functions qi(S) are given by (10). System
(5), with D = 1 and S0 = 1, takes the form

S′ = 1− S −
N∑
j=1

ajS

bj + S

xj

Yj
,

x′
i =

[
aiS

bi + S
−Di

]
xi, i = 1 · · ·N.

(29)

We consider the case where, for all i = 1 · · ·N , ai > Di. The break-even
concentrations are

λi =
biDi

ai −Di
. (30)

Corollary 2 (Theorem 3.3 in [9]). Assume that

λ1 < λ2 ≤ · · · ≤ λN , λ1 < 1. (31)

Then the equilibrium E∗
1 is GAS for (29) with respect to the interior of the

positive cone.

Proof. Assume that (31) holds. Let us prove that (26), (27) and (28) hold.
Since f1(S) = q1(S)−D1 is increasing, the function f1(S) changes sign only at
S = λ1 and hence, (26) is satisfied. Since

P1(S) = Y1(1− S)
b1 + S

a1S
and P ′

1(S) = −Y1
S2 + b1
a1S2

< 0,

the function P1(S) changes sign only at S = λ1 and hence (27) is satisfied.
Condition (28) is

(a1 −D1)S − b1D1

b1 + S

1

Yi

aiS

bi + S
> ci

(ai −Di)S − biDi

bi + S

1

Y1

a1S

b1 + S
, i ≥ 2.

After simplification by S
(b1+S)(bi+S) , this condition is equivalent to

(a1 −D1)
ai
Yi

(S − λ1) > ci(ai −Di)
a1
Y1

(S − λi) i ≥ 2, (32)

which is satisfied for ci =
(a1−D1)aiY1

(ai−Di)a1Yi
. Indeed, for this choice of the constants

ci, (32) is simply

S − λ1 > S − λi ⇐⇒ λ1 < λi, i ≥ 2,

which is the same as (31). Thus (28) is satisfied. The global asymptotic stability
of E∗

1 follows from Theorem 2.
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Theorem 2 was previously obtained in [21], in the particular case when the
function fi satisfies (18). For this class of systems the main result in [21] is

Corollary 3 (Theorem 2 in [21]). Assume that (2), (7) and (18) hold. Assume
that

λ1 < λ2 ≤ · · · ≤ λN , and λ1 < 1 < μ1, (33)

(S − λ1)(P1(S)− P1(λ1)) < 0, for S �= λ1, (34)

where P1(S) is defined by (12). Assume that there exist constants αi > 0 for
each i ≥ 2 satisfying λi < 1, such that

max
0<S<λ1

gi(S) < ci < min
λi<S<ρi

gi(S), (35)

where gi(S) =
f1(S)pi(S)
fi(S)p1(S) and ρi = min(μi, 1). Then the equilibrium E∗

1 is GAS

for (6) with respect to the interior of the positive cone.

Proof. First, note that (34) is the same as (27), and condition λ1 < 1 < μ1 in
(33) is equivalent to (26). If S < λi then fi(S) < 0 and f1(S) > 0 so that (28)
is satisfied for any choice of ci > 0. Similarly if μi < 1 and μi < S < 1 then
fi(S) < 0 and f1(S) > 0 so that (28) is satisfied for any choice of ci > 0. On
the other hand, if 0 < S < λ1 then fi(S) < 0 and, using gi(S) < ci in (35),
f1(S)pi(S) < cifi(S)p1(S). Finally, if λi < S < ρi, then fi(S) > 0 and, using
gi(S) > ci in (35), f1(S)pi(S) < cifi(S)p1(S). Thus (28) is satisfied. The result
follows from Theorem 2.

5 Single species

In the case N = 1, using the notation x = x1, (8) takes the form

S′ = 1− S − xp(S),
x′ = f(S)x.

(36)

Let S = λ be the smallest positive value of S such that f(S) = 0 and x∗ = P (λ)
with P (S) defined by P (S) = 1−S

p(S) as in (12). If λ < 1, then E∗ = (λ, x∗)
is a positive equilibrium. Assume that f ′(λ) > 0 and P ′(λ) < 0, so that E∗

is locally asymptotically stable. We consider the global asymptotic stability of
E∗.

Corollary 4 (Theorem 2.11 in [2] or Lemma 2.3 in [17]). Assume that λ < 1
and for all 0 < S < 1,

(S − λ)f(S) > 0, for S �= λ, (37)

(S − λ)(P (S) − P (λ)) < 0, for S �= λ. (38)

Then the equilibrium E∗ is GAS for (36) with respect to the interior of the
positive cone.

11
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Proof. Notice that (37) is the same as (13) or (26) and (38) is the same as
(14) or (27). Since for N = 1, condition (15) in Theorem 1 or condition (28)
in Theorem 2 is trivially satisfied, the result is a corollary of Theorem 1 or
Theorem 2.

Corollary 4 was obtained by Arino, Pilyugin andWolkowicz (see [2], Theorem
2.11). Using the Lyapunov function

VAPW =
1− λ

p(λ)

∫ S

λ

f(σ)

1− σ
dσ +

∫ x

x∗

ξ − x∗

ξ
dξ, (39)

these authors proved that if

1− p(S)(1− λ)

p(λ)(1 − S)
has exactly one sign change for 0 < S < 1 (40)

then E∗ is GAS. Notice that (40) is equivalent to (38). In the single species
case, our Lyapunov function (17), used in the proof of Theorem 1, reduces (up
to a constant) to the Lyapunov function VAPW considered in [2]. Corollary 4
was obtained also by Pilyugin and Waltman (see [17], Lemma 2.3). Using the
Lyapunov function

VPW =

∫ S

λ

f(σ)

p(σ)
dσ +

∫ x

x∗

ξ − x∗

ξ
dξ, (41)

these authors proved that if

S = λ is the only zero of R(S) = 1− S − x∗p(S) (42)

then E∗ is GAS. Notice that (42) is equivalent to (38). In the single species
case, our Lyapunov function (25), used in the proof of Theorem 2, reduces to
the Lyapunov function VPW considered in [17].

S1S2 S3 S4

x = P (S)

Figure 1: The graph of the function x = P (S) showing the values S1, S2, S3

and S4.

Notice that the isoclines S′ = 0 and x′ = 0 of (36) are given by

S′ = 0 ⇐⇒ x = P (S),

12
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x′ = 0 ⇐⇒ x = 0 or S = λ.

If the vertical line S = λ intersects the curve x = P (S) on an increasing arc,
then, from Lemma 1, the intersection is an unstable equilibrium point E∗. Using
Poincaré-Bendixon theory we can show that the system has at least a periodic
orbit surrounding the equilibrium. Otherwise, if the vertical line S = λ inter-
sects the curve x = P (S) on an decreasing arc, then, from Lemma 1, E∗ is
locally asymptotically stable. The condition (38) has the following graphical
interpretation: if E∗ is the only intersection of the isocline x = P (S) with the
horizontal line x = x∗ then E∗ is GAS. For instance, in the situation depicted
on Fig. 1, the function x = P (S) has two critical points S = S2 and S = S3. Let
S1 and S2 defined by P (S1) = P (S3) and P (S4) = P (S2) respectively. Then,

S S S

λ < S1 or λ > S4 S2 < λ < S3 S1 < λ < S2 or S3 < λ < S4

λ λ λ

x∗

x∗
x∗

E∗

E∗
E∗

Figure 2: If λ < S1 or λ > S4, the equilibrium point E∗ is GAS. If S2 < λ < S3

then, the system admits at least one limit cycle. If S1 < λ < S2 or S3 < λ < S4

the condition (38) does not hold and Corollary 4 cannot be applied.

see Fig 2:
Case 1. If 0 < λ < S1 or S4 < λ < 1 then E∗ is the only intersection of the

isocline x = P (S) with the horizontal line x = x∗. Thus, using Corollary 4, the
equilibrium E∗ is GAS.

Case 2. If S2 < λ < S3 then, using Lemma 1, the equilibrium E∗ is unstable.
The system admits at least one limit cycle.

Case 3. If S1 < λ < S2 or S3 < λ < S4 then, using Lemma 1, the equilib-
rium E∗ is locally asymptotically stable. The horizontal line x = x∗ has three
intersections with x = P (S). Since (38) does not hold, we cannot conclude if
the equilibrium is GAS or not.

We illustrate the third case by an example taken from [17]. Consider (36)
with

p(S) =
q(S)

y(S)
, f(S) = q(S)−D, where q(S) =

aS

b+ S
, y(S) = 1 + cS2,

corresponding to Monod growth function and quadratic yield. Let D2 = q(S2)
and D3 = q(S3). For the parameter values given in the caption of Fig. 3, and
D > D3 and close to D3, the equilibrium point E∗ is exponentially stable and it

13

Author-produced version of the article published in Acta Applicandae Mathematicae, 2012,1,201-219. 
The original publicatioin is available at http://link.springer.com; 
doi:10.1007/s10440-012-9761-8



is surrounded by two limit cycles. Actually, the limit cycle which exists for all
D2 < D < D3 disappears for some critical Dc > D3 through a subcritical Hopf
bifurcation. For more details and explanations the reader is referred to [17].

0,5790 0,5795 0,5800 0,5805

6,91923

6,91924

6,91925

6,91926

6,91927

x = P (S)

E∗

Figure 3: If D = 1 the system has two limit cycles. On the center of the figure an
enlargement of the graph shows that the equilibrium point E∗ = (λ, x∗) lies on
a decreasing branch of the graph of the function x = P (S). For the parameters
values a = 2, b = 0.58 and c = 46: S1 � 0.048, S2 � 0.143, S3 � 0.579,
S4 � 0.855 and λ = 0.58. Hence S3 < λ < S4.

The caseN = 1 of a single species can also be investigated with the Bendixon-
Dulac criterion. As shown in [7], using the variable y = log(x), (36) is written

S′ = 1− S − eyp(S),
y′ = f(S),

(43)

with resulting divergence

div = −1− eyp′(S).

If p′(S) > 0 then the divergence is negative and no periodic solution can exist.
Poincaré-Bendixon theorem shows that convergence to the equilibrium E∗ en-
sues. Thus E∗ is GAS under the conditions p′ > 0 and (37). This result is a
consequence of Corollary 4, since the condition p′(S) > 0 implies P ′(S) < 0 for
0 < S < 1 and hence, (38) holds. However, the condition (38) in Corollary 4
can accept slightly negative p′, since P ′(S) < 0, for 0 < S < 1, is equivalent to

p′(S) > −p(S)
1−S , for 0 < S < 1.

6 Monod growth functions and linear yields

Models with linear yields were biologically motivated by [1, 5, 6] who noticed
the existence of limit cycles for some values of the parameters. The rigorous
mathematical study was given in [17]. Consider the particular case of (1), where
the growth functions qi(S) are given by (10), and the yields yi(S) = qi(S)/pi(S)
are linear

yi(S) = Yi(1 + ciS)
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where Yi > 0 and ci ≥ 0. System (1), with D = 1 and S0 = 1, takes the form

S′ = 1− S −
N∑
j=1

ajS

bj + S

xj

Yj(1 + cjS)
,

x′
i =

[
aiS

bi + S
−Di

]
xi, i = 1 · · ·N.

(44)

The break-even concentrations λi are given by (30). In this section we give
analytical conditions on the parameters of (44) so that conditions (13), (14)
and (15) are satisfied and Theorem 1 can be applied. We need the following

0 0,2 0,4 0,6 0,8 1,0

0

500

1 000

1 500

2 000

0 0,02 0,04 0,06 0,08 0,10

0

1

2

3

4

5

6

7

1
1−b

c

y

ccrit(b)

y = 27bc2
y = [c(1− b)− 1]3

Figure 4: On the left: the definition of the function ccrit(b). For each b < 1,

the functions y = [c(1− b)− 1]
3
(in green) and y = 27bc2 (in red) intersect

for c = ccrit(b). On the center, the numerical plot (in red) of the function
c = ccrit(b). On the right, the behaviour of this function for small values of b.

technical result.

Lemma 7. The function Q(S) = (1−S)(b+S)(1+cS)
S is decreasing over [0, 1] if

and only if
[c(1 − b)− 1]

3 ≤ 27bc2.

This condition is equivalent to either b ≥ 1 or b < 1 and c ≤ ccrit(b), where

ccrit(b) is the positive zero of [c(1 − b)− 1]
3
= 27bc2.

Proof. Since

Q′(S) = −2cS3 + (1 + c(b− 1))S2 + b

S2
, Q′′(S) = −2

(
b− cS3

)
S2

,

the function Q(S) has an inflexion point for S = (b/c)
1
3 . The function Q(S)

is nonincreasing over [0, 1] if and only if its derivative at the inflexion point is

nonpositive, that is, P ′
(
(b/c)

1
3

)
≤ 0. Straightforward computations show that

this condition is equivalent to [c(1− b)− 1]3 ≤ 27bc2. If b ≥ 1 then the first
term of the inequality is negative and hence the inequality if satisfied for all
c ≥ 0. If b < 1, then the inequality is satisfied if and only if c ≤ ccrit(b), see
Fig. 4.
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The expression of ccrit(b) can be obtained by Cardan formulas. Notice that
ccrit(0) = 1 and ccrit(b) is increasing with b, see Fig. 4.

Theorem 3. Assume that

λ1 < λ2 ≤ · · · ≤ λN , λ1 < 1, (45)

either b1 ≥ 1 or for each i ≥ 1 satisfying λi < 1, ci ≤ ccrit(b1). (46)

Then the equilibrium E∗
1 is GAS for (44) with respect to the interior of the

positive cone.

Proof. Let us prove that (13), (14) and (23) hold. The Monod function f1(S)
is increasing. Hence, (13) holds. The function P1(S) is

P1(S) =
(1− S)(b1 + S)(1 + c1S)

S
.

By Lemma 7, it is decreasing if and only if either b1 ≥ 1 or b1 < 1 and c1 ≤
ccrit(b1). Hence, (14) holds. For each i ≥ 2, the function gi(S) defined by (22)
is

gi(S) =
fi(S)

f1(S)

1− S

pi(S)
=

Yi

ai

ai −Di

a1 −D1

S − λi

S − λ1
Qi(S)

where Qi(S) =
(1−S)(b1+S)(1+ciS)

S . Assume that (46) holds. By Lemma 7, the
function Qi(S) is decreasing. Therefore,

min
0<S≤λ1

Qi(S) = Qi(λ1) > Qi(λi) = max
λi≤S<1

Qi(S).

Since λ1 < λi, the function S 
→ S−λi

S−λ1
is increasing. Therefore,

min
0<S≤λ1

S − λi

S − λ1
=

λi

λ1
> 1 >

1− λi

1− λ1
= max

λi≤S<1

S − λi

S − λ1
.

Thus,

min
0<S<λ1

gi(S) ≥ Yi

ai

ai −Di

a1 −D1
min

0<S<λ1

S − λi

S − λ1
min

0<S<λ1

Qi(S) >
Yi

ai

ai −Di

a1 −D1
Qi(λ1),

and

max
λi<S<1

gi(S) ≤ Yi

ai

ai −Di

a1 −D1
max

λi<S<1

S − λi

S − λ1
max

λi<S<1
Qi(S) <

Yi

ai

ai −Di

a1 −D1
Q(λi).

Hence (23) holds. The result follows from Theorem 1.

Theorem 3 extends Corollary 2 which corresponds to the case where the
yields are constant. Indeed, (45) is the same as (31) and, for constant yields,
ci = 0, so that the conditions (46) in Theorem 3 are satisfied. Notice that (46)
is a sufficient and not necessary condition for the existence of a gap between the
minimum of gi(S) over (0, λ1) and its maximum over [λi, 1]. For instance, for
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Figure 5: The graphical depiction of conditions (14) and (23) in the proof of
Theorem 3. The parameter values are c1 = 4, b1 = 0.1, a1 = 1, b2 = 0.15,
a2 = 1 D1 = 0.6 and D2 = 0.55. Hence λ1 = 0.15 and λ2 � 0.18. On the
left, the function P1(S) (in green) and its derivative (in red) showing that P1 is
decreasing and so (14) is satisfied. On the right, the function g2(S) for c2 = 5
(in red), c2 = 30 (in green) and c2 = 80 (in cyan). The condition (23) is satisfied
for c2 = 5 < ccrit(0.1) and c2 = 30 > ccrit(0.1). It is not satisfied for c2 = 80.
Here ccrit(0.1) � 6.5, see Fig. 4.

the parameter values given in the caption of Fig. 5, if c2 = 30 > 6.5 � ccrit(0.1),
there exists such a gap, see Fig. 5. Therefore, Theorem 1 applies and predict
that the equilibrium is GAS, even if Theorem 3 does not apply, since b1 = 0.1 < 1
and c2 = 30 > 6.5 � ccrit(0.1). However, for c2 = 80 > 6.5 � ccrit(0.1), there is
no gap, see Fig. 5. Therefore, neither Theorem 1 nor Theorem 3 can be used.
However, in each particular example it is very easy to depict graphically the
conditions (13), (14) and (15) of Theorem 1 and to see if Theorem 1 can be
applied or not.

7 Discussion

We briefly survey some CEP results for (5). In the Monod case [16] when the
growth functions are of form (10), and assuming equal removal rates for S and
all species, i.e. Di = D for i = 1 · · ·N , Hsu, Hubbell and Waltman [11] proved
the following CEP: every solution of (5) with positive initial condition satisfies

lim
t→∞S(t) = λ1, lim

t→∞ x1(t) = Y1(S
0 − λ1), lim

t→∞xi(t) = 0, i ≥ 2,

under the additional assumption 0 < λ1 < S0 and λ1 < λi for i = 2 · · ·N . The
predictions in [11] were tested in the laboratory by the experiments of Hansen
and Hubbell [8]. Similar experiments could be performed to test the predictions
using microorganisms known to have variable yields. See [1, 2, 5, 6, 17] for
examples of such microorganisms.

Hsu [9] used the Lyapunov function (24) to give a simple and elegant proof
of the result in [11] for the case of different removal rates Di (see Corollary
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2). Wolkowicz and Lu [25], used the Lyapunov function (16) and extended the
results of [9] by allowing more general growth functions. They identified a large
class of growth functions, where the constant ci in (16) can always be found.
As claimed by Smith and Waltman [22], despite the fact the ci cannot be found
for all growth functions, the work of Wolkowicz and Lu [25] represents a major
step in the extension of the result of Hsu [9] to general growth functions. In the
constant yield case, the CEP has been also proved under a variety of hypotheses
by Armstrong and McGehee [3], Butler and Wolkowicz [4], Wolkowicz and Xia
[26] and Li [14]. The hypotheses used in the papers [3, 4, 9, 11, 14, 25, 26] are
summarized in Table 1 of [13]. Lyapunov techniques in the chemostat were also
used in [15, 18].

The variable yield case was considered, for n = 1, 2 by Pilyugin and Waltman
[17], with a particular interest to linear and quadratic yields, and by Huang, Zhu
and Chang [12]. The general model (1) for N species, was considered by Arino,
Pilyugin and Wolkowicz [2]. As noticed by these authors (see [2], Section 3),
in the case of constant yields (5), including the yield terms Yi in the substrate
equation, as in (5), is mathematically equivalent to including the reciprocal in
the microorganism equation instead. Indeed, (5) can be written

S′ = D[S0 − S]−
N∑
j=1

pj(S)xj ,

x′
i = [Yipi(S)−Di]xi, i = 1 · · ·N,

where pi(S) = qi(S)
Yi

. Since Yi are constant, the uptake terms pi and growth
terms qi have the same monotonicity properties. Formally, the model (1) with
yields (4) can be written

S′ = D[S0 − S]−
N∑
j=1

qj(S)

yj(S)
xi,

x′
i = [qi(S)−Di]xi, i = 1 · · ·N,

(47)

where qi(S) are the growth functions, or equivalently,

S′ = D[S0 − S]−
N∑
i=j

pj(S)xj ,

x′
i = [yi(S)pi(S)−Di]xi, i = 1 · · ·N,

(48)

where pi(S) are the uptake functions. One of the important differences in the
case that the yields are not constant is that the variable yield terms can lead to
uptake and growth functions that have now different monotonicity properties.
Moreover, in the case of constant yields, the yields terms Yi can be eliminated
in (5) simply by passing to the variables ui = Yixi. We obtain

S′ = D[S0 − S]−
N∑
j=1

qj(S)uj ,

u′
i = [qi(S)−Di]ui, i = 1 · · ·N.
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This change of variables means that we have changed the units in which the
microorganisms were evaluated. There is no such trick to eliminate the yields
terms in (47) of (48). Therefore, careful attention to the interpretation of the
yield terms resulting in their correct placements in the equations is necessary.
For details and complements, the reader is referred to [2], Section 3.

In the variable yield case, the CEP has been proved for (1), under some
technical conditions on the function pi and qi, by Sari [20] and Sari and Mazenc
[21] (see Corollary 1 in Section 3 and Corollary 3 in Section 4). It was also
shown in [21] how Corollary 3 can be fruitfully used to analyze the stability
properties of systems whose yield functions depend on the variable S. For
instance, the CEP holds (see Corollary 5 in [21]) for the Monod model with
constant yields replaced by either linear or quadratic functions of S, and under
certain additional technical assumptions. Another application is given by the
following model

S′ = 1− S − 2S
0.7+S

x1

1+cS3 − m2S
6.5+S

x2

120

x′
1 = [ 2S

0.7+S − 1]x1

x′
2 = [ m2S

6.5+S − 1]x2.

This model was used by Pilyugin and Waltman [17] to demonstrate that a
periodic orbit was possible in the variable yield case. In this model, with two
species, where one yield is constant and the other is cubic in S, it is shown in
[21] that for some values of the parameters the CEP holds (see Corollary 6 in
[21]).

The problem of the existence of limit cycles in chemostat equations is not
always well understood [19]. In the case of constant yields, numerical simulations
of model (5) have only displayed competitive exclusion. Our results concern also
the case of variable yields, for which it is known [2, 12, 17] that more exotic
dynamical behaviors, including limit cycles and chaos, are possible. Thus in the
case of variable yields, it is of great importance to have criteria ensuring the
global convergence to an equilibrium with at most one surviving species. The
reader interested in biological motivations for the dependence of the yields on
the substrate, may consult [2, 17] and the references therein.

The exclusion of periodic orbits in system (8) was obtained by Fiedler and
Hsu (see Theorem 1.1 in [7]) under the following conditions: for all 1 ≤ i �= j ≤
N , and 0 < S < 1

(S − λi)fi(S) > 0, for S �= λi, (49)

fi(S) < 1 + fj(S) + (1− S)p′j(S)/pj(S). (50)

Even if the result in [7] does not show the convergence to an equilibrium, it is
interesting to compare the constraints on the functions fi and pi of [7] with our
constraints. Actually, (49) is stronger than (13), since our assumption requires
(49) only for f1 and allows the fi, for i �= 1, to have other zeros than λi in
]0, 1[. Let us compare the constraints on fi and pi imposed by the inequalities
(50) to the constraints imposed by hypothesis (15): notice that (50) is a set of
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N(N−1)
2 conditions, while (15) is a set of at most N − 1 conditions. Moreover,

the constants αi in the conditions (15) give more flexibility to these conditions.
For instance, (15) are satisfied by arbitrary Monod growth functions and also
by a large class of growth functions as it was shown in [21, 25]. On the other
hand, (50) are not satisfied by arbitrary Monod functions, see formulas (6.10)
and (6.11) in [7]. Hence the result in [7] does not recover the CEP, even in the
classical and well established case of Monod functions and equal removal rates
[3]. However our theorem recovers a lot of results of the existing literature.

For the purpose of comparison between our result and the result of Fiedler
and Hsu [7], we just mentioned two caveats on Theorem 1.1 in [7]: first, this
theorem does not recover many of the biologically interesting classical examples
where the CEP is known to hold, and second, it does not prove the convergence
to an equilibrium. These caveats were already mentioned in [7], Section 6.
Another caveat must be signaled. Fiedler and Hsu claimed (see [7], Section 6)
that, in the case N = 1 of a single species, condition (50) holds trivially and
there is no periodic orbit for system (36). It should be noticed that condition
(49) is not sufficient to exclude periodic orbits. Of course, if p′(S) > 0, then the
Bendixon-Dulac criterion can be applied to exclude periodic orbits (see Section
5). This assumption on the monotonicity of p is not explicitly stated in Theorem
1.1 in [7]. Moreover, the condition p′(S) > 0 would not be satisfactory from
the biological point of view. Indeed, a variable yield term y(S) = q(S)/p(S)
can lead to nonmonotone uptake term p(S) even if the growth term q(S) is
monotone (see Section 5).

Fiedler and Hsu, see Section 6 in [7], claimed that the construction of Lya-
punov functions in [3, 9, 14, 25, 26] strictly depends on the proportionality
pi(S) = qi(S)/Yi required in equations (5). In Section 4, we showed how the
Lyapunov function used by Hsu himself [9] for the Monod case, more than thirty
years ago, can be extended to the case of (6), where growth rates are not re-
quired to be proportional to food uptake (see Theorem 2, in Section 4). For that
reason, the direct proof of Theorem 2, using the extension (25) of the Lyapunov
function of Hsu [9], seems to be interesting in itself. Thus, we decided to give
Theorem 2 and its direct proof, despite the fact that this theorem is a corollary
of Theorem 1 (see Proposition 1 in Section 4).

We list some references to the existing literature which inspired our approach.
The Lyapunov function (25) used in the proof of Theorem 2 was introduced in
[21] as an extension of the Lyapunov function (24) that Hsu used in [9] in the
Monod case (Theorem 3.3 in [9]). In the case of one species, this Lyapunov
function is equal to the function (41) used by Pilyugin and Waltman (Lemma
2.3 in [17]), as shown in Section 5. It is also a multiple of the Lyapunov function
that Ballyk, Lu, Wolkowicz and Xia used in [26], page 1039 or [24], Section 3.3
(see Section 3.2 in [21]). The Lyapunov function (17) used in the proof of
Theorem 1 was introduced in [20] as an extension of the Lyapunov function
(16) that Wolkowicz and Lu used in [25] in the constant yields case (Theorem
2.3 in [25]). In the case of one species, it is a multiple of the Lyapunov function
(39) used by Arino, Pilyugin and Wolkowicz (Theorem 2.11 in [2]), as shown in
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Section 5.
In this work, we have analyzed a general model of the chemostat with several

species competing for a substrate, under the assumption that uptake rates and
growth rates are not proportional. Each species is characterized by its specific
growth rate, its specific removal rate, and its variable yield. Our study reveals
that the CEP holds for a large class of systems: the species with the smallest
break-even concentration can be the winner of the competition if some supple-
mentary conditions, involving the uptake and growth functions are satisfied.
Hence, even if the break-even concentration are depending only on the growth
rates and not on the yields functions, the issue of competition really depends
on the yield functions. For instance, if one on the species exhibits a linear yield,
and if the parameter in the yield is enlarged, then the equilibrium, where only
the winning species survives, can be destabilized, and oscillatory coexistence of
more than one species becomes possible.
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