Tewfik Sari 
email: tewfik.sari@irstea.fr
  
Competitive exclusion for chemostat equations with variable yields *

Keywords: Chemostat, Competitive exclusion principle, Lyapunov function, Global asymptotic stability, Variable yield

In this paper, we study the global dynamics of a chemostat model with a single nutrient and several competing species. Growth rates are not required to be proportional to food uptakes. Our approach is based on the construction of Lyapunov functions. The Lyapunov functions extend those used by Hsu [SIAM J. Appl. Math. (

Introduction and main result

The aim of this paper is to show that under certain conditions the Competitive Exclusion Principle (CEP) holds for the following competition for a single resource model

S = D[S 0 -S] - N j=1 p j (S)x j , x i = [q i (S) -D i ]x i , i= 1 • • • N, (1) 
where S(t) and x i (t), i = 1 • • • N , denote respectively the nutrient concentration and the concentration of the ith competing species at time t. The input concentration S 0 and the removal rates D and D i are assumed to be constant. The uptake rate p i (S) satisfies p i (0) = 0 and p i (S) > 0 for S > 0.

(

) 2 
The growth rate q i (S) satisfies q i (0) = 0 and q i (S) > 0 for S > 0.

(3)

The functions y i (S), defined by

y i (S) = q i (S) p i (S) , i= 1 • • • N, ( 4 
)
are the growth yields. The model [START_REF] Agrawal | Theoretical investigations of dynamic behaviour of isothermal continuous stirred tank biological reactors[END_REF] was considered by Arino, Pilyugin and Wolkowicz [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF] as an extension of the classical chemostat model

S = D[S 0 -S] - N i=1 q i (S) Y i x i , x i = [q i (S) -D i ]x i , i= 1 • • • N, (5) 
for which the yields y i (S) = Y i are constant. The model ( 5) occupies a central place in mathematical ecology, see the monograph of Smith and Waltman [22].

It is a model of the dynamics of microbial competition. Basically, the chemostat consists of a nutrient input, pumped at a constant rate into a well-mixed culture vessel. The culture vessel contains the microorganisms that are growing and competing for the nutrient. Volume is kept constant by pumping the mixed contents out at the same rate. The smallest positive value of the concentration substrate S = λ i defined by the condition q i (S) = D i , where the growth q i (S) of x i is balanced by the removal rate D i is called the break-even concentration for the ith species.

Let us denote f i (S) = q i (S) -D i , then [START_REF] Agrawal | Theoretical investigations of dynamic behaviour of isothermal continuous stirred tank biological reactors[END_REF] reduces to the model

S = D(S 0 -S) - N j=1
p j (S)x j

x i = f i (S)x i , i = 1 • • • N, (6) 
considered by Fiedler and Hsu [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF]. The growth rate f i (S) satisfies f i (S) < 0 for 0 ≤ S < λ i and f i (λ i ) = 0, [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF] where λ i are the break-even concentrations. Without loss of generality (see Section 2), we assume that D = 1 and S 0 = 1 in [START_REF] Crooke | The effect of the specific growth rate and yield expressions on the existence of oscillatory behaviour of continuous fermentation model[END_REF]. The system becomes

S = 1 -S - N j=1
p j (S)x j ,

x i = f i (S)x i , i = 1 • • • N. ( 8 
)
Coexistence of the N species is a fundamental question on the model ( 8) of competition for a single resource. Looking for coexistence at positive equilibria we have to solve equations f i (S) = 0 simultaneously for all i = 1 • • • N . In general, for N ≥ 2, these equations cannot be solved for the same value of S. Thus, generically, [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] can have the following equilibria: the washout equilibrium

E 0 = (1, 0, • • • , 0), (9) 
where all species go extinct, and equilibria E i , i = 1 • • • N , where all components of E i vanish, except for the first and the (i + 1)th, which are

S = S * , x i = 1 -S * p i (S * ) ,
where S * ∈]0, 1[ satisfies f i (S * ) = 0. Hence, at any equilibrium point E i , all but one species go extinct. Since f (λ i ) = 0, the break-even concentration S * = λ i gives rise to an equilibrium point E i for the system, if and only if λ i < 1. A well-known openproblem in the theory of the chemostat is to prove the global asymptotic stability of the equilibrium point E i with the lowest break-even concentration. If this equilibrium is globally asymptotically stable (GAS), then the CEP holds: only one species survives, namely the species which makes optimal use of the resource. The reader is referred to [START_REF] Tilman | Resource Competition and Community Structure[END_REF], for complements and details on the CEP. Most of the results on the CEP for (1) and ( 5) have been based on Lyapunov functions [START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Hsu | Limiting behavior for competing species[END_REF][START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF][START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] . For a survey of constructing Lyapunov functions in the chemostat, the reader is referred to [START_REF] Hsu | A survey of constructing Lyapunov functions for mathematical models in population biology[END_REF]. We simply recall here that Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] proved the CEP for the Monod case of (5), when the growth functions are

q i (S) = a i S b i + S , (10) 
and Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] extended the result of [START_REF] Hsu | Limiting behavior for competing species[END_REF] to [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF] with more general growth functions. Instead of a Lyapunov function approach, Fiedler and Hsu [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF] applied a multi-dimensional Bendixon-Dulac criterion to exclude periodic solutions. Under some technical conditions on the functions f i and p i they proved that [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] does not possess positive non-stationary periodic orbits. In our previous works [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF][START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF], we showed that both Lyapunov functions used by Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] and Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] can be extended to the variable yields case model [START_REF] Agrawal | Theoretical investigations of dynamic behaviour of isothermal continuous stirred tank biological reactors[END_REF]. The aim of this paper is to show that these Lyapunov functions can also be used to obtain the CEP for [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF].

A necessary condition to avoid washout of the species, and global convergence towards the washout equilibrium E 0 defined by [START_REF] Hsu | Limiting behavior for competing species[END_REF], is that λ i < 1 for at least one species. Assume that the species are labeled so that 0 < λ 1 < 1. Then

E * 1 = (λ 1 , x * 1 , 0, • • • , 0), (11) 
where

x 1 = x * 1 = P 1 (λ 1
) is an equilibrium. Here

P 1 (S) = 1 -S p 1 (S) . ( 12 
)
Using linearization of ( 8) about E * 1 one proves that:

Lemma 1. The equilibrium [START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF] is locally exponentially stable if and only if f 1 (λ 1 ) > 0 and P 1 (λ 1 ) < 0.

We consider the global asymptotic stability of E * 1 . Our main result is Theorem 1. Assume that ( 2) and ( 7) hold. Assume that λ 1 < 1 and for all

0 < S < 1, (S -λ 1 )f 1 (S) > 0, for S = λ 1 , ( 13 
) (S -λ 1 )(P 1 (S) -P 1 (λ 1 )) < 0, for S = λ 1 , ( 14 
)
where P 1 (S) is defined by [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. Assume that there exist constants α i > 0 for each i ≥ 2 satisfying λ i < 1, such that for all 0 < S < 1,

f 1 (S)p i (S) > α i f i (S)(1 -S). ( 15 
)
Then the equilibrium E * 1 is GAS for [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] with respect to the interior of the positive cone.

The proof is given in Section 3. Notice that the following property holds. Lemma 2. The conditions λ 1 < 1 and ( 15) imply that λ 1 < λ i for all i ≥ 2.

Proof. Assume that there exists i ≥ 2 such that λ i < λ 1 . Then, there exists

S ≤ λ 1 such that f i (S) > 0. Hence, since S ≤ λ 1 < 1, f i (S)(1 -S) > 0.
On the other hand, using [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF], f 1 (S) ≤ 0. Hence, the inequality [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] is violated.

This lemma shows that the winning species x 1 of Theorem 1 has the lowest break-even concentration, in accordance with the CEP for models of competition for a single resource [START_REF] Tilman | Resource Competition and Community Structure[END_REF].

The paper is organized as follows. In Section 2 we give some preliminary lemmas. In Section 3 we show how the Lyapunov function of Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] can be extended to [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] and used to obtain Theorem 1. We show in this section that the result of [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF] for [START_REF] Agrawal | Theoretical investigations of dynamic behaviour of isothermal continuous stirred tank biological reactors[END_REF], which extends the result of [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] for [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF], is a corollary of Theorem 1. We give also graphical interpretations of the conditions (13), ( 14) and [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF]. In Section 4, we show how the Lyapunov function of Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] can be extended to [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] and used to obtain Theorem 2, which is another global asymptotic stability result of E * 1 for (8). Theorem 2 can be obtained also as a corollary of Theorem 1 (see Proposition 1). We show in this section that the result of [START_REF] Hsu | Limiting behavior for competing species[END_REF] for [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF] with Monod functions [START_REF] Hsu | A survey of constructing Lyapunov functions for mathematical models in population biology[END_REF], and the result of [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF] for (1) are corollaries of Theorem 2. In Section 5 we discuss the single species case N = 1. In Section 6 we apply our result to the model with Monod growth functions [START_REF] Hsu | A survey of constructing Lyapunov functions for mathematical models in population biology[END_REF] and linear yields. In Section 7 we discuss some of the CEP results based on Lyapunov functions and we compare Theorem 1 with the results of [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF] based on a Bendixon-Dulac approach.

Preliminary results

Let us prove first that we can we assume that D = 1 and S 0 = 1 in [START_REF] Crooke | The effect of the specific growth rate and yield expressions on the existence of oscillatory behaviour of continuous fermentation model[END_REF]. Indeed, under the change of variables

S = S S 0 , t = Dt, p i (S) = p i (S 0 S) S 0 D , f i (S) = f i (S 0 S) D ,
equations ( 6) take the form

dS dt = 1 S 0 D dS dt = 1 -S - N j=1 p j (S)x j , dx i dt = 1 D dx i dt = f i (S)x i , i = 1 • • • N.
Dropping the bars, one obtains [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF]. Recall that f i (0) < 0, so that the concentration of the species x i is decreasing when the concentration of nutrient is too small. The smallest positive zero S = λ i of f i is the break-even concentration of the ith species x i . We adopt the convention λ i = ∞ if f i (S) < 0 for all S > 0.

We need the following lemmas.

Lemma 3. The non-negative cone is invariant under the flow of ( 8) and all solutions are defined and remain bounded for all t ≥ 0.

This lemma is simply Theorem 4.1 in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF].

Lemma 4. If for some species x i , the inequality (Sλ i )f i (S) > 0 is satisfied for all 0 < S < 1, S = λ i , then S(t) < 1 for all sufficiently large t and all initial condition .

This lemma can be obtained using arguments similar to that given in the proofs of Lemma 2.9 in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF] and Lemma 2.1 in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF].

Lemma 5. For all solutions of [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF], if λ i ≥ 1 then x i (t) → 0 as t → ∞. This lemma can be obtained using arguments similar to that given in the proofs of Lemma 4.2 in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF] and Lemma 2.2 in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF].

Extension of the Lyapunov function of Wolkowicz and Lu

The Lyapunov function used by Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] in the constant yields case ( 5) is

V W L = S 0 -λ 1 D 1 S λ1 q 1 (σ) -D 1 S 0 -σ dσ + 1 Y 1 x1 x * 1 ξ -x * 1 ξ dξ + N i=2 c i Y i x i . ( 16 
)
with suitable constant c i > 0. Using the notations in [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF], and since S 0 was rescaled to 1, the function in the first integral of ( 16) is simply equal to f1(σ) 1-σ . Multiplying [START_REF] Monod | La technique de culture continue. Théorie et applications[END_REF] by the constant D1 1-λ1 = Y1

x *

1

, gives the following function

V = S λ1 f 1 (σ) 1 -σ dσ + 1 x * 1 x1 x * 1 ξ -x * 1 ξ dξ + N i=2 α i x i , ( 17 
)
where α i are constants to be determined. This is a Lyapunov function for [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] which permits to prove Theorem 1 as shown below.

Proof. (Theorem 1) From Lemmas 4 and 5 it follows that there is no loss of generality to assume that λ i < 1 for i = 1 • • • N and to restrict our attention to 0 < S < 1. Consider the function

V = V (S, x 1 , • • • , x N )
given by [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] where α i are positive constants satisfying [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF]. The function V is continuously differentiable for 0 < S < 1 and x i > 0 and positive except at point E * 1 . The derivative of V along the trajectories of ( 8) is

V = f 1 (S) 1 -S S + x 1 -x * 1 x * 1 x 1 x 1 + N i=2 α i x i .
Since x * 1 = P 1 (λ 1 ) and using (8), V is written

V = f 1 (S) 1 -S 1 -S - N i=1 p i (S)x i + 1 P 1 (λ 1 ) [x 1 -P 1 (λ 1 )]f 1 (S) + N i=2 α i f i (S)x i .
The terms f1(S) 1-S (1-S) and -1 P1(λ1) P 1 (λ 1 )f 1 (S) are canceled. Hence, using [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF],

V = x 1 f 1 (S) 1 P 1 (λ 1 ) - 1 P 1 (S) + N i=2 x i α i f i (S)(1 -S) -f 1 (S)p i (S) 1 -S .
Using ( 13) and ( 14), the first term of the above sum is non-positive for 0 < S < 1 and equals 0 if and only if S = λ 1 or x 1 = 0. Using [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF], the second term is non-positive for 0 < S < 1 and equals 0 if and only if

x i = 0 for i = 2 • • • N .
Hence V ≤ 0 and V = 0 if and only if

x i = 0 for i = 1 • • • N or S = λ 1 and x i = 0 for i = 2 • • • N .
Using the Krasovskii-LaSalle extension theorem, the ω-limit set of the trajectory is E * 1 .

Theorem 1 was previously obtained in [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF], in the particular case when the function f i has at most two positive zeros λ i and μ i , with

λ i ≤ μ i ≤ +∞, such that f i (S) < 0 if S / ∈ [λ i , μ i ],
and

f i (S) > 0 if S ∈]λ i , μ i [, (18) 
with the convention that μ i = ∞ if equation f i (S) = 0 has only one solution and λ i = ∞ if it has no solution. This class of functions corresponds to the case when f i (S) = q i (S) -D i and

q i (S) < D i if S / ∈ [λ i , μ i ],
and

q i (S) > D i if S ∈]λ i , μ i [. 6 
It was often considered in the literature [START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF][START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF]. For this class of systems the main result in [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF] is Corollary 1 (Theorem 2.1 in [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF]). Assume that ( 2), ( 7) and ( 18) hold. Assume that

λ 1 < λ 2 ≤ • • • ≤ λ N , and λ 1 < 1 < μ 1 , ( 19 
) (S -λ 1 )(P 1 (S) -P 1 (λ 1 )) < 0, for S = λ 1 , ( 20 
)
where P 1 (S) is defined by [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. Assume that there exist constants

c i > 0 for each i ≥ 2 satisfying λ i < 1, such that max 0<S<λ1 h i (S) < c i < min λi<S<ρi h i (S), ( 21 
)
where

h i (S) = 1-λ1 p1(λ1) f1(S)pi(S)
fi(S)(1-S) and ρ i = min(μ i , 1). Then the equilibrium E * 1 is GAS for [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] with respect to the interior of the positive cone.

Proof. Assume that ( 19), ( 20) and ( 21) hold. Let us prove that ( 13), ( 14) and ( 15) hold. First, note that ( 20) is the same as ( 14), and condition λ 1 < 1 < μ 1 in ( 19) is equivalent to [START_REF] De Leenheer | Competition in the chemostat: some remarks[END_REF]. If λ 1 < S < λ i then f i (S) < 0 and f 1 (S) > 0 so that ( 15) is satisfied for any choice of α i > 0. Similarly if μ i < 1 and μ i < S < 1 then f i (S) < 0 and f 1 (S) > 0 so that ( 15) is satisfied for any choice of α i > 0. On the other hand, if 0 < S < λ 1 then f i (S) < 0 and, using h i (S) < c i in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF],

f 1 (S)p i (S) > c i p 1 (λ 1 ) 1 -λ 1 f i (S)(1 -S). Finally, if λ i < S < ρ i , then f i (S) > 0 and, using h i (S) > c i in (21), f 1 (S)p i (S) > c i p 1 (λ 1 ) 1 -λ 1 f i (S)(1 -S).
Thus [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] is satisfied for

α i = c i p1(λ1)
1-λ1 . The result follows from Theorem 1. Condition [START_REF] De Leenheer | Competition in the chemostat: some remarks[END_REF] means that S = λ 1 is the only zero of the growth function f 1 (S) for 0 < S < 1. Condition [START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF] means that S = λ 1 is the only zero of the function P 1 (S) given by ( 12), for 0 < S < 1. The technical condition ( 15) is trivially satisfied in the single species N = 1. Following [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] we give now a graphical interpretation of [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF]. For each i ≥ 2 such that λ i < 1, consider the function

g i (S) = f i (S) f 1 (S) 1 -S p i (S) . ( 22 
)
The functions g i is defined on (0, λ 1 ) ∪ (λ 1 , 1]. It tends to ±∞ when S tends λ 1 . Notice that the function h i in Corollary 1 is simply a multiple of the reciprocal of g i . We use g i instead of h i , since the zeros of f i on [0, 1] are not known as for the class of functions

f i considered in Corollary 1. Since f 1 (S) < 0 over [0, λ 1 ) and f 1 (S) > 0 over [λ i , 1], the condition (15) is equivalent to min 0<S<λ1 g i (S) > 1 α i > max λi<S<1 g i (S). ( 23 
)
Hence, the condition [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] in Theorem 1 can be easily depicted graphically: plot simply the graph of g i (S) over [0, 1] and see if there is a gap between min 0<S<λ1 g i (S) and max λi<S<1 g i (S), see Fig. 5.

It was shown in [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF] that the main result (Theorem 2.3) of [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] is a consequence of Corollary 1. Hence, it is also a corollary of Theorem 1.

Extension of the Lyapunov function of Hsu

The Lyapunov function V H used by Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] in the Monod case of ( 5), where the growth functions are of the form [START_REF] Hsu | A survey of constructing Lyapunov functions for mathematical models in population biology[END_REF], is

V H = S λ1 σ -λ 1 σ dσ + c 1 x1 x * 1 ξ -x * 1 ξ dξ + N i=2 c i x i , ( 24 
)
with constants

c i = 1 Y i a i a i -D i , i = • • • N, and λ 1 = b 1 D 1 a 1 -D 1 .
It is readily checked that the function in the first integral of ( 24) is given by

S-λ1 S = c 1 f1(S)
p1(S) , where

f 1 (S) = a 1 S b 1 + S -D 1 , p 1 (S) = 1 Y 1 a 1 S b 1 + S .
Hence, multiplying [START_REF] Wolkowicz | Microbial dynamics in a chemostat : competition, growth, implication of enrichment[END_REF] by the constant 1/c 1 gives the following function

V = S λ1 f 1 (σ) p 1 (σ) dσ + x1 x * 1 ξ -x * 1 ξ dξ + N i=2 c i x i . ( 25 
)
where the constants c i /c 1 in the last sum are simply denoted by c i to avoid unnecessary new notations. Under some technical conditions, this function is a Lyapunov function for [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] and permits to obtain the global asymptotic stability of the equilibrium point E * 1 as stated in the following result.

Theorem 2. Assume that ( 2) and ( 7) hold. Assume that λ 1 < 1 and for all

0 < S < 1, (S -λ 1 )f 1 (S) > 0, for S = λ 1 , ( 26 
) (S -λ 1 )(P 1 (S) -P 1 (λ 1 )) < 0, for S = λ 1 , ( 27 
)
where P 1 (S) is defined by [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. Assume that there exist constants c i > 0 for each i ≥ 2 satisfying λ i < 1, such that for all 0 < S < 1,

f 1 (S)p i (S) > c i f i (S)p 1 (S). ( 28 
)
Then the equilibrium E * 1 is GAS for [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF] with respect to the interior of the positive cone.

Proof. From Lemmas 4 and 5 it follows that there is no loss of generality to assume that λ i < 1 for i = 1 • • • N and to restrict our attention to 0 < S < 1. Consider the function V = V (S, x 1 , • • • , x N ) given by [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] where c i are positive constants satisfying (28). The function V is continuously differentiable in the positive cone and positive except at point E * 1 , where it is equal to 0. The derivative of V along the trajectories of ( 8) is

V = f 1 (S) p 1 (S) S + x 1 -x * 1 x 1 x 1 + N i=2 c i x i .
Since x * 1 = P 1 (λ 1 ) and, using (8), V is written

V = f 1 (S) p 1 (S) 1 -S - N i=1 p i (S)x i + [x 1 -P 1 (λ 1 )]f 1 (S) + N i=2 c i f i (S)x i .
The terms -f1(S) p1(S) p 1 (S)x 1 and x 1 f 1 (S) are canceled. Therefore, using [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF],

V = f 1 (S) [P 1 (S) -P 1 (λ 1 )] + N i=2 x i c i f i (S)p 1 (S) -f 1 (S)p i (S) p 1 (S) .
Using ( 26) and ( 27), the first term of the above sum is non-positive for 0 < S < 1 and equals 0 if and only if S = λ 1 . Using (28), the second term is non-positive for 0 < S < 1 and equals 0 if and only if

x i = 0 for i = 2 • • • N . Hence V ≤ 0 and V = 0 if and only if S = λ 1 and x i = 0 for i = 2 • • • N .
By the Krasovskii-LaSalle extension theorem, the ω-limit set of the trajectory is E * 1 .

We have the following property.

Lemma 6. The conditions λ 1 < 1 and (28) imply that λ 1 < λ i for all i ≥ 2.

Proof. If f i (S) > 0 for some S ≤ λ 1 , then f 1 (S) ≤ 0, so that the inequality (28) is violated.

This lemma shows that the winning species x 1 in Theorem 2 has the lowest break-even concentration. Actually Theorem 2 is a consequence of Theorem 1.

Proposition 1. Theorem 2 is a corollary of Theorem 1.

Proof. Assume that ( 26), ( 27) and (28) hold. Notice that [START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] is the same as ( 13) and ( 27) is the same as [START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF]. Let us prove that (15) holds. If f i (S) < 0 and f 1 (S) > 0 (which occurs if λ 1 < S < λ i and may occur also for λ i < S < 1), then [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] holds for any choice of α i > 0. If 0 < S < λ 1 then, by (27), P 1 (S) > P 1 (λ 1 ) and, since f i (S) < 0, fi(S) P1(S) > fi(S) P1(λ1) . Finally, if λ i < S < 1 and f i (S) > 0 then, by (27), P 1 (S) < P 1 (λ 1 ), and hence, fi(S) P1(S) > fi(S) P1(λ1) . Therefore, in both cases λ i < S < 1 and 0 < S < λ 1 ,

f i (S) P 1 (S) > f i (S) P 1 (λ 1
) .

Thus, using (28),

f 1 (S)p i (S) > c i f i (S)p 1 (S) = c i f i (S) P 1 (S) (1 -S) > c i f i (S) P 1 (λ 1 ) (1 -S).
Thus, [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] holds for α i = ci P1(λ1) . Hence, ( 27) and ( 28) imply [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF].

Theorem 2 recovers the classical case Monod case [START_REF] Hsu | Limiting behavior for competing species[END_REF]. Indeed, consider the particular case of (5), when the growth functions q i (S) are given by [START_REF] Hsu | A survey of constructing Lyapunov functions for mathematical models in population biology[END_REF]. System [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF], with D = 1 and S 0 = 1, takes the form

S = 1 -S - N j=1 a j S b j + S x j Y j , x i = a i S b i + S -D i x i , i= 1 • • • N. ( 29 
)
We consider the case where, for all i = 1

• • • N , a i > D i . The break-even concentrations are λ i = b i D i a i -D i . ( 30 
)
Corollary 2 (Theorem 3.3 in [START_REF] Hsu | Limiting behavior for competing species[END_REF]). Assume that

λ 1 < λ 2 ≤ • • • ≤ λ N , λ 1 < 1. ( 31 
)
Then the equilibrium E * 1 is GAS for (29) with respect to the interior of the positive cone.

Proof. Assume that (31) holds. Let us prove that ( 26), ( 27) and (28) hold. Since f 1 (S) = q 1 (S) -D 1 is increasing, the function f 1 (S) changes sign only at S = λ 1 and hence, (26) is satisfied. Since

P 1 (S) = Y 1 (1 -S) b 1 + S a 1 S and P 1 (S) = -Y 1 S 2 + b 1 a 1 S 2 < 0,
the function P 1 (S) changes sign only at S = λ 1 and hence (27) is satisfied. Condition (28) is

(a 1 -D 1 )S -b 1 D 1 b 1 + S 1 Y i a i S b i + S > c i (a i -D i )S -b i D i b i + S 1 Y 1 a 1 S b 1 + S , i≥ 2.
After simplification by S (b1+S)(bi+S) , this condition is equivalent to

(a 1 -D 1 ) a i Y i (S -λ 1 ) > c i (a i -D i ) a 1 Y 1 (S -λ i ) i ≥ 2, (32) 
which is satisfied for c i = (a1-D1)aiY1 (ai-Di)a1Yi . Indeed, for this choice of the constants c i , (32) is simply

S -λ 1 > S -λ i ⇐⇒ λ 1 < λ i , i≥ 2,
which is the same as (31). Thus (28) is satisfied. The global asymptotic stability of E * 1 follows from Theorem 2.

Theorem 2 was previously obtained in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF], in the particular case when the function f i satisfies [START_REF] Rapaport | Biological control of the chemostat with nonmonotone response and different removal rates[END_REF]. For this class of systems the main result in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF] is Corollary 3 (Theorem 2 in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF]). Assume that ( 2), ( 7) and ( 18) hold. Assume that

λ 1 < λ 2 ≤ • • • ≤ λ N , and λ 1 < 1 < μ 1 , ( 33 
) (S -λ 1 )(P 1 (S) -P 1 (λ 1 )) < 0, for S = λ 1 , ( 34 
)
where P 1 (S) is defined by [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. Assume that there exist constants

α i > 0 for each i ≥ 2 satisfying λ i < 1, such that max 0<S<λ1 g i (S) < c i < min λi<S<ρi g i (S), ( 35 
)
where g i (S) = f1(S)pi(S) fi(S)p1(S) and ρ i = min(μ i , 1). Then the equilibrium E * 1 is GAS for [START_REF] Crooke | The effect of the specific growth rate and yield expressions on the existence of oscillatory behaviour of continuous fermentation model[END_REF] with respect to the interior of the positive cone.

Proof. First, note that (34) is the same as (27), and condition λ 1 < 1 < μ 1 in (33) is equivalent to [START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF]. If S < λ i then f i (S) < 0 and f 1 (S) > 0 so that (28) is satisfied for any choice of c i > 0. Similarly if μ i < 1 and μ i < S < 1 then f i (S) < 0 and f 1 (S) > 0 so that (28) is satisfied for any choice of c i > 0. On the other hand, if 0 < S < λ 1 then f i (S) < 0 and, using

g i (S) < c i in (35), f 1 (S)p i (S) < c i f i (S)p 1 (S). Finally, if λ i < S < ρ i , then f i (S) > 0 and, using g i (S) > c i in (35), f 1 (S)p i (S) < c i f i (S)p 1 (S)
. Thus (28) is satisfied. The result follows from Theorem 2.

Single species

In the case N = 1, using the notation x = x 1 , (8) takes the form

S = 1 -S -xp(S), x = f (S)x. ( 36 
)
Let S = λ be the smallest positive value of S such that f (S) = 0 and x * = P (λ) with P (S) defined by P (S) = 1-S p(S) as in [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. If λ < 1, then E * = (λ, x * ) is a positive equilibrium. Assume that f (λ) > 0 and P (λ) < 0, so that E * is locally asymptotically stable. We consider the global asymptotic stability of E * . Corollary 4 (Theorem 2.11 in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF] or Lemma 2.3 in [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF]). Assume that λ < 1 and for all 0 < S < 1,

(S -λ)f (S) > 0, for S = λ, ( 37 
) (S -λ)(P (S) -P (λ)) < 0, for S = λ. ( 38 
)
Then the equilibrium E * is GAS for (36) with respect to the interior of the positive cone. Proof. Notice that (37) is the same as ( 13) or ( 26) and ( 38) is the same as ( 14) or (27). Since for N = 1, condition [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] in Theorem 1 or condition (28) in Theorem 2 is trivially satisfied, the result is a corollary of Theorem 1 or Theorem 2.

Corollary 4 was obtained by Arino, Pilyugin and Wolkowicz (see [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF], Theorem 2.11). Using the Lyapunov function

V AP W = 1 -λ p(λ) S λ f (σ) 1 -σ dσ + x x * ξ -x * ξ dξ, ( 39 
)
these authors proved that if

1 - p(S)(1 -λ) p(λ)(1 -S)
has exactly one sign change for 0 < S < 1 (40) then E * is GAS. Notice that (40) is equivalent to (38). In the single species case, our Lyapunov function [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF], used in the proof of Theorem 1, reduces (up to a constant) to the Lyapunov function V AP W considered in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]. Corollary 4 was obtained also by Pilyugin and Waltman (see [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF], Lemma 2.3). Using the Lyapunov function

V P W = S λ f (σ) p(σ) dσ + x x * ξ -x * ξ dξ, (41) 
these authors proved that if

S = λ is the only zero of R(S) = 1 -S -x * p(S) (42) 
then E * is GAS. Notice that (42) is equivalent to (38). In the single species case, our Lyapunov function [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF], used in the proof of Theorem 2, reduces to the Lyapunov function V P W considered in [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF].

S1S2 S3 S4

x = P (S) Notice that the isoclines S = 0 and x = 0 of (36) are given by

S = 0 ⇐⇒ x = P (S), 12 
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x = 0 ⇐⇒ x = 0 or S = λ.

If the vertical line S = λ intersects the curve x = P (S) on an increasing arc, then, from Lemma 1, the intersection is an unstable equilibrium point E * . Using Poincaré-Bendixon theory we can show that the system has at least a periodic orbit surrounding the equilibrium. Otherwise, if the vertical line S = λ intersects the curve x = P (S) on an decreasing arc, then, from Lemma 1, E * is locally asymptotically stable. The condition (38) has the following graphical interpretation: if E * is the only intersection of the isocline x = P (S) with the horizontal line x = x * then E * is GAS. For instance, in the situation depicted on Fig. 1, the function x = P (S) has two critical points S = S 2 and S = S 3 . Let S 1 and S 2 defined by P (S 1 ) = P (S 3 ) and P (S 4 ) = P (S 2 ) respectively. Then,

S S S λ < S1 or λ > S4 S2 < λ < S3 S1 < λ < S2 or S3 < λ < S4 λ λ λ x * x * x * E * E * E * Figure 2: If λ < S 1 or λ > S 4
, the equilibrium point E * is GAS. If S 2 < λ < S 3 then, the system admits at least one limit cycle. If S 1 < λ < S 2 or S 3 < λ < S 4 the condition (38) does not hold and Corollary 4 cannot be applied.

see Fig 2: Case 1. If 0 < λ < S 1 or S 4 < λ < 1 then E * is the only intersection of the isocline x = P (S) with the horizontal line x = x * . Thus, using Corollary 4, the equilibrium E * is GAS.

Case 2. If S 2 < λ < S 3 then, using Lemma 1, the equilibrium E * is unstable. The system admits at least one limit cycle.

Case 3. If S 1 < λ < S 2 or S 3 < λ < S 4 then, using Lemma 1, the equilibrium E * is locally asymptotically stable. The horizontal line x = x * has three intersections with x = P (S). Since (38) does not hold, we cannot conclude if the equilibrium is GAS or not.

We illustrate the third case by an example taken from [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF]. Consider (36) with p(S) = q(S) y(S) , f(S) = q(S) -D, where q(S) = aS b + S , y(S) = 1 + cS 2 , corresponding to Monod growth function and quadratic yield. Let D 2 = q(S 2 ) and D 3 = q(S 3 ). For the parameter values given in the caption of Fig. is surrounded by two limit cycles. Actually, the limit cycle which exists for all D 2 < D < D 3 disappears for some critical D c > D 3 through a subcritical Hopf bifurcation. For more details and explanations the reader is referred to [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF]. The case N = 1 of a single species can also be investigated with the Bendixon-Dulac criterion. As shown in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF], using the variable y = log(x), ( 36) is written

S = 1 -S -e y p(S), y = f (S), (43) 
with resulting divergence div = -1e y p (S).

If p (S) > 0 then the divergence is negative and no periodic solution can exist. Poincaré-Bendixon theorem shows that convergence to the equilibrium E * ensues. Thus E * is GAS under the conditions p > 0 and (37). This result is a consequence of Corollary 4, since the condition p (S) > 0 implies P (S) < 0 for 0 < S < 1 and hence, (38) holds. However, the condition (38) in Corollary 4 can accept slightly negative p , since P (S) < 0, for 0 < S < 1, is equivalent to p (S) > -p(S) 1-S , for 0 < S < 1.

Monod growth functions and linear yields

Models with linear yields were biologically motivated by [START_REF] Agrawal | Theoretical investigations of dynamic behaviour of isothermal continuous stirred tank biological reactors[END_REF][START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF][START_REF] Crooke | The effect of the specific growth rate and yield expressions on the existence of oscillatory behaviour of continuous fermentation model[END_REF]] who noticed the existence of limit cycles for some values of the parameters. The rigorous mathematical study was given in [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF]. Consider the particular case of (1), where the growth functions q i (S) are given by ( 10), and the yields y i (S) = q i (S)/p i (S) are linear

y i (S) = Y i (1 + c i S)
where Y i > 0 and c i ≥ 0. System (1), with D = 1 and S 0 = 1, takes the form

S = 1 -S - N j=1 a j S b j + S x j Y j (1 + c j S) , x i = a i S b i + S -D i x i , i= 1 • • • N. ( 44 
)
The break-even concentrations λ i are given by (30). In this section we give analytical conditions on the parameters of (44) so that conditions ( 13), ( 14) and ( 15) are satisfied and Theorem 1 can be applied. We need the following Proof. Since

Q (S) = - 2cS 3 + (1 + c(b -1)) S 2 + b S 2 , Q (S) = - 2 b -cS 3 S 2 ,
the function Q(S) has an inflexion point for S = (b/c) 

1 3 . The function Q(S) is nonincreasing over [0, 1] if and only if its derivative at the inflexion point is nonpositive, that is, P (b/c) 1 3 ≤ 0. Straightforward computations show that this condition is equivalent to [c(1 -b) -1] 3 ≤ 27bc 2 . If b ≥ 1
λ 1 < λ 2 ≤ • • • ≤ λ N , λ 1 < 1, ( 45 
)
either b 1 ≥ 1 or for each i ≥ 1 satisfying λ i < 1, c i ≤ c crit (b 1 ). ( 46 
)
Then the equilibrium E * 1 is GAS for (44) with respect to the interior of the positive cone.

Proof. Let us prove that ( 13), ( 14) and ( 23) hold. The Monod function f 1 (S) is increasing. Hence, (13) holds. The function P 1 (S) is

P 1 (S) = (1 -S)(b 1 + S)(1 + c 1 S) S .
By Lemma 7, it is decreasing if and only if either b 1 ≥ 1 or b 1 < 1 and c 1 ≤ c crit (b 1 ). Hence, (14) holds. For each i ≥ 2, the function g i (S) defined by ( 22) is

g i (S) = f i (S) f 1 (S) 1 -S p i (S) = Y i a i a i -D i a 1 -D 1 S -λ i S -λ 1 Q i (S)
where

Q i (S) = (1-S)(b1+S)(1+ciS)

S

. Assume that (46) holds. By Lemma 7, the function Q i (S) is decreasing. Therefore,

min 0<S≤λ1 Q i (S) = Q i (λ 1 ) > Q i (λ i ) = max λi≤S<1 Q i (S). Since λ 1 < λ i , the function S → S-λi S-λ1 is increasing. Therefore, min 0<S≤λ1 S -λ i S -λ 1 = λ i λ 1 > 1 > 1 -λ i 1 -λ 1 = max λi≤S<1 S -λ i S -λ 1 . Thus, min 0<S<λ1 g i (S) ≥ Y i a i a i -D i a 1 -D 1 min 0<S<λ1 S -λ i S -λ 1 min 0<S<λ1 Q i (S) > Y i a i a i -D i a 1 -D 1 Q i (λ 1 ),
and max

λi<S<1 g i (S) ≤ Y i a i a i -D i a 1 -D 1 max λi<S<1 S -λ i S -λ 1 max λi<S<1 Q i (S) < Y i a i a i -D i a 1 -D 1 Q(λ i ).
Hence [START_REF] Tilman | Resource Competition and Community Structure[END_REF] holds. The result follows from Theorem 1.

Theorem 3 extends Corollary 2 which corresponds to the case where the yields are constant. Indeed, (45) is the same as (31) and, for constant yields, c i = 0, so that the conditions (46) in Theorem 3 are satisfied. Notice that (46) is a sufficient and not necessary condition for the existence of a gap between the minimum of g i (S) over (0, λ 1 ) and its maximum over [λ i , 1]. For instance, for 16
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the parameter values given in the caption of Fig. 5, if c 2 = 30 > 6.5 c crit (0.1), there exists such a gap, see Fig. 5. Therefore, Theorem 1 applies and predict that the equilibrium is GAS, even if Theorem 3 does not apply, since b 1 = 0.1 < 1 and c 2 = 30 > 6.5 c crit (0.1). However, for c 2 = 80 > 6.5 c crit (0.1), there is no gap, see Fig. 5. Therefore, neither Theorem 1 nor Theorem 3 can be used. However, in each particular example it is very easy to depict graphically the conditions ( 13), ( 14) and [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] of Theorem 1 and to see if Theorem 1 can be applied or not.

Discussion

We briefly survey some CEP results for [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF]. In the Monod case [START_REF] Monod | La technique de culture continue. Théorie et applications[END_REF] when the growth functions are of form [START_REF] Hsu | A survey of constructing Lyapunov functions for mathematical models in population biology[END_REF], and assuming equal removal rates for S and all species, i.e. D i = D for i = 1 • • • N , Hsu, Hubbell and Waltman [START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF] proved the following CEP: every solution of (5) with positive initial condition satisfies

lim t→∞ S(t) = λ 1 , lim t→∞ x 1 (t) = Y 1 (S 0 -λ 1 ), lim t→∞ x i (t) = 0, i ≥ 2,
under the additional assumption 0 < λ 1 < S 0 and λ 1 < λ i for i = 2 • • • N . The predictions in [START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF] were tested in the laboratory by the experiments of Hansen and Hubbell [START_REF] Hansel | Single-Nutrient Microbial Competition: Qualitative Agreement Between Experimental and Theoretically Forecast Outcomes[END_REF]. Similar experiments could be performed to test the predictions using microorganisms known to have variable yields. See [START_REF] Agrawal | Theoretical investigations of dynamic behaviour of isothermal continuous stirred tank biological reactors[END_REF][START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF][START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF][START_REF] Crooke | The effect of the specific growth rate and yield expressions on the existence of oscillatory behaviour of continuous fermentation model[END_REF][START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] for examples of such microorganisms.

Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] used the Lyapunov function [START_REF] Wolkowicz | Microbial dynamics in a chemostat : competition, growth, implication of enrichment[END_REF] to give a simple and elegant proof of the result in [START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF] for the case of different removal rates D i (see Corollary 2). Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF], used the Lyapunov function [START_REF] Monod | La technique de culture continue. Théorie et applications[END_REF] and extended the results of [START_REF] Hsu | Limiting behavior for competing species[END_REF] by allowing more general growth functions. They identified a large class of growth functions, where the constant c i in [START_REF] Monod | La technique de culture continue. Théorie et applications[END_REF] can always be found. As claimed by Smith and Waltman [22], despite the fact the c i cannot be found for all growth functions, the work of Wolkowicz and Lu [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] represents a major step in the extension of the result of Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF] to general growth functions. In the constant yield case, the CEP has been also proved under a variety of hypotheses by Armstrong and McGehee [START_REF] Armstrong | Competitive exclusion[END_REF], Butler and Wolkowicz [START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF], Wolkowicz and Xia [START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] and Li [START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF]. The hypotheses used in the papers [START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Butler | A mathematical model of the chemostat with a general class of functions describing nutrient uptake[END_REF][START_REF] Hsu | Limiting behavior for competing species[END_REF][START_REF] Hsu | A mathematical theory for single nutrient competition in continuous culture of micro-organisms[END_REF][START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] are summarized in Table 1 of [START_REF] De Leenheer | Competition in the chemostat: some remarks[END_REF]. Lyapunov techniques in the chemostat were also used in [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF][START_REF] Rapaport | Biological control of the chemostat with nonmonotone response and different removal rates[END_REF].

The variable yield case was considered, for n = 1, 2 by Pilyugin and Waltman [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF], with a particular interest to linear and quadratic yields, and by Huang, Zhu and Chang [START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF]. The general model (1) for N species, was considered by Arino, Pilyugin and Wolkowicz [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]. As noticed by these authors (see [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF], Section 3), in the case of constant yields [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF], including the yield terms Y i in the substrate equation, as in [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF], is mathematically equivalent to including the reciprocal in the microorganism equation instead. Indeed, (5) can be written

S = D[S 0 -S] - N j=1 p j (S)x j , x i = [Y i p i (S) -D i ]x i , i= 1 • • • N,
where p i (S) = qi(S) Yi . Since Y i are constant, the uptake terms p i and growth terms q i have the same monotonicity properties. Formally, the model (1) with yields (4) can be written

S = D[S 0 -S] - N j=1
q j (S) y j (S)

x i ,

x i = [q i (S) -D i ]x i , i = 1 • • • N, ( 47 
)
where q i (S) are the growth functions, or equivalently,

S = D[S 0 -S] - N i=j p j (S)x j , x i = [y i (S)p i (S) -D i ]x i , i= 1 • • • N, ( 48 
)
where p i (S) are the uptake functions. One of the important differences in the case that the yields are not constant is that the variable yield terms can lead to uptake and growth functions that have now different monotonicity properties. Moreover, in the case of constant yields, the yields terms Y i can be eliminated in [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF] simply by passing to the variables u i = Y i x i . We obtain

S = D[S 0 -S] - N j=1 q j (S)u j , u i = [q i (S) -D i ]u i , i= 1 • • • N.
This change of variables means that we have changed the units in which the microorganisms were evaluated. There is no such trick to eliminate the yields terms in (47) of (48). Therefore, careful attention to the interpretation of the yield terms resulting in their correct placements in the equations is necessary. For details and complements, the reader is referred to [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF], Section 3.

In the variable yield case, the CEP has been proved for [START_REF] Agrawal | Theoretical investigations of dynamic behaviour of isothermal continuous stirred tank biological reactors[END_REF], under some technical conditions on the function p i and q i , by Sari [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF] and Sari and Mazenc [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF] (see Corollary 1 in Section 3 and Corollary 3 in Section 4). It was also shown in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF] how Corollary 3 can be fruitfully used to analyze the stability properties of systems whose yield functions depend on the variable S. For instance, the CEP holds (see Corollary 5 in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF]) for the Monod model with constant yields replaced by either linear or quadratic functions of S, and under certain additional technical assumptions. Another application is given by the following model

S = 1 -S -2S 0.7+S x1 1+cS 3 -m2S 6.5+S x2 120 x 1 = [ 2S 0.7+S -1]x 1 x 2 = [ m2S 6.5+S -1]x 2 .
This model was used by Pilyugin and Waltman [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] to demonstrate that a periodic orbit was possible in the variable yield case. In this model, with two species, where one yield is constant and the other is cubic in S, it is shown in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF] that for some values of the parameters the CEP holds (see Corollary 6 in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF]). The problem of the existence of limit cycles in chemostat equations is not always well understood [START_REF] Sari | Comments on "Limit cycles in the chemostat with constant yields[END_REF]. In the case of constant yields, numerical simulations of model ( 5) have only displayed competitive exclusion. Our results concern also the case of variable yields, for which it is known [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF][START_REF] Huang | Limit cycles in a chemostat with variable yields and growth rates[END_REF][START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] that more exotic dynamical behaviors, including limit cycles and chaos, are possible. Thus in the case of variable yields, it is of great importance to have criteria ensuring the global convergence to an equilibrium with at most one surviving species. The reader interested in biological motivations for the dependence of the yields on the substrate, may consult [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF][START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] and the references therein.

The exclusion of periodic orbits in system (8) was obtained by Fiedler and Hsu (see Theorem 1.1 in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF]) under the following conditions: for all 1 ≤ i = j ≤ N , and 0 < S < 1 (Sλ i )f i (S) > 0, for S = λ i , (49)

f i (S) < 1 + f j (S) + (1 -S)p j (S)/p j (S). (50) 
Even if the result in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF] does not show the convergence to an equilibrium, it is interesting to compare the constraints on the functions f i and p i of [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF] with our constraints. Actually, (49) is stronger than (13), since our assumption requires (49) only for f 1 and allows the f i , for i = 1, to have other zeros than λ i in ]0, 1[. Let us compare the constraints on f i and p i imposed by the inequalities (50) to the constraints imposed by hypothesis [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF]: notice that (50) is a set of conditions, while ( 15) is a set of at most N -1 conditions. Moreover, the constants α i in the conditions [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] give more flexibility to these conditions. For instance, [START_REF] Lobry | Effect on persistence of intra-specific competition in competition models[END_REF] are satisfied by arbitrary Monod growth functions and also by a large class of growth functions as it was shown in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF]. On the other hand, (50) are not satisfied by arbitrary Monod functions, see formulas (6.10) and (6.11) in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF]. Hence the result in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF] does not recover the CEP, even in the classical and well established case of Monod functions and equal removal rates [START_REF] Armstrong | Competitive exclusion[END_REF]. However our theorem recovers a lot of results of the existing literature.

For the purpose of comparison between our result and the result of Fiedler and Hsu [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF], we just mentioned two caveats on Theorem 1.1 in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF]: first, this theorem does not recover many of the biologically interesting classical examples where the CEP is known to hold, and second, it does not prove the convergence to an equilibrium. These caveats were already mentioned in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF], Section 6. Another caveat must be signaled. Fiedler and Hsu claimed (see [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF], Section 6) that, in the case N = 1 of a single species, condition (50) holds trivially and there is no periodic orbit for system (36). It should be noticed that condition (49) is not sufficient to exclude periodic orbits. Of course, if p (S) > 0, then the Bendixon-Dulac criterion can be applied to exclude periodic orbits (see Section 5). This assumption on the monotonicity of p is not explicitly stated in Theorem 1.1 in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF]. Moreover, the condition p (S) > 0 would not be satisfactory from the biological point of view. Indeed, a variable yield term y(S) = q(S)/p(S) can lead to nonmonotone uptake term p(S) even if the growth term q(S) is monotone (see Section 5).

Fiedler and Hsu, see Section 6 in [START_REF] Fiedler | Non-periodicity in chemostat equations: a multidimensional negative Bendixon-Dulac criterion[END_REF], claimed that the construction of Lyapunov functions in [START_REF] Armstrong | Competitive exclusion[END_REF][START_REF] Hsu | Limiting behavior for competing species[END_REF][START_REF] Li | Global asymptotic behavior of the chemostat : general response functions and differential removal rates[END_REF][START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF][START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF] strictly depends on the proportionality p i (S) = q i (S)/Y i required in equations [START_REF] Crooke | Hopf bifurcations for a variable yield continuous fermentation model[END_REF]. In Section 4, we showed how the Lyapunov function used by Hsu himself [START_REF] Hsu | Limiting behavior for competing species[END_REF] for the Monod case, more than thirty years ago, can be extended to the case of ( 6), where growth rates are not required to be proportional to food uptake (see Theorem 2, in Section 4). For that reason, the direct proof of Theorem 2, using the extension (25) of the Lyapunov function of Hsu [START_REF] Hsu | Limiting behavior for competing species[END_REF], seems to be interesting in itself. Thus, we decided to give Theorem 2 and its direct proof, despite the fact that this theorem is a corollary of Theorem 1 (see Proposition 1 in Section 4).

We list some references to the existing literature which inspired our approach. The Lyapunov function [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] used in the proof of Theorem 2 was introduced in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF] as an extension of the Lyapunov function [START_REF] Wolkowicz | Microbial dynamics in a chemostat : competition, growth, implication of enrichment[END_REF] that Hsu used in [START_REF] Hsu | Limiting behavior for competing species[END_REF] in the Monod case (Theorem 3.3 in [START_REF] Hsu | Limiting behavior for competing species[END_REF]). In the case of one species, this Lyapunov function is equal to the function (41) used by Pilyugin and Waltman (Lemma 2.3 in [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF]), as shown in Section 5. It is also a multiple of the Lyapunov function that Ballyk, Lu, Wolkowicz and Xia used in [START_REF] Wolkowicz | Global asymptotic behavior of a chemostat model with discrete delays[END_REF], page 1039 or [START_REF] Wolkowicz | Microbial dynamics in a chemostat : competition, growth, implication of enrichment[END_REF], Section 3.3 (see Section 3.2 in [START_REF] Sari | Global dynamics of the chemostat with different removal rates and variable yields[END_REF]). The Lyapunov function [START_REF] Pilyugin | Multiple limit cycles in the chemostat with variable yields[END_REF] used in the proof of Theorem 1 was introduced in [START_REF] Sari | A Lyapunov function for the chemostat with variable yields[END_REF] as an extension of the Lyapunov function ( 16) that Wolkowicz and Lu used in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF] in the constant yields case (Theorem 2.3 in [START_REF] Wolkowicz | Global dynamics of a mathematical model of competition in the chemostat: general response functions and differential death rates[END_REF]). In the case of one species, it is a multiple of the Lyapunov function (39) used by Arino, Pilyugin and Wolkowicz (Theorem 2.11 in [START_REF] Arino | Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models[END_REF]), as shown in 20
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In this work, we have analyzed a general model of the chemostat with several species competing for a substrate, under the assumption that uptake rates and growth rates are not proportional. Each species is characterized by its specific growth rate, its specific removal rate, and its variable yield. Our study reveals that the CEP holds for a large class of systems: the species with the smallest break-even concentration can be the winner of the competition if some supplementary conditions, involving the uptake and growth functions are satisfied. Hence, even if the break-even concentration are depending only on the growth rates and not on the yields functions, the issue of competition really depends on the yield functions. For instance, if one on the species exhibits a linear yield, and if the parameter in the yield is enlarged, then the equilibrium, where only the winning species survives, can be destabilized, and oscillatory coexistence of more than one species becomes possible.

Figure 1 :

 1 Figure 1: The graph of the function x = P (S) showing the values S 1 , S 2 , S 3 and S 4 .

Figure 3 :

 3 Figure 3: If D = 1 the system has two limit cycles. On the center of the figure an enlargement of the graph shows that the equilibrium point E * = (λ, x * ) lies on a decreasing branch of the graph of the function x = P (S). For the parameters values a = 2, b = 0.58 and c = 46: S 1 0.048, S 2 0.143, S 3 0.579, S 4 0.855 and λ = 0.58. Hence S 3 < λ < S 4 .

  2 y = [c(1 -b) -1] 3

Figure 4 :Lemma 7 . 3 ≤ 27bc 2 .

 4732 Figure 4: On the left: the definition of the function c crit (b). For each b < 1, the functions y = [c(1b) -1] 3 (in green) and y = 27bc 2 (in red) intersect for c = c crit (b). On the center, the numerical plot (in red) of the function c = c crit (b). On the right, the behaviour of this function for small values of b. technical result. Lemma 7. The function Q(S) = (1-S)(b+S)(1+cS) S is decreasing over [0, 1] if and only if [c(1b) -1] 3 ≤ 27bc 2 . This condition is equivalent to either b ≥ 1 or b < 1 and c ≤ c crit (b), where c crit (b) is the positive zero of [c(1b) -1] 3 = 27bc 2 .
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 443 then the first term of the inequality is negative and hence the inequality if satisfied for all c ≥ 0. If b < 1, then the inequality is satisfied if and only if c ≤ c crit (b), see Fig. The expression of c crit (b) can be obtained by Cardan formulas. Notice that c crit (0) = 1 and c crit (b) is increasing with b, see Fig. Theorem Assume that

Figure 5 :

 5 Figure 5: The graphical depiction of conditions (14) and (23) in the proof of Theorem 3. The parameter values are c 1 = 4, b 1 = 0.1, a 1 = 1, b 2 = 0.15, a 2 = 1 D 1 = 0.6 and D 2 = 0.55. Hence λ 1 = 0.15 and λ 20.18. On the left, the function P 1 (S) (in green) and its derivative (in red) showing that P 1 is decreasing and so (14) is satisfied. On the right, the function g 2 (S) for c 2 = 5 (in red), c 2 = 30 (in green) and c 2 = 80 (in cyan). The condition (23) is satisfied for c 2 = 5 < c crit (0.1) and c 2 = 30 > c crit (0.1). It is not satisfied for c 2 = 80. Here c crit (0.1) 6.5, see Fig.4.
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