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Abstract 20

Identification of an active fault and the local versus regional present-day stress field in the 21

Irpinia region (southern Apennines) have been performed along a 5900m deep well (San Gregorio 22

Magno 1) by a detailed breakout and geophysical log analysis. The selected area is characterized by 23

diffuse low magnitude seismicity, although in historical times moderate to large earthquakes have 24

repeatedly struck it. On 23rd November 1980 a strong earthquake (M=6.9) nucleated on a 38km-long 25

normal fault, named Irpinia fault, producing the first unequivocal historical surface faulting ever 26

documented in Italy. The analysis of stress-induced wellbore breakouts shows a direction of 27

minimum horizontal stress N18°±24°, fairly consistent with the regional stress trend (N44°±20°). 28

The small discrepancy between our result and the regional stress orientation might be related to the 29

influence of local stress sources such as variations of the Irpinia fault plane orientation and the 30

presence of differently oriented active shear zones. This paper shows for the first time a detailed 31

analysis on the present-day stress along a well to identify the Irpinia fault at depth and constrain its 32

geometry. 33

34

Key words: Borehole breakout, geophysical log, present-day stress field, seismogenic fault, 35

southern Apennines, Italy.36

37

1. Introduction38

This paper is mainly devoted to the present-day stress field study performed in a high seismic 39

hazard area of southern Italy (Cinti et al., 2004; Faenza and Pierdominici, 2007) in order to assess a 40

methodology to identify and constrain active faults at depth along deep wells.41

The present-day stress state can be assessed by different techniques, including the analysis of: 42

(i) borehole breakouts, (ii) focal mechanism solutions, (iii) exposed active fault segments, (iv) well 43

cores, and (v) crustal deformation and differential strain (Ding and Zhang, 1991; Zoback, 1992; 44

Seto et al., 1998). Breakouts are used as indicators of the direction of maximum and minimum 45
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horizontal stress (SHmax and Shmin, respectively) and correspond to observation points along deep 46

wells (Bell and Gough, 1979; Zoback et al., 1985). Many studies have shown that the present-day 47

stress orientation in a region is quite homogeneous and independent of the stratigraphy and depth 48

(e.g. Plumb and Cox, 1987; Castillo and Zoback, 1994), whereas along a borehole the breakout 49

orientations can change due to the presence of active faults (Barton and Zoback, 1994; Wu et al., 50

2007). As reported by several authors stress perturbations have been associated to open fractures 51

and to active faults which have slipped recently (Bell et al., 1992; Shamir and Zoback, 1992; Barton 52

and Zoback, 1994; Mariucci et al., 2002; Wu et al., 2007). Moreover, shear zones at depth usually 53

show physical properties different from the nearby undamaged rock and downhole logs can record 54

these features.55

In this paper we have analysed the present-day stress along and around a deep well and tried to 56

identify at depth some shear zones and the seismogenic fault, named Irpinia, located in the southern 57

Apennines. This fault is related to the 1980 Ms=6.9 Irpinia earthquake, and represents the first 58

unequivocal surface faulting ever documented in Italy. Its geometry is not well constrained by59

geophysical exploration and aftershock data analysis because this tectonic structure is relatively a 60

young fault that has not yet developed enough cumulated vertical slip to be clearly resolved by 61

seismic reflection profiles (Pantosti and Valensise, 1993; Improta et al., 2003; Cippitelli, 2007; 62

Patacca, 2007; Figure 1). This paper shows for the first time a detailed analysis on the present-day 63

stress nearby the seismogenic fault in the context of the overall setting. The Irpinia fault trace is 64

located ~1.3km westward from the well San Gregorio Magno 1 (herein named SGM1), and 65

according to its geometry, the well should cut off it. If this is true, the main observation of Barton 66

and Zoback, (1994) that stresses reorient close to faults should be verified.  The idea is to study the 67

present-day stress in the SGM1 well to identify the possible stress perturbations close to the Irpinia 68

fault. Then, borehole breakouts, downhole log data and tectonic structures along the deep well 69

SGM1 have been analysed.70

71
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2. Geological-structural setting and regional seismicity 72

The southern Apennine belt is part of the Alpine orogens of the Mediterranean area, 73

developing from the interaction between the converging Africa-Apulian and European plates since 74

Late Cretaceous time, (e.g. D’Argenio et al., 1973; Dewey et al., 1989; Mazzoli and Helman, 1994 75

and references therein; Butler et al., 2004). The southern Apennines are a NE-verging fold-and-76

thrust belt that began to grow mainly since the lower Miocene (Bonardi et al., 1988; Patacca et al., 77

1990) due to deformation of the Adriatic subducting margin. The thrust belt is characterized by 78

allochthonous units derived from both carbonate platform and pelagic basin successions (Apenninic 79

Platform and Lagonegro Basin, respectively), which are stratigraphically overlain by Neogene 80

foredeep and wedge-basin deposits (Miocene and Pliocene successions). These units are completely 81

detached from their original substratum and transported onto the foreland sequence of the Apulian 82

carbonate Platform (e.g. Doglioni et al., 1996; Mazzoli et al., 2004).83

In the early Pliocene (Scandone et al., 2003), the entire pile of nappes overthrusts the Apulian 84

carbonate platform giving rise to a complex duplex system (e.g., Mostardini and Merlini, 1996; 85

Cello et al., 1987, 1989; Casero et al., 1988; Ascione et al., 2003; Patacca and Scandone, 2007).  In 86

this tectonic context, the thrust sheet emplacement moved following the opening of the Tyrrhenian 87

back-arc basin (Patacca et al., 1990) as a consequence of the roll-back of the subducting Adriatic88

plate (Malinverno and Ryan, 1986; Doglioni, 1991).  Only in the middle-late Pliocene, the Apulia 89

Platform underwent shortening processes that created duplexing in the deep-seated carbonates and 90

displacement of the overlying allochthonous sheets (Patacca and Scandone, 2007). The processes of 91

thrusting and Adriatic-verging nappe transport have been active on the eastern side until the lower92

part of middle Pleistocene (Casero et al., 1988; Patacca et al., 1990; Roure et al., 1991; Cinque et 93

al., 1993; Pieri et al., 1997; Patacca and Scandone, 2001), when the flexure-hinge retreat in the 94

Adriatic plate suddenly stopped (Patacca and Scandone, 2007).95
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For further information on the geological and structural setting, the reader is referred to the wide 96

existing literature (e.g., Casero et al., 1991; Patacca and Scandone, 1989; 2004; Lavecchia, 1988; 97

Pescatore et al., 1999; Galadini et al., 2000; Giano et al., 2000; Lentini et al., 2002; Valensise and 98

Pantosti, 2001; Schiattarella et al., 2003; Scrocca et al., 2007). 99

Concerning the seismicity, the southern Apennines are characterized by recent low magnitude 100

seismic events, punctuated by large historical earthquakes that shook the area in the past (CPTI 101

Working Group, 2004) (Figure 2). Strong historical events (Io=IX-X) have been well documented 102

since 1500: 1561-Vallo di Diano; 1694-Irpinia; 1826-Tito; 1831-Rivello; 1836-Lagonegro; 1851-103

Basilicata; 1857-Val d’Agri; 1930-Irpinia; 1980-Irpinia (Esposito et al., 1988; Marturano et al., 104

1988; Porfido et al., 1988; CPTI Working Group, 2004). 105

The instrumental seismicity, recorded by the Istituto Nazionale di Geofisica e Vulcanologia 106

(INGV) since 1981 is characterized by magnitudes generally lower than 4.0 (Castello et al., 2008). 107

Only a few isolated seismic sequences hit the southern Apennines in the last years (Figure 2, Table 108

1). In 1990-1991 the Potenza area was shaken by a seismic sequence (Mw=5.7 and Mw=5.2) which 109

occurred from about 2 to 25km depth with the mainshocks showing E-W dextral strike-slip 110

mechanism (Azzara et al., 1993; Ekström, 1994; CPTI Working Group, 2004; Di Luccio et al., 111

2005); in 1996 the Irpinia area was hit by a seismic sequence characterized by normal faulting 112

mechanisms with a mainshock (Mw=5.1) at 8km depth (Cocco et al., 1999; Cucci et al., 2004); in 113

1998 normal faulting earthquakes occurred in the north Pollino area with Mw=5.6 (Michetti et al., 114

2000; Pondrelli et al., 2002) and in 2002 the Melandro-Pergola basin was affected by Mw=4.1 115

earthquake at a depth of 9km (Cucci et al., 2004; Frepoli et al., 2005). The seismicity is mainly 116

placed along the axial part of the belt, within the shallow crust, showing NE-SW T-axes with 117

prevailing normal faulting focal mechanisms (Gasparini et al., 1985; Frepoli and Amato, 2000; 118

Pondrelli et al., 2006; Maggi et al., 2009 among many others). As mentioned above, this trend is 119

also coherent with the active stress field (Figure 2) inferred from geological and borehole breakout 120

data (e.g., Amato et al., 1995; Montone et al., 2004).121
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122

2.1 The 1980 M6.9 Irpinia earthquake 123

In the last century, the most important and largest seismic event in the southern Apennines was 124

the Irpinia earthquake that occurred on November 23, 1980 with Ms=6.9 (Boschi et al., 1993). It 125

was one of the most disastrous events in Italy, causing the death of about 3000 people and the total 126

destruction of 15 towns within a radius of nearly 50km. This earthquake nucleated at a depth of 10-127

12km (Westaway and Jackson, 1987) with a focal mechanism characterized by NW-SE normal 128

faulting planes and by a moment tensor of 2,4*1019Nm (Giardini, 1993) (Figure 3a). The aftershock 129

distribution indicated that the area of the earthquake source was about 14×40km2 providing also 130

information on source geometry (Deschamps and King, 1980; Amato and Selvaggi, 1993) and on 131

the relationship between crustal structure and faulting mechanism (Chiarabba and Amato, 1994; 132

Improta et al., 2003). However, the 3D locations from local earthquake tomography did not allow 133

constraining the fault geometry at depth accurately (Deschamps and King, 1984).134

The Irpinia earthquake consists of three subevents, at 0s (the mainshock), at ~20s and ~40s from 135

the mainshock (Bernard and Zollo, 1989). Associated to the 0s and 20s events, a 38km long rupture 136

at the surface was partially recognized by Westaway and Jackson (1984) and then totally defined by 137

Pantosti and Valensise (1990). Its mean strike is N308°, with a 60°-70° dip to the northeast with an 138

average value of normal slip of 61cm along the fault (Pantosti et al., 1993) and a total vertical throw 139

of about 50m in the last 150krs (Ascione et al., 2003; Improta et al., 2003). Pantosti and Valensise 140

(1990, 1993) divided the 1980-surface rupture into 3 main segments on the basis of geological and 141

geomorphological observations of the scarp, which is clearly linked to the coseismic deformation at 142

depth. These 3 scarp strands are, from northwest to southeast: the Cervialto, the Marzano-Carpineta 143

and the San Gregorio Magno (Figure 3a), separated by two surface faulting gaps (the Sele and the 144

San Gregorio Magno gap). The first shock (at 0 sec) is associated both to the Marzano-Carpineta 145

segment and to the Cervialto scarp (approximately 8-10 km long). The second event happened after 146

20s along a 8km San Gregorio Magno segment. Considering only seismological data, the last event147
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(40s) is supposed to be located on an antithetic, SW-dipping branch fault (Ofanto fault segment) 148

(Improta et al., 2003) in front of the Cervialto and Marzano-Carpineta structures (Figure 3a); no 149

evidence of surface rupture exists for this event. 150

151

3. San Gregorio Magno 1 well 152

3.1 Stratigraphy and structural outline153

The SGM1 well is located at 797m elevation near the Marzano-Carpineta fault scarp (Figure 154

3b). It was drilled by British Gas RIMI in 1996-1997 down to a depth of 5900m with the goal of 155

reaching a structural high in the Apulia carbonate Platform, which is generally a target of the oil 156

industry in the southern Apennines, imaged by commercial and deep reflection profiles (Patacca 157

and Scandone, 2007)) and gravity data modelling (Improta et al., 2003). The SGM1 well (Patacca, 158

2007) crossed three main tectonic units bounded by two thrust faults at 2280 m and 3377 m and 159

different lithological units (Figure 4a). 160

According to Patacca (2007), the well penetrates 2280m of the Mesozoic carbonates of the 161

Alburno-Cervati Unit (part of the Apenninic carbonate Platform succession), ~1100m of the 162

Lagonegro Unit II (part of Lagonegro basinal succession) and ~2600m of the Apulian carbonate 163

Platform. The first Unit is composed of: i) “lime breccias” (early Cretaceous-Jurassic), typical of 164

slope environments and characterized by calcirudites and calcarenites, and ii) Dolomia Principale 165

Formation (late Triassic), deposited in a tidal flat environment and characterized by dolomites and 166

dolomitic limestones. The underlying Lagonegro Unit II, deposited in a deep-marine basin, consists 167

of: i) the Galestri Formation (early Cretaceous), that is mainly formed of claystones and shales and 168

subordinate calcilutites and calcarenites; ii) the Scisti Silicei Formation (Jurassic to Rhaetian), 169

containing calcarenites and radiolarites and subordinate siliceous shales (2735-3070m), and in the 170

lower part claystones and shales with subordinate calcarenites and calcilutites (3070-3200m); 171

finally iii) the M. Facito Formation (early-middle Triassic), formed by shales, sandstones, siltstones 172

and siliciclastic calcarenites, subordinate radiolarites and limestones. The deepest tectonic unit, the 173
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Apulia, includes: “wildflysch” (middle Miocene to early Pliocene), siciliclastic flysch deposits 174

derived from the Apennines nappes deposited in foredeep basin; Gessoso Solfifera Formation 175

(Messinian) characterized by anhydrites and evaporitic limestones, typical of evaporitic carbonate 176

ramp; “lime breccias” (upper Cretaceous) typical of slope environment consisting of calcarenites, 177

calcilutites and calcirudites; “shallow-water carbonates” (Dogger-upper Cretaceous) deposited in a 178

shelf environment. Besides the two thrusts, following the reconstruction of Patacca (2007), the well 179

also encountered a system of SW-dipping normal faults at 440m and 3198m (Figure 4a). As the 180

surface rupture of the Irpinia fault is located ~1.3km westward from the well, according to its 181

geometry (N308° striking, 60°-70° northeast dipping), the borehole should intersect the fault within 182

the depth range ~2300-3800m (Figure 4a). As a matter of fact, the fault has not been unequivocally 183

recognized from the available data, either on stratigraphic logs or on seismic profiles. As mentioned 184

in the introduction, one possible explanation is that the relatively young fault has not yet developed 185

enough cumulated vertical slip to be clearly resolved by seismic reflection profiles (Pantosti and 186

Valensise, 1993; Improta et al., 2003; Cippitelli, 2007; Patacca, 2007). For this reason we have 187

jointly used different methods, including borehole breakouts and downhole logs, to identify the 188

possible active shear zones and the Irpinia fault.189

190

3.2 Borehole breakout data191

Method192

Borehole breakout analysis is an important tool for the evaluation of stress patterns in the 193

uppermost crust (Bell and Gough, 1979; Zoback and Zoback, 1980, 1991; Zoback et al., 1985, 194

1989; Plumb and Cox, 1987). Breakouts fill the gap between data from earthquake focal 195

mechanisms and surface measurements (e.g. active faults, extensional fractures and strain release 196

measurements): they are the result of localized conjugate compressive shear failures that develop 197

along deep wells in an anisotropic stress field with a triangular shape in cross-section. The shear 198

planes are tangential to the circumference of the borehole and identify breakout zones parallel to the 199
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direction of the Shmin. The first breakout develops in the borehole very soon after the passage of the 200

drill bit and continues to propagate along the axis of the borehole and into the formation (Bell and 201

Gough, 1983). Mechanisms that explain the formation of these features have been extensively 202

examined in the literature (Babcock, 1978; Bell and Gough, 1979; Zoback et al., 1985; Haimson 203

and Heirrick, 1986; Zheng et al., 1989; Amadei and Stephansson, 1997). 204

Borehole breakouts are identified from four-arm caliper readings collected routinely with 205

conventional dipmeter logging tools. Different borehole geometries are defined as: i) “in-gauge”, if 206

the hole has the dimensions of the drill bit called bit size; ii) “breakout zone”, when one diameter is 207

elongated and the orthogonal one has the bit size dimension; iii) “key seat”, when the drill-string 208

wear causes a pear-shaped borehole with an artificial elongation at the low side of the well. It 209

occurs when the borehole is highly deviated from vertical; iv) “washout”, an enlargement of the 210

borehole in an “over-gauge hole” (Plumb and Hickmann, 1985). To obtain the average direction and 211

standard deviation of the least horizontal stress in the well, the statistical method from Mardia 212

(1972) has been applied in this study. Results are shown as rose diagrams scaled by length, and a 213

quality factor is assigned to each well (from A=highest quality to E=lowest quality) according to the 214

criteria used for the World Stress Map (Heidbach et al., 2008), first suggested by Zoback (1992).215

216

Analysis217

The breakout analysis of SGM1 well has been performed by four-arm caliper log data from 218

1200m to 5900m depth with two gaps (2645-2945m and 4775-4950m). The results of the 219

investigation showed: a) key seats between 1200 and 2000 m; b) no breakout between 5585 and 220

5900 and c) breakouts between 2000 and 5585m.221

The result of the entire well shows a cumulative breakout length of 675m with an average Shmin222

orientation of N18° and a standard deviation of 24° (Figure 4h), with a data quality C (according to 223

World Stress Map criteria; Heidbach et al., 2008).224
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A more detailed breakout analysis, considering all the data quality, has been performed for each 225

lithological and tectonic unit to understand the scattering of breakout data (Figure 4d, f, g and Table 226

2). We have identified a breakout zone from 2000 to 2075m in the Dolomia Principale (belonging to 227

the Alburno-Cervati tectonic unit) N348° oriented for a 75m total length. The Lagonegro II tectonic 228

unit is characterized by a Shmin orientation N38°±33° and a length of 365m with five breakout zones 229

related to: the Galestri Fm. with Shmin N310° oriented and a total length of 125m; the Scisti Silicei 230

Fm. N41° and a total length of 165m, and the M. Facito Unit with Shmin N33° trending and 75m long. 231

The Apulia tectonic unit is characterized by a Shmin orientation N7°±28° for a total length of 607m: 232

in the Wildflysch Shmin is N325° oriented (total length of 245m) and in the Shallow-water carbonate 233

unit is N15° (total length of 362m) (Table 2). No breakouts have been found in the Gessoso Solfifera 234

and Lime Breccias units. 235

As the regional stress field is well constrained in the area (Shmin N44°±20°) (Montone et al., 1997; 236

Montone et al., 2004), we believe it is possible to distinguish, along the well, anomalous stress 237

directions departing from the regional trend and associate them with shear zones intersected by the 238

drilling (Shamir and Zoback, 1992; Barton and Zoback, 1994; Wu et al., 2007). Barton and Zoback 239

(1994) point out that the stress field rotates in proximity to an active fault due to small slip 240

increments on the fault, possibly induced by the tectonic movement or due to an increase of pore 241

pressure on the fault when drilling through it. With the purpose of identifying the Irpinia fault, the 242

stress field detected from SGM1 has been compared to the regional stress orientation. Any 243

deviation from the regional value has been considered as a local rotation of the stress field - if the 244

breakout orientation deviates from the regional one more than 15° - and is shown as clockwise or 245

anticlockwise rotation (Figure 4e). Along the SGM1 well, anomalously oriented breakouts occur in 246

five intervals: 2000m-2650m, 3450m-3855m, 4350-4560m, around 4800m and around 5500m 247

(Figure 4d-e). 248

As observed in other deep wells, when the breakout trend abruptly changes it is possible to identify 249

faults and/or fracture zones otherwise difficult to recognize by seismic reflection data and drill 250
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cutting analysis (Bell et al., 1992). We have distinguished four zones that separate different 251

breakout orientations (Figure 4): from 2650m to 2950m (zone 1), 3275m to 3450m (zone 2), 3855m 252

to 4320m (zone 3), and 5057m to 5460m (zone 4). 253

Considering the uncertainty of the fault geometry, three of the anomalous zones (zone 1, 2 and 254

3) are located around the area where the well is supposed to crosscut the Irpinia fault: in fact 255

according to most authors (e.g., Boschi et al., 1981), the Irpinia fault has a dip between 60° to 70° 256

corresponding to a depth of intersection with SGM1 approximately between 2300m to 3800m 257

(Figure 4). 258

259

4. Breakout versus downhole geophysical data 260

The stress field along the SGM1 well has been studied using two approaches. First, we have 261

analysed the borehole breakout data to obtain information on the present-day stress field. Second, we 262

have used these data and the downhole logs to identify possible shear zones and the Irpinia fault 263

itself. Shear zones at depth usually show physical properties different from the nearby undamaged 264

rock and these features can be recorded by downhole logs. As by now observed in other drilled 265

active faults (Wu et al., 2007; Wu et al., 2008) the shear zones correspond to the most significant 266

changes in sonic and resistivity curves with respect to their average trend at depth. 267

Assuming the SGM1 well crossed the Irpinia fault we have analyzed three downhole curves 268

(gamma ray, resistivity and sonic; Figure 5) in order to detect their anomalous physical properties 269

with respect to overall value characterizing each lithology. For our analysis we have used an 270

extremely detailed stratigraphic log (courtesy of Etta Patacca and Paolo Scandone) that allowed us to 271

recognize and discard the anomalies related to the small-scale lithological variations and to the 272

identified faults. In fact, according to this interpretation those faults are westward dipping, whereas 273

the Irpinia fault dips toward east. 274

The remaining sectors showing significant changes in downhole logs are located at the 275

following depths (Figure 5): around 2350m (sector A), around 3100m (sector B) with two small 276
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areas, around 3800m (sector C), around 4300m (sector D) and around 4700m (sector E). Considering 277

the Irpinia fault geometry (60°-70° dipping) we can exclude the two deepest sectors (D and E). 278

Particularly, in the sector A the sonic curve shows a decrease with respect its mean value (Figure 5) 279

while the other curves do not seem to show any anomaly; in sector B we have identified two small 280

zones showing anomalous peaks in all the curves (a decrease in gamma ray and sonic logs and an 281

increase in resistivity, Figure 5). Finally, in sector C we have identified a well defined peak showing 282

an increase in the sonic curve and a decrease in the resistivity curve trend (Figure 5). All these 283

sectors correspond to washout zones (Figure 5b) that also support the presence of shear zones. In 284

fact, when a borehole crosses a highly fractured area, the stress concentration enhances the effect of 285

natural fractures that are mechanically weaker, and can easily produce collapse of the wellbore wall, 286

detected as enlargements of the borehole size. Only sectors A and C are located within the 287

previously identified five anomalous breakout intervals, whereas sector B is located where breakouts 288

are consistent with the regional Shmin orientation. As mentioned before, abrupt breakout rotations 289

indicate the presence of active shear zones. For this reason we suggest that the Irpinia fault is located 290

around 2350m (sector A) or around 3800m (sector C). In both zones we have more confident data 291

revealing not only abrupt breakout rotations (~NW-SE oriented) but also washout presence, 292

geophysical log anomalies not directly connected to the lithology, and consistency with the fault dip 293

deduced from focal mechanisms and surface data. 294

295

5. Discussion and conclusion 296

The stress analysis has allowed us to constrain the Shmin orientation along the well (N18°±24°), 297

suggesting that it is moderately consistent with the neighbouring regions (Figure 6). The slight 298

difference between the regional stress field (Shmin= N44°±20°) and the achieved SGM1 Shmin is due 299

to the presence of ~N-S Shmin orientations in the deepest part of the well, mainly within the Apulia 300

tectonic unit (Figure 4g and Figure 6). In Figure 6 breakouts are shown as rose diagrams instead of 301

average Shmin orientations; in fact we believe that the average Shmin orientations are more appropriate 302



Page 13 of 34

Acc
ep

te
d 

M
an

us
cr

ip
t

13

for regional tectonic reconstructions, whereas for local tectonic interpretations it is preferable to 303

consider rose diagrams, where it is easier to resolve the contribution of possible different 304

orientations within the same well. 305

Two main directions are observable not only in SGM1 but also in other breakout solutions (even 306

of higher quality, A or B) along the belt and the foredeep. A ~N-S orientation has been recognized 307

also in another deep well located in the northern part of the Irpinia area (Figure 6) and could be 308

linked to the presence of ~E-W tectonic structures or to the changing trend of the NW-oriented 309

faults. Actually, it is a common feature of a fault plane showing variable orientations that can 310

correspond to slight deviations in the local principal stress orientations. The inferred Shmin orientation 311

is not exactly at 90° with respect to the N308° Irpinia fault mean direction, but it is fairly consistent 312

with the “zig-zagging” trend of the fault (Pantosti and Valensise, 1993) and with the local tectonic 313

structures displaying ~E-W directions (Caiazzo et al., 1992; Ascione et al., 2003). In detail, in this 314

area there is interference between the N150° and N110°-100° trends relative to the Marzano-315

Carpineta structure and Mt. Ogna fault respectively, both reactivated during the late Quaternary 316

(Ascione et al., 2003). 317

Concerning seismological data, in correspondence of the Irpinia area a lot of earthquake focal 318

mechanisms (Cocco et al., 1999; Cucci et al., 2004; Frepoli et al., 2005; Maggi et al., 2009) exhibit 319

both normal faulting and strike slip mechanisms (Figure 6). Particularly, the fault plane solutions 320

closer to the well clearly show ~N-S oriented T-axis,on ~E-W nodal planes (Figure 6 and Table 1, 321

solutions from 20 to 23), which fit the deepest results of the breakout analysis.322

Then, we hypothesize that the localized stress rotations along the SGM1 well probably result 323

from slip on nearby faults indicating active deformation in the crust. Also the geophysical logs 324

show significant anomalies in the physical properties in correspondence of two hypothesized major 325

active shear zones: at 2350m (sector A) and around 3800m (sector C), depths where we suppose the 326

Irpinia fault is located.327
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Then, we propose some possible hypotheses in terms of general geometry of the Irpinia fault, 328

especially concerning its dip, segmentation or continuity (Figure 7). Starting from the information 329

that the fault dips 60° at 10-12km depth, as inferred from the focal mechanism solution of the 1980 330

Irpinia earthquake, and taking into account the lower and upper bounds of the surface fault dip (60° 331

and 70°) we obtain four different options. If the well crosses the fault in the sector A (i.e. the fault 332

dip is around 60°) we can suppose: 1) a straight fault plane 60° dipping from surface to focal depth 333

(red line in Figure 7); or 2) a fault plane changing dip from 70° at surface to 60° immediately below 334

(blue line in Figure 7). Whereas, if sector C is the true hole-fault intersection (i.e. fault dip around 335

70°) we can have: 3) an irregular fault plane trend (like a “vertical segmentation”) with two dip 336

changes, from 60° to 70° at few kilometres from the surface and from 70° to 60° around 10 km; or 4) 337

a 70° dipping fault changing to 60° down to focal depth (yellow line in Figure 7). The first two 338

hypotheses (numbers 1 and 2) differ only for the dip at surface and then can be considered as one 339

hypothesis. Among these different hypotheses we believe that the number 3 is the less reliable 340

considering its geometry and also it is very similar to the hypothesis number 4 at depth. Then we 341

concentrate on the last hypothesis that agrees with the fault geometry proposed by Amato and 342

Selvaggi (1993) based on the seismicity distribution and earthquake focal mechanisms. Occurrence 343

of the fault in sector C is also consistent with the idea of stress decoupling due to the Irpinia fault, as 344

supported by breakout orientations along the well that show a prevailing NNE-SSW direction 345

(immediately below sector C) and ~NS in the deepest part of the well (4300-5600m; Figure 4, rose 346

plot of column f). We believe that this sector has a slightly higher degree of probability, with respect 347

to sector A, to be the real location of Irpinia fault along SGM1 well and then, the yellow line the 348

most probable geometry of the fault (Figure 7). 349

The identification of fault geometry is an important factor for the characterization of the seismic 350

behaviour and therefore the seismic hazard assessment of an area. The seismic behaviour of a fault 351

can be considered both in space and in time. In the first case, the location and the geometry of the 352

active faults influence the interactions with the surrounding faults that may accumulate stress or 353
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initiate. This observation is consistent with substantial release of accumulated strain energy during 354

earthquakes and a redistribution of stress in adjacent areas (e.g., Marzocchi et al., 2009). In the 355

second case, the seismic behaviour of a fault is studied by examining the historical seismicity and 356

the paleoseismological records to estimate recurrence intervals along different fault segments. 357

In this paper, the most significant result is that using downhole log and borehole breakout data is 358

possible to constrain the most likely location of an active fault at depth.359

360
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Figure Captions621

Figure 1. Above: schematic structural map (modified after Scrocca et al., 2007): 1. Main out of 622
sequence thrust; 2. Buried Apenninic thrust front; 3. CROP-04 seismic line; 4. Wells. Below: part of 623
CROP-04 cross-section (section A-A’; modified after Cippitelli, 2007 according  to the stratigraphic 624
description of Patacca, 2007 from c. to e. deposits). Legend: a. Castelgrande Sandstone (Miocene); 625
b. Cilento Flysch and Liguride-Sicilide complex (Cretaceous-Paleogene); c. Apenninic carbonate 626
Platform (Alburno-Cervati; late Triassic); d. Lagonegro II unit (early Triassic-early Cretaceous) e. 627
Apulian carbonate Platform (Dogger-early Pliocene); f. Permo-Triassic substratum; g. Normal fault; 628
h. Reverse fault-overthrust plane; i. Unconformity.629

630
Figure 2. Regional overview of present-day stress data and seismicity. The black arrows indicate the 631
Shmin average orientation obtained by all the stress indicators. Historical seismicity from 217 B.C. to 632
1980 (M≥5.5; CPTI Working Group, 2004); instrumental seismicity from 1981 to present (INGV-633
CNT Seismic Bulletin http://csi.rm.ingv.it); fault plane solutions of the largest earthquakes (see 634
Table 1 for references). 635

636
Figure 3. a) Map of the Irpinia Fault System and its segments breaking at 0s, 20s and 40s with the 637
associated focal mechanism solutions. The stars represent the earthquake epicenters (modified from 638
Pantosti and Valensise, 1990); b) zoom of the Marzano-Carpineta fault segment with the location of 639
the San Gregorio Magno 1 well.640

641
Figure 4. Breakout data along the San Gregorio Magno 1 well: a) synthetic stratigraphic log of the 642
main lithological and tectonic units (Patacca, 2007); b) available data interval; c) breakout zones: the 643
size of the black rectangle represents the length of the breakout data with the same direction; d) 644
individual breakout azimuths; e) clockwise and anticlockwise breakout rotations with respect to the 645
regional trend; f) and g) rose diagrams of breakout results for lithological and tectonic unit; h) total 646
rose diagram. The light grey box represents the interval in which the borehole should intersect the 647
Irpinia fault hypothesizing different fault dips (from 60° to 75°). Legend of a): 1. stratigraphic 648
discontinuity; 2. normal fault; 3. thrust fault. 649

650
Figure 5. Geological and geophysical data of the San Gregorio Magno 1 well. a) Synthetic 651
stratigraphic log of the main lithological and tectonic units (Patacca, 2007); b) washout zones; c) 652
downhole logs; d) breakout azimuths; e) five boxes showing the magnification of the five selected 653
sectors (in red the anomalous trend). The light grey boxes indicate possible shear zones (A, B, C, D 654
and E sectors). See text for the explanation of zone 1, 2, 3 and 4. 655

656
Figure 6. Present-day stress data in southern Apennines. Breakouts are relative to SGM1 and wells 657
from Montone et al., 2004. Focal mechanisms of main earthquakes and seismic sequences are shown 658
(the numbers refer to Table 1, see References therein). Colours correspond to different types of focal 659
solutions: brown, normal faulting with NE–SW extension; yellow, strike-slip faulting; orange, 660
normal faulting with strike slip component and NE–SW to E–W extension; pink, normal faulting 661
with strike slip component and N-S to NNE-SSW extension; violet, normal faulting with strike slip 662
component and NW-SE extension. 663
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664
Figure 7. - The cross-section (modified from Cippitelli, 2007) shows the three hypotheses of the 665
Irpinia fault trend. If the SGM1 well crosses the Irpinia fault at 2350m: i) a straight fault plane 60° 666
dipping from surface to focal depth (red fault); ii) a fault plane changing dip from 70° at surface to 667
60° in the upper kilometer (blue fault). If the SGM1 well crosses the Irpinia fault at 3800m: iii) a 668
70° dipping fault changing to 60° down to focal depth (yellow fault). The red star represents the 669
mainshock at 0s and the grey area around it indicates the associated error in vertical and horizontal 670
location of about 3km and 1km respectively (Bernard and Zollo, 1989). Legend: a. Castelgrande 671
Sandstone (Miocene); b. Cilento Flysch and Liguride-Sicilide complex (Cretaceous-Paleogene); c. 672
Apenninic carbonate Platform (Alburno-Cervati; late Triassic); d. Lagonegro II unit; (early Triassic-673
early Cretaceous) e. Apulian carbonate Platform (Dogger-early Pliocene); f. Permo-Triassic 674
substratum; g. Normal fault; h. Reverse fault-overthrust plane; i. Unconformity.675

676
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Research highlights676
677

 Horizontal stress orientations in the well are consistent with the regional trend.678

 Anomalous stress orientations reveal local stress sources679

 faults cause log anomalies in a well680

 fault-well intersection at depth can be defined681

 downhole logs help in defining fault geometry at depth682

683
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Table 1 

Earthquake focal mechanism data (the events are ordered according to figure 6).  

Event 

Number  

Event Date  

(yyyy/mm/dd) 

Origin 

Time 

Lat, 

deg 

Lon, 

deg 

Depth 

(km) 
Magnitude Strike  Dip  Rake References 

1 19801123 18:34 40.724 15.373 10-12 6.9 135 60 -80 a 

2 20020102 02:17 40.779 15.417 15.4 2.8 140 75 -80 b 

3 20060314 03:15 40.818 15.326 10.5 2.7 155 50 -60 b 

4 20060915 17:55 40.766 15.384 16.2 2.4 70 85 -170 b 

5 20040224 05:21 40.715 15.407 16.5 3.8 135 25 -90 b 

6 20020504 09:41 40.611 15.537 15.8 2.3 160 45 -50 b 

7 20061201 15:38 40.775 15.460 15.0 2.7 130 40 -120 b 

8 20060717 16:56 40.774 15.490 8.4 2.5 125 40 -90 b 

9 20060926 16:29 40.722 15.455 7.8 3.0 80 75 -110 b 

10 19900505 07:21 40.775 15.766 15.0 5.7 184 73 13 c 

11 19910526 12:26 40.730 15.765 11.0 5.2 183 71 -9 c 

12 20020505 06:40 40.373 15.373 21.6 1.9 155 50 -150 b 

13 19980909 11:28 40.150 15.947 9.0 5.6 139 29 -83 d 

14 20020419 18:06 40.595 15.568 6.0 4.1 170 50 -50 b 

15 20020418 21:00 40.588 15.569 10.3 3.0 200 75 -10 b 

16 20020418 21:36 40.583 15.573 9.6 2.2 200 80 -10 b 

17 20020418 22:58 40.583 15.571 9.5 2.7 100 80 150 b 

18 20020526 10:19 40.549 15.534 11.4 2.6 140 45 -70 b 

19 19960304 13:04 40.670 15.420 10.0 4.9 111 15 -126 f 

20 19960304 13:04 40.670 15.420 8.0 5.1 297 74 -70 e 

21 19960717 09:45 40.670 15.400 10.5 3.5 35 55 -140 f 

22 19960822 06:47 40.670 15.390 10.0 3.0 115 45 -40 f 

23 19960716 12:46 40.670 15.380 12.2 3.4 45 45 -130 f 

24 20011209 12:15 40.795 15.287 16.6 3.3 130 20 -80 b 

References: a) Boschi et al., 1981; b) Maggi et al., 2009; c) Ekström, 1994; d) Pondrelli et al., 2002; e) 

Cocco et al., 1999; f) Cucci et al., 2004. 

Table 1
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Table 2 
Summary of breakout data results of the SGM1 well for each lithological and tectonic unit  

Tectonic Unit 
Lithological 

Unit 

Depth Units 
Breakout 

Interval 
Shmin 

standard 

deviation 

Breakout 

length 

Breakout 

zone 

Top Bottom Top Bottom (°) (°) (m) number 

Alburno-

Cervati 
 40 2280 2000 2075 348 0 75 1 

 
Dolomia 

Principale 
440 2280 2000 2075 348 0 75 1 

Lagonegro II  2280 3377 2325 3275 038 33 365 5 

 Galestri 2280 2735 2325 2650 310 14 125 2 

 Scisti Silicei 2735 3198 2960 3198 041 7 165 2 

 Monte Facito 3198 3377 3200 3275 033 0 75 1 

Apulia   3377 5901 3450 5580 007 28 607 14 

 Wildflysch 3377 3977 3450 3990 325 15 245 4 

 
Shallow-Water 

Carbonates  
4085 5901 4090 5580 015 21 362 10 

 

 

Table 2


