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Abstract:

The Alborz is a region of active deformation within the Arabia-Eurasia collision zone. 

The Abr and the Khij Faults are two NE-trending left-lateral strike-slip faults in the eastern 

Alborz that correspond to the Shahrud fault system extended through an area of about 

95×55 km2. Tectonic landforms typically associated with active strike-slip faults, such as 

deflected stream channels, offset ridges and fault scarps are documented along the mentioned 

faults. Detailed analyses of satellite images and digital topographic data accompanied by field 

surveys allowed us to measure horizontal offsets of about 420 ± 50 m and 400 ± 50 m for the 

Abr and Khij faults, respectively. A total of 8 quartz-rich samples were sampled and dated 

from two different fan surfaces using in situ-produced 10Be cosmogenic dating method. 

Minimum exposure ages for the abandonment of the alluvial fan surfaces of 115 ± 14 kyr 

along the Abr Fault and of 230 ± 16 kyr along the Khij Fault imply that both faults are active 

with slip rates of about 3-4 mm yr−1 and 1-3 mm yr−1, respectively. The results of our study 

provide the first direct quantitative geological estimates of slip rate along these two active 
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faults and place a new constraint on slip distribution between the faults in the eastern Alborz. 

Fault kinematic studies (from fault slip data) indicate a N35°E-trending maximum stress axis 

comprising a dominant strike-slip regime in agreement with the geomorphological analyses. 

The left-lateral strike-slip faulting along the Abr and Khij faults and their associated fault 

zones in the eastern Alborz can be due to the westward component of motion of the South 

Caspian Basin with respect to Eurasia and Central Iran.

Keywords: Alborz; active tectonics; Abr Fault; Khij Fault; cosmic ray exposure dating; slip 

rate

1. Introduction 

Iran is located within the Alpine-Himalayan orogenic belt in a zone of continental 

convergence between Eurasia to the North and Arabia to the South which is mostly 

accommodated by shortening and strike-slip faulting in the mountain belts such as the Great 

Caucasus, Zagros, Alborz, Kopeh Dagh and also the active Makran subduction zone. Recent 

geological studies indicate that the Arabia-Eurasia collision in Iran occurred between late 

Eocene and late Oligocene time (e.g., Allen et al. 2004; Agard et al., 2005; Vincent et al.,

2005; 2007; Allen and Armstrong, 2008; Fakhari et al., 2008; Horton et al., 2008; Boulton et 

al., 2009). The Arabia-Eurasia convergence rate is reported to be about 22 mm yr-1 at the 

longitude of Bahrain south of the Persian Gulf (Sella et al., 2002; McClusky et al., 2003; 

Vernant et al., 2004a; 2004b; Reilinger et al., 2006). 

The Alborz accommodates the motion between the South Caspian Basin (SCB) and 

Central Iran (Figure 1A). The Alborz range has evolved from the Triassic to the present-day 

during the Cimmeride and Alpine Orogenies (Alavi, 1996). The last major tectonic event that 

led to widespread deformation in northern Iran and the SCB is coeval with middle Miocene to 

Recent collision-related compression (e.g., Sengor & Kidd, 1979; Berberian & Berberian, 
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1981). The south Caspian shorelines move northwest at a rate of about 5 mmyr-1. The Central 

Iranian block is defined by internal deformation velocities smaller than 2 mm yr-1 (Vernant et 

al., 2004b). The Central Iran northward velocities at the longitudes of Damghan and Jajarm 

have been reported to be of about 9 mm yr-1 and 7 mm yr-1, respectively (Masson et al.,

2007). According to Masson et al. (2007), at the longitude of Tehran, the Alborz mountain 

range accommodates a motion rate of about 6 mm yr-1 which is in agreement with the results 

obtained from regional GPS network in the Alborz (Vernant et al., 2004b). The left-lateral 

shear across the Alborz is constrained to ~ 4 mm yr-1 (Vernant et al., 2004a). The large 

amount of geological, geodetic, geomorphological and geophysical data available for the 

Alborz allows characterizing and qualifying the deformation of this complex zone (e.g., Axen 

et al., 2001; Jackson et al., 2002; Allen et al., 2003a; Masson et al., 2006; 2007; Guest et al.,

2006a; 2006b; 2007; Ritz et al., 2006; Ritz, 2009; Tatar et al., 2007; Ballato et al., 2008; 

Landgraf et al., 2009; Nazari et al., 2009; Hollingsworth et al., 2010; Solaymani Azad et al., 

2011). The N-S convergence of Central Iran together with the SW-ward motion of the SCB 

toward Central Iran results in a NNE-trending transpressional tectonic regime in the Alborz 

mountain range. This transpression could have initiated between 3 and 7 m.y. ago (Ritz et al., 

2006). 

The Kopeh Dagh mountain range includes Mesozoic and Tertiary sediments, which were 

folded during the Oligo-Miocene orogenic movements (Stocklin, 1968; 1974; Afshar Harb, 

1979; Lyberis & Manby, 1999). The right-lateral Main Kopeh Dagh Fault system (MKDF) is 

characterized as the northwestern boundary of the Kopeh Dagh range (Figure 1) and 

considered as a seismically active structure (Trifonov, 1978). Previous studies (Regard et al., 

2005; Authemayou et al., 2006; 2009; Le Dortz et al., 2009; Shabanian et al., 2009a; 2009b) 

proposed estimates of long-term slip rates for some of the major active fault systems in Iran. 

A total slip rate of 9 ± 2 mm yr–1 is proposed for strike-slip faulting in the Kopeh Dagh, 
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resolving for western Kopeh Dagh as an average northward and westward slip rates of about 8 

and 4 mm yr−1, respectively (Shabanian et al., 2009a). 

The South Caspian Basin behaves as a relatively rigid aseismic block (Priestley et al.,

1994) and is suggested to be a trapped oceanic remnant (Berberian, 1983). This implies that 

uplift of the high Alborz and Talesh mountains loaded the SCB, causing accumulation of 

thick late Cenozoic deposits (Axen et al., 2001; Allen et al., 2003b). The SCB is surrounded 

by orogens including the Great Caucasus, Alborz, Kopeh Dagh, and the Great Balkhan. Based 

on the motion of a single GPS site on the Caspian shoreline, the SCB moves northwest with 

respect to Eurasia at a rate of 6 ± 2 mm yr–1 and the motion across the central Alborz is 

suggested to be roughly 5 ± 2 mm yr–1 of N-trending shortening and 4 ± 2 mm yr–1 of left-

lateral strike-slip (Vernant et al., 2004b). A higher estimate of 11 ± 2 mm yr–1 has been 

proposed for the South Caspian-Eurasia motion by Copley & Jackson (2006). Ritz et al.

(2006) mentioned Pleistocene as the age of the SCB northward motion towards Eurasia and 

suggest that this may have caused not only the change from a compressional tectonic regime 

to a transpressional one but also the transtension in the internal parts of the range. They 

emphasize that the internal domain of central Alborz is affected by an active transtensional 

regime with a WNW-trending extensional axis.

In the current study we present a morphotectonic analysis along two NE-trending left-

lateral strike-slip faults, i.e., the Abr and Khij faults (Figure 2) which belong to the Shahrud 

fault system affecting the eastern Alborz. The determination of the kinematics of the active 

deformation along the Shahrud fault system using fault slip vectors measured in the field 

combined with the determination of the abandonment age of two alluvial fan surfaces offset 

along the faults using in situ-produced cosmogenic 10Be exposure dating of quartz pebbles 

allow us to establish the rate and kinematics of the late Quaternary deformation in the 

southeastern limit of the eastern Alborz. At the regional scale, tectonic implications of the 
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new data and deduced results presented in this paper provide new geological constraints on 

active tectonics of the Alborz Mountains.

2. Seismo-tectonic setting and structural framework

2.1. Tectonics 

The Alborz is located south of the SCB consisting late Precambrian to Quaternary 

deposits (Figure 1A). Tectonic evolution of the Alborz range results from a combination of 

thrust activity within the orogen and, based on the chronology of the foreland basin deposits 

(Ballato et al., 2008), of frontal accretion. There are different ideas about the geometry and 

kinematics of faulting in the Alborz range (e.g., Jackson et al., 2002; Allen et al., 2003a; 

Guest et al., 2006a; Ritz et al., 2006, Zanchi et al., 2006; Yassaghi et al., 2008; Landgarf et 

al., 2009). For instance, Ritz et al. (2006) indicated that the margins of Alborz are affected by 

a transpressional regime, while there is a general left-lateral shear inside the central Alborz 

range. They have interpreted the total kinematic view of the Alborz as a general strike-slip 

regime with a change in the position of σ1 from a horizontally NNE-trending to a vertical one 

between the margins and the internal domain.

The compressive deformation has been active since Oligocene (Allen et al., 2003a; 

2003b). There are active faults along the southern part of the mountain belt and also along the 

Caspian coast (Bachmanov et al., 2004). The present-day tectonic framework of the range is 

characterized by a NE-SW compression causing a lateral inversion of the sense of motion 

from right to left-lateral (Allen et al., 2003a) as well as the activation of ESE-trending thrust 

faults. Late Cenozoic tectonics in the eastern Alborz is characterized by oblique and strike-

slip faulting which reactivated inherited Mesozoic structures. The active tectonic framework 

of the eastern Alborz consists of major NE-trending left-lateral faults. One of the main 

structures in northern margin of the Alborz range is the Khazar Fault extended in western part 
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of our study area (Figure 1). In eastern part of the Alborz range, the Gorgan Schists are 

thrusted against Quaternary deposits by the Khazar Fault.

2.2. Seismicity 

A global record of strain distribution over the last century is available by instrumentally 

recorded earthquakes, but the interval times between seismic events on individual faults can 

be up to several thousands of years. Following, we summarize the most important historical 

and instrumental earthquakes in the eastern Alborz. 

A relatively complete catalogue of the historical earthquakes in north-eastern Iran is 

available (Tchalenko, 1975; Ambraseys & Melville, 1982; Berberian & Yeats, 1999; 2001). 

The largest earthquakes in eastern Alborz are reported in 856, 1825, 1890, 1953 and 1985 

with magnitudes ranging from 6.2 to 7.9 (based on the macroseismic data). 200,000 persons 

were killed in the catastrophic earthquake of 856. According to a recent paleoseismology 

study in eastern Alborz (Hollingsworth et al., 2010), the Astaneh Fault’s rupture is consistent 

with rupture during the historical 856 A.D. Qumis (Ambraseys & Melville, 1982) earthquake 

in NE Iran. Historical earthquakes are also reported in 874, 1436, 1470 and 1498 in the area 

of Gorgan and Gonbad-Kavous. The destructive earthquakes of 1890 in the Shahrud region 

could be concerned with the active faults of this study on the basis of the reported regions of 

maximum destruction (Ambraseys & Melville, 1982). The earthquake of 1944 caused major 

damage in Gorgan (Ambraseys & Melville, 1982). A left-lateral faulting has been involved in 

the Karnaveh earthquake of 1970 (Mw 6.4), based on the analysis of its aftershock zone 

(Jackson & Fitch, 1979). The earthquake of 1985 occurred in the northern part of the Abr 

Fault (Table 1, Figure 1B).

According to morphotectonic and paleoseismologic studies (Hollingsworth et al., 2010) 

frequent stream offsets along the trace of the Astaneh Fault (eastern Alborz) may record the 



Page 7 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

7

cumulative offset of the last two to five earthquakes in Holocene. We emphasize that eastern 

Alborz is more seismically active than western Alborz. Few earthquakes occurred in the SCB 

and it is thus considered seismically relatively quiet although it is surrounded by very active 

fault zones (e.g., Priestley et al., 1994). 

3. Shahrud Fault System

The 400-km-long Shahrud fault system is characterized by active NE-trending left-lateral 

strike-slip fault zones (Astaneh, Shahrud, Abr and Jajarm fault zones) extending at the SE 

flank of the eastern Alborz. The combined geomorphic characteristics suggest coeval strike-

slip and reverse faulting mechanism for the ongoing activity of this fault system, 

characterizing a transpressional tectonic regime that is confirmed by the kinematic inversion 

results (Javidfakhr, 2010).

The left-lateral Astaneh fault zone (the westernmost part of Shahrud fault system) cuts 

across the topography north of Damghan city. This NE-trending fault zone runs across the 

southern boundary of eastern Alborz for over 150 km (Hollingsworth et al., 2008; 2010). 

Western part of Shahrud fault system includes the Shahrud fault zone defined by two active 

faults, the 130-km-long Shahrud Fault and the 70-km-long Tazareh Fault (Figure 2). The 

geomorphic expression of the Shahrud Fault is characterized by abrupt fronts of the mountain 

range. The high-angle Shahrud Fault is a combination of the E- and NE-trending fault 

segments running along the eastern Alborz Mountains. 

Eastern part of the Shahrud fault system consists of multiple fault zones: (1) the Jajarm 

fault zone which is an extended fault zone in this broad fault system, (2) the Cheshmeh-Nik 

fault zone which, at a first glance, seems to be the continuation of the Abr fault (Figure 2). 

However, this is not certain given the gap visible on satellite images of about 1 km between 

them at the eastern termination of the Abr Fault. the southern part of Shahrud fault system can 
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be described as the northern margin of Central Iran. The Jajarm Fault is a left-lateral strike-

slip fault located in the north of Jajarm city running for about 150 km in the NE direction 

(e.g., Hollingsworth et al., 2008; Javidfakhr, 2010). The active Jajarm Fault passes through 

Quaternary and Plio-Quaternary deposits in most of its trace. The Jajarm Fault is parallel to 

another left-lateral fault segment along its north side, i.e., Cheshmeh-Nik Fault (Figure 2). 

The area between the Jajarm and Cheshmeh-Nik faults is covered by Neogene continental red 

beds and Jurassic limestones as well as scattered Quaternary deposits. The Abr and Khij faults 

are two active boundary faults, located in the central part of the Shahrud fault system, that 

have separated the mountainous Alborz region from Central Iran. 

3.1. The Abr fault zone

The geomorphic expression of the fault zone in the context of the obtained fault 

kinematic data suggests a reverse component of faulting in the Abr fault zone. The Abr Fault 

extends for about 95 km in the eastern Alborz and runs northeast between Nekarman and 

Tilabad villages (Figures 2B, 3A). The NE-trending Abr Fault is a left-lateral strike-slip fault 

with a reverse component of dip-slip that marks a distinct topographic boundary between 

mountainous regions and Quaternary basins (Figure 3E), displaying morphological evidence 

of active faulting (Figures 3C and 3D). The deflection of rivers across this segment of the Abr 

Fault suggests this segment has been active in the Quaternary (Figure 3C).

The Abr Fault is parallel to the Khij Fault in most parts of its length, with a spacing of 

~20 km between them. The trend of the Abr Fault changes in its 40 km long eastern segment 

and turns to the East. In the termination zone of the Khij Fault, near Tilabad village, the 

spacing between the two faults decreased to 2 km due to a change in the orientation of the Abr 

fault trace (Figure 3A). 
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There are no geometric and/or structural changes at fault terminations. At the termination 

zone, relative fault displacement reduces to zero and is transferred to other structures, laterally 

or vertically, away from the fault end-point (Legg et al., 2004). The process of fault 

termination depends on scale since faults interact with various features of different length 

scales and since also the length scale of a fault increases during fault growth (Alessio et al.,

2004). The trend of the Abr Fault changes noticeably in a relatively wide area of its western 

termination zone (Figure 3B). The Quaternary trace of the Abr Fault terminates in a cluster of 

distributed small faults within a horsetail structure arrangement (Figure 3B). 

There is a 12-km-long active reverse fault in the south of Nekarman village parallel to the 

trace of the Abr Fault (Figure 4A). The outcrop of this fault was limited to few sites. Vertical 

offset was estimated from the profile perpendicular to the fault trace which is shown in Figure 

4B. The vertical offset of this fault is estimated at about 24 m (Figure 4C) using the 1:20,000 

topographic map. 

3.2. The Khij fault zone

The left-lateral Khij Fault passes through Khij village (Figure 3A), and strikes NE, 

parallel to the eastern Alborz range for about 55 km. The trend of the Khij Fault remains 

constant all along its trace. At its both ends, the trace of the fault remains sharp. There are 

some nearly parallel small faults (10-15 km) in the central and western part of the fault. These 

faults offset the associated terraces left-laterally for several tens of meters (Figure 3D). They 

probably should be responsible for a negligible part of left-lateral slip across the fault zone. 

Some channels in the western part of the Khij Fault are deflected with left-lateral offsets of 

about 20-100 m (Figure 3D). Vertical deformations such as small scarps with reverse faulting 

arise along the Khij Fault, but most of the features are locally observed and result from strike-

slip faulting.
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4. Fault kinematic analysis

4.1. Methodology

The kinematic measurements were numerically processed to analyze the fault population 

data (Carey and Brunier, 1974; Carey, 1979), a mean best-fitted deviatoric stress tensor for a 

fault population being calculated through the minimization of the angular deviation between 

the measured striation and the resolved shear stress. This inversion method assumes that the 

slip established by the striation is in the same direction as the resolved shear. The orientation 

of the principal stress axes (σ1, σ2, σ3) and the stress ellipsoid shape parameter (R), defined as 

R = (σ2 - σ1)/(σ3 - σ1), are the results thus obtained through the applied inversion method 

(Carey and Brunier, 1974; Mercier et al., 1991; Bellier and Zoback, 1995). 

Relative chronology of the striations and their coherence with the regional tectonic events 

are considered to separate the distinct families of striation. We detected two slip generations 

of striations revealed by clear crosscutting striations on fault planes in most of the 

measurement sites. Just one slip direction on a given fault plane can be produced by a distinct 

stress deviator (σ1, σ2, σ3 and R) due to the assumptions of the fault kinematic inversion 

methods. Three successive stress states are distinguished through analysis of distinct datasets 

after the separation of the slip generations (Javidfakhr, 2010).

4.2. Modern state of stress deduced from the fault kinematic analysis 

The modern state of stress was analyzed using fault kinematics indicated by the last 

generation of striation sets measured mostly in Quaternary deposits (Table 2). Table 2 

consists of the inversion results of the fault slip data accompanied by the lithology definition 

of different sites. It shows that R values (that must lie between 0 and 1) are in the range 0.63 

to 0.98. All the tensors representative of the modern stress state indicate the same direction of 
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σ1 stress axes despite different formation ages. For example, the trend of σ1 at site number 1 

comprising Cretaceous age limestone is similar to that at other sites measured in Quaternary 

or Neogene deposits. Figure 5 indicates the location of the measurement sites and the state of 

stress deduced from fault kinematics inversion. According to the inversion results for a major 

part of sites, the modern stress state is characterized by a NE-trending σ1 ranging from N14°E 

to N46°E and indicates a relatively homogeneous stress field. 

It is nevertheless possible to distinguish two specified regimes in the studied region. 9 out 

of 11 sites indeed show strike-slip regimes (with a minor reverse slip component) while two 

sites (Figure 6, sites number 1 and 8B) indicate mostly compressional stress regime. The 

inversion results obtained from five measurement sites along the Abr Fault trace characterized 

a relatively homogenous transpressional stress regime (Figure 5). At site number 8, two 

diagrams of inversion solution with σ1 trending N66°E and N12°E for the diagram 8A and 8B, 

respectively (Figure 6), are obtained. However, there is a minor fault almost parallel with the 

Khij Fault in the vicinity of this number 8 site accompanied by an older fault (almost 

perpendicular to the trend of Khij Fault) cut by the Khij Fault. This intersection of faults may 

be the reason of this local variation. Structural framework of the region is thus simply 

explained by strike-slip and compressional stress deviators (Figure 6). Considering the fault 

geometry, the dominant left-lateral strike-slip faulting along the Abr and Khij faults is in 

agreement with an average computed stress deviator, N30°E trending horizontal σ1.

5. Geomorphic investigations

5.1. Methodology: mapping and site selection

The detailed structure of strike-slip fault zones and their evolution are basic subjects in 

understanding of the ongoing deformation in this region. Major fault segments have been 

mapped in order to recognize the structural and geomorphic characteristics of the fault 
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system. Different types of satellite images such as LANDSAT ETM+ (14 m resolution), 

SPOT5 images (5 m resolution) and SRTM data were used to improve the visualization of the 

traces of the fault systems and better constrain their geometry considering the structural 

linkage between the different fault segments. 

The observation of the recent deposits (Pleistocene until present time) surface 

morphology allows quantifying the cumulative tectonic displacement which occurred during 

the last million years. In the current study, sites indicative of distinct fault activity were 

selected to estimate the fault slip rates. Firstly, the morphology of each site was precisely 

mapped by combining field observations with evidences from SPOT5 images in order to 

determine horizontal offsets through examination of the best match possible for the trend of 

streams incising Quaternary deposits. Study of the segments along the Abr and Khij faults 

offered evidences for late Quaternary geomorphic features associated with strike-slip faulting, 

such as stream offsets including tail-cut and head-cut streams and alluvial fan offsets.

5.2. Offsets 

5.2.1. Offset of the Abr alluvial fan

The geomorphic expression along the Abr Fault is characterized by left-laterally offset 

features such as alluvial fans, stream channels and shutter ridges. Figure 7A shows the 

morphology of the fan system chosen because it is well preserved from surface outwash and 

fluvial erosion. In addition to a feeder channel clearly left-laterally offset by the fault, their 

distinct geomorphology and elevations allow distinguishing five main surfaces. From younger 

to older, they are classified as Q1 to Q5 (Figure 7B). The geomorphic relationship clearly 

indicates that the feeder channel was emplaced after the abandonment of the Q3 unit.

Figure 7C shows the geomorphic map of the Abr fan reconstructed to measure the 

cumulative offsets. With ~700 m of back-slip, the alignment between the fan’s feeder channel 
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and the fan axis is restored. The fan’s axial channel is beheaded and has a left-laterally offset 

with respect to its feeder channel. This reconstruction assumes that no rotation occurred. 

However, some rotation north of the fault zone would only increase the offset by about 20-30 

m.

The amount of left-lateral offset ranges from ~60 m (Figure 7D) for the younger 

drainages incised in alluvial fans located in the west of the site area to ~700 m at the dating 

site (Figure 7C). It seems that the most likely amount of left-lateral offset at this site is ~420 

m considering the active stream deflection (~280 m) shown in Figure 7E. However, sub-

parallel faults locating in the area may accommodate additional left-lateral motion across the 

fault zone. 

5.2.2. Offset of the Khij alluvial fan

The Khij Fault clearly cuts across the Quaternary surfaces incised by abundant streams

in an extended area comprising the dating site (Figure 8A). The strike-slip component 

dominates the reverse component along the fault (Figures 8b, 9). Along its straight trace, the 

fault left-laterally offsets the Quaternary landforms such as fan surfaces and river channels

(Figure 9).

The restoration of different fan surfaces in the Khij site is difficult due to effects of 

erosion in the area. Figure 9 illustrates our reconstruction of offsets across the fault zone using 

the high resolution Quickbird image exhibiting the obvious left-lateral displacement of 

streams. The actual offset is about 400 m because the trend of the active drainages is 

relatively similar in both the upstream and downstream segments (Figure 9). In this area, it is 

difficult to distinguish the original fan boundaries. We suggest that the uncertainty in offset 

across the Khij Fault is no more than 50 m because of the high similarity in trend of the offset 

features north and south of the fault zone. However, these uncertainties have been considered 
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in establishing bounds on the value of offset. Finally, we suggest 400 ± 50 m of back-slip to 

restore the offset, which is the best estimate deduced from the reconstruction of three major 

offset markers in the proximity of the dating site (Figures 9B, 9C). The displacement of the 

drainage system is surely younger than the displacement of the fan surfaces. Because the 

streams incised in the fan surfaces are younger than the fan abandonment, the cumulative 

offset value of 400 ± 50 m is considered as the minimum horizontal offset possible for this 

segment of Khij Fault. Moreover, digital topography maps with the scale of 1:20,000 were 

used to determine the vertical displacement across the Khij Fault. Vertical offsets were 

estimated from the profiles perpendicular to the fault trace after restoring the coeval lateral 

offset (Figure 8B). The dating site and its surrounding alluvial fans are shown in Figure 8A. 

The vertical displacement for this segment of the Khij Fault is about ~12 m (Figure 8B) which 

represent the prominent strike-slip character of the Khij Fault. The Quaternary surface is 

gently tilted over Neogene deposits in a site located in the vicinity of Khij dating site (Figure 

10). 

6. Cosmogenic dating and fault slip rates

Since the progress made over the last decades by the Accelerator Mass Spectrometry 

(AMS) technique, cosmogenic nuclides are extensively used to quantify the processes 

affecting and shaping the Earth’s surface (see review in Gosse and Philips, 2001; Dunaï, 

2010). In particular, absolute dating of landforms for deciphering climatic history or tectonic 

history has been more specifically developed and the concepts and principles of the Cosmic 

Ray Exposure (CRE) dating method relatively well established. Due to its half life of 1.39 ± 

0.01My (Korchinek et al., 2009; Chmeleff et al., 2010) and because its production is well 

known in quartz mineral, in situ-produced 10Be is an adequate candidate to date surface 
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samples to 2 My in best conditions (Guralnik et al., 2010) or more frequently from several ky 

up to 1 My depending of the denudation rate affecting the samples.

Samples were prepared for AMS 10Be measurements following chemical procedures 

adapted from Brown et al. (1991) and Merchel & Herpers (1999). Samples were first crushed 

and sieved. Pure quartz was obtained from the 250-500 µm fraction by repeated H2SiF6 - HCl 

etching; atmospheric 10Be was subsequently eliminated by sequential dissolutions with diluted 

HF. Prior to complete HF digestion of silica, a weighted 100 µl of a 3025 ppm home-made 

carrier solution was added to allow for 10Be/9Be ratio calculation after AMS measurement. 

The spiked solutions were finally purified by solvent extractions of Be acetylacetonate in 

presence of EDTA followed by precipitations of Be(OH)2 at pH 8.5 and rinsing. The final 

precipitate, dissolved in a few drops of HNO3, is dried and heated at 900°C to obtain BeO. 

Beryllium oxide was mixed to 325 mesh niobium powder prior to measurement at ASTER, 

the French AMS national facility located at CEREGE, Aix en Provence. All 10Be 

concentrations are normalized to 10Be/9Be SRM 4325 NIST reference material with an 

assigned value of (2.79 ± 0.03).10-11. This standardization is equivalent to 07KNSTD within 

rounding error. The 10Be half-life of (1.39 ± 0.01) × 106 years used is that recently 

recommended by Korschinek et al. (2009) and Chmeleff et al. (2010) according to their two 

independent measurements. Analytical uncertainties (reported as 1) include a conservative 

0.5% external uncertainty based on long-term measurements of standards, a one sigma 

statistical error on counted 10Be events, and the uncertainty associated with the chemical 

blanks correction. Two chemical blanks prepared with the samples yield similar 10Be/9Be ratio 

of (3.3 ± 0.8) × 10-15 and (3.4 ± 0.7) × 10-15, 2 orders of magnitude smaller than the minimum 

measured ratio. An additional 6% production rate uncertainty is considered for CRE age 

calculation (Stone, 2000).
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A modern 10Be production rate at sea-level and high-latitude of 4.5 ± 0.3 atoms/g/yr, 

computed for internal consistency from the data of Stone (2000) according to the conclusions 

of the recently published study on absolute calibration of 10Be AMS standards by Nishiizumi 

et al. (2007), was used. This sea-level and high-latitude production rate has then been scaled 

for the sampling altitudes and latitudes using the scaling factors proposed by Stone (2000)

because, using the atmospheric pressure as a function of altitude, they take into account the 

physical properties of cosmic ray particle propagation in the atmosphere and include an 

improved account for the muonic component in the total cosmogenic production. Corrections 

for local slope and topographic shielding due to surrounding morphologies following Dunne 

et al. (1999) appear negligible for both sampling sites.

Erosion is a major source of uncertainty in the surface exposure dating. Considering the 

very low erosion rate of 0.002 mm yr-1 estimated for the alluvial fan surfaces of Central Iran 

using 10Be and 36Cl cosmogenic nuclides (Le Dortz, 2010) and the geomorphic freshness of 

the Abr and Khij alluvial fans, erosion was reasonably considered as negligible throughout 

this work. This implies that the CRE ages calculated from the measured 10Be concentrations 

are minimum exposure ages.

The 10Be concentration in the sampled surface quartz boulders being directly related to 

alluvial fan abandonment, alluvial fans that have been preserved during left-lateral 

displacements along the studied faults have been dated in order to estimate their long-term 

slip rates. Long-term slip rates on strike-slip faults can indeed be obtained by dividing 

horizontal geomorphic offset by the CRE age of the surface considering the uncertainties 

associated to the different applied methods. 

To minimize the possibility of rotation or rolling, boulders embedded into the ground 

surface with top surfaces as flat as possible were selected. Even if 6 boulders were collected 

on each fan, only 3 and 5 samples at the Abr and Khij sites, respectively, provided data 
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because the other samples failed through chemical processing due to their unsuitable lithology 

for 10Be cosmogenic dating. The measured 10Be concentrations and the calculated minimum 

CRE ages are presented with their associated uncertainties in Table 3. 

6.1. Exposure ages and the slip rate of the Abr Fault

Along the Abr Fault, in situ-produced 10Be concentration have been measured in 

samples collected from the Q3 fan surface which has been offset by 420 ± 50 m (Figure 7B). 

Three dated samples yield minimum exposure ages of 96 ± 6 kyr, 118 ± 8 kyr and 131 ± 9 kyr 

(Table 3). The observed low dispersion of the Q3 surface ages may result from different rates 

of exhumation to the surface of sampled boulders that were previously buried within the 

alluvial deposits. If this is the case, the oldest CRE age yields the more reliable fan surface 

abandonment age. If this low dispersion results from different erosion rates affecting the 

surface sampled boulders, the more 10Be concentrated sample yielding the oldest CRE age is 

the less affected by erosion and thus the sample which again yields the more reliable fan 

surface abandonment age. Considering then the upper bound of the CRE age series as the 

more reliable fan surface abandonment age and the horizontal offset of 420 ± 50 m recorded 

by this surface yields a minimum slip rate of 3.2 ± 0.5 mm yr−1 along the Abr Fault. 

6.2. Exposure ages and the slip rate of the Khij Fault

The CRE ages calculated from the in situ-produced 10Be concentrations measured in the 

five quartz-rich pebbles embedded in the fan surface at the Khij site are generally older than 

those calculated from the Abr site samples. They indeed range from 152 ± 10 to 364 ± 24 kyr. 

More precisely, three samples, statistically belonging to the same population, cluster around a 

weighted-mean CRE age of 165 ± 6 kyr while the two other samples are significantly older 

(Table 3). The cumulative offset of the fan surface is most likely between 350 and 450 m.
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There is two ways to interpret this observed distribution. Either, as discussed above, 

erosion can reasonably be considered as negligible and the two older ages result from 

inherited 10Be acquired during a previous exposure episode in the area. In that case, the 

weighted-mean 10Be minimum CRE age of 165 ± 6 kyr is the best estimate for the fan surface 

abandonment age (Figure 11).  Or, the negligible erosion rate assumption is not valid, and the 

oldest CRE age of 364 ± 24 kyr yields the more reliable fan surface abandonment age. In this 

case, the younger ages result from different erosion processes affecting the fan surface. 

Considering both interpretations, the cumulative 400 ± 50 m horizontal offset recorded by the 

Khij Fault constrains the Quaternary left-lateral slip rate on this segment of the fault to range 

between 2.4 ± 0.3 mm yr−1 to 1 ± 0.2 mm yr−1. 

The dated fan has been tectonically uplifted ~12 m based on quantitative analysis of the 

slope profile (Figure 8). Taking into account the errors involved in the mean vertical offset 

measurement and the uncertainties associated to the CRE ages, the vertical slip rate along this 

segment of the Khij Fault is calculated to be less than 0.07 mm yr−1.

7. Discussion and conclusion

Active deformation in the northeastern boundary of the Arabia-Eurasia collision zone is 

taken up by strike-slip faults, which is oblique to the convergence direction in this boundary 

zone (Vernant et al., 2004b; Reilinger et al., 2006). The whole compression in Alborz 

mountain belt seems to be roughly orientated north-south with a rate of about 8 ± 2 mm yr-1

and the shortening rate absorbed by the Alborz and the SCB is about 14 ± 2 mm yr-1 (Vernant 

et al., 2004a). 

It is essential to distinguish the present-day tectonic configurations in active deformation 

domains. This paper focused on a major fault system at the SE boundary of eastern Alborz 

The major strike-slip faults are mainly located within the internal parts of the Alborz range 
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(e.g., Allen et al., 2003a). Active left-lateral strike-slip faults trend ENE and WNW in the 

eastern (Allen et al., 2003a; Ritz et al., 2006) and western Alborz (Axen et al., 2001; Guest et 

al., 2006a; 2007), respectively. It is noticeable that there are much more evidences of left-

lateral strike-slip faulting in the eastern Alborz (e.g., Hollingsworth et al., 2010) than in the 

west. Allen et al. (2003a) proposed a model for late Cenozoic structural evolution of the 

Alborz. They suggested that the continued compressional deformation (probably initiated in 

Miocene) is accompanied by left-lateral strike-slip faulting along the length of the Alborz 

range during Plio-Quaternary accommodating the westward motion of the SCB basement with 

respect to Central Iran.

The ongoing deformation in the Tehran’s piedmont (central Alborz) is accommodated 

along N070°E to N110°E trending left-lateral strike-slip faults and low angle dip thrusts 

(Abbassi & Farbod, 2009). Ritz et al. (2008) estimated a total left-lateral displacement along 

the active strike-slip faults in central Alborz of about 3-6 km and a cumulative left-lateral 

displacement of about 3 km along the central Mosha Fault (central Alborz) is estimated by 

Solaymani Azad et al. (2011). Based on their recent morphotectonic analysis within central 

Alborz (Solaymani Azad et al., 2011), the Mosha and North Tehran faults are active left-

lateral strike-slip faults displaying a left-stepping en-echelon pattern. Hollingsworth et al., 

(2010) suggested that frequent stream offsets of 15-20 m along the active trace of the Astaneh 

Fault could record the cumulative offset of the last two to five earthquakes during Holocene.

The Abr and Khij faults strike parallel to the structural trend of the Alborz range. The 

trace of the Abr Fault corresponds to the contact between pre-Neogene rock units in north and 

Quaternary deposits in south. The major neighboring structures such as the Khazar, Shahrud 

and Jajarm fault zones can significantly influence the fault zone behavior and motion rate in 

the eastern Alborz. However, the left-lateral motion of the Shahrud fault system and the right-

lateral one on the Main Kopeh Dagh Fault are simple explanations for the westward motion of 
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western Kopeh Dagh toward the SCB (e.g., Shabanian et al., 2009b). This mechanism is due 

to the oblique convergence of this boundary zone. The Abr and Khij left-lateral strike-slip 

faults and their associated faults in the Shahrud fault system are involved in the northward 

convergence of Central Iran and the north-westwards motion of the SCB relative to Eurasia. 

We concentrated on the analysis of geomorphic features to enrich present-day tectonic 

activity of the region. Alluvial fans can record cumulative displacements in tectonically active 

regions. Accurate dating of geomorphic offsets can lead us for a quantitative interpretation of 

long term slip rates on major active faults. It also helps to have a better understanding of the 

regional tectonics and to establish the deformation history of the area. We have presented 

evidence of late Quaternary activity along the Abr and Khij fault zones in eastern Alborz. Slip 

rates are calculated for the strike-slip Abr and Khij faults taking into account the geomorphic 

evidence and the applied 10Be exposure dating method. A long term left-lateral slip rate of 3.2

± 0.5 mm yr−1 along the NE-trending Abr Fault has an important implication to our 

understanding of the deformation in the eastern Alborz. Along the Khij Fault, the horizontal 

slip rate ranges between 2.4 ± 0.3 mm yr−1 and 1 ± 0.2 mm yr−1. The vertical slip rate of 0.07 

mm yr−1 is much slower than the strike-slip rate of the Khij Fault, indicating that strike-slip is 

the dominant mechanism of the late Quaternary activity of this fault which is also supported 

by our geomorphic and fault kinematic data. The absence of clear vertical scarps in the fan 

deposits is also representative for the dominant component of strike-slip. 

In the study area, the active deformation north and east of Bastam city is principally 

taken up by the Abr and Khij left-lateral strike-slip faults (Figure 2). The Abr fault zone has 

generated three earthquakes (Mw 4.9-Mw 6) in the past thirty years (Table 1). However, 

moderate earthquakes could be judged as signals for considerable hazard if they are frequently 

reported in populated regions. It is fruitful to analyze the earthquake focal mechanisms 

considering the structural setting of the fault slip data in an extended region to establish more 
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precise seismotectonic framework of this boundary zone. The regional stress state (N47°E) is 

analyzed using the inversion of earthquake focal mechanisms in a vast area between central 

Alborz and western Kopeh Dagh in 52°-56°E (Javidfakhr, 2010). This result is in close 

agreement with the modern stress state deduced from inversion of fault kinematic data. The 

modern stress field is characterized by a regional NE-trending horizontal σ1 (Figure 5) based 

on kinematic inversion results. All the earthquake focal mechanisms are not compatible with 

this regional stress state. However, we suggest that the complex dynamic characteristics of the 

study region enclosed between two deformation systems of Alborz and Kopeh Dagh seem to 

be the most effective factor to characterize the changes in the attitude of σ1 axis.

Our results can be compared with GPS data that estimate a left-lateral strike-slip motion 

rate ranging between 2 and 6 mm yr−1 along the faults in the Alborz (Vernant et al., 2004), to 

have a better assess to the validity of the results within a regional active deformation 

framework. It should be noticed that the rate estimate provided by the GPS data, integrates 

strain over a much larger area. 

Detailed geomorphic studies complemented by structural analysis in other parts of the 

Shahrud fault system will characterize a complete scheme for the geodynamic evolution of 

this tectonically active zone.
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Highlight

> 8 quartz-rich samples were dated from two fan surfaces using in situ-produced 10Be 

cosmogenic dating method. > Left-lateral slip rate of 3.2 ± 0.5 mm yr−1 is calculated for the 

Abr Fault. > Along the Khij Fault, the horizontal slip rate ranges between 2.4 ± 0.3 mm yr−1

and 1 ± 0.2 mm yr−1. > The modern stress state is characterized by a NE-trending σ1 indicating

a relatively homogeneous stress field. >
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Figure captions:

Figure 1. A. Simplified tectonic map of NNE Iran superimposed on GTOPO30 topographic 

image. The Khazar Fault (KHF) exists in the boundary zone between the South Caspian Basin 

(SCB) and Alborz Mountains. The Main Kopeh Dagh Fault (MKDF) forms a topographic 

boundary between Eurasia and Kopeh Dagh Mountains. The black rectangle in the inset box 

indicates the location of Figure 1 in the Middle East Alpine Collision belt. White arrows and 

their associated numbers represent the velocity vectors in mm yr-1 with respect to Eurasia 

(Reilinger et al., 2006). B. Fault map of the eastern Alborz and western Kopeh Dagh 

superimposed on 90 m SRTM (Shuttle-borne Radar Topography Mission) image of the area. 

Earthquake focal mechanisms are mostly based on the Harvard catalogue 

http://www.globalcmt.org/CMTsearch.html and McKenzie (1972) (see Table 1 for details). 

Figure 2. A. Major faults in northeastern Iran superimposed on SRTM image showing left-

lateral movement of NE-trending active faults in the Shahrud Fault System. The study area 

corresponds to the rectangle enlarged in Figure 3.

Figure 3. A. The locations of different sites are identified in this Landsat (14 m resolution) 

image. Yellow circles are the location of sites where slip rates have been determined by 

dating of the offset alluvial fans. The abbreviations are as follows: AF: Abr Fault, KHF: Khij 

Fault. B. SPOT5 (5 m resolution) images focused on areas along the Abr and Khij faults (B-

E). This Figure shows the enlargement of the termination zone of the Abr Fault. There are 

multiple small faults splayed in a rather wide area at the termination of the Abr Fault. C. Left-

lateral deflection of streams is indicative of left-lateral movement of the Abr Fault. Fan 

boundaries are shown by dotted lines. D. The sharp escarpment of the Khij Fault which runs

between volcanic (mainly Andesites) rocks and Quaternary. E. Three dimension view of the 

area on the basis of digital topographic maps with the scale of 1/20,000. The squares indicate 
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the position of the sampling sites and the fault traces are shown by dotted lines. No altitude 

exaggeration is exerted in this image.

Figure 4. A. SPOT5 image of a 12-km-long active reverse fault in the south of Nekarman. 

The dotted white rectangle is enlarged in Figure B. The location and direction view of Figure 

6D is shown by the symbol. The trace of the fault is shown with small arrows. B. Topographic 

map (10 m contours) of this area is superimposed on the SPOT5 image. The A-B line 

represents the position of the topographic profile. C. The vertical displacement of the fault is 

estimated about 25 m. 

Figure 5. Structural map of the study area superimposed on the SRTM image, comprising the 

fault slip measurement sites. Trends of σ1 (maximum stress axis) for the modern stress regime 

are presented. Sites are identified by numbers, see Table 2 for details. The inferred fault in the 

westernmost of the figure represents the Khazar Fault.

Figure 6. Lower hemisphere stereographic projections of the fault plane data together with 

inversion results determined by the inversion method proposed by Carey (1979). The labels 

refer to the site locations presented in Figure 5. The large arrows indicate the azimuth of σ1. A 

fixed solution (Bellier and Zoback, 1995) was applied to deal with the sites comprising less 

than four well-distributed fault directions (site number 6). One of the principal stress axes is 

fixed to remain purely vertical in the fixed inversion method. Measurement sites comprising

two tectonic regimes in each state of stress are presented by adding “A” suffix to the 

identifying number of the site. The suffix “B” is added to the measurement site number in the 

cases that the data were not enough and/or well-distributed to be reliable as an inversion 

solution. Note that the trend of σ1 is similar in site number 1 comprising the limestone of 

Cretaceous age with other sites measured in Quaternary or Neogene deposits (refer to Table 

2).
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Figure 7. A. SPOT5 image focused on the Abr fan. B. Geomorphic map of Quaternary 

alluvial fans along the Abr Fault. Distinct surfaces of different ages are shown for the fan, 

from younger to older (Q1 to Q5). Solid line indicates the fault trace. Small squares show 

sampling locations on the alluvial fan surfaces. The associated ages are presented for three 

samples (The other samples did not have enough quartz for the process of in situ exposure 

10Be dating). There is an offset between the fan’s feeder channel and the actual position of the 

fan axis. C. A backward slip of about 700 m restores the alignment of the fan’s feeder channel 

and the fan axis. D: The rectangle area located in the west of the dating site shows left-lateral 

offset of a smaller stream channel for about 60 m. E. True left-lateral offset is considered 

about 42 m taking into account the active deflection of the stream.

Figure 8. A. Topographic contour map (10 m contours) of Khij area displayed over SPOT5

image. A-B represents the position of the cross section. The small squares are indicative of 

collected samples. B. Topographic profile along the line A-B shows a vertical displacement of 

about 12 m along this segment of the Khij Fault. Sampling location and their associated in situ 

10Be ages are presented.

Figure 9. A. The Google Earth image (resolution 3 m) clearly shows left-lateral displacement 

along the Khij Fault through stream channel offsets. B and C. left-lateral offset of ~ 400 m is 

achieved for this segment of the Khij Fault. Two fault planes nearly parallel with this segment 

of Khij Fault are shown in the lower stereographic projections.

Figure 10. A. ENE looking view of the escarpment of the Khij Fault. B. NW looking view of 

the disconformity between the Quaternary and Neogene layers. The Quaternary surface is 

tilted and uplifted. This site is located in the vicinity of our dating site. 

Figure 11. In situ-produced 10Be exposure ages and their associated uncertainties for the 

samples collected from the fan surface along the Khij Fault assuming no erosion and no 
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inheritance, The black curve indicates the Gaussian age probability sum (Psum) and thin 

curves represent the age probability for each sample.
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Table 1. Earthquake source parameters. 

N° 
Date Time Lat. Long. 

Mb 
Plane 1   Plane 2 Depth 

R ID 
(yyyymmdd) (hhmm) (°N) (°E) Azimuth Dip Rake   Azimuth Dip Rake (km) 

1 19700730 0052 37.85 55.92 6.4 293 56 -150 
 

185 66 -38 11 P 6 

2 19710214 1627 36.62 55.74 5.3 336 39 93 
 

152 51 87 4 P 7 

3 19730802 2028 37.32 56.60 4.9 297 10 86 
 

121 80 91 34 M 11 

4 19740307 1136 37.60 55.83 5,1 23 89 -1 
 

113 89 -179 21 JF 12 

5 19790224 1356 37.22 56.66 4.7 278 41 56 
 

140 57 116 33 M 13 

6 19791209 0912 35.15 56.87 5.6 325 36 99 
 

133 54 83 9 J 15 

7 19851201 2031 37.63 56.62 4.6 281 54 69 
 

134 41 116 _ M 18 

8 19880311 0738 37.27 56.26 4.5 277 43 13 
 

177 81 132 33 M 22 

9 19880508 0650 35.33 55.94 4.7 219 87 4 
 

129 86 177 53 M 23 

10 19900818 0951 37.06 56.21 4.9 211 77 -4 
 

302 86 -166 13 M 24 

11 19810721 0445 39.41 53.22 5.1 290 87 -2 
 

20 88 -177 42 CMT 35 

12 19830325 1157 36.65 52.62 5.2 280 68 5 
 

188 86 157 33 CMT 36 

13 19830326 0407 35.88 52.01 5.4 104 61 17 
 

6 75 150 10 CMT 37 

14 19851029 1313 36.96 54.59 6.0 97 31 122 
 

241 64 73 15 CMT 39 

15 19870907 1132 39.13 54.87 5.5 312 14 106 
 

116 77 86 29 CMT 41 

16 19900120 0127 35.89 53.00 5.5 97 65 -8 
 

190 82 -154 25 M 42 

17 19890913 0701 37.28 54.25 5.1 262 23 -82 
 

74 67 -92 38 M 43 

18 19880113 0556 37.28 54.37 4.9 287 89 3 
 

197 87 179 33 M 44 

19 19880508 0650 35.33 55.94 4.7 219 87 4 
 

128 86 177 53 M 45 

20 19880823 0530 35.42 52.28 5.0 15 70 45 
 

266 48 152 35 M 46 

21 19880823 1058 35.34 52.34 4.6 163 64 129 
 

226 11 323 38 M 47 

22 19881024 1701 35.25 52.30 4.9 331 62 34 
 

223 60 147 34 M 48 

23 19700730 0052 37.85 55.94 5.7 33 57 5 
 

300 86 146 _ M 49 

24 19851029 1313 36.74 54.81 6.0 14 37 26 
 

263 75 124 13 M 50 

25 19840511 0958 36.71 55.00 4.9 261 57 -130 
 

139 50 44 29 M 51 

26 19840615 1850 37.21 55.39 4.4 277 29 40 
 

150 71 113 _ M 52 

27 19830326 0407 36.06 52.28 5.4 31 88 25 
 

300 65 178 33 M 53 

28 19820515 1736 35.57 54.11 4.5 96 66 48 
 

342 48 146 13 M 54 

29 19821025 1654 35.13 52.38 4.5 185 57 -32 
 

294 63 -142 44 M 55 

30 19810809 1308 36.92 55.29 4.9 256 60 -34 
 

6 60 -143 _ M 56 

31 19770502 1517 37.06 55.33 5.1 246 70 -24 
 

345 67 -157 19 M 57 

32 19760531 0807 38.91 55.85 4.7 43 84 -147 
 

309 58 -6 7 M 58 

33 19740307 1136 37.65 55.95 5.2 190 59 -30 
 

297 64 -144 _ M 59 

34 19710214 1627 36.62 55.74 5.3 231 51 8 
 

136 84 141 4 M 60 

35 19710809 0254 36.27 52.81 5.2 77 36 -70 
 

234 56 -103 12 M 61 

36 19680519 1649 36.61 53.35 4.6 254 15 0 
 

346 90 -104 22 M 62 

 

All angles are presented in degrees and date is as the usual convention (year/month/day). Figure 1B 

represents the focal mechanisms on the basis of these seismic data. The ID numbers refer to the label 

of each beachball in Figure 1B. It should be noted that the reported depths for individual earthquakes 

are not entirely reliable due to a poor azimuthal coverage of the worldwide station network. 

 

 

Table 1
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Table 2. The results of fault kinematic inversions. 

Site  Longitude (°E) Latitude (°N) σ1 (trend/plunge) σ2 (trend/plunge) σ3 (trend/plunge) N R Quality Lithology Age (Formation) 

1 54.832 36.379 198/06 107/02 358/84 8 0.777 B Limestone Cretaceous 

2 54.944 36.474 177/10 274/36 74/52 8 0.671 B Conglomerate Pl-Q 

3 54.977 36.445 231/24 138/06 34/65 9 0.659 A Limestone Pre-Pliocene 

4 55.063 36.496 188/01 279/30 97/60 5 0.640 CF Conglomerate Quaternary 

5 54.842 36.533 38/14 300/29 150/57 7 0.649 B Conglomerate Quaternary 

6* 54.913 36.578 191/00 46/90 281/00 4 0.323 CF Alluvial fan Quaternary 

7 55.076 36.703 208/06 337/79 117/08 22 0.763 A Alluvial fan Quaternary 

8A 55.142 36.658 66/11 322/50 164/38 12 0.934 B Limestone Pre-Pliocene 

8B 55.142 36.658 12/18 279/10 162/70 10 0.631 A Limestone Pre-Pliocene 

9 55.283 36.723 14/3 107/45 280/45 6 0.806 B Alluvial fan Quaternary 

10 55.358 36.839 46/03 140/50 313/40 7 0.805 B Conglomerate Quaternary 

11 55.429 36.874 226/5 119/74 318/15 8 0.984 B Conglomerate Quaternary 

 

Principal stress axes (σ1> σ2 > σ3) and the stress ratio (R), defined as R = (σ2 - σ1)/(σ3 - σ1) are presented in this table. N is the 

number of fault slip planes involved in the stress calculation. Site number 6 is resulted thorough the mentioned “fixed” solution 

 (see text) and is marked by an asterisk. The references for the site numbers are Figures 5 and 6. 

 

Table 2



Page 38 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

Table 3. Sample characteristics and calculated minimum exposure ages. 

 

Sample ID Altitude (m) Latitude (°N) Longitude (°E) 
10

Be (10
5
atoms/g) Age (Kyr) 

      

ABR1 1706 36.69 55.08 17.69 ± 1.1 118 ± 8 

ABR4 1678 36.69 55.08 14.19 ± 0.92 96 ± 6 

ABR5 1683 36.69 55.08 19.22 ± 1.2 131 ± 9 

KHI1 1433 36.64 55.27 42.07 ± 2.7 364 ± 24 

KHI2 1432 36.64 55.27 34.16 ± 2.8 291 ± 25 

KHI3 1442 36.64 55.27 18.58 ± 1.2 152 ± 10 

KHI4 1438 36.64 55.27 20.32 ± 1.3 167 ± 11 

KHI5 1437 36.64 55.27 21.96 ± 1.4 181 ± 12 

 

Note: 
10

Be concentrations analytical uncertainties (reported as 1) include a conservative 

0.5% external uncertainty based on long-term measurements of standards, a one sigma 

statistical error on counted 
10

Be events, and the uncertainty associated with the chemical 

blanks correction. Two chemical blanks prepared with the samples yield similar 
10

Be/
9
Be ratio 

of 3.3±0.8×10
-15

 and 3.4±0.7×10
-15

. For CRE age calculations, a modern sea-level high-

latitude 
10

Be production rate at of 4.5 ± 0.3 atoms/g/yr has been scaled for the sampling 

altitudes and latitudes using the scaling factors proposed by Stone (2000). An additional 6% 

production rate uncertainty is considered for CRE age calculation (Stone, 2000). 

 

Table 3
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Figure 1

http://ees.elsevier.com/geod/download.aspx?id=22433&guid=a4a1fd86-fdce-497e-bd20-60491d470263&scheme=1


Page 40 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 2

http://ees.elsevier.com/geod/download.aspx?id=22434&guid=3697915f-9b91-41ad-8881-401411b78d88&scheme=1
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Figure 3
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Figure 4
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Figure 5
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Figure 6

http://ees.elsevier.com/geod/download.aspx?id=22438&guid=18e1c8f3-f368-4b15-8a32-450191edba30&scheme=1


Page 45 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 7
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Figure 8
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Figure 9
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Figure 10
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