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Abstract—Cloud Computing provides a convenient means of
remote on-demand and pay-per-use access to computing re-
sources. However, its ad hoc management of quality-of-service
and SLA poses significant challenges to the performance,
dependability and costs of online cloud services. The paper
precisely addresses this issue and makes a threefold contribu-
tion. First, it introduces a new cloud model, the SLAaaS (SLA
aware Service) model. SLAaaS enables a systematic integration
of QoS levels and SLA into the cloud. It is orthogonal to
other cloud models such as SaaS or PaaS, and may apply
to any of them. Second, the paper introduces CSLA, a novel
language to describe QoS-oriented SLA associated with cloud
services. Third, the paper presents a control-theoretic approach
to provide performance, dependability and cost guarantees
for online cloud services, with time-varying workloads. The
proposed approach is validated through case studies and
extensive experiments with online services hosted in clouds such
as Amazon EC2. The case studies illustrate SLA guarantees for
various services such as a MapReduce service, a cluster-based
multi-tier e-commerce service, and a low-level locking service.

Keywords-SLA; QoS; Cloud Computing; Specific Language;
Online Control;

I. INTRODUCTION

Cloud Computing is a paradigm for enabling remote,
on-demand access to a set of configurable computing re-
sources [1]. This model aims to provide hardware and
software services to customers, while minimizing human
efforts in terms of service installation, configuration and
maintenance, for both cloud provider and cloud customer. A
cloud may have the form of an Infrastructure-as-a-Service
(IaaS), a Platform-as-a-Service (PaaS) or a Software-as-a-
Service (SaaS). However, cloud’s ad-hoc management in
terms of quality-of-service (QoS) and Service Level Agree-
ment (SLA) poses significant challenges to the performance,
availability, energy consumption and economical costs of the
cloud. Existing public clouds provide very few guarantees in
terms of performance and dependability [2]. This is the case
for Amazon EC2 compute service and Amazon S3 storage
service [3], Rackspace Cloud Servers compute service and
Rackspace Cloud Files storage service [4], Azure Compute
and Azure Storage [5].

We believe that a differentiating element between Cloud
Computing environments will be the QoS and the SLA
provided by the cloud. This raises the following questions:
(i) How to consider SLA in a general way for different cloud

environments? (ii) How to describe the SLA terms between
cloud provider and cloud customer, such as service levels,
penalties in case of SLA violation, etc. (iii) How to provide
guarantees on cloud QoS and provide better than best-effort
behavior for clouds?

The contributions of this paper are as follows:
• A novel cloud model is proposed: SLAaaS (SLA-aware-

Service). The SLAaaS model enriches the general
paradigm of Cloud Computing, and enables systematic
and transparent integration of service levels and SLA
into the cloud. SLAaaS is orthogonal to IaaS, PaaS and
SaaS clouds and may apply to any of them.

• A specific language is introduced to describe QoS-
oriented SLA associated with cloud services, the CSLA
(Cloud Service Level Agreement) language.

• A control-theoretic approach is described to provide
performance, dependability and cost guarantees for
online cloud services, with time-varying workloads.

• Three case studies running on private clusters and
Amazon EC2 public cloud illustrate the soundness of
the proposed approach. These include the first SLA-
oriented dynamically provisioned MapReduce service,
a multi-tier e-commerce service, and a SLA-oriented
locking service.

The rest of the paper is organized as follows. Section II
introduces the proposed SLAaaS cloud model, CSLA lan-
guage and online cloud control. Section III presents the
experimental case studies. Section IV reviews the related
work, and Section V draws our conclusions.

II. SLAAAS CLOUD MODEL

A. Background

In this section, we first provide preliminary definitions
before introducing the SLAaaS cloud model. A cloud pro-
vides a set of services. A cloud service exposes a func-
tional interface with operations to call on the cloud. For
instance, an IaaS cloud as Amazon EC2 exposes a functional
interface that allows users to acquire compute instances,
to run software on these instances or to release instances.
Amazon S3 IaaS cloud service exposes a functional interface
that allows users to store, read or delete any amount of data.
Amazon RDS PaaS cloud provides a relational database



service that makes it easy to set up, operate, and scale a
relational database. Google Apps SaaS cloud provides a set
of services with functional interfaces, such as Google Drive
that allows users to create, update and share documents.

Besides the functional aspects of a cloud service, there are
also non-functional aspects related to the quality-of-service.
There are different QoS aspects, such as performance, avail-
ability, reliability, cost, etc. For each QoS aspect, multiple
QoS metrics may be considered. Examples of performance
metrics are service response time that is the necessary time
for a user request to get served, service throughput that re-
flects cloud service scalability, etc. Examples of availability
metrics are service abandon rate that is the ratio of accepted
service requests to the total number of requests, or service
use rate that is the ratio of time a cloud service is used
to the total time. Examples of reliability metrics are mean
time between failures which is the predicted elapsed time
between inherent failures of the service, or mean time to
recover which is is the average time that a service takes
to recover from a failure. Finally, examples of cost metrics
are the energetic cost that reflects the energy footprint of a
service, or the financial cost of using a cloud service.

Thus, a QoS metric is a means to quantify the service
level with regard to a QoS aspect. One might want a service
level to attain a given objective that is the Service Level
Objective (SLO). A SLO has usually one of the following
forms: provide a QoS metrics with a value higher/lower than
a given threshold, maximize/minimize the QoS metrics, etc.
Therefore, a Service Level Agreement (SLA) is a set of SLOs
to meet and is negotiated between two parties, the cloud
service provider and its customer.

B. SLAaaS Model

We introduce SLA-aware-Service (SLAaaS), a new cloud
model that defines a non-functional interface which exposes
the SLA associated with a cloud functional service. Fig-
ure 1 illustrates the SLAaaS model at three cloud levels:
an Infrastructure-as-a-Service cloud, a Platform-as-a-Service
cloud and an example of a Software-as-a-Service cloud that
represents here a business intelligence system. The example
of this figure shows four levels: an end-user is a client of
the SaaS cloud, which is itself a client of the PaaS cloud,
which is itself a client of the IaaS cloud.

Roughly speaking, the functional interface of a cloud
exposes operations that allow a cloud customer to get new
resources from the cloud, to access/use resources in the
cloud or to release resources that he/she does not use any-
more. With SLAaaS, the cloud also exposes the SLA non-
functional interface. Furthermore, SLAaaS aims to provide
SLA-oriented cloud reconfiguration, and SLA governance.
Due to space limitation, we focus on the former in the rest
of the paper.

SLAaaS first allows a user to select the QoS aspects
he/she is interested in (e.g. performance, cost), and the
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Figure 1. SLAaaS cloud model

QoS metrics for these aspects (e.g. service response time,
financial cost). The user can then choose the SLOs he/she
wants to apply on the QoS metrics. For instance, the SLO
for the service response time might be to guarantee that the
response time never exceeds a given threshold, and the SLO
for the financial cost might be to guarantee that the cost is
minimized. Then, the SLA is defined as the combination of
SLOs. Furthermore, the SLA between a cloud service and
its customer may include additional information, such as the
agreed confidence level (e.g. SLOs are guaranteed with a
confidence of 95%), or the penalties applied in case of SLA
violation. Figure 2 presents three examples of SLAs that
apply at three different cloud levels, between the end-user
and the SaaS, between the SaaS and the PaaS, or between
the PaaS and the IaaS.

If during more than 1% of the time the IaaS service violates SLOs, a penalty of 
US$ 0.24/violated resource.hour is applied

Penalty

SLOs guaranteed on at least 99% of the time the client uses the IaaS serviceConfidence

For a maximum financial cost of US$ 0.12/resource.hour of the IaaS service, at least 
7 GB of memory and at least 4 compute units must be available

SLOs

SLA between the PaaS and IaaS cloud

If more than 2% of requests to the PaaS service violate SLOs, a penalty of 
US$ 0.02/violated request is applied

Penalty

SLOs guaranteed on at least 98% of requests to the PaaS serviceConfidence

For a maximum financial cost of US$ 0.01/request to the PaaS data management 
service, response time must be less than 1 second

SLOs

SLA between the SaaS and PaaS cloud

If more than 5% of requests to the SaaS service violate SLOs, a penalty of 
US$ 0.20/violated request is applied

Penalty

SLOs guaranteed on at least 95% of requests to the SaaS serviceConfidence

For a maximum financial cost of US$ 0.10/request to the SaaS business intelligence 
service, response time must be less than 1 minute

SLOs

SLA between the end-user and the SaaS cloud

Figure 2. Examples of SLAs at different cloud levels

In SLAaaS, the cloud SLA is defined with the CSLA
language introduced in Section II-C, and the SLA is guar-
anteed following a control-theoretic approach, as described
in Section II-D.



C. CSLA Specific Language

CSLA, the Cloud Service Level Agreement language,
allows to describe a SLA between a cloud service provider
and its customer by defining QoS guarantees in the form
of SLO clauses [6]. The clauses are combined using "and"
and "or" operators. Previous efforts to define SLA for
web services (WSLA) [7] and service oriented architectures
(SLA@SOI) [8] have influenced the design of this language.

Among its novelties, CSLA integrates features dealing
with QoS uncertainty and cloud fluctuations: fuzziness, confi-
dence, and penalty. Fuzziness defines the acceptable margin
degree around the target value of a SLO. Confidence is
the compliance percentage of SLO clauses. Lastly, penalties
are applied in case of SLA violations to compensate cloud
service customers, i.e. penalties reduce the service price. The
reduction can be applied either as a constant or variable
rate. In the latter case, the request price is modeled as:
P = α− β · dt [9]; where α is the price with no violations
(α > 0), β is the penalty rate (β > 0) and dt is the absolute
difference between the actual value and the SLO threshold.
For example, if a SLO indicates a maximum response time
of 3 s per request, with a request price α = $0.8, and a
penalty rate β = 0.5, a request with response time of 4 s
costs P = 0.8− 0.5 · |4− 3| = $0.3.

The CSLA syntax is defined according to the grammar
generated from the meta-model in [6]. Based on the CSLA
meta-model, the SLA can be defined in any language for any
cloud service. In this paper, we use XML as a representation
format. Figure 3 presents an example of a CSLA file
describing the Obligations section for a SLA between a SaaS
provider and its customer. Two SLOs are composed using
the "and" operator, one is a performance SLO and the other,
a dependability SLO. The performance SLO specifies that
the request response time must be below 10 seconds, with
an acceptable margin less than 1 second. The dependability
SLO specifies that service abandon rate should not exceed
3% of incoming requests, with an acceptable margin of
0.2%. SLOs are guaranteed on at least 95% of requests to
the cloud service (confidence). Thus, if more than 5% of the
cloud service requests violate the SLOs, a reduction of $0.1
is applied in the price of each request violating the SLA.

According to a cloud service, a SLA template is generated
with pre-defined parameters to ensure that offered QoS
guarantees are realistic and realizable. Finally, once a SLA
is described with CSLA and established between a cloud
service provider and a cloud customer, it is passed to an
online cloud controller as described in the next subsection.

D. Online Cloud Control

The online control of cloud services is based on a general
feedback control loop as described in Figure 4. To manage
cloud SLA in a principled way, we follow a control-theoretic
approach to design fully autonomic SLA-oriented cloud
services. The general approach consists in three main steps.

<Obligations>
. . <Guarantees>
. . . . <Guarantee guaranteeID=“G1” serviceID=“S1”>
. . . . . . <SLO sloID=“PerformanceSLO” Metric=“Response Time”
. . . . . . unit=“second” comparator=“le”
. . . . . . threshold=“10” fuzziness=“1”/>
. . . . . . <SLO sloID=“DependabilitySLO” Metric=“Abandon Rate”
. . . . . . unit=“%” comparator=“le”
. . . . . . threshold=“3” fuzziness=“0.2”/>
. . . . . . <SLO sloID=“ComSLO” A=“PerformanceSLO”
. . . . . . Operator=“and” B=“DependabilitySLO”/>
. . . . </Guarantee>
. . </Guarantees>
. . <Requirements>
. . . . ...
. . </Requirements>
. . <Confidences>
. . . . <Confidence confidenceID=“C1” serviceID=“S1”
. . . . sloID=“ComSLO”>
. . . . . . 95%(allRequests)
. . . . </Confidence>
. . </Confidences>
. . <Penalties>
. . . . <Penalty penaltyID=“P1” serviceID=“S1” sloID=“ComSLO”>
. . . . . . 0.1(US$/violated request) IF violated requests > 5%(allRequests)
. . . . </Penalty>
. . </Penalties>
</Obligations>

Figure 3. Example of SLA written with CSLA
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Figure 4. Cloud autonomic reconfiguration

First, a utility function is defined to precisely describe
the set of SLOs as specified in the cloud SLA, the weights
assigned to these SLOs if any, and the possible trade-offs and
priorities between the SLOs. The cloud service configuration
(i.e. how many resources, what is their combination) with
the highest utility is the best regarding SLA guarantees.

Then, control theory techniques are applied to model
cloud service behavior, and propose control laws and al-
gorithms for fully autonomic SLA-oriented cloud services.
The challenges for modeling cloud services are to build
accurate models that are able to capture the non-linear
behavior of cloud services, and that are able to self-calibrate
to render the variations of service workloads. The challenges
for controlling cloud services are to propose accurate and
efficient algorithms and control laws that calculate the best
service configuration, and rapidly react to changes in cloud



service usage. The next section illustrates this approach to
control online cloud services to guarantee their SLA.

III. CASE STUDIES

We illustrate in this section how to build SLAaaS cloud
services with three use cases: a MapReduce service, a multi-
tier service, and a distributed locking service.

A. Experimental Environment

The experiments presented in this section were conducted
in a cluster running on Amazon EC2 [3], and in two clusters
running in Grid’5000 [10], see the hardware configuration in
Table I. The underlying software configuration is as follows.
Amazon EC2 instances run Fedora Linux 8 with kernel
v2.6.21. Nodes in Grid’5000 (i.e. G5K I and G5K II) run
Debian Linux 6 with kernel v2.6.32. Experiments of Sec-
tion III-B use Apache Hadoop v1.0 MapReduce framework,
Java 6, and the high-level MRBS benchmark suite [11].
Experiments of Section III-C use Apache Tomcat v7 web
server, MySQL v.5.5.1 database server, and the TPC-W
benchmark [12]. Finally, experiments of Section III-D are
based on C++ and OpenMPI, and use micro-benchmarks.

Table I
HARDWARE CONFIGURATIONS

Cluster CPU Memory Storage Network
Amazon
EC2

large instances, 4 EC2
Compute Units in 2
virtual cores

7.5 GB 850 MB 10 Gbit
Ethernet

G5K I 4-core 2-CPU 2.5 GHz
Intel Xeon E5420 QC

8 GB 136 GB
SATA

1 Gbit
Ethernet

G5K II 4-core 1-CPU
2.53 GHz Intel
Xeon X3440

16 GB 278 GB
SATA II

Infiniband
20G

B. SLAaaS-Oriented MapReduce PaaS

MapReduce is a programming model and a software
framework to support distributed computing and large data
processing on clusters of commodity machines [13]. High
performance and fault-tolerance are two key features of
MapReduce. They are achieved by automatic task scheduling
in MapReduce clusters, automatic data placement, parti-
tioning and replication, and automatic failure detection and
task re-execution. A MapReduce job, i.e. an instance of
a running MapReduce program, is automatically divided
into multiple tasks scheduled by the MapReduce framework
to run in parallel on cluster nodes. MapReduce is usually
provided as a Platform-as-a-Service by cloud providers, such
as Amazon and Azure. The functional interface of such a
service includes operations such as starting a MapReduce
cluster of a given size (i.e. #nodes), running a job on a
MapReduce cluster, or stopping a MapReduce cluster.

We consider the case of a MapReduce PaaS that follows
the SLAaaS model to illustrate the proposed approach. Thus,
a SLA is contracted between the MapReduce PaaS and
its customer. Figure 5 provides an example of the SLA.
It specifies that the MapReduce job response time should

Figure 5. SLA for MapReduce PaaS in CSLA language

not exceed 90 seconds, while the MapReduce cluster size
(i.e. #nodes) should be kept as small as possible.

In order to guarantee the SLA, we applied a control-
theoretic approach to provide a SLA-oriented self-elastic
MapReduce cluster. Although some initiatives exist to add
elasticity to MapReduce [14], [15], as far as we know, this
is the first attempt to provide fully self-elastic MapReduce
that is able to automatically adapt cluster size to workload
variations in order to guarantee the SLA. To this purpose,
the SLA is translated into a utility function in an ad hoc
manner. First, the following boolean expression is defined
to reflect whether the service performance SLO is met at a
given time t:

PO(t) = `(t) ≤ `max (1)

where `(t) is the average MapReduce job latency (i.e. re-
sponse time) at time t, and `max is the maximum job latency
not to exceed. Note that ∀t, PO(t) ∈ {0, 1}, depending on
whether Eq. (1) holds or not. Then, the utility function com-
bines both performance and cost (cluster size) objectives:

θ(t) =
PO(t)

ω(t)
(2)

where ω(t) is the MapReduce cluster size at time t. Here,
∀t, θ(t) ∈ [0, 1]. Intuitively, the MapReduce cluster with the
highest utility is the one that guarantees the performance
SLO (if possible) with minimal cluster size.

Then, the MapReduce cluster is modeled following a
queuing network approach, where each queue represents a
cluster node and is modeled as an M/M/c queue. Here, client
communication with the MapReduce service is modeled as a
closed loop to reflect the synchronous communication model
that underlies this service, that is a client waits for a request
response before issuing another request. Moreover, multiple
clients may concurrently request the service (i.e. execute
MapReduce jobs). The model predicts the average request
latency based on the monitored workload and service cluster
size. The workload is defined as the number of concurrent
clients and the average response time for the requests. Then,
a capacity planning is applied to calculate the MapReduce
cluster size with the highest utility, and to apply it to the
online MapReduce service. The used model and capacity
planning are adaptations from our previous work on Internet
services to MapReduce services [16]. The model allows the
capacity planning to find the exact number of nodes needed
to guarantee the SLA, instead of adding/removing nodes
one by one. Moreover, monitoring windows to measure
the workload and to react to changes in the workload are



ensured to be long enough to let the system stabilize after
adding/removing nodes.
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Figure 6. Self-elastic MapReduce service

Figure 6 shows the results for the SLAaaS-oriented
MapReduce PaaS running on Amazon EC2. MRBS [11] was
used to stress the MapReduce service. The setup consists
of a set of nodes hosting the MapReduce cluster, an addi-
tional node hosting MRBS emulating MapReduce clients,
and another node for the cloud SLA controller. Among
the different benchmarks provided by MRBS, the movie
recommender system benchmark was used in this use case.
It builds upon a set of movies, a set of users, and a set of
ratings and reviews users give for movies to indicate whether
and how much they liked or disliked the movies. A client
can request the top-10 recommendations for him/her, all the
ratings given to a movie, how much the client would like a
movie, or all the ratings given by another client. Each request
is randomly chosen, and after receiving the response, the
client submits another request. Our experiments are based
on the following set of real data: 1700 movies, 1000 users,
100,000 ratings [17].

The MapReduce service initially runs on a four node
cluster, and the service is warmed up for 10 minutes with
5 clients and then, measures are taken during 65 minutes as
shown in Figure 6. The service state (#clients and average
response time) is monitored every minute and the capacity
planning is executed every 3 minutes taking the average of
the service states in the last 5 minutes. We vary the number
of concurrent clients over time between 5 and 10 as shown in
the figure. When additional clients access the service, client
request response times increase until the SLA is violated
at time 13 minutes. Nevertheless, the automatic self-elastic
MapReduce service adapts and increases its capacity to guar-
antee the SLA again. Finally, when the workload decreases
after minute 40, the automatic self-elastic service releases
underused nodes. Thus, this experiment shows that SLAaaS
successfully applies to an online MapReduce service to
guarantee performance- and cost-oriented SLA. In this case
study, we considered the resource cost metrics (i.e. #nodes)
in the SLA. In a future work, we will consider the financial
cost which relies on both resource cost and units of time

(usually hours) during which the resource is used.

C. SLAaaS-Oriented Multi-Tier Bookstore SaaS

In this case study, we apply the SLAaaS model to the
TPC-W online bookstore Software-as-a-Service [12]. This
service follows a multi-tier architecture consisting of a front-
end web tier and a back-end database tier. For scalability
purposes, each tier may consist of many server instances.
Intuitively, the higher the number of instances in each tier,
the better the performance and availability of the service.
However, the number of instances hosting a cloud service
has a direct impact on the service cost, and actually depends
on the current service workload.

Figure 7 presents an example of SLA established between
the multi-tier bookstore SaaS and its customers. This con-
tract combines performance, availability and cost SLOs as
follows: request response time should not exceed 500 ms
and at least 95% of client requests should be served, with a
number of instances hosting the service as small as possible.

Figure 7. SLA for multi-tier bookstore SaaS in CSLA language

First, a utility function is drawn ad hoc from the SLA. The
following boolean expression reflects whether the service
performance SLO and the service availability SLO are met
at a given time t:

PAO(t) = (`(t) ≤ `max) · (α(t) ≤ αmax) (3)

where `(t) is the average request latency (i.e. response time),
`max the maximum request latency not to exceed, α(t) the
service availability (i.e. ratio of non-rejected requests), and
αmax is the minimum service availability to be guaranteed.
Note that ∀t, PAO(t) ∈ {0, 1}, depending on whether
Eq. (3) holds or not. Then, the utility function combines
performance, availability and cost (#nodes) objectives:

θ(t) =
T · PAO(t)

ω(t)
(4)

where ω(t) is the number of nodes that host the multi-tier
SaaS at time t, and T is the number of tiers of the multi-tier
service (T = 2 in TPC-W). T is used in Eq. (4) for normal-
ization purposes. Here, ∀t, θ(t) ∈ [0, 1], since ω(t) ≥ T (at
least one instance per tier) and PAO(t) ∈ {0, 1}.

The multi-tier service is then modeled following a queuing
network approach, where each queue represents a server
replica and is modeled as an M/M/c/K queue, and the
network of queues represents the series of tiers in a multi-
tier service. The model predicts the client request latency
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Figure 8. Self-elastic multi-tier bookstore service

and service availability, based on the service workload, the
multi-tier service size and the admission control level (MPL:
Multi-Programming Level) usually applied on each tier of
a multi-tier service. The workload consists of the number
of concurrent clients, the average request response time
and the visiting ratio (i.e. #requests in the back-end per
request in the front-end). Then, the capacity of the multi-
tier service that provides the highest utility (Eq. (4)) is
calculated, and applied to the online service. Due to space
limitations, the model and capacity planning algorithms are
not detailed here, more information can be found in [16].
As for the previous case study, each run of the capacity
planning finds the needed service size and it is ensured that
the system stabilizes between two consecutive executions of
the capacity planing.

The experiments on the online multi-tier bookstore service
were run in G5K I (see Table I), with a read-only version
of browsing-mix, a workload specified by TPC-W. Figure 8
depicts the results considering the SLA given in Figure 7.
The number of concurrent clients was varied from 50 to 500
and then to 50 again. The service state (#clients, average
response time and ratio of rejected requests) is monitored
every 5 seconds and the capacity planning runs every minute
using the average of the service states in the last 2 minutes.

Initially, the online service is composed of one instance

for the web tier, and one instance for the database tier. There
is also another node that runs the SLA controller. The SLA
is violated when the number of concurrent clients increases
to 500 (see Figure 8(a)), that triggers the reconfiguration of
the cloud service creating two new instances in the database
tier and adjusting the MPL as shown in Figures 8(c) and
8(d). Once the reconfiguration of the cloud service has
been applied, the service is able to cope with the SLA
requirements again (see Figure 8(a) and 8(b)). Finally, when
the load decreases, the system is over-provisioned and some
instances are released and the MPL adjusted accordingly.
Therefore, the SLAaaS-oriented multi-tier service is able to
successfully guarantee SLA despite workload variations.

D. SLAaaS-Oriented Locking PaaS

Locking allows to ensure exclusive access to shared
resources by concurrent processes, and is usually provided
as a Platform-as-a-Service in the cloud. For instance, Google
provides the Chubby distributed locking mechanism that is
used by other cloud services such as Google Filesystem
service and Bigtable data storage service [18]. Such a
mechanism provides a functional interface with operations
to acquire or release locks, among others. However, locking
procedures remain costly. Locking was identified as an
important and poorly resolved problem [19]; these protocols



have to be scalable and take into account QoS objectives.
We apply the SLAaaS model to a locking PaaS to illustrate

our proposed approach. Thus, a SLA is contracted between
the locking service and its customer. Figure 9 gives an
example of SLA that combines performance and availability
objectives. The SLA specifies that the response time of a
request to the lock service should not exceed 400 ms. It
also specifies that the usage of the locked shared resource
is kept as high as possible. This is translated ad hoc into a
utility function:

θ(t) =
PO(t)

ρ(t)
(5)

where PO(t) is given in Eq. (1), and ρ(t) is the use rate
of locked resource. Intuitively, the locking service with
the highest utility is the one that guarantees the perfor-
mance SLO (if possible) with a high resource use rate, and
therefore, the SLA. Then, we combine admission control
techniques with a distributed locking algorithm in order to
guarantee the SLA [20]. Thus, before accepting a request,
the locking service controller first verifies that, taking into
account current system state, the performance SLO can be
satisfied. If so, the request for lock acquisition is accepted
and will be served; otherwise, the request is rejected. Due
to space limitations, algorithm details are not provided but
can be found in [20]. In the present paper, we show how the
locking algorithm is integrated with the SLaaS model.

Figure 9. SLA for locking PaaS in CSLA language

We conducted experiments with our SLAaaS-oriented
locking service, running in a 40 node cluster in the G5K II
infrastructure (see Table I). To emulate long distance, we
injected network latency between nodes. Each node runs a
process that may request to acquire the lock on a shared
resource. The load varies over time, and is characterized by
the ratio of processes requesting lock acquisition to the total
number of processes, as shown in Figure 10. Figure 10(a)
presents lock request response time over time. When the
load is low, the response time remains low compared to the
SLO. When the load increases, there is more contention on
the shared resource, with an increase of lock request latency.
However, the locking service is able to automatically adapt
to keep request latency below the threshold as specified by
the SLA. This is obtained thanks to admission control.

Figure 10(b) illustrates the use rate of the shared resource,
i.e. how often the resource is actually locked and used by
one of the processes. It shows the time ratio during which
the resource is used by processes to the total time. In our
network configuration this ratio cannot exceed 50% since

(a) Service performance

(b) Service availability

Figure 10. Self-adaptive locking service

half of time is spent in message transmission. Interestingly,
when the load increases the locking service adapts to the
load, with an increasing use rate until the maximum value,
which corresponds to the availability objective of the un-
derlying SLA. In summary, SLAaaS successfully applies to
associate SLA with a locking PaaS.

IV. RELATED WORK

Existing public clouds provide very few guarantees in
terms of performance and dependability [2]. Amazon EC2
compute service offers a service availability of at least
99.95% [3], and Amazon S3 storage service guarantees a
service reliability of 99.9% [3]. However, in case of an
outage, Amazon requires the customer to send them a claim
within thirty business days for Amazon EC2 and ten days
for Amazon S3. Amazon cloud services do not provide
performance guarantees or other QoS guarantees. Rackspace
and Azure cloud services provide similar behaviors [4], [5].

Several recent research works consider SLA in cloud
environments [21], [22], [23], [24]. Chhetri et al. propose the
automation of SLA establishment based on a classification of
cloud resources in different categories with different costs,
e.g. on-demand instances, reserved instances and spot in-
stances in Amazon EC2 cloud [21]. However, this approach
does not provide guarantees in terms of performance, nor



dependability. Macias and Guitart follow a similar approach
for SLA enforcement, based on classes of clients with
different priorities, e.g. Gold, Silver, and Bronze clients [22].
Here again, a relative best-effort behavior is provided for
clients with different priorities, but neither performance nor
dependability SLOs are guaranteed. Other works propose
heuristics for SLA management [23], or target specific
environments such SaaS [24]. The former work provides
best-effort without strict guarantees on SLA, and the latter
does not tackle the many types of clouds.

Regarding the specification of SLA, some initiatives
contributed to this effort, such as WSLA [7], and WS-
Agreement [25]. The proposed CSLA language shares mo-
tivations with these projects and goes further by taking
into account high cloud elasticity and QoS instability. Its
general concepts were introduced in [6]; in the present paper
we describe its integration with the SLAaaS model and its
application to real cloud services.

V. CONCLUSION

This paper presents SLA-aware-Service (SLAaaS) cloud
model, for a systematic and principled way to integrate
quality-of-service (QoS) and service level agreement (SLA)
into the cloud. The CSLA specific language is proposed to
describe SLAs associated with cloud services in a convenient
way. A control-theoretic approach is followed to provide
performance, dependability and cost guarantees for online
services. Our experiments on online cloud services through
various case studies successfully demonstrate the usefulness
of SLAaaS. While this paper illustrates SLA with QoS
metrics such as client request response time, availability, re-
source usage and resource cost, we believe that the proposed
model and control approach may apply to other metrics, such
as service throughput, and energetic cost. This work opens
interesting perspectives in terms of cooperative clouds and
cooperative SLAs. We hope that such a model will lead to
more principled, less ad-hoc solutions of cloud QoS and
SLA management.
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