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Abstract We assess whether salient auditory events con-

tained in soundtracks modify eye movements when explor-

ing videos. In a previous study, we found that on average,

non-spatial sound contained in video soundtracks impacts

on eye movements. This result indicates that sound could

play a leading part in visual attention models to predict eye

movements. In this research, we go further and test whether

the effect of sound on eye movements is stronger just after

salient auditory events. To automatically spot salient audi-

tory events, we used two auditory saliency models: the Dis-

crete Energy Separation Algorithm and the Energy model.

Both models provide a saliency time curve, based on the fu-

sion of several elementary audio features. The most salient

auditory events were extracted by thresholding these curves.

We examined some eye movements parameters just after

these events rather than on all the video frames. We showed

that the effect of sound on eye movements (variability be-

tween eye positions, saccade amplitude and fixation dura-

tion) was not stronger after salient auditory events than on

average over entire videos. Thus, we suggest that sound could

impact on visual exploration not only after salient events but

in a more global way.

Keywords saliency · eye movements · sound · videos ·
attention · multimodality · audio visual

1 Introduction

At any time, our brain perceives tremendous amount of in-

formation. Despite its substantial capacity, it cannot attach

the same importance to each stimulus. To select the most

pertinent ones, the brain uses a filter, called attention. When
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one visually explores its surroundings, the regions that are

the most likely to attract attention are called salient regions.

During the last decades, the modeling of saliency has been

a very active field of research, from neurosciences to com-

puter vision. Saliency models rely on the detection of spatial

locations where the local properties of the visual scene such

as color, motion, luminance, edge orientation... significantly

differ from the surrounding image attributes [16] [22] [33].

Saliency models are evaluated by comparing the predicted

salient regions with the areas actually looked at by partici-

pants during eye-tracking experiments.

Being able to predict the salient regions of an image or a

video leads to a multitude of applications. For instance, sa-

liency-based video compression algorithms are particularly

efficient [15]. For each video frame, these algorithms encode

the salient areas with a better resolution than the rest of the

scene. Since one perceives only a small area around the cen-

ter of gaze at high resolution (the fovea, around 3 ˚ of visual

angle), the distortion of non salient regions does not impact

the perceived quality of the visual stimulus [3] [21]. An-

other application of saliency models is the automatic movie

summarization [8]; video summary contains the most salient

frames spotted by a visual attention model. The increas-

ing availability of video bases implies a growing need for

powerful indexation tools: automatically extracting the most

salient frames of a video is an efficient way to evaluate its

relevance. Saliency models also exist (although to a smaller

extent) for audio signals. Auditory saliency models have been

developed to detect the prominent syllable and word loca-

tions in speech [18] or to automatically annotate music with

text tags (music style, mood, speech...) [32].

The existence of a strong interaction between vision and au-

dition is well known, as reflected by the numerous audio-

visual illusions [23] [35]. Previous studies showed that sound

modified the way we explore visual scenes. For instance,

a spatialized sound tends to attract gazes toward its loca-
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tion [4]. Onat and colleagues presented static natural images

and spatially localized (left, right, up, down) simple sounds.

They compared eye movements of observers when viewing

visual only, auditory only or audio-visual stimuli. Results

indicated that eye movements were spatially biased towards

the regions of the scene corresponding to the sound sources

[26]. Still, the combination of visual and auditory saliency

models has rarely been investigated. Moreover, when used

on videos, saliency models never take into account the in-

formation contained in the soundtrack. When running eye-

tracking experiments with videos, authors do not mention

soundtracks or explicitly remove them, making participants

look at silent movies which is far from natural situations.

Our aim is to assess whether an auditory saliency model

based on physical characteristics of the signal can be used

to examine the impact of sound on observers’ gaze while

watching videos. Here, we do not focus on sound spatial-

ization but simply on salient auditory events that might re-

inforce the saliency of visual events. In a previous study,

we showed that soundtracks do have a global impact on vi-

sual exploration when watching videos [5]. In this study, we

go further and examine whether this impact is stronger just

after salient auditory events. For that purpose, we spotted

salient auditory events in video soundtrack using two mod-

els. First, a popular auditory saliency model, the ”Discrete

Energy Separation Algorithm” (DESA). Second, a simple

energy-based model. We analyzed the results of an eye -

tracking experiment in which we recorded gazes of partici-

pants watching videos with and without their related sound-

track.

First, we present the results obtained in [5], where we tested

the general impact of sound on eye movement parameters.

We found that observers looking at videos with their sound-

tracks had different eye movements than observers look-

ing at the same videos without sound. Second, we focus on

sound impact on eye movements following auditory salient

events spotted by a model. A founding rule of multisen-

sory integration is the temporal rule: multisensory integra-

tion is more likely or stronger when the stimuli from differ-

ent modalities are synchronous [29]. This rule has been es-

tablished by comparing the electrical activity of some neu-

rons when presenting simple visual stimuli (light flashes)

with or without synchronous or delayed simple auditory stim-

uli (bursts). Studies showed that neurons activity was much

stronger in multimodal than in unimodal condition, and that

this reinforcement was maximal for synchronous stimuli [24]

[25]. Here, we generalize this idea to more complex stim-

uli by identifying bursts to auditory saliency peaks and light

flashes to the corresponding visual information. Thus, we

compare the eye movements made over whole videos to those

made over the few frames following auditory saliency peaks.

It has been shown that audio and visual stimuli can be judged

as synchronous across a broad range of physical offsets, typ-

ically in a 400 ms temporal window (see [27] for a review).

This flexibility is probably due to the different propagation

velocity between modalities in the environment (light: 300

000 km/s; sound: 0.34 km/s) and in the human body (con-

duction time from the retina to the brain: around 10 ms [11];

from the cochlea to the brain: around 50 ms [20]). Moreover,

this window seems to be flexible with regard to input type.

Complex stimuli are easier to integrate than simple ones,

thanks to prior experience: one is more used to associate

speech with moving lips or thunder with lightning than sim-

ple bursts with light flashes [12]. Thus, the temporal window

during which a salient auditory event might significantly in-

teract with visual information is around 400 ms but is not

precisely determined. That is why in this research we chose

to compare the eye movement parameters made over whole

videos vs. the ones made over the 5 (200 ms), 10 (400 ms)

and 25 (1s) frames following saliency peaks.

To summarize, the main goal of this study is to test whether

the global effect of sound that was previously found on eye

movements is reinforced just after salient audio events. The

salient events are emphasized through two models: the DESA

and the Energy models. We compared some eye movement

parameters (the dispersion between eye positions, the mean

saccade amplitude and the mean fixation duration) recorded

on videos seen with and without their original soundtracks.

The comparison was done over whole videos vs. over the

few frames following salient audio events. To discuss our re-

sults, we ensured through an additional experiment that the

salient audio events spotted by the models are effectively

judged as more salient by listeners than random events.

2 Auditory saliency models

Attention, both in visual and auditory modalities, is mainly

caught by features standing out from their background (e.g.

motion, bright colors or high intensities). In a complex scene,

the auditory system segregates sounds by extracting features

such as spectral or temporal modulations [2]. In this section,

we describe the two models used to spot auditory salient

events in soundtracks. First, the Discrete Energy Separation

Algorithm (DESA) is detailed. This algorithm has recently

been brought forward in many fields of research involving

the detection of auditory information, such as movie sum-

marization or speech analysis [7] [8]. Second, we present a

model merely based on the signal energy.

2.1 Discrete Energy Separation Algorithm

Even if our understanding of auditory saliency is still lim-

ited, previous studies had shown that extracting amplitude
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Fig. 1 Discrete Energy Separation Algorithm processing stages on an auditory signal s split into N frequency bands. Teager-Kaiser Energy, given

by equation 1, is averaged over all audio samples k contained in a frame (there are L = 48000 x 0.04 = 1920 audio samples in a 40 ms audio

frame sampled at 48 kHz). We chose the frequency band with the maximal Teager-Kaiser Energy (MTE). The Mean Teager Amplitude (MTA) and

Frequency (MTF) are computed from the Teager-Kaiser Energy thank to equations 2 and 3. The three features are then combined to compute the

auditory saliency value of the frame.

and frequency modulations is essential to predict the natu-

ral orienting behavior of humans to audio signals [9] [19].

The Discrete Energy Separation Algorithm (DESA) is an

auditory saliency model based on the temporal modulation

of amplitude and frequency in multiple frequency bands.

The multiband demodulation analysis allows the captures of

such modulations in the presence of noise, which is often a

limiting factor when dealing with complex auditory scenes

[1]. The DESA is simple and efficient. The process applied

to each audio frame is described in Figure 1. The input sig-

nal s is separated in several frequency bands thank to Gabor

filters. A Gabor filter is described in time as

hi(t) = exp(−α2
i t

2)cos(ωit)

with (ωi, αi) respectively the central frequency and the filter

bandwidth (i ∈ [1..N ] with N the total number of filters)

[1]. Their placement and bandwidth have been chosen such

that two neighboring filters intersect at half-peak.

ωi =
3Ωc

2i+1

αi =
ωi

2
√
ln 2

with Ωc the highest frequency to be analyzed. Concretely,

the video soundtracks were sampled at 48 kHz and sepa-

rated in six frequency bands respectively centered on ωi ∈
{281, 562, 1125, 2250, 4500, 9000} Hz. This spectrum cov-

ers a broad type of audible noises (e.g. speech: from 50 Hz

to 8 kHz). Given an audio sample k, the Teager-Kaiser en-

ergy is computed for each frequency band:

Teager-Kaiser energy:

Ψ [s[k]] = s2[k]− s[k + 1]s[k − 1] (1)

The Teager-Kaiser energy is prized for its ease of imple-

mentation and its narrow temporal window, making it ideal

for local (time) analysis of signals.The Teager-Kaiser energy

is often used for detecting amplitude and frequency modu-

lations in AM-FM signals [17] [31]. To separate the noise

from the signal of interest, the frequency band in which

the Teager-Kaiser energy is maximal is selected. In this fre-

quency band, we separate the instantaneous energy into its

amplitude and frequency components, according to the fol-

lowing equations.

Instant amplitude:

|a[s[k]]| = 2
Ψ(s[k])
√

Ψ(ṡ[k])
(2)

Instant frequency:

f [s[k]] =
1

2π
arcsin

(
√

Ψ [ṡ[k]]

4Ψ [s[k]]

)

(3)

with ṡ the derivative of the signal.

Each feature is averaged over a number of audio samples

k corresponding to a frame duration (40 ms), to compute

the mean Teager energy (MTE), the mean instant amplitude

(MIA) and the mean instant frequency (MIF). The MTE,

MIA and MIF are then normalized and combined to com-

pute the auditory saliency value S of the current frame m.

Here, we averaged the three features:

S(m) = w1MTE(m) + w2MIA(m) + w3MIF(m)

with

w1 = w2 = w3 =
1

3

Since different weighing could lead to different results, one

could adapt it according to the mean value of each feature.

If the sound to be analyzed contains great energy variations

(e.g. an argument with many raised voices), one is likely to



4 Antoine Coutrot et al.

Fig. 2 Decomposition of a 6840 ms soundtrack (171 frames of 40 ms,

upper plot) into energy (second plot), Mean Teager Energy (MTE, third

plot), Mean Instant Amplitude (MIA, fourth plot) and Mean Instant

Frequency (MIF, fifth plot). The combination of MTE, MIA and MIF

gives the auditory saliency curve (lower plot) which is thresholded to

spot the saliency peaks (vertical red bars).

give a preferential weighting to the MTE. On the contrary, if

the sound contains great frequency variations (e.g. moving

police siren presenting Doppler effect), the MIF will be pre-

ferred. Here, we chose an equally weighted combination to

make the DESA as flexible as possible. Figure 2 illustrates

the DESA algorithm applied to an audio signal (first plot).

Three features were computed and averaged for each frame

to provide the three curves MTE, MIA and MIF. Finally, the

saliency curve was computed by averaging the three upper

curves. Thresholding this auditory saliency curve gave the

signal ”saliency peaks” (vertical red bars). We normalized

the number of saliency peaks over time. First, we chose a

rate of one peak for two seconds: a N-second long signal

had N/2 saliency peaks. Second, the time interval between

two peaks had to be longer than one second: two neighbor-

ing peaks were distant enough so that the potential effect

they might induce did not affect each other.

2.2 Energy model

We compared the peaks given by our auditory saliency model

based on DESA algorithm, we also computed saliency audi-

tory peaks using the energy curve (second plot of Figure 2),

given by

E[s[k]] = s2[k]

We extracted the ”Energy peaks”, i.e. the local maxima of

the energy curve, at the same rate as saliency peaks (one

peak for two seconds and at least one second between two

peaks).

We used these two sets of peaks (”DESA peaks” and ”En-

ergy peaks”) to evaluate the impact of sound on eye move-

ments recorded during the eye-tracking experiment described

below.

3 Methods

To observe the impact of salient auditory events on eye move-

ments while freely watching videos, we set up an eye-tracking

experiment. We built a base of 50 videos and asked 40 par-

ticipants to watch it, half with and half without its related

soundtracks. The experimental set-up and the data presented

here were used in a previous paper [5].

3.1 Apparatus

Eye-movements were recorded using an Eyelink 1000 eye-

tracker (SR Research). We used the eye-tracker in binoc-

ular ”pupil - corneal reflect” tracking mode. Eye positions

are sampled at 1 kHz with a nominal spatial resolution of

0.01 ˚ of visual angle. The device is controled by the soft-

ware SoftEye [14] that allows to control stimuli presenta-

tion. Participants were sat 57 cm away from a 21 inch CRT

monitor with a spatial resolution of 1024 x 768 pixels and a

refresh rate of 75 Hz. Head was stabilized with a chin rest,

forehead rest and headband. Soundtracks were listened us-

ing headphones (HD280 Pro, 64Ω, Sennheiser).

3.2 Participants and stimuli

Participants 40 persons participated at the experiment: 26

men and 14 women, aged from 20 to 29 years old. All par-

ticipants had normal or corrected to normal vision and hear-

ing and were French native speakers. They were naive about

the aim of the experiment and were asked to watch videos

freely. We discarded data from 4 participants due to record-

ing problems.

Stimuli We used 50 video clips extracted from professional

movies as varied as possible, to reflect the diversity of audio-

visual scenes that one is likely to see and hear (dialogue,

documentary film, drama, action movies). When the sound-

track contained speech, it was always in French. Each video

sequence had a resolution of 720 x 576 pixels (30 ˚ x 24 ˚ of

visual angle) and a frame rate of 25 frames per second. They

lasted from 0.9 s to 35 s (mean = 8.7 s; standard deviation

= 7.2 s). Video sequences lasted overall 23.1 min. We chose

video shots with varied durations to avoid any habituation

effect from the participants: one could not predict when each

stimulus ended. As explained in the introduction, we chose
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Fig. 3 Time course of two trials in the visual condition. A fixation

cross is presented at the center of the screen, with gaze control. Then,

a video sequence is presented in the center, followed by a grey screen.

This sequence is repeated for the 50 videos, half without sound (Visual

condition), the other half with their original soundtracks (Audio-Visual

condition).

to focus on the influence of nonspatial sound on eye move-

ments. Hence, we used monophonic soundtracks.

We analyzed the parameters of eye movements on average

over each video shot rather than over entire videos. A shot

cut is an abrupt transition from one scene to another that

greatly impacts the way one explores videos [10] [28]. In a

preliminary study [6], we elicited the effect of video edit-

ing (shots and cuts), studying the effect of sound over entire

videos made up of several shots, and found no significant

impact of sound on eye movements. However, this effect ex-

ists and has been observed when taking into account video

editing, at least for shots longer than one second, which is

the case of practically all the shots of our database [5]. Thus,

in the present work, we did not study entire videos but we

examined each shot. Shots were automatically detected us-

ing the mean pixel by pixel correlation value between two

adjacent video frames. We ensured that the shot cuts de-

tected were visually correct. Sequences contained different

number of shots, with a total number of 163 shots.

3.3 Procedure

The experiment consisted in freely viewing 50 video se-

quences. The first 20 participants saw the first half of videos

with their soundtracks and the other half without. This was

counterbalanced for the last 20 participants. Each experi-

ment was preceded by a calibration procedure, during which

participants focused their gaze on 9 separate targets in a 3

x 3 grid that occupied the entire display. A drift correction

was done between each video, and a new calibration was

done at the middle of the experiment or if the drift error was

above 0.5 ˚ . Before each video sequence, a fixation cross

was displayed in the center of the screen for 1 second. Af-

ter that time, and only if the participant looked at the center

of the screen (gaze contingent display), the video sequence

was played on a mean grey level background. Between two

consecutive video sequences a grey screen was displayed for

1 second (see Figure 3). Participants wore headphones dur-

ing the entire experiment, even when the stimuli were pre-

sented without soundtrack. To avoid presentation order ef-

fects, videos were run randomly. At the end, each video was

seen by 20 persons with its related soundtrack and by other

20 persons without its related soundtrack.

3.4 Data extraction

The eye tracker system gives one eye position each millisec-

ond, but since the frame rate is 25 frames per second, 40

eye positions per frame and per participant were recorded.

Moreover, we only analyzed the guiding eye of each subject.

In the following, an eye position is the median position that

corresponds to the coordinates of the 40 raw eye positions:

there is one eye position per frame and per subject. Eye po-

sitions corresponding to a frame during which participants

made a saccade or a blink were discarded from analysis. For

each frame and each stimulus condition, we discarded out-

liers, i.e. eye positions above ± 2 standard deviations from

the mean. The eye-tracker software organizes the recorded

movements in events: saccades, fixations and blinks.

Saccades are automatically detected by the Eyelink software

using three thresholds: velocity (30 degrees/s), acceleration

(8000 degrees/s2) and saccadic motion (0.15 degree). The

velocity threshold is the eye movement velocity that must be

exceeded for a saccade to be detected. Acceleration thresh-

old is used to detect small saccades. The saccadic motion

threshold is used to delay the onset of a saccade until the

eye has moved significantly.

Fixations are detected as long as the pupil is visible and as

long as there is no saccade in progress.

For each stimulus condition, we discarded outliers, i.e. sac-

cades (resp. fixations) whose amplitude (resp. duration) was

above ± 2 standard deviations from the mean. Moreover,

we discarded data from four subjects due to recording prob-

lems. We separated the recorded eye movements in two data

sets.

– The data recorded in the Audio-Visual (AV) condition,

i.e. when videos were seen with their original sound-

track.

– The data recorded in the Visual (V) condition, i.e. when

videos were seen without any sound.
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Fig. 4 Mean dispersion in Audio-Visual an Visual conditions. Disper-

sion values are averaged over all frames (blue) and over the 10 frames

following each random (black), energy (green) and DESA saliency

(red) peaks. Dispersions are given in visual angle (degrees) with er-

ror bars corresponding to the standard errors.

4 Results

In this section, we examine the eye movements recorded in

Visual (V) and Audio-Visual (AV) conditions. We compare

eye movements averaged over all the frames of a same shot

and over the few frames following each ”Energy peak” or

each ”DESA peak”. The presented results are based on a

10-frame time period after Energy and DESA peaks. The

same analysis was carried out on a 5 and 25-frame period

and led to the same results (see Section 4.1), that we chose

not to plot. We discarded from analyzes shots without DESA

(resp. Energy) peaks (36 shots). We examine several param-

eters in both V and AV conditions: the dispersion between

the eye positions of different observers, which reflects the

variability between them; the amplitude of the recorded sac-

cades and the duration of the recorded fixations.

4.1 Eye position dispersion

To estimate the variability of eye positions between observers,

we used a measure called dispersion. For a frame and for n

participants (thus n eye positions p = (xi, yi)i∈[1..n]), the

dispersion D is defined as follow:

D(p) =
1

n(n− 1)

n
∑

i=1

n
∑

j=1
j 6=i

√

(xi − xj)2 + (yi − yj)2

In other words, the dispersion is the mean of the Euclidian

distances between the eye positions of different observers

for a given frame. If all participants look close to the same

location, the dispersion value is small. On the contrary, if

eye positions are scattered, the dispersion value increases.

In this analysis, we computed a dispersion value for each

frame, in both V and AV conditions. First, we averaged dis-

persion over all frames of each shot. Then, we averaged

Visual Condition Audio-Visual Condition
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Fig. 5 Mean saccade amplitude in Audio-Visual an Visual conditions.

Saccade amplitudes are averaged over all frames (black) and over the

10 frames following each DESA (blue) peak. Saccades amplitude are

given in visual angle (degrees) with error bars corresponding to the

standard errors.

Visual Condition Audio-Visual Condition

280

290

300

F
ix

at
io

n
D

u
ra

ti
o

n
(m

s)

All Frames

After DESA Peaks

Fig. 6 Mean fixation duration in Audio-Visual an Visual conditions.

Fixation durations are averaged over all frames (black) and over the 10

frames following each DESA (blue) peak. Fixation durations are given

in milliseconds with error bars corresponding to the standard errors.

dispersion over the 10 frames following each DESA and

Energy peak. To control, we computed 1000 random sets

containing ”random peaks” at the same rate as Energy and

DESA peaks. For each random set, we averaged dispersion

over the 10 frames following each ”random peaks” and took

the mean of these 1000 ”random” dispersion values. Results

are shown in Figure 4. We first notice that in all cases, dis-

persion is smaller in Audio-Visual than in Visual Condition.

To test the impact of sound on the dispersion values of the

127 video shots containing a DESA or Energy peak, we

ran two analyzes of variance (ANOVAs). The first ANOVA

was run with two factors: the stimulus condition (visual and

audio-visual) and the window size (all frames and 10 frames)

used to average dispersion after the Energy peaks. The sec-

ond ANOVA was also run with two factors: the stimulus

condition (visual and audio-visual) and the window size (all

frames and 10 frames) used to average dispersion after the

DESA peaks. For the first one, we found a main effect of
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sound (F(1,126) = 28.2; p < 0.001) and no effect of En-

ergy peaks (F(1,126) = 0.82; n.s). We found similar results

for the second one: a main effect of sound (F(1,126) = 24.8;

p < 0.001) and no effect of DESA saliency peaks (F(1,126)

= 1.52; n.s).

To test the impact of the size of the averaging time win-

dow on the dispersion values of the 127 video shots con-

taining a DESA or Energy peak, we ran two ANOVAs. The

first ANOVA was run with two factors: the stimulus con-

dition (visual and audio-visual) and the window size (aver-

aged over 5, 10 and 25 frames after DESA peaks). We found

a main effect of sound (F(1,126) = 31.8; p < 0.001) and no

effect of the size of the averaging time window (F(2,124)

= 0.9; n.s). The second ANOVA was also run with two fac-

tors: the stimulus condition (visual and audio-visual) and the

window size (averaged over 5, 10 and 25 frames after En-

ergy peaks). We also found a main effect of sound (F(1,126)

= 39.6; p < 0.001) and no effect of the size of the averaging

time window (F(2,124) = 0.2; n.s).

To sum up, we found that the presence of sound does im-

pact on gaze dispersion but neither the proximity of DESA

or Energy peaks nor the size of the averaging time window

affects this parameter.

4.2 Saccade amplitude and fixation duration

Figure 5 and Figure 6 respectively compare the average sac-

cade amplitude and fixation duration in Audio-Visual and

Visual conditions over all frames and over the ten frames fol-

lowing each DESA peak. For the sake of clarity, we omitted

the saccade amplitude and fixation duration made after En-

ergy and random peaks. The results are similar as the plotted

ones. Distributions follow a positively skewed, long-tailed

distribution, which is classical when studying such parame-

ters during scene exploration [13] [30]. We notice that par-

ticipants tended to make smaller saccades and shorter fixa-

tions in V than in AV condition.

We performed two analyzes of variance (ANOVA) with two

factors (visual and audio-visual ; all frames and 10 frames

after DESA peaks) on the 36 participant’s median saccade

amplitude and median fixation duration. For saccade am-

plitude, it revealed a main effect of sound (F(1,35) = 4.9;

p = 0.033) and no effect of DESA peaks (F(1,35) = 0.27;

n.s). For fixation duration, there was still no effect of DESA

peaks (F(1,35) = 0.01; n.s) and the effect of sound was not

significant (F(1,35) = 2.1; p = 0.15).

5 General discussion

We compared eye positions and eye movements of partici-

pants freely looking at videos with their original soundtracks

(AV condition) and without sound (V condition). In a previ-

ous study, we showed that soundtrack globally impacts on

eye movements during video viewing [5]. We showed that

in AV condition, the eye positions of participants were less

dispersed and tended to shift more from the screen center,

with larger saccades. We also showed that observers did not

look at the same locations, according to the viewing con-

dition. An interpretation of these results is that sound might

strengthen visual saliency. Indeed, with sound, observers ex-

plored videos in a more uniform way, leading to a decrease

of the dispersion between eye positions. This interpretation

is supported by the results on saccade amplitude. Partici-

pants made shorter saccades in V condition, fluttering from

one position to another. On the opposite, in AV condition,

sound could have helped guiding participants’ gaze, leading

to larger, goal-directed saccade amplitudes.

In this study, we compared this impact of sound averaged

over entire videos with the one averaged over the 5, 10 and

25 frames following the salient events of video soundtracks.

To spot these salient events, we used two auditory saliency

models: the Discrete Energy Separation Algorithm and the

Energy model.

We found that the impact of sound on saccade amplitudes

and on the dispersion between eye positions was very sim-

ilar after DESA peaks, Energy peaks or in general over en-

tire videos. This indicates that the temporal proximity of

auditory events spotted by neither the DESA, nor the en-

ergy model, increases the effect of sound on eye movements.

Moreover, the size of the temporal window over which we

averaged eye movement parameters following salient events

(5, 10 or 25 frames) did not affect the results. A reason

for these results can be that the signal features extracted

by the DESA (mean instant Teager-Kaiser energy, ampli-

tude and frequency) might not satisfactorily reflect the way

our brain processes auditory information to generate atten-

tion. Future studies should investigate more complete au-

ditory saliency models, which use more sophisticated au-

ditory features. For instance, the auditory features used in

musical classification (mel-frequency cepstral coefficients

(MFCC), delta-MFCC, chromagrams or zero-crossing rates

[34]) could be used to successfully integrate sound to vi-

sual saliency models. Moreover, one may question the way

these features are combined (here, linearly). For a given in-

put, we could estimate the energy of each feature and ad-

just their weight accordingly. For instance, we could give

the MIF a bigger weight when this feature is dominant, like

in a whistling sound.

Nevertheless, this explanation is not entirely satisfactory. In-

deed, although simple, the models we used in this study

spotted auditory events that had a perceptual relevance, i.e.

that actually were judged as salient by human listeners. To

ensure this, we ran a control experiment.

Stimuli We chose 14 soundtracks (from 9 to 57 seconds)



8 Antoine Coutrot et al.

from the dataset of soundtracks associated to the videos used

in the main experiment. These soundtracks were randomly

chosen, trying to have exemplar of sounds with music, mov-

ing objects, voices, etc. Audio stimuli had the same char-

acteristics as described Section 3.2. For each soundtrack,

we computed three sets of peaks: one set using the DESA

model, one set using the Energy model and a last set us-

ing random peaks. For a given soundtrack, the three sets of

peaks had the same number of peaks at least separated by

the same minimum interval (one second), like in the main

experiment.

Participants and set-up We asked 5 persons to listen to each

soundtrack (without video) and to judge whether or not each

peak corresponded to a salient audio event. Participants were

seated in front of a computer screen with the headphones

used for the main experiment. For each soundtrack, three

curves with the three sets of peaks (DESA, Energy and Ran-

dom) were displayed and a blue vertical line marked the pro-

gression of the sound. Participant had to tag as salient or not

salient 104 peaks x 3 models = 312 peaks. They could replay

the audio signals as many time as needed. In average, each

participant spent forty-five minutes to fulfill the task.

Results For each soundtrack, we obtained a percentage of

the peaks identified as salient by the participants for the

DESA, Energy and Random models. We ran paired t-test

to test which model had the highest percentage of peaks

judged as salient. Both DESA and Energy models had a

higher percentage than the Random model, with 43% vs.

20% for the DESA model (t(13)=5,46; p < .0001), and

60% vs. 20% for the Energy model (t(13)=5,28; p < .0001).

The Energy model had a higher percentage than the DESA

(t(13)=-2,8; p < .01). As it could be expected, the peaks

spotted by both models were more relevant than the ran-

dom ones. Moreover, we could notice that when the audio

signal contained events that clearly stood out from the back-

ground (like speech or noise from a moving object), both

DESA and Energy models computed relevant saliency peaks

(i.e. events that were judged as salient by a majority of ob-

servers). On the contrary, when the input did not contain

any particular event (e.g. smooth music, wind blowing), the

performance dropped sharply: the peaks emphasized by the

models were judged as salient only in few cases. While the

relevance of the DESA and Energy models compared to the

Random model was expected, we did not expect the better

results of the Energy model. However, one should not draw

hasty conclusions. The Energy model emphasizes the most

evident changes in the audio signal, which are not necessar-

ily the ones that actually draw attention. For instance, a little

voice in a noisy environment will not be tagged as salient

by the Energy model, although it obviously attracts the au-

ditory attention. Conversely, the DESA model is likely to

spot this voice, thanks to its MIF feature. To tag the peaks as

salient or not, participants had to listen to each soundtrack

several times (at least one time per set of peaks). After two

or three listenings, only the most evident changes remain

salient, which can explain the preference of the listeners for

the Energy peaks.

Altogether, both DESA and Energy peaks were globally much

more relevant than random ones, which legitimizes the pre-

sented analyses.

6 Conclusions

We have shown that while sound has a global impact on eye

movements, this effect is not reinforced just after salient au-

ditory events. This result can be explained if we consider

that auditory saliency may entail much more complex and

observer-dependent information. The emotions aroused by

the soundtrack (e.g. music) or the information contained in

it (e.g. speech) can drastically affect our attention on much

larger time scale than 5, 10 or even 25 frames. In that case,

the temporal proximity of salient events would not be a rel-

evant parameter: the sound would impact on visual explo-

ration in a global way. Altogether, these results indicate that

if non-spatial auditory information does impact on eye move-

ments, the exact auditory features capturing observers’ at-

tention remain unclear. To successfully integrate sound into

visual saliency models, one should investigate the influence

of a specific sound on a specific visual feature, and take into

account context-sensitive information.
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