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Abstract. We study nonparametric estimation of the diffusion coefficient from discrete data, when the observations are blurred

by additional noise. Such issues have been developed over the last 10 years in several application fields and in particular in high

frequency financial data modelling, however mainly from a parametric and semiparametric point of view. This paper addresses the

nonparametric estimation of the path of the (possibly stochastic) diffusion coefficient in a relatively general setting.

By developing pre-averaging techniques combined with wavelet thresholding, we construct adaptive estimators that achieve a

nearly optimal rate within a large scale of smoothness constraints of Besov type. Since the diffusion coefficient is usually genuinely

random, we propose a new criterion to assess the quality of estimation; we retrieve the usual minimax theory when this approach is

restricted to a deterministic diffusion coefficient. In particular, we take advantage of recent results of Reiß (Ann. Statist. 39 (2011)

772–802) of asymptotic equivalence between a Gaussian diffusion with additive noise and Gaussian white noise model, in order to

prove a sharp lower bound.

Résumé. On étudie l’estimation non-paramétrique du coefficient de diffusion à partir d’observations discrètes, lorsque les ob-

servations sont bruitées par un bruit additionnel. De tels problèmes se sont développés au cours des dix dernières années dans

plusieurs champs d’application, en particuler pour la modélisation des données haute fréquence en finance, cependant plutôt d’un

point de vue paramétrique ou semi-paramétrique. Ce travail concerne l’estimation de la trajectoire (éventuellement stochastique)

du coefficient de diffusion dans un cadre relativement général.

En développant des techniques de pré-moyennage combinées avec du seuillage des coefficients d’ondelettes, nous contruisons

des estimateurs adaptatifs qui atteignent une vitesse quasi-optimale parmi une vaste échelle de contraintes de régularité de type

Besov. Puisque le coefficient de diffusion est souvent intrinsèquement aléatoire, nous proposons un nouveau critère pour quali-

fier la qualité d’estimation ; nous retrouvons la théorie minimax usuelle lorsque cette approche est restreinte à un coefficient de

diffusion déterministe. En particulier, on exploite les résultats récents de Reiß (Ann. Statist. 39 (2011) 772–802) de l’équivalence

asymptotique entre une diffusion gaussienne avec un bruit additif et le bruit blanc gaussien.

MSC: 62G99; 62M99; 60G99

Keywords: Adaptive estimation; Besov spaces; Diffusion processes; Nonparametric regression; Wavelet estimation

1. Introduction

We are interested in the following statistical setting: we assume that we have real-valued data of the form

Zj,n = XjΔn + ǫj,n, j = 0,1, . . . , n, (1.1)
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where Δn > 0 is a sampling time, (ǫj,n) is an additive noise process1 and the continuous time process X = (Xt )t≥0

has representation

Xt = X0 +
∫ t

0

bs ds +
∫ t

0

σs dWs . (1.2)

In other words, X is an Itô continuous semimartingale driven by a Brownian motion W = (Wt )t≥0 with drift b = (bt )

and diffusion coefficient or volatility process σ = (σt ). This is the so-called additive microstructure noise model. We

assume that the data (Zj,n) are sampled in a high-frequency framework: the time step Δn between observations goes

to 0, but nΔn remains bounded as n → ∞, i.e. the whole statistical experiment is taken over a fixed time interval.

In this asymptotic framework, the only parameter that can be consistently estimated is the unobserved path of the

diffusion coefficient t � σ 2
t , and unless specified otherwise, it is random. Whereas nonparametric estimation of the

diffusion coefficient from direct observation XjΔn is a fairly well known topic when σ 2 is deterministic ([18,24] and

the review paper of Fan [16]), nonparametric estimation in the presence of the noise (ǫj,n) substantially increases the

difficulty of the statistical problem. This is the topic of the present paper, and it can be related to practical issues in

several application fields. In finance for instance, by considering the Zj,n as the result of a latent or unobservable

efficient price XiΔn corrupted by microstructure effects ǫj,n at scale Δn, we obtain a more realistic model accounting

for stylised facts on intraday scale usually attributed to bid-ask spread manipulation by market makers.2 Considering

a diffusion perturbated by noise applies in other fields as well: in the context of functional MRI or fRMI, the problem

of inference for diffusion processes with error measurement has been addressed by Donnet and Samson [12,13] in

an ergodic and parametric setting, when the sampling time Δn does not shrink to 0 as n → ∞. Se also Favetto and

Samson [17]. Recently, Schmisser [36] has systematically studied the nonparametric estimation of the drift and the

diffusion coefficient in an ergodic and mixed asymptotic setting, when Δn → 0 but nΔn → ∞. In this paper, we

consider the nonergodic case, when only the diffusion coefficient can be identified, with Δn → 0 and nΔn fixed.

1.1. Estimating the diffusion coefficient under additive noise: Some history

Estimation of a finite-dimensional parameter and nonparametric functionals

The first results about statistical inference of a diffusion with error measurement go back to Gloter and Jacod [20,21]

in 2001. They showed that if σt = σ(t,ϑ) is a deterministic function known up to a 1-dimensional parameter ϑ , and

if moreover the ǫj,n are Gaussian and independent, then the LAN condition holds (Local Asymptotic Normality) for

Δn = n−1 with rate n−1/4. This implies that, even in the simplest Gaussian diffusion case, there is a substantial loss

of information compared to the case without noise, where the standard n−1/2 accuracy of estimation is achievable.

At about the same time, the microstructure noise model for financial data was introduced by Ait-Sahalia, Mykland

and Zhang in a series of papers [1,38,39]. Analogous approaches in various similar contexts progressively emerged

in the financial econometrics literature: Podolskij and Vetter [32], Bandi and Russell [3,4], Barndorff-Nielsen et al.

[5] and the references therein. These studies tackled estimation problems in a sound mathematical framework, and

incrementally gained in generality and elegance. A paradigmatic problem in this context is the estimation of the

integrated volatility
∫ t

0 σ 2
s ds. Convergent estimators were first obtained by Ait-Sahalia et al. [1] with a suboptimal

rate n−1/6. Then the two-scale approach of Zhang [38] achieved the rate n−1/4. The Gloter–Jacod LAN property

of [20] for deterministic submodels shows that this cannot be improved. Further generalizations took the way of

extending the nature of the latent price model X (for instance [2,11,37]) and the nature of the microstructure noise

(ǫj,n). It took some more time and contributions before Jacod and collaborators [26] took over the topic in 2007 with

their simple and powerful pre-averaging technique, introduced earlier in a simplified context by Podolskij and Vetter

[32]. In essence, it consists in first, smoothing the data as in signal denoising and then, apply a standard realised

volatility estimator up to appropriate bias correction. Stable convergence in law is displayed for a wide class of pre-

averaged estimators in a fairly general setting, closing somehow the issue of estimating the integrated volatility in a

semiparametric setting.

1Implicitly assumed to be centered for obvious identifiability purposes.
2This approach was grounded on empirical findings in the financial econometrics literature of the early years 2000 (among many others Ait-Sahalia

et al. [1], Mykland and Zhang [31] and the references therein).
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Nonparametric inference

In the nonparametric case, the problem is a little unclear. By nonparametric, one thinks of estimating the whole

path t � σ 2
t . However, since σ 2 = (σ 2

t )t≥0 is usually itself genuinely random, there is no “true parameter” to be

estimated! When the diffusion coefficient is deterministic, the usual setting of statistical experiments is recovered. In

that latter case, under the restriction that the microstructure noise process consists of i.i.d. noises, Munk and Schmidt-

Hieber [29,30] proposed a Fourier estimator and showed its minimax rate optimality, extending a previous approach

for the parametric setting ([7]). This approach relies on a formal analogy with inverse ill-posed problems. When the

microstructure noises (ǫj,n) are Gaussian i.i.d. with variance τ 2, Reiß [33] recently showed the asymptotic equivalence

in the Le Cam sense with the observation of the random measure

√
2σ + τn−1/4Ḃ,

where Ḃ is a Gaussian white noise. This is a beautiful and deep result: the normalisation n−1/4 is illuminating when

compared with the optimality results obtained by previous authors.

1.2. Our results

The asymptotic equivalence proved in [33] provides us with a benchmark for the complexity of the statistical problem

and is inspiring: we target in this paper to put the problem of estimating nonparametrically the random parameter

t � σ 2
t to the level of classical denoising in the adaptive minimax theory. In spirit, we follow the classical route of

nonlinear estimation in de-noising, but we need to introduce new tools. Our procedure is twofold:

1. We approximate the random signal t � σ 2
t by an atomic representation

σ 2
t ≈

∑

ν∈V (σ 2)

〈
σ 2,ψν

〉
ψν(t), (1.3)

where 〈·, ·〉 denotes the usual L2-inner product and (ψν, ν ∈ V (σ )) is a collection of wavelet functions that are

localised in time and frequency, indexed by the set V (σ 2) that depends on the path t � σ 2
t itself. As for the precise

meaning of the symbol ≈ and the property of the ψν ’s, we do not specify yet.

2. We then estimate 〈σ 2,ψν〉 and specify a selection rule for V (σ ) (with the dependence in σ somehow replaced by

an estimator). The rule is dictated by hard thresholding over the estimations of the coefficients 〈σ 2,ψν〉 that are

kept only if they exceed some noise level, tuned with the data, as in standard wavelet nonlinear approximation

(Donoho, Johnstone, Kerkyacharian, Picard and collaborators [14,15,23]).

The key issue is therefore the estimation of the linear functionals

〈
σ 2,ψν

〉
=
∫

R

ψν(t)σ
2
t dt. (1.4)

An important fact is that the functions ψν are well located but oscillate, making the approximation of (1.4) delicate,

in contrast to the global estimation of the integrated volatility: this is where we depart from the results of Jacod and

collaborators [26,32]. If we could observe the latent process X itself at times jΔn, then standard quadratic variation

based estimators like

∑

j

ψν(jΔn)(XjΔn − X(j−1)Δn)
2 (1.5)

would give rate-optimal estimators of (1.4), as follows from standard results on nonparametric estimation in diffusion

processes [18,24,25]. However, we only have a noisy version of X via (Zj,n) and further “intermediate” de-noising is

required.

At this stage, we consider local averages of the data Zj,n at an intermediate scale m so that Δn ≪ 1/m but m → ∞.

Let us denote loosely (and temporarily) by Ave(Z)i,m an averaging of the data (Zj,n) around the point i/m. We have

Ave(Z)i,m ≈ Xi/m + small noise (1.6)
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and thus we have a de-blurred version of X, except that we must now handle the small noise term of (1.6) and the

loss of information due to the fact that we dispose of (approximate) Xi/m on a coarser scale since m ≪ Δ−1
n . We

subsequently estimate (1.4) replacing the naive guess (1.5) by

∑

i

ψν(iΔn)
[(

Ave(Z)i,m − Ave(Z)i−1,m

)2 + bias correction
]

(1.7)

up to a further bias correction term that comes from the fact that we take square approximation of X via (1.6). In

Section 3.1, we generalise (1.7) to arbitrary kernels within a certain class of oscillating pre-averaging functions, in the

same spirit as in Gloter and Hoffmann [19] or Rosenbaum [34] where this technique is used for denoising stochastic

volatility models corrupted by noise.

We prove in Theorems 2.9 and 3.4 an upper bound for our procedure in Lp-loss error over a fixed time horizon.

Assuming that the path t � σ 2
t has s derivatives in Lπ with a prescribed probability, the upper bound is of the form

n−α/4 for an explicit α = α(s,p,π) < 1 to within inessential logarithmic terms. We retrieve the expected results of

wavelet thresholding over Besov spaces up to the noise rate n−1/4 instead of the usual n−1/2 in white Gaussian noise

or density estimation, but that is inherent to the problem of microstructure noise, as already established in [20]. It

is noteworthy that, although the rates of convergence depend on the smoothness parameters (s,π), the thresholding

procedure does not, and is therefore adaptive in that sense. A major difficulty is that in order to employ the wavelet

theory in this context, we must assess precise deviation bounds for quantities of the form (1.7), which require delicate

martingale techniques. We prove in Theorem 2.12 that this result is sharp, even if t � σ 2
t is random so that we do not

have a statistical model in the strict sense. In order to encompass this level of generality, we propose a modification

of the notion of upper and lower rate of estimation of a random parameter in Definitions 2.3 and 2.6. This approach is

presented in details in the methodology Section 2.2.

The paper is organized as follows. In Section 2 we introduce notation and formulate the key results. An explicit

construction of the estimator can be found in Section 3. Finally, the proofs of the main results and some (unavoidable)

technicalities are deferred to Section 4.

2. Main results

2.1. The data generating model

We consider a continuous adapted 1-dimensional process X of the form (1.2) on a filtered probability space

(Ω, F , (Ft )t≥0,P). Without loss of generality, we assume that X0 = 0.

Assumption 2.1. The processes σ and b are càdlàg (right continuous with left limits), Ft -adapted, and a weak solu-

tion of (1.2) is unique and well defined.

Moreover, a weak solution to Yt =
∫ t

0 σs dWs is also unique and well defined, the laws of X and Y are equivalent

on Ft and we have, for some ρ > 1

E

[
exp

(
ρ

∫ t

0

bs

σ 2
s

dYs

)]
< ∞. (2.1)

We consider a fixed time horizon T = nΔn, and with no loss of generality, we take T = 1 hence Δn = n−1. For

j = 0, . . . , n, we assume that we can observe a blurred version of X at times Δnj = j/n over the time horizon

[0, T ] = [0,1]. The blurring accounts for microstructure noise at fine scales and takes the form

Zj,n := Xj/n + ǫj,n, j = 0,1, . . . , n, (2.2)

where the microstructure noise process (ǫj,n) is implicitly defined on the same probability space as X and satisfies

Assumption 2.2. We have

ǫj,n = a(j/n,Xj/n)ηj,n, (2.3)
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where the function (t, x) � a(t, x) is continuous and bounded. Moreover, the random variables (ηj,n) are indepen-

dent, and independent of X. Moreover, for every 0 ≤ j ≤ n and n ≥ 1, we have

E[ηj,n] = 0, E
[
η2

j,n

]
= 1, E

[
|ηj,n|p

]
< ∞, p > 0.

Given data Z
·
= {Zj,n, j = 0, . . . , n} following (1.1), the goal is to estimate nonparametrically the random function

t � σ 2
t over the time interval [0,1]. Asymptotics are taken as the observation frequency n → ∞.

Discussion on Assumptions 2.1 and 2.2

Assumption 2.1 on b and σ is relatively weak, except for the moment condition (2.1). This assumption is somewhat

technical, for it enables to implicitly assume that b = 0. Indeed, if Pσ,b denotes the law of (Xt )t∈[0,1] with drift b and

volatility σ , we have by Girsanov’s theorem

dPσ,b

dPσ,0
= exp

(∫ 1

0

bs

σ 2
s

dXs −
1

2

∫ 1

0

b2
s

σ 2
s

ds

)
.

By Hölder inequality, for a random variable Z, we derive

Eσ,b

[
|Z|p

]1/p = Eσ,0

[
dPσ,b

dPσ,0
|Z|p

]1/p

≤ Eσ,0

[
exp

(
ρ

∫ 1

0

bs

σ 2
s

dXs

)]1/(pρ)

Eσ,0

[
|Z|p

]1/p
(2.4)

with p = pρ/(ρ − 1). Therefore, Condition (2.1) guarantees that if we have an estimate of the form Eσ,0[|Z|p]1/p ≤
cpn−γ for any p ≥ 1 and for some γ > 0, then the same property holds replacing Pσ,0 by Pσ,b , up to a modification of

the constant cp . Thus Condition (2.1) is a useful tool that enables to condense the proofs in many places afterwards.

It is satisfied as soon as σ is bounded below and b has appropriate integrability conditions. In some cases of interest

where it may fail to hold, one can still proceed by working directly under Pσ,b .

Concerning Assumption 2.2, we assume a relatively weak scheme of microstructure noise, by assuming that the

ǫj,n form a martingale array that may depend on the unobserved process X through a function t � a(t,Xt ) as the

standard deviation of the additive noise. This enables richer structures than simple additive independent noise. One

may wish to relax further Assumption 2.2 by assuming a correlation decay only, but again, for technical reason, we

keep to this simpler framework.

2.2. Statistical methodology

Recovering σ 2 over a function class D

Strictly speaking, since the target parameter σ 2 = (σ 2
t )t∈[0,1] is random itself (as an F -adapted process), we cannot

assess the performance of an “estimator of σ 2” in the usual way. We need to modify the usual notion of convergence

rate over a function class.

Definition 2.3. An estimator of σ 2 = (σ 2
t )t∈[0,1] is a random function

t � σ̂ 2
n (t), t ∈ [0,1],

measurable with respect to the observation (Zj,n) defined in (1.1).

We need to modify the usual notion of convergence rate. Let us denote by D a class of real-valued functions defined

on [0,1].
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Definition 2.4. We say that the rate 0 < vn → 0 (as n → ∞) is achievable for estimating σ 2 in Lp-norm over D if

there exists an estimator σ̂ 2
n such that

lim sup
n→∞

v−1
n E

[∥∥σ̂ 2
n − σ 2

∥∥
Lp([0,1])I{σ 2∈D}

]
< ∞. (2.5)

Remark 2.5. If we wish (σt ) to be deterministic, we can make a priori assumptions so that the condition σ 2 ∈ D is

satisfied, in which case we simply ignore the indicator in (2.5). In other cases, this condition will be satisfied with

some probability (see below). But it may also well happen that for some choices of D we have P[σ 2 ∈ D] = 0 in which

case the upper bound (2.5) becomes trivial and noninformative.

In this context, a sound notion of optimality is unclear. We propose the following

Definition 2.6. The rate vn is a lower rate of convergence over D in Lp norm if there exists a filtered probability space

(Ω̃, F̃ , (F̃t )t≥0, P̃), a process X̃ defined on (Ω̃, F̃ ) with the same distribution as X under Assumption 2.1 together

with a process (̃ǫj,n) satisfying (2.3) with X̃ in place of X, such that Assumption 2.2 holds, and moreover:

P̃
[
σ 2 ∈ D

]
> 0 (2.6)

and

lim inf
n→∞

v−1
n inf

σ̂ 2
n

Ẽ
[∥∥σ̂ 2

n − σ 2
∥∥

Lp([0,1])I{σ 2∈D}
]
> 0, (2.7)

where the infimum is taken over all estimators.

Let us elaborate on Definition 2.6: as already mentioned, σ 2 is “genuinely” random, and we cannot say that our data

{Zj,n} generate a statistical experiment as a family of probability measures indexed by some parameter of interest.

Rather, we have a fixed probability measure P, but this measure is only “loosely” specified by very weak conditions,

namely Assumptions 2.1 and 2.2. A lower bound as in Definition 2.6 says that, given a model P, there exists a

probability measure P̃, possibly defined on another space so that Assumptions 2.1 and 2.2 hold under P̃ together with

(2.7). Without further specification on our model, there is no sensible way to discriminate between P and P̃ since both

measures (and the accompanying processes) satisfy Assumptions 2.1 and 2.2; moreover, under P̃, we have a lower

bound.

Function classes: Wavelets and Besov spaces

We describe the smoothness of a function by means of Besov spaces on the interval. A thorough account of Besov

spaces Bs
π,∞ and their connection to wavelet bases in a statistical setting are discussed in details in the classical papers

of Donoho et al. [15] and Kerkyacharian and Picard [28]. Let us recall some fairly classical3 material about Besov

spaces through their characterisation in terms of wavelets. We use n0-regular wavelet bases (ψν)ν adapted to the

domain [0,1]. More precisely, the multi-index ν concatenates the spatial index and the resolution level j = |ν|. We

set Λj := {ν, |ν| = j} and Λ :=
⋃

j≥−1 Λj . Thus for f ∈ L2([0,1]), we have

f =
∑

j≥−1

∑

ν∈Λj

〈f,ψν〉ψν =
∑

ν∈Λ

〈f,ψν〉ψν,

where we have set j := −1 in order to incorporate the low frequency part of the decomposition. From now on the

basis (ψν)ν is fixed and depends on a regularity index n0 which role is specified in Assumption 2.8 below.

3We follow closely the notation of Cohen [9].
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Definition 2.7. For s > 0 and π ∈ (0,∞], a function f : [0,1] → R belongs to the Besov space Bs
π,∞([0,1]) if the

following norm is finite:

‖f ‖Bs
π,∞([0,1]) := sup

j≥−1

2j (s+1/2−1/π)

(∑

ν∈Λj

∣∣〈f,ψν〉
∣∣π
)1/π

, (2.8)

with the usual modification if π = ∞.

Precise connection between this definition of Besov norm and more standard ones can be found in [9,10]. Given

a basis (ψν)ν with regularity index n0 > 0, the Besov space defined by (2.8) exactly matches the usual definition in

terms of modulus of smoothness for f, provided that π ≥ 1 and s ≤ n0. A particular case include the Hölder space

Cs([0,1]) = Bs
∞,∞([0,1]). Moreover, the following Sobolev embedding inequality holds

‖f ‖
B

s2
π2,∞([0,1]) ≤ ‖f ‖

B
s1
π1,∞([0,1]) for s1 − 1/π1 = s2 − 1/π2,π2 ≥ π1,

showing in particular that Bs
π,∞([0,1]) is embedded into continuous functions as soon as s > 1/π . The additional

properties of the wavelet basis (ψν)ν that we need are summarized in the next assumption.

Assumption 2.8 (Properties of the basis (ψν)ν ). For π ≥ 1:

• We have ‖ψν‖π
Lπ ([0,1]) ∼ 2|ν|(π/2−1).

• For some arbitrary n0 > 0 and for all s ≤ n0, j0 ≥ 0, we have

∥∥∥∥f −
∑

j≤j0

∑

ν∈Λj

fνψν

∥∥∥∥
Lπ ([0,1])

� 2−j0s‖f ‖Bs
π,∞([0,1]). (2.9)

• For any Λ0 ⊂ Λ,

∫

[0,1]

(∑

ν∈Λ0

∣∣ψν(x)
∣∣2
)π/2

dx ∼
∑

ν∈Λ0

‖ψν‖π
Lπ ([0,1]). (2.10)

• If π > 1, for any sequence (uν)ν∈Λ

∥∥∥∥
(∑

ν∈Λ

|uνψν |2
)1/2∥∥∥∥

Lπ ([0,1])
∼
∥∥∥∥
∑

ν∈Λ

uνψν

∥∥∥∥
Lπ ([0,1])

. (2.11)

The symbol ∼ means inequality in both ways, up to a constant depending on π only. The property (2.9) reflects

that our definition (2.8) of Besov spaces matches the definition in term of linear approximation. Property (2.11) means

an unconditional basis property and (2.10) is referred to as a superconcentration inequality see [28]. The existence of

compactly supported wavelet bases satisfying Assumption 2.8 goes back to Daubechies and is discussed for instance

in [9].

We are interested in the case where σ 2 may belong to various smoothness classes, that include the case where

σ 2 is deterministic and has as many derivatives as one wishes, but also the case of genuinely random processes that

oscillate like diffusions, or fractional diffusions and so on. These smoothness properties are usually modelled in terms

of Besov balls

Bs
π,∞(c) :=

{
f : [0,1] → R,‖f ‖Bs

π,∞([0,1]) ≤ c
}
, c > 0, (2.12)

that measure smoothness of degree s > 1/π in Lπ over the interval [0,1], for π ∈ (0,∞). The restriction s > 1/π

ensures that the functions in Bs
π,∞ are continuously embedded into Hölder continuous functions with index s − 1/π .

Besov balls also give a flexible way to describe the smoothness of the path of a continuous random process. For

instance, if (σt ) is an Itô continuous semimartingale itself with regular coefficients, we have

P
[
σ 2 ∈ B

1/2
π,∞(c)

]
> 0 for every π > 1/2.
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If it is a smooth transformation of a fractional Brownian motion with Hurst index, H , we have P[σ 2 ∈ BH
π,∞(c)] > 0

for π > H likewise. The proof of such classical results can be found in Ciesielski et al. [8].

2.3. Achievable estimation error bounds

For prescribed smoothness classes of the form D = Bs
π,∞(c) and Lp-loss functions, the rate of convergence vn de-

pends on the index s,π and p. Define the rate exponent

α(s,p,π) = min

{
s

2s + 1
,
s + 1/p − 1/π

1 + 2s − 2/π

}
. (2.13)

Theorem 2.9. Work under Assumptions 2.1 and 2.2. Then, for every c > 0, the rate n−α(s,p,π)/2 is achievable over

the class Bs
π,∞(c) in Lp-norm with p ∈ [1,∞), provided s > 1/π and π ∈ (0,∞), up to logarithmic corrections.

Moreover, under Assumption 2.8, the estimator explicitly constructed in Section 3.3 below attains this bound in the

sense of (2.5), up to logarithmic corrections.

Remark 2.10. A (technical) restriction is that we assume s > 1/π , a condition that guarantees some minimal Hölder

smoothness for the path of t � σ 2
t .

Remark 2.11. The parametric rate n−1/2 (formally obtained when letting s → ∞ in the definition of α(s,p,π)) has

to be replaced by n−1/4. This effect is due to microstructure noise, and was already identified in earlier parametric

models as in Gloter and Jacod [20] and subsequent works, both in parametric, semiparametric and nonparametric

estimation, as follows from [7,20,21,26,30,38] among others.

Our next result shows that this rate is nearly optimal in many cases.

Theorem 2.12. In the same setting as in Theorem 2.9, assume moreover that s − 1/π > 1+
√

5
4

. Then the rate

n−α(s,p,π)/2 is a lower rate of convergence over Bs
π,∞(c) in Lp in the sense of Definition 2.6.

Since the upper and lower bound agree up to some (inessential) logarithmic corrections, our result is nearly optimal

in the sense of Definitions 2.4 and 2.6.

The proof of the lower bound is an application of a recent result of Reiß [33] about asymptotic equivalence between

the statistical model obtained by letting σ 2 be deterministic and the microstructure noise white Gaussian with an

appropriate infinite dimensional Gaussian shift experiment. In particular, the restriction s − 1/π > 1+
√

5
4

stems from

the result of Reiß and could presumably be improved. Our proof relies on the following strategy: we transfer the lower

bound into a Bayesian estimation problem by constructing P̃ adequately. We then use the asymptotic equivalence

result of Reiß in order to approximate the conditional law of the data given σ under P̃ by a classical Gaussian shift

experiment, thanks to a Markov kernel. In the special case p = π = 2, we could also derive the result by using

the lower bound in [30]. Also, this setting may also enable to retrieve the standard minimax framework when σ 2

is deterministic and belongs to a Besov ball Bs
π,∞(c). In that case, it suffices to construct a probability measure P̃

such that under P̃, the random variable σ 2 has distribution μ(dσ 2) with support in Bs
π,∞(c), and is chosen to be a

least favourable prior as in standard lower bound nonparametric techniques. It remains to check that Assumptions 2.1

and 2.2 are satisfied μ-almost surely. We elaborate on this approach in the proof of Theorem 2.12 below.

3. Wavelet estimation and pre-averaging

3.1. Estimating linear functionals

We estimate σ 2 via linear functionals of the form

〈
σ 2, hℓk

〉
:=
∫ 1

0

2ℓ/2h
(
2ℓt − k

)
d〈X〉t .
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With no possible confusion, we denote by 〈·, ·〉 the inner product of L2([0,1]) and by

〈X〉t = (P-lim)δ→0

∑

ti ,ti−ti−1≤δ

(Xti − Xti−1
)2

the quadratic variation of the continuous semimartingale X. Here, the integers ℓ ≥ 0 and k are respectively a resolution

level and a location parameter. The test function h : R → R is smooth and throughout the paper we will assume that h

is compactly supported on [0,1]. Thus, hℓk = 2ℓ/2h(2ℓ
·− k) is essentially located around (k + 1

2
)/2ℓ.

Definition 3.1. We say that λ : [0,2) → R is a pre-averaging function if it is piecewise Lipschitz continuous, satisfies

λ(t) = −λ(2 − t), and is not zero identically. To each pre-averaging function λ we associate the quantity

λ :=
(

2

∫ 1

0

(∫ s

0

λ(u)du

)2

ds

)1/2

and define the (normalized) pre-averaging function λ̃ := λ/λ.

For 1 ≤ m < n and a sequence (Yj,n, j = 0, . . . , n), we define the pre-averaging of Y at scale m relative to λ by

setting for i = 2, . . . ,m

Y i,m(λ) :=
m

n

∑

j/n∈((i−2)/m,i/m]
λ̃

(
m

j

n
− (i − 2)

)
Yj,n, (3.1)

the summation being taken w.r.t. the index j . If Yj,m has the form Yj/m for some underlying continuous time process

t � Yt , the pre-averaging of Y at scale m is a kind of local average that mimics the behaviour of Yi/m − Y(i−2)/m.

Indeed, using λ(t) = −λ(2 − t), for t ∈ (0,1],

Y i,m(λ) ≈ −
m

n

∑

j/n∈(0,1/m]
λ̃

(
m

j

n

)
(Yi/m−j/n − Y(i−2)/m+j/n).

Thus, Y i,m(λ) might be interpreted as a sum of differences in the interval [(i − 2)/m, i/m], weighted by λ̃.

From (1.5), a first guess for estimating 〈σ 2, hℓk〉 is to consider the quantity

m∑

i=2

hℓk

(
i − 1

m

)
Z

2

i,m

for some intermediate scale m that needs to be tuned with n and that reduces the effect of the noise (ǫj,n) in the

representation (1.1). However, such a procedure is biased and a further correction is needed. To that end, we introduce

b(λ,Z
·
)i,m :=

m2

2n2

∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)
(Zj,n − Zj−1,n)

2. (3.2)

In order to get a first intuition, note that (Zj,n − Zj−1,n)
2 ≈ (ǫj,n − ǫj−1,n)

2. Further stochastic approximations,

detailed in the proof in Section 4.1, show that subtracting b(λ,Z
·
)i,m corrects in a natural way for the bias induced by

the additive microstructure noise.

Finally, our estimator of 〈σ 2, hℓk〉 is

Em(hℓk) :=
m∑

i=2

hℓk

(
i − 1

m

)[
Z

2

i,m − b(λ,Z
·
)i,m
]
. (3.3)
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3.2. The wavelet threshold estimator

Let (ϕ,ψ) denote a pair of scaling function and mother wavelet that generate a wavelet basis (ψν)ν satisfying As-

sumption 2.8. The random function t � σ 2
t taken path-by-path as an element of L2([0,1]) has for every nonnegative

integer ℓ0 an almost-sure representation

σ 2
·

=
∑

k∈Λℓ0

cℓ0kϕℓ0k(·) +
∑

ℓ>ℓ0

∑

k∈Λℓ

dℓkψℓk(·), (3.4)

with cℓ0k = 〈σ 2, ϕℓ0k〉 =
∫ 1

0 ϕℓ0k(t)d〈X〉t and dℓk = 〈σ 2,ψℓk〉 =
∫ 1

0 ψℓk(t)d〈X〉t . For every ℓ ≥ 0, the index set Λℓ

has cardinality 2ℓ (and also incorporates boundary terms in the first part of the expansion that we choose not to

distinguish in the notation from ϕℓ0k for simplicity). The choice of ℓ0 in (3.4) determines the representation of σ 2 as

sum of a low resolution approximation based on the scaling function ϕ and a high-frequency wavelet decomposition,

Section 2.2. Following the standard wavelet threshold algorithm (see for instance [15] and in its more condensed form

[28]), we approximate Formula (3.4) by

σ̂ 2
n (·) :=

∑

k∈Λℓ0

E (ϕℓ0k)ϕℓ0k(·) +
ℓ1∑

ℓ=ℓ0+1

∑

k∈Λℓ

Tτ

[
E (ψℓk)

]
ψℓk(·), (3.5)

where the wavelet coefficient estimates E (ϕℓ0k) and E (ψℓk) are given by (3.3) and

Tτ [x] = x1{|x|≥τ }, τ ≥ 0, x ∈ R,

is the standard hard-threshold operator. Thus t � σ̂ 2
n (t) is specified by the resolution levels ℓ0, ℓ1, the threshold τ and

the estimators E (ϕℓ0k) and E (ψℓk) which in turn are entirely determined by the choice of the pre-averaging function λ

and the pre-averaging resolution level m. (And of course, the choice of the basis generated by (ϕ,ψ) on L2([0,1]).)

3.3. Convergence rates

We first give two results on the properties of Em(hℓk) for estimating 〈σ 2, hℓk〉L2 .

Theorem 3.2 (Moment bounds). Work under Assumptions 2.1 and 2.2. Let us assume that h admits a piecewise

Lipschitz derivative and that 2ℓ ≤ m ≤ n1/2.

If s > 1/π , for any c > 0, for every p ≥ 1, we have

E
[∣∣Em(hℓk) −

〈
σ 2, hℓk

〉∣∣pI{σ 2∈Bs
π,∞(c)}

]
� m−p/2 + m−min{s−1/π,1}p|hℓk|p1,m,

where |hℓk|1,m := m−1
∑m

i=1 |hℓk(i/m)|. The symbol � means up to a constant that does not depend on m and n.

Theorem 3.3 (Deviation bounds). Work under Assumptions 2.1 and 2.2. Let us assume that h admits a piecewise

Lipschitz derivative and that 2ℓ ≤ m ≤ n1/2. If moreover

m2−ℓ ≥ mq for some q > 0,

then, if s > 1/π , for any c > 0, for every p ≥ 1, we have

P

[∣∣Em(hℓk) −
〈
σ 2, hℓk

〉∣∣≥ κ

(
p logm

m

)1/2

, σ 2 ∈ Bs
π,∞(c)

]
� m−p

provided

κ > 4

(
ρ

ρ − 1

)1/2(
c +

√
2c‖a‖L∞‖λ‖L2λ

−1 + ‖a‖2
L∞‖λ‖2

L2λ
−2)
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and

m−(s−1/π)|hℓk|1,m � m−1/2,

where c := supσ 2∈Bs
π,∞(c) ‖σ 2‖L∞ .

Theorem 3.4. Work under Assumptions 2.1, 2.2 and 2.8. Let σ̂ 2
n denote the wavelet estimator defined in (3.5), con-

structed from (ϕ,ψ) and a pre-averaging function λ, such that

m ∼ n1/2, 2ℓ0 ∼ m1−2α0 for some 0 < α0 < 1/2, 2ℓ1 ∼ m1/(1+2α0)

and τ := κ̃

√
logm

m
for sufficiently large κ̃ > 0. Then, for

α0 + 1/π ≤ s ≤ max
{
α0/(1 − 2α0), n0

}
,

the estimator σ̂ 2
n achieves (2.5) over D = Bs

π,∞(c) with vn = n−α(s,p,π)/2 up to logarithmic factors. As a consequence,

we have Theorem 2.9.

Proof. Thanks to Theorems 3.2 and 3.3, Theorem 3.4 is now a consequence of the general theory of wavelet thresh-

old estimators, as developed by Kerkyacharian and Picard [28]. To that end, it suffices to obtain appropriate moment

bounds and large deviation inequalities for estimators of wavelet coefficients in wavelet bases satisfying Assump-

tion 2.8.

More precisely, by assumption, we have s −1/π ≥ α0 and 2ℓ0 ∼ m1−2α0 therefore, the term m−min{s−1/π,1}|hℓk|1,m

is less than a constant times

m−α0 2−ℓ/2 � m−α0m−(1−2α0)/2 ∼ m−1/2,

where we used that |hℓk|1,m � 2−ℓ/2 with h = ϕ. This together with Theorem 3.2 shows that we have the moment

bound

E
[∣∣Em(ϕℓ0k) −

〈
σ 2, ϕℓ0k

〉∣∣pI{σ 2∈Bs
π,∞(c)}

]
� m−p/2 � n−p/4,

so that Condition (5.1) of Theorem 5.1 in Kerkyacharian and Picard [28] is satisfied with c(n) = (logn/n)1/4 and

Λ(n) = n1/2 with the notation of [28]. In the same way, by Theorem 3.3, with h = ψ , for every p ≥ 1, we obtain, for

a large enough κ the deviation bound

P

[∣∣Em(ψℓk) −
〈
σ 2,ψℓk

〉∣∣≥ κ

(
p logm

m

)1/2

, σ 2 ∈ Bs
π,∞(c)

]
� m−p � n−p/2

and therefore Condition (5.2) of Theorem 5.1 in [28] is satisfied with the same specification. This is all that is re-

quired to apply the wavelet threshold algorithm: by Corollary 5.2 and Theorem 6.1 of [28] we obtain (2.5) hence

Theorem 2.9. �

Remark 3.5. By taking α0 < 1/2, Theorem 3.4 shows that in this case the estimator can at most adapt to the correct

smoothness within the range α0 + 1/π ≤ s ≤ α0/(1 − 2α0) < ∞.

4. Proofs

4.1. Proof of Theorem 3.2

We shall first introduce several auxiliary estimates which rely on classical techniques of discretization of random

processes. Unless otherwise specified, L2 abbreviates L2([0,1]) and likewise for L∞.
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If g : [0,1] → R is piecewise continuously differentiable, we define for n ≥ 1

Rn(g) :=
(

n∑

j=1

∫ j/n

(j−1)/n

(
1

n

n∑

l=j

g′
(

l

n

)
−
∫ 1

s

g′(u)du

)2

ds

)1/2

(4.1)

and

|g|p,m :=
(

1

m

m∑

i=1

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p
)1/p

.

In the following, if D is a function class, we will sometimes write ED[·] for E[·Iσ 2∈D]. Clearly, if D1 ⊂ D2, we have

for nonnegative integrands ED1
[·] ≤ ED2

[·]. For c > 0, let

D∞(c) :=
{
f : [0,1] → R,‖f ‖L∞ ≤ c

}
.

Throughout the remaining part of this paper, we extend pre-averaging functions to the real line by λ(t) = 0 for all

t ∈ R \ [0,2).

Preliminaries: Some estimates for the latent price X

Lemma 4.1 (Discretisation effect). Let g : [0,1] → R, be a deterministic function with piecewise continuous deriva-

tive, such that g(1) = 0. Work under Assumption 2.1. For every p ≥ 1 and c > 0, we have

ED∞(c)

[∣∣∣∣∣

(
1

n

n∑

i=1

g′
(

i

n

)
Xi/n

)2

−
(∫ 1

0

g(s)dXs

)2
∣∣∣∣∣

p]
� ‖g‖p

L2R
p
n (g) + R

2p
n (g).

Proof. By Assumption 2.1, using (2.4) and anticipating that rates of convergence are in power of n, we may (and

will) assume that X is a local martingale and take subsequently b = 0. Next, by Cauchy–Schwarz, we split the error

term into a constant times I × II + III × II, with

I := ED∞(c)

[∣∣∣∣
∫ 1

0

g(s)dXs

∣∣∣∣
2p]1/2

,

II := ED∞(c)

[∣∣∣∣∣
1

n

n∑

j=1

g′
(

j

n

)
Xj/n +

∫ 1

0

g(s)dXs

∣∣∣∣∣

2p]1/2

,

III := ED∞(c)

[∣∣∣∣∣
1

n

n∑

j=1

g′
(

j

n

)
Xj/n

∣∣∣∣∣

2p]1/2

� I + II.

Define the stopping time

Tc := inf
{
s ≥ 0, σ 2

s > c
}

∧ 1.

On {σ 2 ∈ D∞(c)}, we have Tc = 1, thus

ED∞(c)

[∣∣∣∣
∫ 1

0

g(s)dXs

∣∣∣∣
2p]

= E

[∣∣∣∣
∫ Tc

0

g(s)dXs

∣∣∣∣
2p

Iσ 2∈D∞(c)

]

≤ E

[∣∣∣∣
∫ Tc

0

g(s)dXs

∣∣∣∣
2p]

.
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By Burkholder–Davis–Gundy inequality (later abbreviated by BDG, for a reference see [27], p. 166), we have

I ≤ E

[∣∣∣∣
∫ Tc

0

g(s)dXs

∣∣∣∣
2p]1/2

� E

[∣∣∣∣
∫ Tc

0

g2(s)σ 2
s ds

∣∣∣∣
p]1/2

� ‖g‖p

L2 ,

where we used that σ 2
s ≤ c for s ≤ Tc. For the term II, note first that if

g̃(s) :=
n∑

j=1

(
1

n

n∑

l=j

g′
(

l

n

))
I[(j−1)/n,j/n)(s), s ∈ [0,1],

the process St =
∫ t∧Tc

0 (g̃(s) + g(s))dXs , t ∈ [0,1], is a martingale and

〈S〉1 =
n∑

j=1

∫ j/n

(j−1)/n

(
1

n

n∑

l=j

g′
(

l

n

)
−
∫ 1

s

g′(u)du

)2

I{s≤Tc} d〈X〉s .

By summation by parts, we derive

II = ED∞(c)

[
|S1|2p

]1/2
� E
[
〈S〉pTc

]1/2
� R

p
n (g). �

We further need some analytical properties of pre-averaging functions. In the following λ, and λ̃ always denote a

pre-averaging function and its normalized version (in the sense of Definition 3.1). We set

Λ(s) :=
∫ 2

s

λ̃(u)duI[0,2](s) (4.2)

and

Λ(s) :=
((∫ s

0

λ̃(u)du

)2

+
(∫ 1−s

0

λ̃(u)du

)2)1/2

I[0,1](s). (4.3)

Note that for i = 2, . . . ,m

∥∥Λ
(
m·− (i − 2)

)∥∥
L2[0,1] = m−1/2‖Λ‖L2[0,2]

and

∥∥Λ
(
m·− (i − 1)

)∥∥
L2[0,1] = m−1/2.

Lemma 4.2. For m ≤ n, we have

Rn

[
Λ
(
m·− (i − 2)

)]
� n−1

and for i = 2, . . . ,m

∥∥Λ
(
m·− (i − 2)

)∥∥
L2 = m−1/2.

Proof. Recall the definition of Rn given in (4.1) and let

j∗
n (r) := max{j : j/n ≤ r/m}. (4.4)
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Since λ̃ is bounded, we have

max
j/n∈((i−2)/m,i/m]

sup
s∈[(j−1)/n,j/n]

∣∣∣∣∣
1

n

j∗
n (i)∑

l=j

λ̃

(
m

l

n
− (i − 2)

)
−
∫ 1

s

λ̃
(
mu − (i − 2)

)
du

∣∣∣∣∣

≤ max
j/n∈((i−2)/m,i/m]

sup
s∈[(j−1)/n,j/n]

∣∣∣∣
∫ (j−1)/n

s

λ̃
(
mu − (i − 2)

)
du

∣∣∣∣

+ max
j/n∈((i−2)/m,i/m]

j⋆
n (i)∑

l=j

∣∣∣∣
1

n
λ̃

(
m

l

n
− (i − 2)

)
−
∫ l/n

(l−1)/n

λ̃
(
mu − (i − 2)

)
du

∣∣∣∣� n−1,

whence the first part of the lemma. For the second part, we have to prove that

‖Λ‖L2[0,2] = 1.

This readily follows from

‖Λ‖2
L2[0,2] =

∫ 1

0

(∫ 2

s

λ̃(u)du

)2

ds +
∫ 2

1

(∫ 2

s

λ̃(u)du

)2

ds

=
∫ 1

0

(∫ s

0

λ̃(u)du

)2

ds +
∫ 1

0

(∫ 2

1+s

λ̃(u)du

)2

ds

=
∫ 1

0

(∫ s

0

λ̃(u)du

)2

ds +
∫ 1

0

(∫ 2

1−s

λ̃(u)du

)2

ds = ‖Λ‖2
L2[0,1]. �

Lemma 4.3. Work under Assumption 2.1 and let Λ as in (4.2) with λ as in Definition 3.1. Then, for m ≤ n, every

p ≥ 1 and c > 0, we have

ED∞(c)

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)(∫ 1

0

Λ
(
ms − (i − 2)

)
dXs

)2

−
∫ 1

0

m∑

i=2

g

(
i − 1

m

)
Λ2
(
ms − (i − 2)

)
d〈X〉s

∣∣∣∣∣

p]

� ‖g‖p

L∞
∣∣supp(g)

∣∣p/2
m−p/2,

where | supp(g)| denotes the support length of g.

Proof. In the same way as for Lemma 4.1, we may (and will) assume that X is a local martingale. For i = 2, . . . ,m

and t ∈ [0,1], set

Ht,i := g

(
i − 1

m

)
Λ
(
mt − (i − 2)

) ∫ t

(i−2)/m

Λ
(
ms − (i − 2)

)
dXsI((i−2)/m,i/m](t). (4.5)

For a continuous semimartingale M starting at zero, we have the integration by parts formula M2 = 〈M〉+ 2
∫

M dM.

Thus,

m∑

i=2

g

(
i − 1

m

)[(∫ 1

0

Λ
(
ms − (i − 2)

)
dXs

)2

−
∫ 1

0

Λ2
(
ms − (i − 2)

)
d〈X〉s

]

= 2

m∑

i=2

∫ i/m

(i−2)/m

Ht,i dXt . (4.6)
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For t ∈ [0,1], the process
∑m

i=2 Ht,i is continuous (because of Λ(0) = Λ(2) = 0) and adapted, hence
∫ t

0

∑m
i=2 Hs,i dXs

is a continuous local martingale. Applying BDG and the localisation argument of Lemma 4.1, we obtain

ED∞(c)

[∣∣∣∣∣

∫ Tc

0

m∑

i=2

Ht,i dXt

∣∣∣∣∣

p]

� E

[∣∣∣∣∣

∫ Tc

0

(
m∑

i=2

Ht,i

)2

dt

∣∣∣∣∣

p/2]
� E

[∣∣∣∣∣

∫ Tc

0

m∑

i=2

H 2
t,i dt

∣∣∣∣∣

p/2]

� E

[∣∣∣∣∣m
−1

m∑

i=2

(
H ⋆

i

)2
∣∣∣∣∣

p/2]
�
∣∣supp(g)

∣∣p/2−1
m−1

m∑

i=2

E
[(

H ⋆
i

)p]
,

where H ⋆
i := supt≤Tc

|Ht,i | and where we used that t � Ht,i has compact support with length of order m−1. The last

estimate followed by Hölder inequality. By BDG again, we derive

E
[(

H ⋆
i

)p]
�

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p

E

[
sup

t≤2/m

∣∣∣∣
∫ ((i−2)/m+t)∧Tc

(i−2)/m∧Tc

Λ
(
ms − (i − 2)

)
dXs

∣∣∣∣
p]

�

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p

E

[(∫ Tc

(i−2)/m∧Tc

Λ2
(
ms − (i − 2)

)
σ 2

s ds

)p/2]

�

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p

m−p/2. (4.7)

The result follows. �

Lemma 4.4. Work under Assumption 2.1. Let Bs
π,∞(c) denote a Besov ball with s > 1/π and c > 0.

In the same setting as in Lemma 4.3, for every p ≥ 1, we have

EBs
π,∞(c)

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)
X

2

i,m −
∫ 1

0

g(s)σ 2
s ds

∣∣∣∣∣

p]

� ‖g‖p

L∞m−p/2
∣∣supp(g)

∣∣p/2 + |g|p1,mm−min{s−1/π,1}p + |g|pvar,mm−p,

where

|g|var,m :=
∣∣g(0) + g(1)

∣∣+
m∑

i=1

sup
s,t∈[(i−1)/m,i/m]

∣∣g(t) − g(s)
∣∣. (4.8)

Proof. Recall from Section 3.1 that

Xi,m(λ) :=
m

n

∑

j/n∈((i−2)/m,i/m]
λ̃

(
m

j

n
− (i − 2)

)
Xj/n.

Since s > 1/π , the class Bs
π,∞(c) ⊂ D∞(c′) for some c′ = c′(s,π, c). Therefore, by Lemma 4.1, we have

EBs
π,∞(c)

[∣∣∣∣X
2

i,m −
(∫ 1

0

Λ
(
ms − (i − 2)

)
dXs

)2∣∣∣∣
p]

� m−p/2n−p (4.9)

since

Rn

[
Λ
(
m·− (i − 2)

)]
� n−1
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by Lemma 4.2, ‖Λ(m·− (i − 2))‖L2 = m−1/2 and m ≤ n. By Hölder inequality it follows

EBs
π,∞(c)

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)
X

2

i,m −
m∑

i=2

g

(
i − 1

m

)(∫ 1

0

Λ
(
ms − (i − 2)

)
dXs

)2
∣∣∣∣∣

p]

�
∣∣supp(g)

∣∣p−1
mp−1EBs

π,∞(c)

[
m∑

i=2

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p∣∣∣∣X

2

i,m −
(∫ 1

0

Λ
(
ms − (i − 2)

)
dXs

)2∣∣∣∣
p
]

� ‖g‖p

L∞mp/2n−p
∣∣supp(g)

∣∣p, (4.10)

which can be further bounded by ‖g‖p

L∞m−p/2| supp(g)|p/2. By Lemma 4.3, we have

EBs
π,∞(c)

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)(∫ 1

0

Λ
(
ms − (i − 2)

)
dXs

)2

−
∫ 1

0

m∑

i=2

g

(
i − 1

m

)
Λ2
(
ms − (i − 2)

)
σ 2

s ds

∣∣∣∣∣

p]

� ‖g‖p

L∞m−p/2
∣∣supp(g)

∣∣p/2
,

therefore by the triangle inequality

EBs
π,∞(c)

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)
X

2

i,m −
∫ 1

0

m∑

i=2

g

(
i − 1

m

)
Λ2
(
ms − (i − 2)

)
σ 2

s ds

∣∣∣∣∣

p]

� ‖g‖p
L∞m−p/2

∣∣supp(g)
∣∣p/2

. (4.11)

We are going to force the function Λ in (4.11). To this end, note that

m∑

i=2

g

(
i − 1

m

)
Λ2
(
ms − (i − 2)

)

=
m∑

i=1

g

(
i

m

)(
Λ2
(
ms − (i − 2)

)
+ Λ2

(
ms − (i − 1)

))
I((i−1)/m,i/m](s)

+
m∑

i=1

(
g

(
i − 1

m

)
− g

(
i

m

))
Λ2
(
ms − (i − 2)

)
I((i−1)/m,i/m](s)

− g(0)Λ2(ms + 1)I(0,1/m](s) − g(1)Λ2
(
ms − (m − 1)

)
I(1−1/m,1](s). (4.12)

Moreover, because of λ̃(u) = −̃λ(2 − u), we have Λ2(u) = Λ2(2 − u) and also Λ(0) = 0,

Λ2
(
ms − (i − 2)

)
=
(∫ 1−(ms−(i−1))

0

λ̃(u)du

)2

for s ∈
(

i − 1

m
,

i

m

]
,

Λ2
(
ms − (i − 1)

)
=
(∫ ms−(i−1)

0

λ̃(u)du

)2

for s ∈
(

i − 1

m
,

i

m

]
.

This gives for s ∈ ( i−1
m

, i
m

], and Λ as in (4.3)

Λ
2(

ms − (i − 1)
)
= Λ2

(
ms − (i − 2)

)
+ Λ2

(
ms − (i − 1)

)
, (4.13)

and 0 otherwise. From (4.12) it follows that on the event σ 2 ∈ Bs
π,∞(c)

∣∣∣∣∣

∫ 1

0

m∑

i=2

g

(
i − 1

m

)
Λ2
(
ms − (i − 2)

)
σ 2

s ds −
∫ 1

0

m∑

i=1

g

(
i

m

)
Λ

2(
ms − (i − 1)

)
σ 2

s ds

∣∣∣∣∣� |g|var,mm−1. (4.14)
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Finally, we have for σ 2 ∈ Bs
π,∞(c) using ‖Λ‖L2 = 1

∣∣∣∣∣

∫ 1

0

m∑

i=2

g

(
i − 1

m

)(
Λ

2(
ms − (i − 1)

)
− I((i−1)/m,i/m](s)

)
σ 2

s ds

∣∣∣∣∣

≤

∣∣∣∣∣

∫ 1

0

m∑

i=2

g

(
i − 1

m

)
Λ

2(
ms − (i − 1)

)(
σ 2

s − σ 2
(i−1)/m

)
ds

∣∣∣∣∣

+

∣∣∣∣∣

∫ 1

0

m∑

i=2

g

(
i − 1

m

)
I((i−1)/m,i/m](s)

(
σ 2

s − σ 2
(i−1)/m

)
ds

∣∣∣∣∣

� m−min{s−1/π,1}|g|1,m, (4.15)

the last estimate coming from the Sobolev embedding Bs
π,∞ ⊂ B

s−1/π
∞,∞ which contains Hölder continuous functions

of smoothness min{s − 1/π,1}. Since for σ 2 ∈ Bs
π,∞(c)

∣∣∣∣∣

∫ 1

0

m∑

i=2

g

(
i

m

)
I((i−1)/m,i/m](s)σ

2
s ds −

∫ 1

0

g(s)σ 2
s ds

∣∣∣∣∣� m−1|g|var,m, (4.16)

the conclusion follows by combining (4.11), (4.14), (4.15) and (4.16). �

Preliminaries: Some estimates for the microstructure noise ǫ

We need some notation. Remember from (1.1) that we observe

Zj,n = Xj/n + a(j/n,Xj/n)ηj,n, j = 0, . . . , n,

where the intensity of microstructure noise process as := a(s,Xs) and noise innovations ηj,n satisfy Assumption 2.2.

For a pre-averaging function λ, recall from (3.1) that we define

ǫi,m := ǫi,m(λ) :=
m

n

∑

j/n∈((i−2)/m,i/m]
λ̃

(
m

j

n
− (i − 2)

)
ǫj,n, i = 2, . . . ,m. (4.17)

Moreover, we will make several times use of Rosenthal’s inequality for martingales (see [22], p. 23). It states that for

an (Fk)k-martingale (Mk)k and for p ≥ 0, there exists a universal constant Cp only depending on p, such that

E

[
max

k=1,...,n
|Mk|p

]

≤ Cp

(
E

[(
n−1∑

k=0

E
[
(Mk+1 − Mk)

2|Fk

]
)p/2]

+ E

[
max
k≤n

|Mk − Mk−1|p
])

.

For our proofs it will be sufficient to bound the maximum in the second term on the r.h.s. by the sum
∑n

k=1.

Lemma 4.5. Work under Assumptions 2.1 and 2.2. Let G denote the σ -field generated by (Xs, s ∈ [0,1]). For every

function g : [0,1] → R and p ≥ 1, we have

E

[∣∣∣∣∣

m∑

i=1

g

(
i − 1

m

)(
ǫ2
i,m(λ) − E

[
ǫ2
i,m(λ)|G

])
∣∣∣∣∣

p]

� |g|p2,mm3p/2n−p + |g|pp,mmp+1n−p.
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Proof. In the following, we will decompose the sum in the previous inequality in an even and odd part. This allows

us to treat sums of preaveraged values computed over disjoint intervals. In a first step, let us introduce the filtrations

F even
r := σ(ηj,n: j/n ≤ 2r/m) ⊗ σ(Xs : s ≤ 2r/m),

F odd
r := σ

(
ηj,n: j/n ≤ (2r + 1)/m

)
⊗ σ

(
Xs : s ≤ (2r + 1)/m

)
.

Straightforward calculations show that the partial sums Seven
r :=

∑r
i=1 U2i and Sodd

r :=
∑r

i=1 U2i+1 with

Ui := g

(
i − 1

m

)(
ǫ2
i,m −

m2

n2

∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)
a2
j/n

)

form martingale schemes (i = 1, . . . , r ≤ ⌊m/2⌋) with respect to F even
r and F odd

r respectively. Intuitively, ǫi,m =
OP (m1/2/n1/2) by (4.17). More precisely using Rosenthal’s inequality, we have, for every p ≥ 1

E

[∣∣∣∣ǫ
2
i,m −

m2

n2

∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)
a2
j/n

∣∣∣∣
p]

� E
[
|ǫi,m|2p

]
+ ‖̃λ‖2p

L∞‖a‖2p
L∞mpn−p � mpn−p,

using ‖a‖L∞ � 1. It follows that

E
[
|Ui |p

]
�

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p

mpn−p. (4.18)

Analogous computations show that

E
[
U2

2i |F even
i−1

]
≤ g2

(
2i − 1

m

)
E
[
ǫ4

2i,m|F even
i−1

]
� g2

(
2i − 1

m

)
m2n−2.

Therefore, applying Rosenthal’s inequality again, we obtain

E
[∣∣Seven

⌊m/2⌋
∣∣p]� |g|p2,mm3p/2n−p + |g|pp,mmp+1n−p.

Likewise, we obtain the same estimate for E[|Sodd
⌊(m−1)/2⌋|

p]. The conclusion follows. �

Lemma 4.6. In the same setting as in Lemma 4.5, we have, for every c > 0 and p ≥ 1

ED∞(c)

[∣∣∣∣∣

m∑

i=1

g

(
i − 1

m

)
Xi,m(λ)ǫi,m(λ)

∣∣∣∣∣

p]

� |g|pp,m

(
n−p/2m + m3p/2+1n−3p/2

)
+ |g|p2,m

(
mp/2n−p/2 + m2pn−3p/2

)
.

Proof. By Assumption 2.1 and the same localisation procedure as in the proof of Lemma 4.1, up to losing some

constant, we may (and will) assume that X is a local martingale such that |σs | ≤ c almost-surely and subsequently

work with E[·] instead of ED∞(c)[·].
In the same way as for the proof of Lemma 4.5, we define an F even-martingale by setting

Seven
r :=

r∑

i=1

g

(
2i − 1

m

)
X2i,m(λ)ǫ2i,m(λ)
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and proceed for Sodd analogously. By Rosenthal’s inequality for martingales and Cauchy–Schwarz,

E
[∣∣Seven

⌊m/2⌋
∣∣p] � mp/2n−p/2E

[∣∣∣∣∣

⌊m/2⌋∑

i=1

g2

(
2i − 1

m

)
E
[
X

2

2i,m(λ)|F even
i−1

]
∣∣∣∣∣

p/2]

+
⌊m/2⌋∑

i=1

∣∣∣∣g
(

2i − 1

m

)∣∣∣∣
p(

E
[∣∣X2i,m(λ)

∣∣2p])1/2(
E
[∣∣ǫ2i,m(λ)

∣∣2p])1/2
.

Note that,

E
[∣∣Xi,m(λ)

∣∣2p]
� E

[∣∣∣∣
m

n

∑

j/n∈((i−2)/m,i/m]
λ̃

(
m

j

n
− (i − 2)

)
(Xj/n − X(i−2)/m)

∣∣∣∣
2p]

+ m2pn−2pE
[
|X(i−2)/m|2p

]
,

where we used the fact that, by Riemann’s approximation, we have

∣∣∣∣
∑

j/n∈((i−2)/m,i/m]
λ̃

(
m

j

n
− (i − 2)

)∣∣∣∣� 1. (4.19)

It follows that E[|Xi,m(λ)|2p] is less than

‖̃λ‖2p
L∞E

[
sup

s≤2/m

|X(i−2)/m+s − X(i−2)/m|2p
]
+ m2pn−2pE

[
|X(i−2)/m|2p

]
(4.20)

which in turn is of order ‖̃λ‖2p
L∞m−p +m2pn−2p thanks to the localization argument for σ . In a similar way, we obtain

E
[
X

2

2i,m(λ)|F even
i−1

]
� m−1 + m2n−2X2

(2i−2)/m ≤ m−1 + m2n−2 sup
s

X2
s .

Recall that E[|ǫi,m|2p] � mpn−p . Putting together these estimates, we infer that E[|Seven
⌊m/2⌋|p] satisfies the desired

bound. We proceed likewise for Sodd
⌊(m−1)/2⌋. The conclusion follows. �

Preliminaries: Some estimates for the bias correction b

We need some notation. Recall the bias correction defined in (3.2)

b(λ,Z
·
)i,m :=

m2

2n2

∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)
(Zj,n − Zj−1,n)

2.

We plan to use the following decomposition

b(λ,Z
·
)i,m = b(λ,X

·
)i,m + b(λ, ǫ

·
)i,m + 2c(λ,X

·
, ǫ

·
)i,m,

where

c(λ,X
·
, ǫ

·
)i,m

:=
m2

2n2

∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)
(Xj/n − X(j−1)/n)(ǫj,n − ǫj−1,n).
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Lemma 4.7. Work under Assumptions 2.1 and 2.2. For every p ≥ 1, we have

E

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)(
b(λ, ǫ

·
)i,m −

m2

n2

∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)
a2
j/n

)∣∣∣∣∣

p]

� |g|p1,mm3pn−2p + |g|p2,mm2pn−3p/2 + |g|pp,mm2pn−2p+1.

Proof. By triangle inequality, we bound the error by a constant times

m2pn−2p(I + II + III + IV),

where

I := E

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)∑

j

λ̃2

(
m

j

n
− (i − 2)

)
a2
j/n

(
η2

j,n − 1
)
∣∣∣∣∣

p]
,

II := E

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)∑

j

λ̃2

(
m

j

n
− (i − 2)

)
a2
(j−1)/n

(
η2

j−1,n − 1
)
∣∣∣∣∣

p]
,

III := E

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)∑

j

λ̃2

(
m

j

n
− (i − 2)

)(
a2
j/n − a2

(j−1)/n

)
∣∣∣∣∣

p]
,

IV := E

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)∑

j

λ̃2

(
m

j

n
− (i − 2)

)
ǫj−1,nǫj,n

∣∣∣∣∣

p]
,

where, as before, the sum in j expands over {j/n ∈ ((i − 2)/m, i/m]}.

• The terms I and II. We only bound I, the same subsequent arguments applying for the term involving ηj−1,n.

Let Fj = σ(ηk,n: k ≤ j) ⊗ σ(Xs : s ≤ 1). By Rosenthal’s inequality for martingales,

I �

n∑

j=1

(
m∑

i=2

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p

I{j/n∈((i−2)/m,i/m]}

)
E
[∣∣(η2

j,n − 1
)∣∣p]

+

∣∣∣∣∣

n∑

j=1

m∑

i=2

g2

(
i − 1

m

)
I{j/n∈((i−2)/m,i/m]}E

[(
η2

j,n − 1
)2|Fj−1

]
∣∣∣∣∣

p/2

� |g|pp,mn + |g|p2,mnp/2,

where we used the fact that the functions a and λ̃ are bounded.

• The term III. Recall the definition of j∗
n (r) given in (4.4). Summing by parts, we have

∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)(
a2
j/n − a2

(j−1)/n

)

= −
∑

j/n∈((i−2)/m,i/m]
a2
(j−1)/n

(
λ̃2

(
m

j

n
− (i − 2)

)
− λ̃2

(
m

j − 1

n
− (i − 2)

))

+ a2
j∗
n (i)/ñλ

2

(
m

j∗
n (i)

n
− (i − 2)

)
− a2

j∗
n (i−2)/ñλ

2

(
m

j∗
n (i − 2)

n
− (i − 2)

)
.
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Since a is bounded and λ̃ has finite variation, we infer

∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

) ∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)(
a2
j/n − a2

(j−1)/n

)
∣∣∣∣∣

p

� |g|p1,mmp.

• The term IV . We may split the sum with respect to j in even and odd part. Proceeding as for I and II, we

readily obtain

IV � |g|p2,mnp/2 + |g|pp,mn. �

Lemma 4.8. In the same setting as in Lemma 4.7, for every c > 0, we have

ED∞(c)

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)
b(λ,X

·
)i,m

∣∣∣∣∣

p]
� |g|p1,mmpn−p.

Proof. In the same way as in the proof of Lemma 4.6, we may (and will) assume that X is a local martingale and that

|σ 2
s | ≤ c almost surely, working subsequently with E[·] instead of ED∞(c)[·]. We readily obtain

E

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)
b(λ,X

·
)i,m

∣∣∣∣∣

p]
� m2pn−2pE

[∣∣∣∣∣

m∑

i=2

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
∑

j/n∈((i−2)/m,i/m]
(Xj/n − X(i−2)/m)2

∣∣∣∣∣

p]

� |g|p1,mmpn−p,

where we bound |Xj/n −X(i−2)/m| by the supremum over |Xs+(i−2)/m −X(i−2)/m|, s ≤ 2/m and argue as in (4.20). �

Let M be a continuous, locally square integrable F -martingale and H some progressively measurable process.

Then, for 0 ≤ s < t ≤ 1

E

[(∫ t

s

Hu dMu

)2∣∣∣Fs

]
= E

[∫ t

s

H 2
u d〈M〉u

∣∣∣Fs

]

provided that E[
∫ 1

0 H 2
u d〈M〉u] < ∞. This fact will be referred to in the sequel as conditional Itô-isometry (cf. [27],

Section 3.2 B).

Lemma 4.9. In the same setting as in Lemma 4.7, for every c > 0, we have

ED∞(c)

[∣∣∣∣∣

m∑

i=2

g

(
i − 1

m

)
c(λ,X

·
, ǫ

·
)i,m

∣∣∣∣∣

p]

�
[
|g|p2,m + |g|pp,m

(
n−p/2+1 + m−p/2+1

)]
m2pn−2p.

Proof. As in Lemmas 4.6 and 4.8, we may (and will) assume that X is a local martingale and that |σ 2
s | ≤ c almost

surely, working subsequently with E[·] instead of ED∞(c)[·]. It suffices then to bound

E

[∣∣∣∣∣

m∑

i=1

g

(
i − 1

m

) ∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)
(Xj/n − X(j−1)/n)ǫj,n

∣∣∣∣∣

p]
.

Recall that j∗
n (r) = max{j : j/n ≤ r/m} and let us introduce the filtrations

G even
r := σ(ηj,n: j/n ≤ 2r/m) ⊗ σ

(
Xs : s ≤ j∗

n (2r)/n
)
,

G odd
r := σ

(
ηj,n: j/n ≤ (2r + 1)/m

)
⊗ σ

(
Xs : s ≤ j∗

n (2r + 1)/n
)
.
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The process

Seven
r :=

r∑

i=1

g

(
2i − 1

m

) ∑

j/n∈((2i−2)/m,2i/m]
λ̃2

(
m

j

n
− (2i − 2)

)
(Xj/n − X(j−1)/n)ǫj,n

is a G even-martingale and likewise for Sodd
r defined similarly w.r.t. the filtration G odd

r . Moreover, on one hand

E

[∣∣∣∣g
(

i − 1

m

) ∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

)
(Xj/n − X(j−1)/n)ǫj,n

∣∣∣∣
p]

�

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p(

m−p/2 +
∑

j/n∈((i−2)/m,i/m]
E
[∣∣(Xj/n − X(j−1)/n)ǫj,n

∣∣p]
)

�

∣∣∣∣g
(

i − 1

m

)∣∣∣∣
p

m−1
(
m−p/2+1 + n−p/2+1

)
,

and on the other hand by conditional Itô-isometry

E

[(
g

(
2i − 1

m

) ∑

j/n∈((2i−2)/m,2i/m]
λ̃2

(
m

j

n
− (2i − 2)

)
(Xj/n − X(j−1)/n)ǫj,n

)2∣∣∣G even
i−1

]

� g2

(
2i − 1

m

) ∑

j/n∈((2i−2)/m,2i/m]
E
[
(Xj/n − X(j−1)/n)

2|G even
i−1

]

� m−1g2

(
2i − 1

m

)
.

Therefore, by Rosenthal’s inequality for martingales, we infer

E
[∣∣Seven

⌊m/2⌋
∣∣p]� |g|pp,m

(
n−p/2+1 + m−p/2+1

)
+ |g|p2,m.

We proceed likewise for Sodd
⌊(m−1)/2⌋ and the conclusion follows by incorporating the multiplicative term m2pn−2p in

front of the two error terms. �

Completion of proof of Theorem 3.2

Since

Em(hℓk) =
m∑

i=2

hℓk

(
i − 1

m

)[
Z

2

i,m − b(λ,Z
·
)i,m
]

we plan to use the following decomposition

Em(hℓk) −
〈
σ 2, hℓk

〉
L2 = I + II + III, (4.21)

with

I :=
m∑

i=2

hℓk

(
i − 1

m

)
X

2

i,m −
〈
σ 2, hℓk

〉
L2 ,

II :=
m∑

i=2

hℓk

(
i − 1

m

)[
ǫ2
i,m − b(λ,Z

·
)i,m
]
,

III := 2

m∑

i=2

hℓk

(
i − 1

m

)
Xi,mǫi,m.
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• The term I . By Lemma 4.4, we have

EBs
π,∞(c)

[
|I |p
]
� ‖hℓk‖p

L∞m−p/2
∣∣supp(hℓk)

∣∣p/2

+ |hℓk|p1,mm−min{s−1/π,1}p + |hℓk|pvar,mm−p.

Note that ‖hℓk‖L∞ ≤ 2ℓ/2‖h‖L∞ and | supp(hℓk)|p/2 � 2−ℓp/2. By assumption, h has a piecewise Lipschitz derivative.

With (4.8), we conclude

|hℓk|var,m � m1/2. (4.22)

Thus, the term I has the right order.

• The term II. Applying successively Lemmas 4.5, 4.7, 4.8 and 4.9, we derive using m ≤ n1/2

EBs
π,∞

[
|II|p

]
� |hℓk|p1,mmpn−p + |hℓk|p2,mm3p/2n−p + |hℓk|pp,mmp+1n−p.

Since for 1 ≤ p ≤ 2, by Jensen’s inequality EBs
π,∞ [|II|p] ≤ EBs

π,∞ [|II|2]p/2 and for p ≥ 2, |hℓk|pp,mmp+1n−p �

2l(p/2−1)mp+1n−p ≤ m3p/2n−p, this term also has the right order.

• The term III. Finally, by Lemma 4.6, we have

EBs
π,∞(c)

[
|III|p

]

� |hℓk|pp,m

(
n−p/2m + m3p/2+1n−3p/2

)
+ |hℓk|p2,m

(
mp/2n−p/2 + m2pn−3p/2

)
,

which also has the right order by the same argument as above. The proof of Theorem 3.2 is complete.

4.2. Proof of Theorem 3.3

4.2.1. Preliminary: A martingale deviation inequality

If (Mk) is a locally square integrable Fk-martingale with M0 = 0, we denote by [M]k =
∑k

i=1(�Mi)
2 with �Mi =

Mi −Mi−1 its quadratic variation and by 〈M〉k =
∑k

i=1 E[(�Mi)
2|Fi−1] its predictable compensator. We will heavily

rely on the following result of Bercu and Touati [6].

Theorem 4.10 (Bercu and Touati [6]). Let (Mk) be a locally square integrable martingale. Then, for all x, y > 0,

we have

P
[
|Mk| ≥ x, [M]k + 〈M〉k ≤ y

]
≤ 2 exp

(
−

x2

2y

)
.

From Theorem 4.10, we infer the following estimate

Lemma 4.11. Let (Mj ) be a locally square integrable Fj -martingale. Suppose that for p ≥ 1 there is some deter-

ministic sequence (Cj )j (with j = j (m)) and δ > 0 such that P[〈M〉j > Cj (1 + δ)] � m−p. If further for every

κ ≥ 2

max
i=1,...,j

E
[
|�Mi |κ

]
� 1, (4.23)

then,

P
[
|Mj | > 2(1 + δ)

√
Cjp logm

]
� m−p

provided mq0 ≤ j ≤ m for some 0 < q0 ≤ 1 and there is an ε > 0 such that Cj � j1/2+ε.
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Proof. We have by Theorem 4.10

P
[
|Mj | ≥ 2(1 + δ)

√
Cjp logm

]

≤ 2m−p + P
[
[M]j + 〈M〉j > y, 〈M〉j ≤ Cj (1 + δ)

]
+ P
[
〈M〉j > Cj (1 + δ)

]
,

with y = 2Cj (1 + 2δ). Further we obtain

P
[
[M]j + 〈M〉j > y, 〈M〉j ≤ Cj (1 + δ)

]
≤ P
[
[M]j − 〈M〉j > 2Cj δ

]
.

Since ([M]j − 〈M〉j ) is a Fj -martingale it follows by Chebycheff’s and Rosenthal’s inequality for martingales and

κ ≥ 2

P
[
[M]j − 〈M〉j > 2Cj δ

]
� C−κ

j E
[∣∣[M]j − 〈M〉j

∣∣κ]

� C−κ
j

j∑

i=1

E|�Mi |2κ + C−κ
j E

∣∣∣∣∣

j∑

i=1

E
[
(�M)4

i |Fi−1

]
∣∣∣∣∣

κ/2

� C−κ
j

(
j + jκ/2

)
� j−εκ ,

where we used Hölder’s inequality

E

∣∣∣∣∣

j∑

i=1

E
[
(�M)4

i |Fi−1

]
∣∣∣∣∣

κ/2

� jκ/2−1

j∑

i=1

E
[
E
(
|�Mi |2κ |Fi−1

)]
� jκ/2.

Choosing κ := q−1
0 pε−1 > 2, we finally obtain

P
[
[M]j + 〈M〉j > y, 〈M〉j ≤ Cj (1 + δ)

]
� j−p/q0 ≤ m−p. �

Lemma 4.12. Work under the assumptions of Theorem 3.3 and suppose that X has no drift, i.e. b = 0. If c = c(s,π, c)

is such that Bs
π,∞(c) ⊂ D∞(c) then, we have for every fixed δ > 0

P

[∣∣∣∣∣

m∑

i=2

hℓk

(
i − 1

m

)
X

2

i,m(λ) −
〈
σ 2, hℓk

〉
L2

∣∣∣∣∣> 4c(1 + δ)

√
p logm

m
and σ 2 ∈ Bs

π,∞(c)

]
� m−p,

provided

m−(s−1/π)|hℓk|1,m � m−1/2.

Proof. Recall that Λ(s) =
∫ 2
s

λ̃(u)du and let Ht,i be defined as in (4.5), where g is replaced by hℓk. Using the

integration by parts formula (4.6) we bound the probability by I + II + III, with

I := P

[∣∣∣∣∣

m∑

i=2

hℓk

(
i − 1

m

)(
X

2

i,m(λ) −
(∫ 1

0

Λ
(
ms − (i − 2)

)
dXs

)2)∣∣∣∣∣> cδ

√
p logm

m
and σ 2 ∈ Bs

π,∞(c)

]
,

II := P

[∣∣∣∣∣

m∑

i=2

∫ 1

0

Ht,i dXt

∣∣∣∣∣> 2c

(
1 +

δ

2

)√
p logm

m
and σ 2 ∈ D∞(c)

]
,

III := P

[∣∣∣∣∣

m∑

i=2

hℓk

(
i − 1

m

)(∫ 1

0

Λ2
(
ms − (i − 2)

)
σ 2

s ds −
〈
σ 2, hℓk

〉
L2

)∣∣∣∣∣> cδ

√
p logm

m
and σ 2 ∈ Bs

π,∞(c)

]
.

Note that P[X > t and B] = E[I{X>t}∩B ] ≤ t−pE[XpIB ], for p ≥ 0. Using m ≤ n1/2 and (4.10) we find that I can be

bounded by any polynomial order of 1/m.
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The term II can be bounded further by II ≤ IIeven + IIodd, with

IIeven/odd := P

[∣∣∣∣∣

m∑

i=2, i even/odd

∫ Tc

0

Ht,i dXt

∣∣∣∣∣> c

(
1 +

δ

2

)√
p logm

m

]
.

Since h has support [0,1], hℓk(
2i−1

m
) �= 0 can happen only if

1

2

(
k2−ℓm + 1

)
≤ i ≤

1

2

(
(k + 1)2−ℓm + 1

)
. (4.24)

We will treat the term IIeven only, since similar arguments apply for IIodd. The process Mr := 2−ℓ/2m×∑r
i=1

∫ Tc

0 Ht,2i dXt is a martingale with respect to the filtration Fr = σ(Xs : s ≤ 2r/m) starting at M⌊(k2−ℓm+1)/2⌋ = 0.

Recall that Ht,2i vanishes outside [2(i − 1)/m,2i/m] and I{Tc≤(2i−2)/m} is Fi−1 measurable. Moreover, uniformly in

k, ℓ, we obtain

2

m

⌊m/2⌋∑

i=1

h2
ℓk

(
2i − 1

m

)
= ‖hℓ,k‖2

2 + O
(
2ℓ/m

)
= 1 + O

(
m−q

)
. (4.25)

Therefore, Lemma 4.2 and conditional Itô-isometry yield

〈M〉⌊(1/2)((k+1)2−ℓm+1)⌋ ≤ 2−ℓm2c

⌊m/2⌋∑

i=1

∫ 1

0

E
[
H 2

s∧Tc,2i |Fi−1

]
ds

≤ 2−ℓ−1c2

⌊m/2⌋∑

i=1

h2
ℓk

(
2i − 1

m

)

≤ 2−ℓm
1

4
c2

(
1 +

δ

2

)
,

where the last inequality follows for all m ≥ m0(δ) and m0(δ) is fixed and independent of ℓ, k. Furthermore, by BDG

and (4.7), we bound

E
[
|�Mi |κ

]
� 2−ℓκ/2mκE

[∣∣∣∣
∫ 1

0

Ht,2iI[0,Tc](t)dXt

∣∣∣∣
κ]

� 2−ℓκ/2mκE

[∣∣∣∣
∫ 1

0

H 2
t∧Tc,2i dt

∣∣∣∣
κ/2]

� 2−ℓκ/2mκ/2E

[
sup

t≤2/m

|H(t+2(i−1)/m)∧Tc,2i |κ
]

� 2−ℓκ/2

∣∣∣∣hℓk

(
i − 1

m

)∣∣∣∣
κ

� 1

uniformly over i. Since the number of integers i for which (4.24) holds is of order m2−ℓ, we may apply Lemma 4.11

for j ∼ m2−ℓ, Cj = 2−ℓm 1
4
c2 and obtain IIeven � m−p.

In the same way we bound IIodd and thus obtain II � m−p.

In order to bound III it follows from m−(s−1/π)|hℓk|1,m � m−1/2, (4.14), (4.15), (4.16) and (4.22), that for suffi-

ciently large m on σ 2 ∈ Bs
π,∞(c)

∣∣∣∣∣

m∑

i=2

hℓk

(
i − 1

m

)(∫ 1

0

Λ2
(
ms − (i − 2)

)
σ 2

s ds −
〈
σ 2, hℓk

〉
L2

)∣∣∣∣∣≤ cδ

√
p logm

m
.
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This yields the conclusion. �

Lemma 4.13. Work under the assumptions of Theorem 3.3 and suppose that X has no drift, i.e. b = 0. Then, we have

for every fixed δ > 0

P

[∣∣∣∣∣

m∑

i=2

hℓk

(
i − 1

m

)
Xi,m(λ)ǫi,m(λ)

∣∣∣∣∣>
√

8c‖a‖L∞ ‖̃λ‖L2(1 + δ)

√
p logm

m
and σ 2 ∈ Bs

π,∞(c)

]
� m−p,

where c(s,π, c) is such that Bs
π,∞(c) ⊂ D∞(c).

Proof. Let Xi,m,Tc
be defined as Xi,m with Xj/n replaced by Xj/n∧Tc

. Then by separating even and odd terms it

suffices to show

P

[∣∣∣∣∣

m∑

i=2, i even

hℓk

(
i − 1

m

)
Xi,m,Tc

(λ)ǫi,m

∣∣∣∣∣>
√

2c‖a‖L∞ ‖̃λ‖L2(1 + δ)

√
p logm

m

]
� m−p

since the same argumentation can be done for the sum over odd i. Similar as in the proof of Lemma 4.12,

Mr = n1/22−ℓ/2
∑2r

i=1 hℓk(
2i−1

m
)X2i,m,Tc

ǫ2i,m defines a martingale with respect to the filtration F even
r , starting at

M⌊(k2−ℓm+1)/2⌋ = 0.

〈M〉⌊(1/2)((k+1)2−ℓm+1)⌋ ≤ n2−ℓ

⌊m/2⌋∑

i=1

h2
ℓk

(
2i − 1

m

)
E
[
X

2

2i,m,Tc
ǫ2

2i,m|F even
i−1

]

≤ n2−ℓ‖a‖2
L∞

⌊m/2⌋∑

i=1

h2
ℓk

(
2i − 1

m

)
E
[
X

2

2i,m,Tc
|F even

i−1

]

×
m2

n2

∑

j/n∈((2i−2)/m,2i/m]
λ̃2

(
m

j

n
− (2i − 2)

)
.

By the assumed piecewise Lipschitz continuity of λ it follows

m

n

∑

j/n∈((2i−2)/m,2i/m]
λ̃2

(
m

j

n
− (2i − 2)

)
= ‖̃λ‖2

L2 + O

(
m

n

)
, (4.26)

uniformly in i. Next, we will derive a bound for E[X2

2i,m,Tc
|F even

i−1 ]. Note that X2i,m,Tc
= U1 + U2, with

U1 :=
m

n

∑

j/n∈((2i−2)/m,2i/m]

(
n∑

l=j

λ̃

(
m

l

n
− (2i − 2)

))
(Xj/n∧Tc

− X(j−1)/n∧Tc∧(2i−2)/m),

U2 := X(2i−2)/m∧Tc

m

n

∑

j/n∈((2i−2)/m,2i/m]
λ̃

(
m

j

n
− (2i − 2)

)
.

Clearly, E[X2

2i,m,Tc
|F even

i−1 ] = E[U2
1 |F even

i−1 ] + U2
2 . By conditional Itô-isometry

E
[
(Xj/n∧Tc

− X(j−1)/n∧Tc∧(2i−2)/m)(Xj ′/n∧Tc
− X(j ′−1)/n∧Tc∧(2i−2)/m)|F even

i−1

]

≤ δj,j ′c
1

n
= cE

[
(Wj/n − W(j−1)/n)(Wj ′/n − W(j ′−1)/n)

]
for

j

n
,
j ′

n
∈
(

2i − 2

m
,

2i

m

]
,
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where W is a standard Brownian motion and δj,j ′ denotes the Kronecker delta. Recall the definition of j∗
n (r) given in

(4.4) and define cj :=
∑n

l=j λ̃(m l
n

− (2i − 2)). We can bound

E
[
U2

1 |F even
i−1

]

≤ c
m2

n2

(
c2

1+j∗
n (2i−2)

j∗
n (2i − 2)

n
+

∑

j/n∈((2i−2)/m,2i/m]

c2
j

n

)

= c
m2

n2
E

[(
c1+j∗

n (2i−2)Wj∗
n (2i−2)/n +

∑

j/n∈((2i−2)/m,2i/m]
cj (Wj/n − W(j−1)/n)

)2]

= cE

[(
m

n

∑

j/n∈((2i−2)/m,2i/m]
λ̃

(
m

j

n
− (2i − 2)

)
Wj/n

)2]
.

Setting X = W in (4.9) and Lemma 4.2 yield further

E
[
U2

1 |F even
i−1

]
≤ cE

[∫ 1

0

Λ2
(
ms − (2i − 2)

)
ds

]
+ O

(
m−1/2n−1

)

= cm−1 + O
(
m−1/2n−1

)

uniformly over i. By using (4.19) we infer that there exists a constant cU such that U2
2 ≤ cU

m2

n2 sups≤Tc
X2

s . Choose

δ′ ≤ min(1, δ
8

min(‖̃λ‖2
L2 ,1)). We find by Chebycheff inequality that P[m

c
U2

2 > δ′] � m−p. With (4.25), we obtain

further for the predictable quadratic variation, sufficiently large m and probability larger than 1 − const. × m−p

〈M〉⌊(1/2)((k+1)2−ℓm+1)⌋

≤ 2−ℓ−1m‖a‖2
L∞c

(
1 + O

(
m−q

))(
‖̃λ‖2

L2 + O

(
m

n

))(
1 +

m

c
U2

2

)

≤ 2−ℓ−1m‖a‖2
L∞c

(
1 + δ′)(‖̃λ‖2

L2 + δ′)(1 + δ′)

≤ 2−ℓ−1m‖a‖2
L∞c‖̃λ‖2

L2(1 + δ)

or to state it differently

P
[
〈M〉⌊(1/2)((k+1)2−ℓm+1)⌋ > 2−ℓ−1m‖a‖2

L∞c‖̃λ‖2
L2(1 + δ)

]
� m−p.

In the next step, we bound maxi E[|�Mi |κ ]. In the proof of Lemma 4.6, we already derived E[|Xi,m(λ)|2κ ] � m−κ

and E[|ǫi,m|2κ ] � mκn−κ . By the same arguments we obtain also E[|Xi,m,Tc
(λ)|2κ ] � m−κ . Therefore, it is easy to

see that

max
i

E
[
|�Mi |κ

]
� 2−ℓκ/2nκ/2

∣∣∣∣hℓk

(
i − 1

m

)∣∣∣∣
κ

E1/2
[∣∣Xi,m,Tc

(λ)
∣∣2κ]

E1/2
[
|ǫi,m|2κ

]
� 1.

Hence the assumptions of Lemma 4.11 are satisfied with j ∼ m2−ℓ and Cj = 2−ℓ−1m‖a‖2
L∞c‖̃λ‖2

L2 and the conclu-

sion follows. �

Lemma 4.14. Work under the assumptions of Theorem 3.3. Let G denote the σ -field generated by (Xs, s ∈ [0,1]).
Then we have for every fixed δ > 0

P

[∣∣∣∣∣

m∑

i=2

hℓk

(
i − 1

m

)(
ǫ2
i,m(λ) − E

[
ǫ2
i,m(λ)|G

])
∣∣∣∣∣> 4‖a‖2

L∞ ‖̃λ‖2
L2(1 + δ)

√
p logm

m

]
� m−p.
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Proof. We show that

P

[∣∣∣∣∣

m∑

i=2, i even

hℓk

(
i − 1

m

)(
ǫ2
i,m(λ) − E

[
ǫ2
i,m(λ)|G

])
∣∣∣∣∣> 2‖a‖2

L∞ ‖̃λ‖2
L2(1 + δ)

√
p logm

m

]
� m−p

and argue similar for the sum over i odd. Let F even
r ,Ui and the martingale Seven

r be defined as in the proof of

Lemma 4.5 with g replaced by hℓk . Now hℓk(
2i−1

m
) �= 0 can happen only if 1

2
(k2−ℓm+ 1) ≤ i ≤ 1

2
((k + 1)2−ℓm+ 1).

In the following we will consider the martingale Mr := n
m

2−ℓ/2Seven
r started at M⌊(k2−ℓm+1)/2⌋ = 0. We obtain

〈M〉⌊(1/2)((k+1)2−ℓm+1)⌋ ≤
n2

m2
2−ℓ

⌊m/2⌋∑

i=1

h2
ℓk

(
2i − 1

m

)
E
[(

ǫ2
2i,m − E

[
ǫ2

2i,m|G
])2∣∣F even

i−1

]
.

Elementary calculations and (4.26) show further that we may find a deterministic bound, i.e. uniformly in i

E
[(

ǫ2
i,m − E

[
ǫ2
i,m|G

])2∣∣F even
i−1

]
= 2‖a‖4

L∞

(
m2

n2

∑

j/n∈((i−2)/m,i/m]
λ̃2

(
m

j

n
− (i − 2)

))2

+ O

(
m3

n3

)

= 2
m2

n2
‖a‖4

L∞ ‖̃λ‖4
L2 + O

(
m3

n3

)
.

From this and (4.25) we obtain for sufficiently large m,

〈M〉⌊(1/2)((k+1)2−ℓm+1)⌋ ≤ m2−ℓ‖a‖4
L∞ ‖̃λ‖4

L2(1 + δ).

By (4.18), we infer E[|�Mi |κ ] � 1. Applying Lemma 4.11 yields the conclusion. �

Completion of proof of Theorem 3.3

Let I, II and III be defined as in (4.21) and suppose that X has no drift.

• The term I . By Lemma 4.12, we have

P

[
|I | > 4c(1 + δ)

√
p logm

m
and σ 2 ∈ Bs

π,∞(c)

]
� m−p.

• The term II. Applying Lemmas 4.7, 4.8, 4.9 and 4.14, we derive by Chebycheff’s inequality and |hℓk|pp,m �
mp/2−1 , p ≥ 2,

P

[
|II| > 4‖a‖2

L∞ ‖̃λ‖2
L2(1 + δ)

√
p logm

m
and σ 2 ∈ Bs

π,∞(c)

]
� m−p.

• The term III. We find by Lemma 4.13

P

[
|III| > 4

√
2c‖a‖L∞ ‖̃λ‖L2(1 + δ)

√
p logm

m
and σ 2 ∈ Bs

π,∞(c)

]
� m−p.

If the drift is nonzero, we can argue by a change of measure as in Lemma 4.1 and obtain with Assumption 2.1,

Eσ,b[IBn ] � Eσ,0[IBn ](ρ−1)/ρ . The proof of Theorem 3.3 is complete.

4.3. Proof of Theorem 2.12

Preliminaries

Let (C, C) denote the space of continuous functions on [0,1], equipped with the norm of uniform convergence and

its Borel σ -field C . Let (Ω ′, F ′,P′) be another probability space rich enough to contain an infinite sequence of i.i.d.
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Gaussian random variables. On (Ω̃, F̃ ) := (C ×C ×Ω ′, C ⊗ C ⊗ F ′) we construct a probability measure P̃ as follows.

Let (σ,ω,ω′) denote a generic element of Ω̃ .

We pick an arbitrary probability measure μ(dσ) on (C, C), and we construct the measure Pσ (dω) on (C, C) such

that, under Pσ , the canonical process X on C is a solution (in a weak sense for instance) to

Xt = X0 +
∫ t

0

σs dWs,

where W is a standard Wiener process. We then set

P̃ := μ(dσ) ⊗ Pσ (dω) ⊗ P′(dω′).

This space is rich enough to contain our model: indeed, by construction, any μ(dσ) will be such that, under μ, we

have Assumption 2.1. By constructing on (Ω ′, F ,P′) an i.i.d. Gaussian noise (ǫj,n) for j = 0, . . . , n with constant

variance function a2 > 0 for a given a2 > 0, the space Ω̃ is rich enough to contain an additive Gaussian microstructure

noise, independent of X, and we have Assumption 2.2. Consider next the statistical experiment

En =
(
C × Ω ′, C ⊗ F ′,

(
Pn

σ , σ ∈ D
))

,

where D ⊂ C and Pn
σ is the law of the data (Zj,n), conditional on σ . The probability μ(dσ) can be interpreted as

a prior distribution for the “true” parameter σ . Let us now introduce the statistical experiment E ′
n generated by the

observation of the Gaussian measure

Yn =
√

2σ + an−1/4Ḃ,

where Ḃ is a Gaussian white noise, with same parameter space D, but living on a possibly different space Ω ′′. We

denote by Qn
σ the law of Yn.

Completion of proof

Let D = Bs
π,∞(c) denote a Besov ball such that s − 1/π > 0. Then D ⊂ C. Assume further that μ is such that

μ[D] = 1. Then Condition (2.6) is satisfied. Moreover, for any estimator σ̂n and any c′ > 0, we have, by Markov

inequality

nα(s,p,π)/2Ẽ
[∥∥σ̂ 2

n − σ 2
∥∥

Lp([0,1])I{σ 2∈Bs
π,∞(c)}

]

≥ c′
∫

C

μ(dσ)Pn
σ

[
nα(s,p,π)/2

∥∥σ̂ 2
n − σ 2

∥∥
Lp([0,1]) ≥ c′] (4.27)

since μ[D] = 1. By the result of Reiß [33], since s − 1/π > (1 +
√

5)/4, we have that En and E ′
n are asymptotically

equivalent. This means that we can approximate Pn
σ by Qn

σ in variational norm, uniformly in σ , up to randomisation

via a Markov kernel K that does not depend on σ . More precisely, for any ε > 0, we have

∣∣Pn
σ

[
nα(s,p,π)/2

∥∥σ̂ 2
n − σ 2

∥∥
Lp([0,1]) ≥ c′]− KQn

σ

[
nα(s,p,π)/2

∥∥σ̂ 2
n − σ 2

∥∥
Lp([0,1]) ≥ c′]∣∣≤ ε (4.28)

as soon as n is large enough, and where we use the notation

KQn(dx) =
∫

Ω ′′
K(y,dx)Qn(dy), x ∈ C × Ω ′, y ∈ Ω ′′.

Now, there exist c′ > 0 and δ′ > 0 such that for any estimator F in E ′
n, by picking μ(dσ) as the least favourable prior

in order to obtain lower bounds over Besov classes, we have

∫

C

μ(dσ)Qn
σ

[
nα(s,p,π)/2

∥∥F − σ 2
∥∥

Lp([0,1]) ≥ c′]≥ δ′ > 0 (4.29)
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for large enough n. This follows from classical analysis of the white Gaussian noise model, see for instance [23] in

the framework of Besov spaces. Let us extend further (4.29) to the class of randomised decisions, that is estimators

of the form F(ξ, ·), where ξ is an auxiliary random variable, living on an auxiliary probability space with law ν(dξ).

Conditional on ξ , an arbitrary randomised decision F(ξ, ·), can be viewed as an estimator, therefore, by (4.29), we

also have

∫

C

μ(dσ)Qn
σ

[
nα(s,p,π)/2

∥∥F(ξ, ·) − σ 2
∥∥

Lp([0,1]) ≥ c′]≥ δ′ ν(dξ)-a.s.

for large enough n. Integrating an applying Fubini, we derive

∫

C

μ(dσ)

∫
ν(dξ)Qn

σ

[
nα(s,p,π)/2

∥∥F(ξ, ·) − σ 2
∥∥

Lp([0,1]) ≥ c′]≥ δ′.

Since ν and F are arbitrary, it suffices then to identify the randomised decision F(ξ, ·) with the estimator σ̂n in En

transported into a random decision in E ′
n with the Markov kernel K appearing in (4.28). We thus obtain

∫

C

μ(dσ)KQn
σ

[
nα(s,p,π)/2

∥∥σ̂ 2
n − σ 2

∥∥
Lp([0,1]) ≥ c′]≥ δ′ (4.30)

for large enough n. Putting together (4.27), (4.28) and (4.30), we finally obtain

nα(s,p,π)/2Ẽ
[∥∥σ̂ 2

n − σ 2
∥∥

Lp([0,1])I{σ 2∈Bs
π,∞(c)}

]
≥ δ′ − ε > 0

for large enough n. The proof of Theorem 2.12 is complete.
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