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Abstract. An arrangement of curves in the real plane divides it into a collection of faces. Already
in the case of line arrangements, this collection can be given a structure of a left regular band and
one can ask whether the same is possible for other arrangements. In this paper, we try to answer
this question for the simplest generalization of line arrangements, that is, conic–line arrangements.

Investigating the different algebraic structures induced on the face poset of a conic–line arrange-
ment, we present two possibilities for generalizing the product and its associated structures. We
also study the structure of sub left regular bands induced by these arrangements. We finish with
some combinatorial properties of conic–line arrangements.

1. Introduction

An arrangement of curves A in R
2 defines a partition of the plane into a collection of faces,

denoted by L(A). For a line arrangement A, the set L(A) already raises a variety of interesting
questions, lying in the intersection of several mathematical areas: algebra, topology and combina-
torics. Indeed, one can define a product on L(A), making this set into a left regular band (LRB)
S, that is, a semigroup whose every element is an idempotent and for every x, y ∈ S, x · y ·x = x · y
(see [15, Section 3] for a survey on bands and examples of left regular bands; see also [6, 7] for a
similar description for complex line and hyperplane arrangements).

Moreover, as L(A) determines the combinatorics of the arrangement, one can ask what are the
connections between L(A) and other invariants of these arrangements. The relations between the
face LRB on A and its combinatorics can be found in the numerous restriction-deletion principles:
Zaslavsky’s chamber counting formula [24], the deletion-restriction formula for the Poincaré poly-
nomial π(A, t) and the addition-deletion theorem for the module of A-derivations D(A) (see e.g.
[16]). Other applications can be found in the description of the algebra kS in terms of quivers (see
[17, 18]), random walks on the faces of a hyperplane arrangement [8] and in the ongoing investi-
gation of the connections between the fundamental group π1(C

2 −A) and the combinatorics of A
(see e.g. [4, 9, 10, 11, 13, 22, 23] and many more).

A natural question is what happens to these algebraic structures, associated to L(A), when one
deals with arrangements of smooth curves in R

2; i.e. topologically speaking, when we deal with real
conic–line arrangements in R

2. This investigation already took place to some extent. Zaslavsky
[25] generalized the deletion-restriction formula in several directions and a research of π1(C

2 −A)
for some families of conic-line arrangements has taken place, see e.g., in [3, 5, 11, 12, 21]. Also, in
[19], the existence of other restriction-deletion formulas with respect to the module of A-derivations
D(A) for a quasihomogeneous free conic–line arrangement A was proven.

As in line arrangements, one can induce a restriction-deletion formula for the Poincaré polynomial
π(A, t) from the corresponding theorem for D(A). However, while for line arrangements, π(A, 1) is
equal to the number of chambers of A (which enables us to induce Zaslavsky’s chamber counting
formula), this is not true anymore for conic-line arrangements (for more details, see Remark 4.8
below). Moreover, Schenck and Tohaneanu [19, Section 4] found a pair of combinatorially-equivalent
conic-line arrangements with non-isomorphic modules of A-derivations D(A).
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Another motivation for a deeper investigation of the algebraic structure associated to L(A) for
a conic-line arrangement A, is that it is a natural candidate for an alternative product. This kind
of phenomenon - an alternative product that replaces the associative one - is not unnatural: it
appears also when looking at the poset of the faces of a building (see Tits [20, Section 3.19]), and
more generally, in a projection poset (see [2, p. 26] for its definition). We will see that one of the
generalized products we define for the face poset of a conic–line arrangement will be alternative.

Therefore, a first step in understanding the connections between the above mentioned structures
is the investigation of the algebraic structure of the face poset L(A) associated to a real conic–line
arrangement A and its applications.

Thus, the main purpose of this paper is to study the induced algebraic structures on the set of
faces associated to real conic–line arrangements. We also deal with additional combinatorial aspects
of real conic–line arrangements and prove several restriction-deletion and embedding principles. Let
us introduce here explicitly the notion of a real conic–line arrangement:

Definition 1.1. A real conic–line (CL) arrangement A is a collection of conics and lines defined
by the equations {fi = 0} in C

2, where fi ∈ R[x, y]. Moreover, for every conic C ∈ A, C ∩ R
2 is

not an empty set, neither a point nor a (double) line.

The paper is organized as follows. The first two sections look for the natural generalization
of the structure of L(A) to the case of a real CL arrangement A. Based on the problems one
encounters during this generalization, we propose in Section 2 two possibilities for a well-defined
product on this set; the first turns L(A) into an alternative LRB and the second turns L(A) into
an aperiodic semigroup. Section 3 investigates the embedding principles for sub-LRBs for a given
band, induced by a real CL arrangement. Connections between the band, induced by restricting
the real CL arrangement to a conic or to a line, and the band induced by the whole arrangement,
are presented. Section 4 presents a generalization of the restriction-deletion principle for chamber
counting for the case of CL arrangements.

Acknowledgements: We would like to thank Mikhail Zaidenberg, Benjamin Steinberg, Franco
Saliola and especially Stuart Margolis for stimulating and inspiring talks. We also thank the
anonymous referee of an earlier version of this paper for giving stimulating advices.

The first author would like to thank the Max-Planck-Institute für Mathematik in Bonn and the
Fourier Institut in Grenoble for the warm hospitality and support, where the research of this paper
was carried out.

2. Real CL arrangements: The face semigroup

In this section, we concentrate on the structure of the face semigroup of real CL arrangements.
We start in Section 2.1 by reviewing the corresponding known structure of the face semigroup
L(A) associated to a hyperplane arrangement A. In Section 2.2 we study the corresponding face
semigroups in the case of real CL arrangements. The main results of this section appear in Section
2.3, where we introduce two possible generalizations for the corresponding product defined for
hyperplane arrangements to real CL arrangements: one product turns L(A) into an alternative left
regular band and the second product turns L(A) into an aperiodic semigroup.

2.1. Preliminaries: The left regular band and the face semigroup of a hyperplane

arrangement. In this section, we recall the notion of a left regular band and its connections to
the combinatorics of hyperplane arrangements (see also a survey in [15]).

Definition 2.1. A left regular band (LRB) is a semigroup (S, ·) that satisfies the identities:

x · x = x and x · y · x = x · y for every x, y ∈ S.
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Let A = {H1, . . . ,Hn} be a hyperplane arrangement in R
N consists of n hyperplanes, where

Hi is defined by the equation {fi = 0}, where fi ∈ R[x1, . . . , xN ]. Recall that for H ∈ A, the
arrangement AH = A − {H} is called the deleted arrangement and AH =

{
K ∩H|K ∈ AH

}
is

called the restricted arrangement. Let C(A) be the set of chambers of A, i.e. the components of
R
N −A, and let L = L(A) be the semi-lattice of non-empty intersections of elements of A.
Define the partially ordered set of faces as:

L = L(A) =
⋃

X∈L

C(AX),

where L is ordered by inclusion, which will be denoted by � (some authors order L by reverse
inclusion). Note that L determines the combinatorics of the arrangement.

Define a (monomorphic) function i : L → ({+,−, 0})n, as follows: for P ∈ L, define

(i(P ))k = sign(fk(P )),

where ()k denotes the value of the kth coordinate of the vector i(P ). The generalization of this
function to complex hyperplane arrangements already appeared in [7], where the vector i(P ) is
called there a complex sign vector.

Recall that one can define an associative product on {+,−, 0}, given by x · y = x if x 6= 0, and
y otherwise. This product induces an LRB structure on {+,−, 0}, which is denoted by L1

2. This
product can be extended componentwise to a product on

(
L1
2

)n
. Thus, Image(i), as a subset of

({+,−, 0})n =
(
L1
2

)n
, has the structure of an LRB, and therefore also L, when identifying it with

Image(i). Based on this LRB structure, one can associate a quiver to the semigroup algebra kL,
for a field k (see [17]).

For hyperplane arrangements, this product has a geometric meaning: for F,K ∈ L, the product
F ·K is the face that we are in after moving a small positive distance from a generic point of the
face F towards a generic point of the face K along a straight line connecting these points (see e.g.
[1, Section 1.4.6]).

Remark 2.2. Let A = {H1, . . . ,Hn} be a hyperplane arrangement, where Hi = {fi = 0}. Denote
by i(L(A)) the embedding of L(A) into (L1

2)
n. Let J be a nonempty subset of {1, . . . , n} and define

gj = −fj if j ∈ J and gj = fj otherwise. Let H ′
i

.
= {gi = 0} and A′ = {H ′

1, . . . ,H
′
n}. Obviously,

A = A′. However, as the LRB structure on L(A) is defined by the sign function, the embedding of
L(A′) into (L1

2)
n will be different than the embedding of L(A) (that is, as sets, i(L(A)) 6= i(L(A′));

explicitly, for all j ∈ J , (i(L(A)))j = −(i(L(A′)))j), but the two LRBs will still be isomorphic.

2.2. The semigroups L and L0 for CL arrangements. Let A = {H1, . . . ,Hn} ⊂ R
2 be a

real CL arrangement with n components, and let fi ∈ R[x, y] be the corresponding forms of the
components. Let L = L(A) be as before, and define the partially ordered set of faces as:

L = L(A) =
⋃

X∈L

C(AX),

where L is ordered by inclusion. We denote the partial order by �.

Definition 2.3. (a) Define the map

supp : L → L,

sending each face to its support, i.e. the corresponding element in the intersection semi-lattice.
(b) As before, define a function:

(1) i : L → ({+,−, 0})n

as: (i(P ))k = sign(fk(P )), where ()k is the value of the kth coordinate of the vector i(P ).
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We now deal with some properties of Image(i). Note that for real hyperplane arrangements, the
function i is monomorphic: every face P is uniquely determined by its vector of n signs. However,
for real CL arrangements, this function might not be monomorphic. For example, given a line and
a circle tangent to it, the two parts of the line have the same pair of signs. Another example is
presented in Figure 1, where we have that:

i(P1) = i(P2) = (+,−,+) ∈
(
L1
2

)3
.

P
1

H
1

H
2

P
2

H
3

+
-

+
-

+-

Figure 1. An example of a real CL arrangement consisting of three components
H1,H2,H3 with two 2-dimensional faces P1, P2 having the same vector of signs:
i(P1) = i(P2) = (+,−,+).

Recall that one can define an associative product on (L1
2)

n = ({+,−, 0})n (see Section 2.1). This
raises the following question: does this give Image(i) the structure of a sub-semigroup of (L1

2)
n?

For hyperplane arrangements, the answer is positive as one identifies L with Image(i); thus L is
endowed with a semigroup structure. However, for real CL arrangements, as i is not necessarily
monomorphic, we cannot identify L with Image(i) (and thus we need to redefine the product on
L). A more serious problem is presented in the following example.

Example 2.4. (1) There are real CL arrangements whose Image(i) is not even closed under the
product induced by (L1

2)
n, and thus it is not even a semigroup. For example, take three lines

H1,H2,H3 in general position (i.e. not passing through a single point) and a circle C passing
through the three intersection points; see Figure 2. Let α, β ∈ Image(i) ⊂ (L1

2)
4 be two quadruples

associated to two different intersection points (see Figure 2; the points are a, b). Explicitly,

α = i(a) = (0,+, 0, 0), β = i(b) = (0, 0,−, 0), but αβ = (0,+,−, 0) 6∈ Image(i).

Though α, β ∈ Image(i), αβ 6∈ Image(i), since there is no face which corresponds to the quadruple
αβ, as there is no element in Image(i) that has exactly two zeros in its presentation as a quadruple
in (L1

2)
4.

H3

H2

H1

C=H4

+-

-
+

+
-

-+

a

b

Figure 2. α = i(a) = (0,+, 0, 0), β = i(b) = (0, 0,−, 0), but αβ = (0,+,−, 0) 6∈ Image(i).

Note that this is the minimal degree example for this phenomenon to occur: one can verify that
for any real CL arrangement with up to degree 4, Image(i) is always closed under the product
induced by (L1

2)
n.



ON LEFT REGULAR BANDS AND REAL CONIC-LINE ARRANGEMENTS 5

Moreover, taking three generic lines and a circle passing through two intersection points, one
can check that the product of the corresponding vector of signs of the pair of triple points of this
arrangement does not represent any face of this arrangement.

(2) The above example can be generalized: take a regular n-gon, where n > 3, draw a circle
passing through all the vertices of the n-gon, and extend the edges of the polygon into straight
lines. One can check that the product of the corresponding vector of signs of any pair of consecutive
triple points of this arrangement does not represent any face of this arrangement.

Definition 2.5. Let L0 = L0(A) = Image(i) ⊆ (L1
2)

n.

Following the previous example, the following question raises: when is L0(A) closed under the
product induced by (L1

2)
n, and hence form a semigroup? Obviously, if A is a line arrangement, then

L0(A) is a semigroup. Moreover, we have the following proposition regarding real CL arrangements:

Proposition 2.6. Let A be a real CL arrangement. Assume that there is no singular point p such
that there are more than two components passing through p. Then L0(A) is a semigroup.

Proof. We consider only the arrangements whose singular points are either nodes or tangent points
of order 2 (or both). Indeed, there are other types of singular points to consider, such as tangency
points of order 3 or 4 between two conics, but from the point of view of the structure of the
associated LRB, they are the same as nodes and tangency points of order 2, respectively, as we are
interested only in the local structure in the neighborhood of the singular point.

We need to check that L0(A) is closed under the product induced by (L1
2)

n. For each face
c ∈ L(A), we go over all the products of the form i(c)i(a), where a ∈ L(A), and check that
i(c)i(a) ∈ L0(A).

If dim(c) = 2, there is nothing to check, as i(c)i(a) = i(c) for every a ∈ L(A), since all the entries
of i(c) are non-zero.

If dim(c) = 1, let H = supp(c), where H = {f = 0}. Then i(c)i(a) is either i(c) or one of the
faces that has c in its boundary (which lies inside the domain {f > 0} or {f < 0}), which exist as
elements in L0(A).

If dim(c) = 0, then, as assumed above, c is either a node or a tangent point of multiplicity 2.
If it is a node, then locally, in the neighborhood of c, the arrangement is of the form {xy = 0}
(obviously, this approximation is also applied to two conics which intersect with multiplicity 3).
Note that as an arrangement in R

2, L0({xy = 0}) = (L1
2)

2. This means that i(c)i(a) ∈ L0(A) for
every a ∈ L(A).

If c is a tangent point, then locally, in the neighborhood of c, the arrangement is of the form
{y(y − x2) = 0} (obviously, the arrangement can consist of two tangent conics with intersection
multiplicity 2 or 4, but from the point of view of the LRB L0(A), the resulting set of vectors of
signs will be the same), and thus, as an arrangement in R

2,

L0
.
= L0({y(y − x2) = 0}) = (L1

2)
2 − {(−,+), (−, 0), (0,+)},

where the first coordinate corresponds to the line {y = 0} and the second to the conic. As can
be easily checked, L0 is closed under this product, which means that i(c)i(a) ∈ L0(A) for every
a ∈ L(A). �

2.3. Redefining the product. In this section, we introduce two possible generalizations for the
product defined for hyperplane arrangements to CL arrangements, in two different directions: one
product turns L(A) into an alternative LRB (i.e. an alternative magma such that x2 = x, xyx = xy
for every x, y ∈ L) and the second product turns L(A) into an aperiodic semigroup.

We want to use the same geometric intuition of the product for hyperplane arrangements (see
Section 2.1) for defining the corresponding product on the face poset (L,�) for real CL arrangements
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(where � is the partial order defined by inclusion). Explicitly, we want to maintain the following
properties for every x, y, z ∈ L:

(1) For every x, y ∈ L , x2 = x and x · y · x = x · y (the LRB properties).
(2) If x ·y = z, then i(x)i(y) = i(z) (if there are faces with a vector of signs i(x)i(y)). Explicitly,

if L0(A) is a semigroup, then the surjective map L(A) → L0(A) would be a homomorphism.
(3) If x · y = z, then x � z.
(4) If x � y, then x · y = y.
(5) (x · y) · z = x · (y · z) (Associativity).

We present two possible definitions for this product in the case of real CL arrangements. The
first definition, appearing in Section 2.3.1, preserves properties (1), (3) and (4) and thus will be
more geometric, inducing a structure of an alternative LRB on (L, ·); the second, appearing in
Section 2.3.2, preserves properties (2), (5) and a weaker version of property (1), and thus (L, ·)
will be an aperiodic semigroup. Based on the second definition, one can associate a quiver to the
semigroup algebra kL, as was already done in the case of line arrangements (see [17]).

2.3.1. The geometric product. We start with the more geometric definition, which will be given in
two parts. The first part includes the basic requirements of this product. We start with examining
the CL arrangement in Figure 3, which shows that requirement (3) is not entirely based on the
definition of i. Explicitly, we want that if x · y = z, then x � z, i.e. z is a face intersecting a small
neighborhood of x. The example in Figure 3 shows that this is not always the case when working
with the product induced by (L1

2)
n. In the CL arrangement presented in Figure 3, i(p)i(x) = i(x),

but p 6� x.

p

x

L1

L2

L3

Figure 3. As i(p) = (0, 0, 0), i(x) = (0,−, 0), we have that i(p)i(x) = i(x), but p 6� x.

Definition 2.7. (Geometric product on L(A), Part I):
Let A be a real CL arrangement, and let P1, P2 ∈ L(A). Define:

F (P1, P2)
.
= {P ∈ L(A) : i(P ) = i(P1)i(P2) and P1 � P}.

If |F (P1, P2)| = 0, then P1 · P2
.
= P1.

If |F (P1, P2)| = 1, i.e. F (P1, P2) = {P}, then P1 · P2
.
= P .

Otherwise, we know that |F (P1, P2)| > 1.
If P2 ∈ F (P1, P2), then P1 · P2

.
= P2.

Let us stop for a moment in defining this product. Obviously, requirement (3) holds (note that in
the example presented in Figure 3, when we use the above product, then p·x = p, since F (p, x) = ∅).
Note that if x, y ∈ L, then x � y actually means that x ⊆ ȳ, where ȳ is the (topological) closure of
y, i.e. any neighborhood of x intersects y.

Moreover, if x, y, z ∈ L, then x ·(y ·z) is a face α ∈ L(A) satisfying x � α, x ·y is a face β′ ∈ L(A)
satisfying x � β′ and (x · y) · z is a face β ∈ L(A) satisfying β′ � β; thus x � β. This means that
even if the product is not associative, then

(2) x ⊆ (x · (y · z) ∩ (x · y) · z) or x � (x · (y · z) ∧ (x · y) · z).
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Note that if every singular point p ∈ Sing(A) includes a transversal intersection of two compo-
nents of A, then |F (P1, P2)| = 1 for all P1, P2 ∈ L and thus the above product is well-defined for
each pair of faces.

The following proposition presents some properties of the geometric product:

Proposition 2.8. Let P1, P2 ∈ L. Then the following properties hold:
(1) If P1 6= P2, then P1 and P2 cannot be together in the set F (P1, P2).
(2) If P1 ∈ F (P1, P2), then P1 · P2 = P1.
(3) |F (P1, P2)| ≤ 2.
(4) If P1 � P2 and P1 6= P2, then P1 · P2 = P2.
(5) If |F (P1, P2)| = 1 for every two faces P1, P2 ∈ L, then the product is associative.

Proof. (1) If P1, P2 ∈ F (P1, P2), then i(P1) = i(P2). Moreover, since P2 ∈ F (P1, P2), P1 � P2

implies that P1 is contained in the boundary of P2 (but then i(P1) 6= i(P2)), or that P1 and P2

have the same dimension, i.e. P1 must be equal to P2, which is a contradiction.

(2) Consider the dimension of P1: if dim(P1) = 2, it is obvious, as already i(P1)i(P2) = i(P1)
and P1 is the only face X satisfying P1 � X. If dim(P1) < 2, then in the neighborhood of P1, the
only face with the same vector of signs as P1 is P1 (note that if P1 ∈ F (P1, P2), then by definition
i(P1)i(P2) = i(P1)).

(3) If dim(P1) ∈ {1, 2}, then |F (P1, P2)| = 1: this is obvious for a chamber, and for a section of
a curve, the faces of F (P1, P2) can be P1 or one of the two chambers having P1 in their boundary.
But each of the three faces has a different vector of signs, and thus |F (P1, P2)| = 1.

If P1 is a point, then one can get two faces with the same vector of signs (i.e. |F (P1, P2)| = 2) in
the neighborhood of P1 if, for example, P1 is a tangent point of two components (either a line and
a conic or two conics). This is the simplest case; that is, when only two components are passing
through P1. Indeed, if there is a transversal intersection at P1, then |F (P1, P2)| = 1. Moreover,
adding more lines or conics passing through P1 will not increase |F (P1, P2)|.

(4) Since P1 � P2 and P1 6= P2, then dim(P2)− 1 ≥ dim(P1), i(P1)i(P2) = i(P2) and obviously
P2 ∈ F (P1, P2). By definition, P1 · P2 = P2.

(5) Let x, y, z ∈ L. We know that a neighborhood of x intersects both w
.
= (x · y) · z and

v
.
= x · (y · z) (by Equation (2)), and w and v have the same vector of signs (indeed, note that

since |F (p, q)| = 1 for every p, q ∈ L, then i(p · q) = i(p)i(q), i.e. i is a homomorphism and thus
i(w) = i(x · y)i(z) = (i(x)i(y))i(z) = i(x)(i(y)i(z)) = i(v)).

If dim(x) > 0, then a neighborhood of x can intersect only one face with a given vector of
signs (see property (3) above), which implies that v = w. If dim(x) = 0, a neighborhood of x may
intersect two different faces with the same vector of signs (see property (3) again). That is, x is in the
boundary of w and v, and thus F (x,w) = {w, v} (as x � w and x � v and i(x)i(w) = i(w) = i(v);
the first equality is derived from requirement (4), which holds by the definition of F and the last
case in Definition 2.7). Hence, |F (x,w)| = 2, which is a contradiction. This means that v = w. �

Since requirement (4) holds, we can prove requirement (1); i.e. L is an alternative left regular
band.

Proposition 2.9. Assume that (L, ·) satisfies the requirements of Definition 2.7. Let x, y ∈ L.
Then (L, ·) is an alternative left regular band, i.e.:

(1) x2 = x,
(2) x · (x · y) = (x · x) · y and x · (y · y) = (x · y) · y,
(3) x · y · x = x · y.

Proof. As x ∈ F (x, x), we get that x2 = x (by Proposition 2.8(2)). Next, we have to prove that
x·(x·y) = x·y and x·y = (x·y)·y. If we denote z = x·y, then x � z. Thus x·(x·y) = x·z = z = x·y
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(the second equality is by Proposition 2.8(4), since we can assume that x 6= y). Note that if
|F (x, y)| > 0, then i(z) = i(x)i(y) and thus i(z) = i(x)i(y) = i(x)i(y)i(y) = i(z)i(y) (since this
holds in (L1

2)
n) and so z ∈ F (z, y); thus z · y = z (by Proposition 2.8(2)). Otherwise, |F (x, y)| = 0

and thus x · y = x, i.e. z = x. Thus z · y = x · y = x = z; i.e. z · y = z in any case.
Therefore, (L, ·) is an alternative magma. Thus the flexible identity (x · y) · x = x · (y · x) holds

for any two faces x, y ∈ L and the expression x · y · x is well-defined.
As before, if |F (x, y)| > 0, then i(x · y) = i(x)i(y) and so i(x · y) = i(x)i(y) = i(x)i(y)i(x) =

i(x · y)i(x) and so we have that x · y ∈ F (x · y, x) and thus by Proposition 2.8(2), x · y · x = x · y.
Otherwise, |F (x, y)| = 0 and thus x · y = x and so x · y · x = x · x = x = x · y �

There are several ways to complete the definition of the product. In this subsection, we will show
one way to do so, though we cannot guarantee that the product will be associative (see Example
2.11 below for an example of a real CL arrangement inducing a non-associative product).

Definition 2.10. (Geometric product on L(A), Part II)
With the notations of Definition 2.7, we continue the definition of the geometric product on L(A).

Explicitly, we have that |F (P1, P2)| = 2 and P1 6� P2, and thus P2 6∈ F (P1, P2) (by Propositions
2.8(2) and 2.8(4)). By Proposition 2.8(3), this situation can only happen when P1 is a point, and
all the components of A passing through P1 are tangent to each other (at P1).

If P1 and P2 are on the same unbounded 1–dimensional component H, then P1 · P2 will be the
face (in F (P1, P2)) we get after moving from P1 on H in the direction of P2 (see Figure 4(a)).

Otherwise, either P1 ·P2 is a chamber or that P1 and P2 are on the same bounded 1–dimensional
component (i.e. an ellipse). For each P ∈ F (P1, P2), let ℓP be the minimal length of an arc passing
through the point P1, a generic point in P and a generic point in P2. If the minimum of the set
{ℓP }P∈F (P1,P2) is achieved only once, say, at a face P0, then define P1 · P2

.
= P0 (see Figure 4(b)).

However, if there exist two faces P ′, P ′′ such that:

min
P∈F (P1,P2)

{ℓP } = ℓP ′ = ℓP ′′ ,

then draw a circle C through P1, a generic point in P ′ (or in P ′′) and a generic point in P2 and
define P1 · P2

.
= P , where P ∈ {P ′, P ′′} is the face we are in after moving slightly clockwise on C

from P1 (see Figure 4(c)).

P
1

P
2

P
3

P
4

(c)

P
1

P
2

P
3

P
4

(b)

P
1

P
2

P
3

P
4

(a)

Figure 4. Different situations for part II of the geometric product on L(A): In part (a),

F (P1, P2) = {P3, P4} and P1 and P2 are on the same unbounded 1–dimensional component,

so P1 · P2 = P3. In part (b), P2 6∈ F (P1, P2) = {P3, P4}. Moreover, ℓP3
< ℓP4

, so we have:

P1 ·P2 = P3. In part (c), again P2 6∈ F (P1, P2) = {P3, P4}, but in this case ℓP3
= ℓP4

, so we

draw a dotted circle C through P1, a generic point in P ′ = P3 and a generic point in P2,

and move on it clockwise to get: P1 · P2 = P4.

The next example shows that the geometric product is not always associative:

Example 2.11 (Non-associative product). Look at the real CL arrangement A0 presented in
Figure 5, where the circle in A0 is denoted by C. All the labeled faces are on the circle, where x, y



ON LEFT REGULAR BANDS AND REAL CONIC-LINE ARRANGEMENTS 9

x

w

y

m

z

b

Figure 5. An example of a non-associative geometric product:

b = x · (y · z) 6= (x · y) · z = w

are tangent points and b, w,m and z are 1-dimensional faces. We use Definition 2.10 in order to
compute (x · y) · z and x · (y · z).

Note that F (x, y) = {b, w} and ℓb = ℓw. Thus, we should go clockwise on the circle C from x to
y and therefore x · y = w and so: (x · y) · z = w · z = w. However, F (y, z) = {m,w} and ℓm < ℓw.
Thus y · z = m and by the same reasoning, x ·m = b. Therefore x · (y · z) = x ·m = b. Thus the
geometric product is not associative for this CL arrangement.

However, note that L0(A0) is an associative LRB, by Proposition 2.6.

2.3.2. The associative product. As we saw in Example 2.11, the product introduced in Definition
2.10 is not necessarily associative. Moreover, it does not satisfy requirement (2), i.e., if x · y = z
then i(x)i(y) = i(z), where i : L → L0 is the sign function. In this section, we introduce a different
product on L that will be associative and satisfy requirement (2). However, in order to obtain this,
we have to assume that L0 is closed under the product induced by (L1

2)
n (see Example 2.4(1) above

for a CL arrangement whose Image(i) is not closed under this product).

Definition 2.12. (Associative product on L(A))
Let A be a real CL arrangement such that L0(A) is closed under the product induced by (L1

2)
n.

Define a function j : L0 → L as follows. For every a ∈ L0, if |i
−1(a)| = 1, then j(a)

.
= i−1(a).

Otherwise, choose an element a0 ∈ i−1(a) and define j(a)
.
= a0.

For any two faces x, y ∈ L, define the product: x · y
.
= j(i(x)i(y)).

In the following proposition, we present the properties of this product:

Proposition 2.13. Let (L, ·) be the partially ordered set of faces of a real CL arrangement, where
the product is defined as in Definition 2.12 (i.e. the function j is already given). Then:

(1) x · (y · z) = (x · y) · z.
(2) x · y · x = x · y.
(3) x2 is not necessarily equal to x.

Proof. Properties (1) and (2) are immediate, since these identities are already satisfied in L0 (as a
subset of (L1

2)
n), i.e. i(x)(i(y)i(z)) = (i(x)i(y))i(z) and i(x)i(y)i(x) = i(x)i(y).

For property (3), look at the arrangement consisting of a line intersecting transversally a circle.
Let p1, p2 be the two intersection points, and denote α = i(p1). Note that i(p1) = i(p2) = α.
We may choose j(α) = p1 and thus, p22 = p1. For the other choice, i.e. j(α) = p2, we get that
p21 = p2. �

Remark 2.14. (1) The product defined in Definition 2.12 satisfies x2 = x3 (this is a specific case
of Proposition 2.13(2), when taking x = y). Thus (L, ·) is an aperiodic semigroup, i.e. for every
x ∈ L, x2 is an idempotent and the set {x2 : x ∈ L} is an LRB, isomorphic to L0.
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(2) Note that once there are different faces in L having the same image under i, then Definition
2.12 does not define a unique product on L, as it depends on the choice made by the function j in
this definition.

2.4. Non-geometric LRBs coming from CL arrangements. In this section, we present an
example of an LRB, induced by a CL arrangement, which cannot be embedded in (L1

2)
n for any

n ∈ N. This immediately implies that this LRB is not isomorphic to the face LRB of any hyperplane
arrangement, and that the family of LRBs associated to CL arrangements is broader than the
corresponding family of LRBs associated to hyperplane arrangements.

Example 2.15. Consider the real CL arrangement A which consists of a line and a circle tangent
to it (see Figure 6). This arrangement has 7 faces, and we denote the two 1-dimensional parts (i.e.
faces) of the line by b and a, the circle by c, and the 2-dimensional face below the line and outside
the circle by d. Let e be the tangency point. As usual, denote the set of faces by L.

b a

c

d

e

Figure 6

The product on L is defined using Definition 2.7. Note that e is the identity element and one
can check that (L, ·) is indeed an LRB. We have the following multiplication table for {a, b, c}:

· a b c

a a a d
b b b d
c d d c

Assume that we have a monomorphism h : L → (L1
2)

n for some n. Note that the equalities

a · b = a, b · a = b

imply that h(a) and h(b) have zeros in the same coordinates. Indeed, if (h(a))j = 0 then (h(a))j ·
(h(b))j = (h(b))j (by the multiplication laws in L1

2), but since (h(a))j · (h(b))j = (h(a))j = 0, so
(h(b))j = 0. By the same reasoning, using the second equality, we get that (h(b))j = 0 implies
(h(a))j = 0.

Since a 6= b, then h(a) 6= h(b), which means that there exists a coordinate j, 1 ≤ j ≤ n, such
that (h(a))j 6= (h(b))j and both coordinates are not zero (so without loss of generality, one is +
and the other is −). But

(h(d))j = (h(a · c))j = (h(a))j(h(c))j = (h(a))j 6=

(h(b))j = (h(b))j(h(c))j = (h(b · c))j = (h(d))j ,

by the multiplication laws in L1
2, which is a contradiction.

Therefore, L(A) (with the geometric product (Definition 2.7)) is an example of an LRB which
is not geometric (i.e. it cannot be embedded in (L1

2)
n for any n, see [15, Section 3.7]).

Moreover, note that for the LRB L0(A) (which is contained in (L1
2)

2), one cannot find a hyper-
plane arrangement A′ ⊂ R

N such that L0(A) ∼= L(A′) ∼= L0(A
′). Indeed, L0(A) has 6 elements, has

a unit i(e) = (0, 0) ∈ (L1
2)

2 and the three elements (+,+), (−,−), (−,+) form the unique two-sided
ideal of L0(A). Thus, if such a hyperplane arrangement A′ exists, it should be a central hyperplane
arrangement with three chambers, which is impossible.
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3. Plane curve arrangements: structure of sub-LRBs

Let A be a given arrangement of hypersurfaces {H1, . . . ,Hm} in R
N , where Hi

.
= {fi = 0} and

fi ∈ R[x1, . . . , xN ]. In this section, we study the explicit structure of sub-LRBs of L0(A) induced
by the embedding of a component H into the arrangement A. In section 3.1, we examine the simple
case of line arrangements, and in Sections 3.2 and 3.3 we examine the general case of real curve
arrangements in R

2.
Let H

.
= Hi ∈ A be a given hypersurface. As before, one can define two associated LRBs. The

first is the deleted LRB AH , corresponding to the deletion of the hypersurface H from A, and
the second is the restricted LRB AH , corresponding to the restriction of the arrangement A to H.
Explicitly, AH = A − {H} is the deleted arrangement in R

N and AH =
{
K ∩H|K ∈ AH

}
is the

restricted arrangement located in H. Obviously, L0

(
AH

)
is obtained from L0(A) by deleting the

ith coordinate.
For an arrangement A, one can associate a vector of signs in ({+,−, 0})m to any face in the ar-

rangement, which describes the position of this face with respect to the hypersurfaces fi. Explicitly,
as before, one can associate to A a subset L0(A) of (L1

2)
m induced by these vectors of signs.

Define:
L0(A)|H

.
= {x ∈ L0(A) : (x)i = 0} ⊂ (L1

2)
m.

L0(A)|H is a sub-LRB of L0(A), to which corresponds the restricted arrangement AH as a sub-
LRB. Indeed, it is a subset of L0(A) and thus the associativity and the LRB properties x2 =
x, xyx = xy are immediately satisfied. The closure under the product is obvious. Note that
♯L0(AH) = ♯(L0(A)|H).

As H is not necessarily a hyperplane, AH is an arrangement of points located on H, but it is
not necessarily an arrangement in R

k for some k (though H can be embedded in R
N , we look

at the arrangement in H). However, when the arrangement is in R
2, the question regarding the

connections between L0(AH) and L0(A)|H becomes more manageable, as one can try to define a
structure of an LRB on AH as is done in Definitions 3.5 and 3.7. Note that when either H is a
bounded component or an unbounded one, AH is a collection of points {p1, . . . , pk} on H.

Note: From now on, we assume that L0(A) is an LRB, i.e. it is closed under the product induced
by (L1

2)
m. Moreover, to simplify notations, we assume that each Hi is connected in R

N , where Hi

is defined by the hypersurface {fi = 0}.

Remark 3.1. Note that L0(AH) ⊆ (L1
2)

k and L0(A)|H ⊆ (L1
2)

m. In order to distinguish between
the different vectors of signs when we talk on a corresponding face, which can be thought of both
as a face in L(AH) and in L(A)|H ⊆ L(A), we denote:

iA : L(A) → (L1
2)

m, Image(iA) = L0(A)

and
iH : L(AH) → (L1

2)
k, Image(iH) = L0(AH),

where both maps describe the vectors of signs in L0(A) (resp. L0(AH)) of a face in L(A) (resp.
L(AH)). See the exact definition of iH in Definitions 3.5 and 3.7.

3.1. Preliminaries: The embedding principle for the face LRB of line arrangements. In
this section, we present the embedding principle for the face LRB of line arrangements in R

2 (which
can be easily generalized to hyperplane arrangements), i.e. the connections between L0(AH) and
L0(A)|H for a line arrangement A and H ∈ A. This is done as a preparation for Proposition 3.9,
which deals with the embedding principle for arrangements of smooth real curves.

Lemma 3.2. Let A = {H1, . . . ,Hm} be an arrangement of lines in R
2, where Hi = {fi = 0}.

Denote H = H1 and let H ∩ {H2, . . . ,Hm} = {p1, . . . , pk} ⊂ H be k points. Then, there is an
isomorphism of LRBs:

ϕ : L0(AH)
∼
→ L0(A)|H ⊆ (L1

2)
m,
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satisfying the following properties:

(1) (ϕ(L0(AH)))1 = 0.
(2) For every j > 1:

(a) If H ∩ Hj = ∅, then (ϕ(L0(AH)))j is constant (either + or −, depending on the
mutual position of the parallel lines H and Hj). Explicitly, all the vectors in ϕ(L0(AH))

have the same sign in the jth coordinate.
(b) If H ∩Hj = {ps}, then (ϕ(L0(AH)))j = (L0(AH))s, up to a constant scalar multipli-

cation in {±1}. The index of the right hand side is the index of ps in the arrangement of
points in H = H1, i.e. in L0(AH).

Before the proof, we illustrate the above lemma by an example.

H=H1

H3

H4

H1
- + - +

1 2 3 4 5

p1 p2

1

2

3

4

5

H2

H5

+

-

+

-

+
-

-+

(a) (b)

x x x x x

f

f

f

f

f

H1
- + + -

1 2 3 4 5

p1 p2

(c)

x� x� x� x� x�

Figure 7. An example for illustrating Lemma 3.2: fi are the faces contained in H1

in the face set L(A). xi (and x′i) are the faces in the face set L0(AH1
).

Example 3.3. Figure 7(a) presents an arrangement A and Figures 7(b) and 7(c) present two
arrangements of points on a line, both can be thought of as the restricted arrangement AH1

. Note
that the difference between the arrangements in Figures 7(b) and 7(c) is that the signs assigned
with respect to the point p2 are opposite.

(1) Considering the arrangement in Figure 7(b), the faces of AH1
are denoted by x1, . . . , x5;

their corresponding images by ϕ, i.e. these faces in the arrangement A, are denoted by
f1, . . . , f5. Let H = H1. Then, the corresponding LRBs are

L0(AH) =

{
iH(x1) = (−,−), iH(x2) = (0,−), iH (x3) = (+,−),

iH(x4) = (+, 0), iH (x5) = (+,+)

}

,

and

L0(A)|H = ϕ(L0(AH)) =







iA(f1) = (0,+,−,−,−), iA(f2) = (0,+, 0,−, 0),
iA(f3) = (0,+,+,−,+), iA(f4) = (0,+,+, 0,+),

iA(f5) = (0,+,+,+,+)






.

(a) First, note that (ϕ(L0(AH)))1 = 0 (case (1) of the lemma).
(b) Since H ∩H2 = ∅, (ϕ(L0(AH)))2 = +, i.e., by case (2)(a), the second coordinate in all

the vectors of ϕ(L0(AH)) is +.
(c) Since H3 ∩H = H5 ∩H = {p1},

(ϕ(L0(AH)))3 = (ϕ(L0(AH)))5 = (L0(AH))1

(by case (2)(b)).
(d) Since H4 ∩H = {p2}, (ϕ(L0(AH)))4 = (L0(AH))2 (again by case (2)(b)).
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(2) Considering the arrangement in Figure 7(c), the faces of AH1
are denoted by x′1, . . . , x

′
5. In

this case, we have:

L0(AH) =

{
iH(x′1) = (−,+), iH(x′2) = (0,+), iH (x′3) = (+,+),

iH(x′4) = (+, 0), iH (x′5) = (+,−)

}

.

As before, since H3 ∩H = H5 ∩H = {p1},

(ϕ(L0(AH)))3 = (ϕ(L0(AH)))5 = (L0(AH))1.

On the other hand, as H4∩H = {p2}, (ϕ(L0(AH)))4 = −(L0(AH))2. Explicitly, in contrast
to Example (1)(d) above, in order to obtain (ϕ(L0(AH)))4, one has to multiply all the
values in (L0(AH))2 by the scalar (−1).

Proof of Lemma 3.2. We use the notation introduced in Remark 3.1. Case (1) is obvious (since we
are in H1).

For case (2)(a), note that if H ∩ Hj = ∅, then Hj is parallel to H and all the faces of A with
support in H are either in the halfplane {fj > 0} (in this case (ϕ(L0(AH)))j = +) or in {fj < 0}
(in this case (ϕ(L0(AH)))j = −).

As for case (2)(b): assume that H ∩ Hj = {ps} for some 1 ≤ s ≤ k and let c be a face of A
with supp(c) ⊆ H. As c goes over all the faces such that supp(c) ⊆ H, it passes over all the set
Image(ϕ). Then, either c ⊂ {fj > 0}, c ⊂ {fj < 0} or c ⊂ {fj = 0}. In the third case, c = ps ∈ H
and thus (iH(c))s = 0 and as c ∈ Hj, (iA(c))j = 0. As for the first two cases, the fact that c is in
one of the two halfplanes is determined by the position of H with respect to Hj (as c ⊂ H), which
is reduced to checking if c is located to the right of {ps} = H ∩Hj or to its left. Therefore, up to
a constant scalar multiplication by {±1} (for all faces c such that supp(c) ⊆ H), c ⊂ {fj > 0} is
equivalent to the fact that c is to the right of ps. The (constant) scalar multiplication is needed,
since a priori there is no connection between the sign in L0(AH) that is assigned to the faces to
the right of ps and the sign in L0(A) assigned to these faces in the halfplane above Hj (see Figures
7(b) and 7(c) for an example of two different assignments of signs for AH). �

Remark 3.4. Note that there is a natural assignment of signs for the elements in AH , that is
induced by L0(A), in the following way: if the sign in L0(A) that is given to the halfplane {fj > 0}
is + (in the jth coordinate, where Hj = {fj = 0} and H ∩Hj = {ps}), and the section {x > ps}
on the line H is contained in {fj > 0}, then the sign in L0(AH) associated to {x > ps} (i.e. in

the sth coordinate) will also be +. If {x < ps} ⊂ {fj > 0}, then the sign associated to the faces
contained in this section will be −. In the case of this natural assignment of signs to AH , the scalar
multiplication in case (2)(b) of Lemma 3.2 is not needed.

However, note that Lemma 3.2 is more general, as we do not assume any a priori connection
between the signs associated to the halfplanes in A and the signs associated to the half-lines in AH .

3.2. The structure of the LRB on a real pointed curve. Before passing to the embedding
principle in the general case of arrangements of smooth curves (Section 3.3), one has to consider
two cases with respect to the structure of the induced LRB of a real pointed curve AH - where
H is an unbounded component and where H is a bounded one. In this section, we deal with the
structure of the induced LRB of a real pointed curve AH (that is, an arrangement of points on a
real curve) in the above two cases.

Given an arrangement of smooth curves A in R
2 and a connected component H ∈ A, the re-

stricted arrangement AH will be the real curveH with points on it corresponding to the intersection
points of the deleted arrangement A−{H} with H, i.e. we get an arrangement of real points on a
connected component H.

We start with the case of an unbounded component:



14 MICHAEL FRIEDMAN AND DAVID GARBER

Definition 3.5 (LRB structure on an unbounded component).
Let H ⊂ R

2 be an unbounded smooth connected real plane curve with no self-intersections. Let
{p1, . . . , pk} be a collection of points on H and let L(H) be the set of faces of H with respect to
these points; explicitly, the faces are the points themselves and the sections of the curve that are
bounded by the points.

Each point pj ∈ H, 1 ≤ j ≤ k, divides the curve H into three distinct parts: the point itself and
two other open sets: Hj,1 and Hj,2 such that H = {pj} ∪Hj,1 ∪Hj,2. Associate to the set Hj,1 the
sign +, to the set Hj,2 the sign − and to the set {pj} the sign 0. Obviously, one can rename the set
Hj,1 as Hj,2 and Hj,2 as Hj,1 and thus induce a different assignment of signs, but once we assign
these signs for each set, they are fixed.

For each face P ∈ L(H), we associate an element iH(P ) in (L1
2)

k, that is, a vector of signs, in
the following way: for each j, 1 ≤ j ≤ k, if P ⊆ Hj,1, then (iH(P ))j = +; otherwise, if P ⊆ Hj,2,
then (iH(P ))j = −; otherwise, that is P = {x = pj}, (iH(P ))j = 0.

In this way, we get a monomorphic map iH : L(H) → (L1
2)

k and we can identify L(H) with its
image iH(L(H)) ⊆ (L1

2)
k.

We have the following lemma:

Lemma 3.6. (1) The set iH(L(H)) is closed under the product induced by the LRB (L1
2)

k, so it is
an LRB as well.
(2) Different assignments of signs to Hj,1, Hj,2 (as described above) induce isomorphic LRBs.

Proof. (1) The set iH(L(H)) is closed under the product induced by the LRB (L1
2)

k, since H
is topologically equivalent to a line, and the assignment of the vectors of signs to L(H) is thus
equivalent to associating an LRB structure to the set of faces of a pointed line, as a spcial case of
a hyperplane arrangement (as described in Section 2.1).

(2) Since H is topologically equivalent to a line, different assignments of signs to Hj,1, Hj,2, will
induce isomorphic LRBs, by Remark 2.2. �

We pass to the case of a bounded component. If H is a smooth bounded component in R
2,

i.e. an oval, we can consider an arrangement of points {p1, . . . , pk} on an oval and look at the
corresponding set of faces L(H). However, we cannot treat L(H) as in the former case, since there
is no meaning to the phrase “every point divides the curve H into three distinct parts”, when we
are on an oval. We introduce here an alternative way to associate an LRB structure to L(H).

Definition 3.7 (LRB structure on a bounded component).
Let H = C be a smooth pointed bounded oval, where {p1, . . . , pk} is the set of points on it
numerated consecutively clockwise. As can easily be seen, the set of faces L(C) contains 2k faces:
k points and k sections of the curve that are bounded by the points. Let p′1 be a point to the
left of p1 which is infinitesimally close to p1 (see Figure 8(a)), and let C1 = C − {p′1}. C1 is
topologically equivalent to an open segment S = (a′1, a

′′
1), that is, there exists a distance-preserving

homeomorphism f : C1 → S, such that f(p′1) = a′1 = a′′1 . Denote f(pi) = ai for 1 ≤ i ≤ k.
Explicitly, we think of C1 as a straight segment that starts at the point a′1, when the section

that starts at ak ends at a point a′′1, which, on C1, is identified with p′1 (see Figure 8(b)).
On the pointed segment S ∪ {a1, . . . , ak}, the set of faces consists of 2k + 1 faces. However, on

C, the segments f−1(a′1, a1) and f−1(ak, a
′′
1) are contained in the same face. As a1 − a′1 = ε ≪ 1,

we ignore this infinitesimally-small face and thus L(S), the set of faces of S, has only 2k faces: k
points and k open sections of the curve. We now identify this set of faces with the set of faces
L(C).

We can now associate an LRB structure to L(S), as it is done for a set of faces of a pointed
line; that is, to every face P ∈ L(S), we associate a vector of signs iH(P ) ∈ (L1

2)
k in the following
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way: Given 1 < j ≤ k, the point aj divides S into three distinct parts: the point itself {x = aj}
and two other open sets: Hj,1 = {x > aj} and Hj,2 = {x < aj}. Associate to the set Hj,1 the sign
+, to the set Hj,2 the sign − and to the set {x = aj} the sign 0. Obviously, as in the case of an
unbounded component, one can rename the set Hj,1 as Hj,2 and Hj,2 as Hj,1 and thus induce a
different assignment of signs, but once we assign these signs for each set, they are fixed.

For j = 1, since we ignore the section {a′1 < x < a1}, the point a1 divides S into two distinct
parts: the point {x = a1} itself and H1,1 = {x > a1}. Associate to the set H1,1 the sign + (or −)
and to the set {x = a1} the sign 0. Again, once we associated these signs for each set, they are
fixed (see Figure 8(c)).

Thus, the map iH : L(S) → (L1
2)

k is defined as in Definition 3.5: for each face, the jth coordinate
of iH(P ) for P ∈ L(S), depends on whether P = aj , P ⊆ H1,j or P ⊆ H2,j.

Note that L(S) has an LRB structure (by the same arguments of Lemma 3.6(1)). Similar to the
case of an unbounded component, as C1 is topologically equivalent to an open segment, different
assignments of signs to Hj,1, Hj,2, as described above, will induce isomorphic LRBs, by Remark
2.2.
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a
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a
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a
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- ++

- ++ - +

(b) (c)

- +

Figure 8. The LRB structure associated to an arrangement of points on an oval
(for different choices of reference points p′1 or p′2). The section (a′1, a1) (or (a

′
2, a2))

is ignored.

We still have to prove that Definition 3.7 does not depend on the choice of the initial point p1,
when numerating the points on C. This is equivalent to prove that if we choose a point p′2 as a
point to the left of p2 (being infinitesimally close to p2) and consider the induced LRB structure on
C2 = C−{p′2} (see Figures 8(a) and 8(d)), then the LRBs iH(L(C1)) and iH(L(C2)) are isomorphic.

Proposition 3.8. The LRBs L0(C1) = iH(L(C1)) and L0(C2) = iH(L(C2)) are isomorphic.
Therefore, the LRB structure on C ∪ {p1, . . . , pk} is independent of the choice of the removed
point.

Proof. As noted after Definition 3.7, different sign assignments on L(C1) (or on L(C2)) induce
isomorphic LRB structures. Thus, we first set a fixed assignment of signs for L(C1) and L(C2) and
then prove that the LRBs are isomorphic.

The sign assignment for L(C1) is the following: for each 1 < j ≤ k, we assign the sign + to Hj,1,
the sign − to Hj,2 and the sign 0 to {x = aj}; for j = 1, we assign the sign + to H1,1 and the sign
0 to {x = a1} (see Figure 8(c)).

The sign assignment for L(C2) is the following: for each 1 ≤ j ≤ k where j 6= 2, we assign the
sign + to Hj,1, the sign − to H2,2 and the sign 0 to {x = aj}; for j = 2, we assign the sign + to
Hj,1 and the sign 0 to {x = a2} (see Figure 8(e)).

Thus, going over all the 2k faces of L(C1) from left to right, we get that:

iH(L(C1)) =

{
(0,−,−, . . . ,−), (+,−,−, . . . ,−), (+, 0,−, . . . ,−),

(+,+,−, . . . ,−), . . . , (+, . . . ,+)

}

.
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In the same way, going over all the 2k faces of L(C2) from left to right, we get that:

iH(L(C2)) =

{
(−, 0,−,−, . . . ,−), (−,+,−,−, . . . ,−), (−,+, 0,−, . . . ,−),

(−,+,+,−, . . . ,−), . . . , (−,+, . . . ,+), (0,+, . . . ,+), (+,+, . . . ,+)

}

.

Both LRBs describe the movement over the 2k faces along a bounded open straight segment with
k marked points, i.e. given faces x and y, then x · y is the face we enter in after the movement from
x to y on this line and thus they are isomorphic. Thus the explicit isomorphism from L0(C1) to
L0(C2) maps the points pi 7→ pi(mod k)+1 and the sections of C1 are mapped to the corresponding
sections of C2, according to the mapping of the points. �

Thus, given an arrangement A and a bounded component H ∈ A, we can choose a point p
infinitesimally close to the point p1 and delete it. In this way, we can consider the LRB associated
to AH − {p}, as in the case of an unbounded component (when ignoring the infinitesimally-small
section between p and p1). As was shown, this LRB does not depend on the location of p (when
the only condition is that p 6= pj for all j) up to an isomorphism. Denote this associated LRB

by L0(AH), which is a sub-LRB of (L1
2)

k. For other examples, see Example 3.10(3) and Figure 10
below.

3.3. The embedding principle for the face LRB of CL arrangements. We are ready to
describe the main result of this section: the structure of the sub-LRBs of L0(A) induced by the
components of A ⊂ R

2.

Proposition 3.9. Let A = {H1, . . . ,Hm} be an arrangement of smooth connected curves in R
2,

such that Hi = {fi = 0} where fi ∈ R[x, y]. Let H
.
= H1 and

H ∩ {H2, . . . ,Hm} = {p1, . . . , pk} ⊂ H.

Then there is a bijective function, which is not necessarily an isomorphism, of LRBs:

ϕ : L0(AH) → L0(A)|H ⊆ (L1
2)

m

satisfying:

(1) (ϕ(L0(AH)))1 = 0.
(2) For every j > 1:

(a) If H∩Hj = ∅, then (ϕ(L0(AH)))j is constant. Explicitly, all the vectors in ϕ(L0(AH))

have the same sign in the jth coordinate.
(b) If H ∩Hj 6= ∅, let H ∩Hj = {pi}i∈Kj

, where Kj is the set of indices of the points in
H ∩Hj. Then (up to a constant scalar multiplication by {±1}):

(ϕ(L0(AH)))j =
∏

i∈Kj

((L0(AH))i)
mi

where mi = multpi(H ∩Hj) is the intersection multiplicity at the point pi, and the multi-
plication of signs (in the right hand side) is the usual product (explicitly, + · + = − · − =
+, + ·− = −·+ = −, 0·{±} = 0). Note that the numeration of the indices in the right hand
side is according to the numeration of the points in the arrangement of points in H = H1.

As before, we illustrate this proposition by some examples before proving it.

Example 3.10. (1) Figure 9(a) presents an arrangementA with three lines and a conic tangent
to one of the lines, and Figure 9(b) presents the restricted arrangement AH1

. By Proposition
2.6, L0(A) is indeed a semigroup. The faces of AH1

are denoted by x1, . . . , x5 and their
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H1

H3

H2

+
-

-
+

+ -

H1
- + - +

1 2 3 4 5

1
2

3 4
5 p1 p2

H4

+
-

a
bc

(a) (b)

x x x x x

f f
f f

f

H4

(c)

c b a

Figure 9. An example for illustrating Proposition 3.9: fi are the faces contained
in H1 in the face set L(A). xi are faces in the face set L0(AH1

). a, b, c are faces
contained in H4.

corresponding faces in A are denoted by f1, . . . , f5. Let H = H1. Then, the corresponding
LRBs are:

L0(AH) =

{
iH(x1) = (−,−), iH(x2) = (0,−), iH (x3) = (+,−),

iH(x4) = (+, 0), iH (x5) = (+,+)

}

and

L0(A)|H = ϕ(L0(AH)) =







iA(f1) = (0,+,+,+), iA(f2) = (0, 0,+,+),
iA(f3) = (0,−,+,+), iA(f4) = (0,−, 0,+),

iA(f5) = (0,−,+,+)






.

Then:
(a) First, note that (ϕ(L0(AH)))1 = 0 (case (1) of the proposition).
(b) Since H ∩H2 = {p1} ∈ AH , by case (2)(b) of the proposition,

(ϕ(L0(AH)))2 = −(L0(AH))1

(note the scalar multiplication by −1).
(c) Since H3 ∩H = {p2}, where multp2(H ∩H3) = 2, then again by case (2)(b),

(ϕ(L0(AH)))3 = ((L0(AH))2)
2.

(d) Since H4 ∩H = ∅, then (ϕ(L0(AH)))4 = + (by case (2)(a)).
(2) Relabel the arrangement in Figure 9(a), such that the conic will be now labeled as H1, see

Figure 10(a).
The faces of AH1

are denoted by x1, . . . , x6 (see Figure 10(c); note that the section
between p′1 and p1 is ignored) and their corresponding faces in A are denoted by f1, . . . , f6
(see Figure 10(a)). Let H = H1. As was explained in Definition 3.7, one can induce an
LRB structure on AH . Then, the corresponding LRBs are:

L0(AH) =

{
iH(x1) = (0,−,−), iH (x2) = (+,−,−), iH (x3) = (+, 0,−),
iH(x4) = (+,+,−), iH(x5) = (+,+, 0), iH (x6) = (+,+,+)

}

and

L0(A)|H = ϕ(L0(AH)) =

{
iA(f1) = (0, 0,−,+), iA(f2) = (0,−,−,+), iA(f3) = (0,−,−, 0),
iA(f4) = (0,−,−,−), iA(f5) = (0,−,−, 0), iA(f6) = (0,−,−,+)

}

.

Then:
(a) First, note that (ϕ(L0(AH)))1 = 0 (case (1) of the proposition).
(b) Since H ∩ H2 = {p1} ∈ AH , where m1 = multp1(H ∩ H2) = 2, then by case (2)(b),

(ϕ(L0(AH)))2 = −((L0(AH))1)
2 (note the scalar multiplication by −1).

(c) Since H3 ∩H = ∅, then (ϕ(L0(AH)))3 = − (by case (2)(a)).
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Figure 10. Another example for illustrating Proposition 3.9: fi are the faces con-
tained in the conic H1 in the face set L(A) (see part (a)). xi are the faces of the
face set L0(AH1

) (see part (c)). The three parts illustrate the process of associating
an LRB structure to the conic H1. First, we remove a point p′1 from H1 to the left
of p1 (see part (b)). Then, we consider H1 as a segment with this point deleted, i.e.
a ray which starts from p1 (see part (c)).

(d) Since H4 ∩H = {p2, p3}, where

m2 = multp2(H ∩H4) = multp3(H ∩H4) = 1,

then by case (2)(b),

(ϕ(L0(AH)))4 = (L0(AH))2 · (L0(AH))3.

Remark 3.11. Note that if every singular point is locally a transversal intersection of two compo-
nents (as in the case, for example, of a line arrangement), then one can easily see that Proposition
3.9 is indeed a generalization of Lemma 3.2.

Proof of Proposition 3.9. We use the same notations introduced in Remark 3.1. The proofs of cases
(1) and (2)(a) are identical to the corresponding proofs in Lemma 3.2.

First, we show that ϕ is not necessarily a homomorphism. Let A be the arrangement presented
in Figure 9(a), and let H = H4. Let a, c be the intersection points of H with the conic and b be the
1-dimensional segment between them (see Figure 9(c)). When considering a, b, c as faces of AH ,
then in L0(AH), iH(a)iH (c) = iH(b). However, when considering a, b, c as faces of A (see Figure
9(a)), iA(a) and iA(c) have a zero value in the coordinate corresponding to the conic. However,
iA(b) does not have a zero value in that coordinate. Thus, in L0(A), iA(a)iA(c) 6= iA(b).

We now prove case (2)(b). Let j > 1 and assume that H ∩Hj = {pi}i∈Kj
. Let c be a face of A

with supp(c) ⊆ H. Note that if c = pk for k ∈ Kj , then (iH(c))i = 0 in L0(AH) and (iA(c))j = 0
in L0(A)|H = ϕ(L0(AH)) ⊂ L0(A); thus case (2)(b) is satisfied when c is 0-dimensional.

Therefore, we can assume that c is a face satisfying dim(c) = 1. Then, either c ⊂ {fj > 0}
or c ⊂ {fj < 0}. We claim that the corresponding vector of signs is determined by the relative

position of c with respect to the points {pi}: the (usual) product of the signs (of the i
th coordinates

of L0(AH), where i ∈ Kj) describes whether c is in {fj > 0} or in {fj < 0}. Let us explicitly check
all the possible cases:

(1) If H ∩Hj = {pi} is a single transversal intersection point (mi = 1), then, as H and Hj has
only one connected component in R

2, we can proceed as in case (2)(b) in Lemma 3.2.
(2) If H ∩Hj = {pi} is a single tangent point (mi = 2), then we claim that the jth coordinate

of ϕ(L0(AH)) is constant: either + or − (except for the face x = pi, whose sign in the
jth coordinate is 0, as was described above for the case that dim(c) = 0). This is since H
is either entirely outside or entirely inside the domain {fj > 0}, and the jth coordinate is
determined according to the signs attached to the two domains of the plane partitioned by
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the curve Hj. In the first case (iA(c))j = + and in the second case (iA(c))j = −. Also, in
any case ((iH(c))i)

2 = + and thus we proved that (iA(c))j = ±((iH(c))i)
2 = {±1}, thus the

jth coordinate is indeed constant.
(3) Generalizing case (1) and (2), if H ∩ Hj = {pi} is a single singular point of multiplicity

mi > 2, then we are only interested in the parity of mi. If mi is even, then locally at pi,
the curve H does not pass to the “other side” of Hj (i.e. it is only in the domain {fj ≥ 0}
or in {fj ≤ 0}), and thus the treatment of this case is as in case (2), where mi = 2. If mi

is odd, then locally at pi, the curve Hj does pass to the “other side” of H, and thus the
treatment of this case is as in case (1), where mi = 1.

(4) Assume now that H ∩ Hj = {ps1 , ps2} is two transversal intersection points (i.e. ms1 =
ms2 = 1; for example, whenH is a line andHj is a circle intersecting H twice transversally).
Recall that the structure of the induced LRB on a pointed real curve C ∪ {p1, . . . , pk} (see
Section 3.2) allows us to think on faces which are to the right (or to the left) of a point pi,
1 ≤ i ≤ k. Assume without loss of generality that ps2 is to the right of ps1 .

If H is an unbounded curve, then the fact that c ⊂ {fj > 0} is equivalent to the fact that
c is to the right of ps2 or to the left of ps1 . In the first case, (iH(c))s1 · (iH(c))s2 = + ·+ =
+ = (iA(c))j . In the second case, (iH(c))s1 · (iH(c))s2 = − · − = + = (iA(c))j . We use a
similar argument when c ⊂ {fj < 0}.

If H is a bounded oval, then, as described in Definition 3.7, one chooses a point p
infinitesimally close to a point pi ∈ {p1, . . . , pk}. Thus, an LRB structure on the set of faces
of AH is induced independent of the choice of the point p, when looking on H as a bounded
segment. Therefore, we can use the same argument used in the case of an unbounded curve.

(5) Generalizing case (4), assume that H ∩Hj = {ps1 , . . . , psn}, i.e. the intersection of H and
Hj is a transversal intersection of n points (msi = 1 for 1 ≤ i ≤ n).

Assume that H is an unbounded connected curve and thus without loss of generality, we
can numerate the points {psi} consecutively, such that the point psn will be the rightmost
point. Assume also that in L0(A), the domain {fj > 0} induces the sign + in the jth

coordinate. Let c be a 1-dimensional face in AH . Assume now that c is to the right of psn .
Thus (iH(c))s1 · . . . · (iH(c))sn = + · . . . · + = + in L0(AH). In addition, if c ⊂ {fj > 0},
then in L0(A) (or, more accurately, in L0(A)|H), (iA(c))j = + (otherwise (iA(c))j = −).

Now, if we move to the consecutive 1-dimensional face c′, adjacent to c (i.e. between psn
and psn−1

), then in L0(AH),

(iH(c′))s1 · . . . · (iH(c′))sn−1
· (iH(c′))sn = + · . . . ·+

︸ ︷︷ ︸

n−1 times

·− = −,

while in L0(A), as c′ ⊂ {fj < 0} (if indeed c ⊂ {fj > 0}), (iA(c
′))j = −. Note that if

c ⊂ {fj < 0}, then c′ ⊂ {fj > 0}, so (iA(c
′))j = +, i.e. there a constant scalar multiplication

by {±1} of
∏

v(iH(c))sv .
In this way, we can proceed to the next adjacent 1–dimensional face and so on, till we

have reached to the leftmost face, i.e. to the face to the left of ps1 , proving case (2)(b) for
this type of intersection.

The treatment of the case when H is a bounded oval is similar to the former case (see
also case (4)).

(6) In other cases, i.e. when H ∩Hj = {ps1 , . . . , psn} and msi ≥ 1, then this case is treated as
case (5) (i.e. treating each face separately, starting from the rightmost face and continuing
to its adjacent face, and so on) combined with the insights of cases (1),(2) and (3).

�
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4. CL arrangements: Chamber counting

In this section, we present some restrictions on the combinatorics induced by CL arrangements,
induced by the fact that these arrangements induce a partition of the plane (Section 4.2). We start
by recalling the deletion-restriction argument for hyperplane arrangements (Section 4.1).

4.1. Preliminaries: Chamber counting for hyperplane arrangements. The main references
for this subsection are [8, 16].

Let A = {H1, . . . ,Hn} ⊂ R
N be a hyperplane arrangement, and let fi ∈ R[x1, . . . , xN ] be

the corresponding forms of the hyperplanes. Let also L = L(A) be the semi-lattice of nonempty
intersections of elements of A.

As before, givenH ∈ A, letAH = A−{H} be the deleted arrangement, andAH =
{
K ∩H|K ∈ AH

}

be the restricted arrangement. Let C(A) be the set of chambers of A, i.e. the components of RN−A.
Then, we have Zaslavsky’s chamber counting formula (see [24]):

(3) |C(A)| =
∣
∣C

(
AH

)∣
∣+ |C (AH)| .

Remark 4.1. One can give a simple set-theoretic proof for this formula: Deleting a hyperplane
H from the arrangement A induces a surjection of LRBs f : L0(A) → L0

(
AH

)
, which deletes the

coordinate corresponding to the hyperplane H. Thus, the number of chambers in A is equal to the
sum of the number of chambers in the deleted arrangement AH plus the number of chambers which
are identified by the map f . Given C1, C2 ∈ C(A), note that f(C1) = f(C2) if and only if C1 and C2

share a common codimension-1 face contained in H, i.e. a chamber in the restricted arrangement
AH . Hence the number of the identified chambers is equal to the number of the chambers of AH ,
and Equation (3) follows.

Note that if we denote by I(A) the unique two-sided ideal of the LRB L(A) (which is the set of
the chambers of A), Equation (3) is equivalent to the following equation:

|I(A)| =
∣
∣I

(
AH

)∣
∣+ |I (AH)| .

Remark 4.2. Other restrictions on the combinatorics of real and complex line arrangements can be
found, for example, in Hirzebruch’s seminal paper [14], but we do not deal with their generalizations
here.

4.2. Chamber counting for CL arrangements. For a real CL arrangement, the deletion-
restriction formula (3) for chamber counting does not hold anymore. For example, for the ar-
rangement A appearing in Figure 11,

|C(A)| = 4,
∣
∣C

(
AH

)∣
∣ = 2, |C (AH)| = 3 ⇒ |C(A)| 6=

∣
∣C

(
AH

)∣
∣+ |C (AH)| .

On the other hand,
∣
∣C

(
AC

)∣
∣ = 2, |C (AC)| = 2 ⇒ |C(A)| =

∣
∣C

(
AC

)∣
∣+ |C (AC)| .

H
C

Figure 11. An example for the restriction-deletion formula for a CL arrangement.

Thus, the deletion-restriction argument needs to be changed. In order to formulate this change
accurately, we start by introducing some notations.
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Definition 4.3. Let A ⊂ R
2 be a real CL arrangement.

(1) Let H ∈ A. Define the function:

bound : C(AH) → {Y ∈ P (C(A)) : |Y | = 2}

bound(E) = {X1,X2} where E ⊂ X1 ∩X2,

where P (C(A)) is the power set of C(A) and X is the (topological) closure of X.
(2) For E1, E2 ∈ C(AH), define the following equivalence relation ∼:

E1 ∼ E2 ⇔ bound(E1) = bound(E2),

and define:

b(H) = C (AH) / ∼ .

For example, for the arrangements in Figure 12, |b(H)| = 2.

H
1

1

2

H 1

1
2

Figure 12. An illustration of the different elements in b(H). Note that it does
not matter if we delete either a line or a conic. The bold sections denoted by 1 are
identified in b(H).

Remark 4.4. It is easy to see that:

(1) |b(H)| ≤ |C (AH) |.
(2) If A is a line arrangement, then b(H) = C (AH) for any line H ∈ A.

Proposition 4.5. Let H ∈ A be a component in a real CL arrangement A. Then:

|C(A)| = |C
(
AH

)
|+ |b(H)|.

Note that by Remark 4.4(2), Proposition 4.5 is indeed a natural generalization of the situation
for line arrangements to the case of real CL arrangements.

Remark 4.6. By the same arguments we have used above, one can easily see that Proposition 4.5
holds for arrangements in RP

2 too. However, in Definition 4.3(1), the definition of the function
bound should be changed as follows:

bound : C(AH) → {Y ∈ P (C(A)) : |Y | ≤ 2}

bound(E) = {X1,X2} such that E ⊂ X1 ∩X2 or E ⊂ X1.

Proof of Proposition 4.5. For every chamber X ∈ C
(
AH

)
satisfying H ∩X 6= ∅, H divides X into

a certain number of chambers; we denote this number by kX . Thus:

|C(A)| = |C
(
AH

)
|+

∑

X∈C(AH )
H∩X 6=∅

(kX − 1),

since every chamber X ∈ C
(
AH

)
in the sum splits into kX chambers, but we do not count X itself,

as it is already counted in
∣
∣C

(
AH

)∣
∣. For each X ∈ C

(
AH

)
in the sum, denote:

X =

kX⋃

i=1

Xi, HX = H ∩X,
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that is, (the interior of) X is divided into kX chambers Xi, whose union (of their closure) is (the
closure of) X.

Note that HX is possibly a union of disjoint sections and HX ⊂ C (AH). Therefore, we need
to prove that 1 + |b (HX)| = kX . We numerate the sections of HX consecutively, which induces
a numeration H1,H2, . . . of the sections of b (HX) from right to left. For each Hi ∈ b (HX),
1 ≤ i ≤ |b (HX)|, we look at the pair bound(Hi) = {Xi1 ,Xi2}; see Figure 13 for an example.

H
H1H2H3H3H4

X1

X2

X3

X4

X5

C

Figure 13. An example for the partition of HX , where X = X1 ∪ · · · ∪ X5 is a
chamber contained inside the interior of the conic C andX1, . . . ,X5 are the chambers
whose union is X. The equivalence classes of the sections of HX = H ∩ X are
H1, . . . ,H4.

We show that for each i < j, either |bound(Hi) ∩ bound(Hj)| = 1 or there is a sequence
Hi+1, . . . ,Hj−1 such that for each k, i ≤ k < j, |bound(Hk) ∩ bound(Hk+1)| = 1. Indeed,
|bound(Hi) ∩ bound(Hj)| < 2, otherwise Hi ∼ Hj. If |bound(Hi) ∩ bound(Hj)| = 0, look at
bound(Hs) for s ∈ {i, i + 1, i + 2} (assuming that Hi 6∼ Hi+1 and Hi+1 6∼ Hi+2). Assume by con-
tradiction that |bound(Hi)∩ bound(Hi+1)| = 0. This means that we have the situation depicted in
Figure 14.

Hi
Hi+1

X1

X2

X3

X4

Figure 14. |bound(Hi) ∩ bound(Hi+1)| = 0

However, this situation is impossible, since the sections are consecutive, and if {X1,X2} ∩
{X3,X4} = ∅, then Hi,Hi+1 will not dissect the same (single) chamber X ∈ C (AH) (since X1,X2

and X3,X4 will be contained in different chambers of C
(
AH

)
) – indeed, even before the equiva-

lence relation ∼, one can connect a generic point from Hi with a generic point from Hi+1 with a
continuous path which lies only in X, which mean that the above intersection is always nonempty.

Thus, we define recursively the following map ℓX : b(H) → {X1, . . . ,XkX} : ℓX(H1) is one of the

chambers X satisfying H1 ⊂ X. For i > 1 define ℓX(Hi) to be one of the chambers X ′ such that
Hi ⊂ X ′ and for every j < i, ℓX(Hj) 6= X ′. Up to the choice of X, the map is well-defined, as for
every 1 < i there is only one option to choose (recall that for each i, |bound(Hi)∩bound(Hi+1)| = 1).
By its definition, the map ℓX is injective. Therefore, |b(HX)| = kX − 1 as requested. �

Remark 4.7. (1) Note that a set-theoretic proof to Proposition 4.5, which is parallel to the one
given in Remark 4.1 for line arrangements, can be given in a similar way. As in the case of line
arrangements, deleting a connected component H from the arrangement A induces a surjection of
LRBs f : L0(A) → L0(A

H), which deletes the sign corresponding to the component H. Thus, the
number of chambers in A is equal to the sum of the number of chambers in AH plus the number
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of chambers which are identified by the map f . We have shown in the proof of Proposition 4.5
that the map ℓX : b(H) → {X1, . . . ,XkX} is a bijection between the number of chambers which are
identified by the map f and the elements in b(H), and therefore the result follows as before.
(2) Other deletion-restriction theorems with respect to chamber counting for arrangements of curves
on surfaces can be found, for example, in Zaslevsky [25].

Remark 4.8. In a recent paper of Schenck and Tohaneanu [19], the existence of other restriction-
deletion theorems with respect to the module of A-derivations D(A) for a CL arrangement A
was proven. However, the connection between these theorems and the results we have obtained
with respect to a deleted or restricted CL arrangement is not clear. First, the restriction-deletion

theorems in [19, Theorem 2.5 and Theorem 3.4] can be applied only for free quasihomogeneous
triples

(
AH ,A,AH

)
(where H ∈ A; note that line arrangements are always quasihomogeneous).

However, the restriction-deletion proposition for chamber counting (see Proposition 4.5) works for
any CL arrangement, and the restriction-deletion proposition for L0(A) (see Section 3) can be
applied only when L0(A) is an LRB.

Second, for deleting a component H, the chamber counting restriction-deletion formula (Propo-
sition 4.5) depends on the number of 1-dimensional faces in L(A) on this component having the
same sign in L0(A), a number which does not appear on the restriction-deletion theorem for D(A)
for deleting a component (see [19, Theorem 2.5]).

Moreover, while for line arrangements, the connection between these theorems is obvious, for
CL arrangements the connection is more subtle. For a free line arrangement L, the chamber
counting formula can be induced by the restriction-deletion theorem with respect to D(L): indeed,
the addition-deletion formula for D(L) implies the addition-deletion formula for the characteristic
polynomial π(L, t) and π(L, 1) = |C(L)|. However, for free quasihomogeneous CL arrangements,
the connections between the different restriction-deletion theorems (for D(A), for π(A, t) and for
C(A)) are not clear; for example, π(A, 1) 6= |C(A)| even for a CL arrangement A consists of a line
intersecting a conic transversally. We leave this for further investigation.

Note also that while the characteristic polynomial is combinatorially determined (for any arrange-
ment of curves in C

2), the module of A-derivations D(A) for a CL arrangement A is not: in [19],
a pair of combinatorially-equivalent CL arrangements having different modules of A-derivations is
presented.
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