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ON LEFT REGULAR BANDS AND REAL CONIC-LINE

ARRANGEMENTS

MICHAEL FRIEDMAN AND DAVID GARBER

Abstract. As is well-known, every real (and complex) hyperplane ar-
rangement divides the space into a set of faces, on which one can define
a natural product, inducing a structure of a left regular band on this
set. One can ask whether the same is possible for other arrangements
of hypersurfaces. In this paper, we try to answer this question for the
simplest generalization of hyperplane arrangements, that is, conic–line
arrangements in the plane.

Investigating the different algebraic structures induced on the face
poset of a conic–line arrangement, we present two possibilities for the
product and its associated structures. We also study the structure of
sub left regular bands induced by these arrangements. We finish with
some combinatorial properties of conic-line arrangements.

1. Introduction

Hyperplane arrangements are one of the richest subjects in mathemat-
ics, as they lie in the intersection of several mathematical areas: algebra,
topology and combinatorics. For example, a hyperplane arrangement in R

n

defines a partition of the space into a collection of faces, denoted by L. One
can define a product on L, making this set into a left regular band S, that
is, a semigroup where every element is an idempotent and for every x, y ∈ S,
x · y ·x = x · y (see [14, Section 3] for a survey on bands and examples of left
regular bands; see also [4, 5] for a similar description for complex hyperplane
arrangements). Moreover, the subset of chambers is the unique two-sided
ideal of this band, which leads to the investigation of the structure and
combinatorics associated to these chambers. Thus, on one hand, one finds
Zaslavsky’s restriction-deletion principle [19] for chamber counting, and on
the other hand, there exists a description of random walks on the faces of
a hyperplane arrangement [6]. One also finds a description of the structure
of the algebra kS in terms of quivers (see [16, 17]) or the structure of the
sub-left regular bands associated to every hyperplane which is a boundary
of such a chamber.

A natural question is what happens to these simple structures when one
deals, instead of hyperplane arrangements, with arrangements of hypersur-
faces. Restricting ourselves to R

2 (or to C
2), this investigation already took

place to some extent. Zaslavsky generalized the deletion-restriction criterion
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2 MICHAEL FRIEDMAN AND DAVID GARBER

in several directions (e.g. see [20]). Note that when looking at a smooth real
curve arrangement in R

2, topologically we look at a subclass of conic-line
arrangements.

Moreover, some properties of the fundamental group of the complement of
arrangements of lines in C

2 were found to be determined by, or very closely
linked to, the combinatorics of the arrangement: for example, conjugation-
free arrangements (see e.g. [9, 10]) or real arrangements with up to 9 lines
(e.g. [3, 12, 21]). These properties were found to be similar to properties
associated to conic-line arrangements (see [11]).

However, an explicit investigation of the algebraic structure of the face
poset of an arrangement of real curves or an investigation of the combina-
torics of conic-line arrangements was not carried out. This paper is making
a first step in understanding these structures by dealing with the simplest
generalization of line arrangements: real conic-line arrangements, defined as
follows:

Definition 1.1. A real conic-line (CL) arrangement A is a collection of
conics and lines defined by the equations {fi = 0} in C

2 (or in CP
2), where

fi ∈ R[x, y]. Moreover, for every conic C ∈ A, C ∩ R
2 is not an empty set,

neither a point nor a (double) line.

The first two sections of this paper investigate which algebraic structures
(e.g. left regular bands) can be defined on the face poset of a CL arrange-
ment in R

2, in a way that will naturally generalize the structure of a face
semigroup of a line arrangement. Section 2 surveys the problems one en-
counters when performing this generalization and proposes two possibilities
for a well-defined product on this set. The most obvious problem is that
while the face set of an arrangement of n lines can be identified with a subset
of ({+,−, 0})n, where each face is given a sign sequence according to its po-
sition with respect to the lines, this might not be possible (in a monomorphic
way) for a CL arrangement. Thus, the first definition of a product on this
set leads to view the face set of a CL arrangement as an alternative left reg-
ular band; the second induces the structure of aperiodic semigroup on this
face set. Section 3 investigates the structure of sub-left regular bands for a
given band, induced by a CL arrangement. Connections between the band,
induced by restricting the CL arrangement to a conic or to a line, and the
band induced by the whole arrangement, are presented. Section 4 presents
some restrictions on the combinatorics of CL arrangements. Moreover, we
generalize the restriction-deletion principle to the case of CL arrangements.

Acknowledgements: We would like to thank Benjamin Steinberg, Franco
V. Saliola and especially Stuart Margolis for stimulating and inspiring talks.
The first author would like to thank the Max-Planck-Institute für Mathe-
matik in Bonn for the warm hospitality and support and the Fourier Institut
in Grenoble, where the final part of this paper was carried out.

2. Conic-line arrangements: The face semigroup
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2.1. Preliminaries: The left regular band and the face semigroup of

hyperplane arrangements. In this section, we recall the notion of a left
regular band and its connections to hyperplane arrangements (see a survey
in [14]).

Definition 2.1. A left regular band (or LRB) is a semigroup (S, ·) that
satisfies the identities:

x · x = x and x · y · x = x · y for all x, y ∈ S.

Let A = ∪Hi be a hyperplane arrangement consists of n hyperplanes,
where Hi is defined by the equation {fi = 0}, where fi ∈ R[x1, . . . , xN ].
Recall that for H ∈ A, the arrangement AH = A − {H} is called the
deleted arrangement and AH = {K ∩ H|K ∈ AH} is called the restricted
arrangement. Let C(A) be the set of chambers of A, i.e. the components of
R
N −A.
Define the collection of faces as:

L(A) =
⋃

X∈A

C(AX).

Let L = L(A), and define a (monomorphic) function i : L → ({+,−, 0})n,
as follows:

(i(P ))k = sign(fk(P )), ∀P ∈ L,

where ()k denotes the value of the kth coordinate of the n–tuple i(P ).
Recall that on ({+,−, 0})n, one can define an associative product, ex-

tending componentwise the product on {+,−, 0}, given by x ·y = x if x 6= 0,
and y otherwise. This gives Image(i), as a subset of ({+,−, 0})n, the struc-
ture of a left regular band, and therefore also for L, when identifying it with
Image(i).

For hyperplane arrangements, this product has a geometric meaning: F ·K
is the face that we are in after moving a small positive distance from a point
of a generic face F towards a generic point of a face K along a straight line
(see e.g. [1, Section 1.4.6]).

2.2. The semigroups L and L0 for CL arrangements. Let A = ∪Hi ⊂
R
2 be a real CL arrangement with n components, and let fi ∈ R[x, y] be the

corresponding forms of the components. Let L = L(A) be the semi-lattice of
non-empty intersections of elements of A, and define the collection of faces
as:

L = L(A) =
⋃

X∈L

C(AX).

Definition 2.2. (a) Define the map

supp : L → L,

sending each face to its support (i.e. the corresponding element in the
intersection semi-lattice).

(b) As before, define a function:
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(1) i : L → ({+,−, 0})n

as: (i(P ))k = sign(fk(P )), where ()k is the value of the kth coordinate of
the n–tuple i(P ).

2.3. Properties of Image(i). Note that for real hyperplane arrangements,
the function i is monomorphic: every face P is defined exactly by its set of n
(in)equalities, i.e. for every 1 ≤ i ≤ n, P is either in {fi > 0}, in {fi = 0} or
in {fi < 0}. However, for real CL arrangements, this function might not be
monomorphic. For example, given a line and a circle tangent to it, the two
parts of the line have the same pair of signs. Another example is presented
in Figure 1, where we have that:

i(P1) = i(P2) = (+,−,+).

P
1

H
1

H
2

P
2

H
3

+
-

+
-

+-

Figure 1. An example of a real CL arrangement with two
faces P1, P2 having the same image (+,−,+) under i.

Recall that one can define an associative product on (L1
2)

n = ({+,−, 0})n

(see Section 2.1). This raises the following question: does this give Image(i)
the structure of a sub-semigroup of (L1

2)
n? For hyperplane arrangements,

the answer is positive and one identifies L with Image(i); thus L is endowed
with a semigroup structure. But for real CL arrangements, as i is not
necessarily monomorphic, we cannot identify L with Image(i) (and thus we
need to redefine the product on L). A more serious problem is presented in
the following example.

Example 2.3. (1) There are real CL arrangements whose Image(i) is not
even closed under the action induced by (L1

2)
n, and thus it is not even a

semigroup. For example, take three generic lines H1,H2,H3 (i.e. not pass-
ing through one point) and a circle C passing through the three intersection
points; see Figure 2. Let α, β ∈ Image(i) ⊂ (L1

2)
4 be two quadruples associ-

ated to two different intersection points (see Figure 2; the points are a, b).
Though α, β ∈ Image(i), αβ 6∈ Image(i), since there is no face which cor-
responds to the quadruple αβ, as there is no element in Image(i) that has
exactly two zeros in its presentation as a quadruple in (L1

2)
4. Explicitly, α =

i(a) = (0,+, 0, 0), β = i(b) = (0, 0,−, 0), but αβ = (0,+,−, 0) 6∈ Image(i).
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Note that this is the minimal degree example for this phenomenon to
occur: one can verify that for any real CL arrangement with up to degree
4, Image(i) is always closed under the action induced by (L1

2)
n.

(2) The above example can be generalized: take a regular n-gon, n > 3,
draw a circle passing through all the vertices of the n-gon, and extend the
edges of the polygon into straight lines. One can check that the product
of the corresponding signs of any pair of consecutive triple points of this
arrangement does not represent any face of this arrangement.

(3) Moreover, taking three generic lines and a circle passing through two
intersection points, one can check that the product of the corresponding
signs of the pair of triple points of this arrangement does not represent any
face of this arrangement.

H3

H2

H1

C=H4

+-

-
+

+
-

-+

a

b

Figure 2. α = i(a) = (0,+, 0, 0), β = i(b) = (0, 0,−, 0), but
αβ = (0,+,−, 0) 6∈ Image(i).

Definition 2.4. Let L0 = L0(A) = Image(i) ⊆ (L1
2)

n.

When is L0(A) a semigroup? Obviously, if A is a line arrangement, then
L0(A) is a semigroup. Moreover, we have the following proposition regarding
real CL arrangements:

Proposition 2.5. Let A be a real CL arrangement. Assume that there is
no singular point p such that there are more than two components passing
through p. Then L0(A) is a semigroup.

Proof. Obviously, we have to consider only the arrangements whose singular
points are either nodes or tangent points (or both). We need to check that
L0(A) is closed under the product induced by (L1

2)
n. For each face c ∈ L(A),

we go over all the products of the form i(c)i(a), where a ∈ L(A), and check
that i(c)i(a) ∈ L0(A).

If dim(c) = 2, there is nothing to check, as i(c)i(a) = i(c) for every
a ∈ L(A), since all the coordinates of i(c) are non-zero.

If dim(c) = 1, let H = supp(c), where H = {f = 0}. Then i(c)i(a) is
either i(c) or one of the faces that has c in its boundary (which lies inside
the domain {f > 0} or {f < 0}), which exist as elements in L0(A).
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If dim(c) = 0, then c is either a node or a tangent point. If it is a
node, then locally, in the neighborhood of c, the arrangement is of the form
{xy = 0}. Note that as an arrangement in R

2, L0({xy = 0}) = (L1
2)

2. This
means that i(c)i(a) is in L0(A) for every a ∈ L(A).

If c is a tangent point, then locally, in the neighborhood of c, the arrange-
ment is of the form {y(y−x2) = 0} (obviously, the arrangement can consist
of two tangent conics, however, locally, from the point of view of L0, the
resulting set of signs will be the same), and thus, as an arrangement in R

2,

L0
.
= L0({y(y − x2) = 0}) = (L1

2)
2 − {(−,+), (−, 0), (0,+)},

where the first coordinate corresponds to the line {y = 0} and the second
to the conic. As can be easily checked, L0 is closed under multiplication,
which means that i(c)i(a) is in L0(A) for every a ∈ L(A). �

Remark 2.6. Following the previous proof, we actually have that L0(A) not
being a semigroup is a codimension 2 phenomenon. If codim(supp(α)) = 0,
then there is no j such that (α)j = 0 and thus αβ = α for all β ∈ Image(i).
For α ∈ Image(i) ⊆ (L1

2)
n such that codim(supp(α)) = 1, then for every

other element β ∈ Image(i), αβ exists as an element in Image(i). Indeed,
the fact that codim(supp(α)) = 1 means that there is only one coordinate
j such that (α)j = 0. Then, either (αβ)j = 0 (in this case αβ = α), or
(αβ)j = + or (αβ)j = − (note that for k 6= j, (α)k = (αβ)k). In the last
two cases, there exists an element γ ∈ Image(i) such that γ = αβ, since if
(αβ)j = +, then γ is defined (on the jth coordinate) by fj > 0, which exists
as a face (as α is in its boundary). A similar argument works for (αβ)j = −
too.

2.4. Redefining the product. We want to use the same geometric in-
tuition of the product for hyperplane arrangements (see Section 2.1) for
defining the corresponding product on the face poset L for real CL arrange-
ments. Explicitly, we want to maintain the following properties for every
x, y, z ∈ L:

(1) For every x, y ∈ L , x2 = x and x · y · x = x · y (the LRB properties).
(2) If x ·y = z, then i(x)i(y) = i(z) (if there are faces with sign sequence

i(x)i(y)). Explicitly, if L0(A) is a semigroup, then the surjective
map L(A) → L0(A) is a homomorphism.

(3) If x · y = z, then x ⊆ z̄ (where z̄ is the closure of z).
(4) If x ⊆ ȳ, then x · y = y.
(5) (x · y) · z = x · (y · z) (Associativity).

We offer two definitions for this product. The first definition, appearing
in Section 2.4.1, preserves properties (1), (3) and (4) and thus will be more
geometric; the second, appearing in Section 2.4.2, preserves properties (2),
(5) and a weaker version of property (1), and thus (L, ·) will be a semigroup.
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2.4.1. The geometric product. We start with the more geometric definition,
which will be given in two parts. The first part includes the basic require-
ments of this product. We start with examining the CL arrangement in
Figure 3, which shows that requirement (3) (if x · y = z then x ⊆ z̄) is not
entirely based on the definition of i. Explicitly, we want that if x · y = z,
then z is a face intersecting a small neighborhood of x. The example in Fig-
ure 3 shows that this is not always the case when working with the product
induced by (L1

2)
n.

p

x

L1

L2

L3

Figure 3. As i(p) = (0, 0, 0), i(x) = (0,−, 0), we have that
i(p)i(x) = i(x), but x is not in the neighborhood of p.

Definition 2.7. (Part I: Geometric product on L(A))
Let A be a real CL arrangement, P1, P2 ∈ L(A) and choose a generic

point y ∈ P1. Look at

Fε(P1, P2)
.
= {P ∈ L(A) : i(P ) = i(P1)i(P2) and ∀ε, 0 < ε ≪ 1, P∩B(y, ε) 6= ∅}.

If |Fε(P1, P2)| = 0, then P1 · P2
.
= P1.

If |Fε(P1, P2)| = 1, i.e. Fε(P1, P2) = {P}, then P1 · P2
.
= P .

Otherwise, we know that |Fε(P1, P2)| > 1.
If P2 ∈ Fε(P1, P2), then P1 · P2

.
= P2.

Let us stop for a moment in defining the product. Obviously requirement
(3) holds (note that in the example presented in Figure 3, when we use the
above product, then p · x = p). Also, if x, y, z ∈ L, then x · (y · z) is a face
α ∈ L(A) such that x ⊆ ᾱ, x · y is a face β′ ∈ L(A) such that x ⊆ β′ and
(x · y) · z is a face β ∈ L(A) such that β′ ⊆ β̄; thus x ⊆ β̄. This means that
even if the product is not associative, then

(2) x ⊆ x · (y · z) ∩ (x · y) · z.

Note also that if for every singular point p ∈ Sing(A) there are two com-
ponents of A intersecting each other transversally at p, then |Fε(P1, P2)| = 1
for all P1, P2 ∈ L and thus the above product is well-defined for every pair
of faces.

Remark 2.8. (1) Note that if P1 ∈ Fε(P1, P2), then P1 · P2 = P1. The
proof is by considering the dimension of P1: if dim(P1) = 2, it is obvious, as
already i(P1)i(P2) = i(P1) and P1 is the only face in the neighborhood of a
generic point of P1. If dim(P1) < 2, then in the neighborhood of P1, the only



8 MICHAEL FRIEDMAN AND DAVID GARBER

face with the same vector of signs as P1 is P1 (note that if P1 ∈ Fε(P1, P2)
then by definition i(P1)i(P2) = i(P1)).

(2) Note that |Fε(P1, P2)| ≤ 2. Indeed, if dim(P1) ∈ {1, 2}, then |Fε(P1, P2)| =
1. This is obvious for a chamber. For a section of a curve, the faces of
Fε(P1, P2) can be P1 or one of the two chambers having P1 in their bound-
ary. But each of the three faces has a different vector of signs, and thus
|Fε(P1, P2)| = 1.

If P1 is a point, then one can get two faces with the same vector of signs
(i.e. |Fε(P1, P2)| = 2) in the neighborhood of P1 if, for example, P1 is a
tangent point of two curves (either a line and a conic or two conics; this is
the simplest case). Indeed, if there is a transversal intersection at P1, then
|Fε(P1, P2)| = 1. Moreover, adding more lines or conics passing through the
tangent point will not enlarge |Fε(P1, P2)|.

(3) Assume that P1 6= P2. Then, P1 and P2 cannot be together in the
set Fε(P1, P2). Indeed, if P1, P2 ∈ Fε(P1, P2), then i(P1) = i(P2). Also P2

intersects a neighborhood of any generic point y ∈ P1. The last claim can
happen if P1 is contained in the boundary of P2 (but then i(P1) 6= i(P2)),
or that P1 and P2 will have the same dimension, i.e. P1 must be equal to
P2, which is a contradiction.

(4) Assume that P1 ⊆ P2 and P1 6= P2. Thus dim(P2) − 1 = dim(P1),
i(P1)i(P2) = i(P2) and obviously P2 ∈ Fε(P1, P2). By definition, P1 · P2 =
P2.

Note that requirement (4) holds, by the definition of Fε and the last case
in Definition 2.7. Now, we give a sufficient condition for the associativity of
the above product:

Proposition 2.9. If for every two faces P1, P2 ∈ L, |Fε(P1, P2)| = 1, then
the above product is associative.

Note that if |Fε(P1, P2)| = 1 for every P1, P2 ∈ L, then the product is
already well-defined by Definition 2.7.

Proof. Let x, y, z ∈ L. We know that a neighborhood of x intersects both
w

.
= (x · y) · z and v

.
= x · (y · z) (by equation (2)), and w and v have the

same vector of signs (indeed, note that since |Fε(p, q)| = 1 for every p, q ∈ L,
i(p · q) = i(p)i(q), i.e. i is a homomorphism and thus i(w) = i(x · y)i(z) =
(i(x)i(y))i(z) = i(x)(i(y)i(z)) = i(v)). If dim(x) > 0, then a neighborhood
of x can intersect only one face with a given vector of signs (see Remark
2.8(2)), which implies that v = w. If dim(x) = 0, a neighborhood of x may
intersect two different faces with the same vector of signs. That is, x is in the
boundary of w and v, and thus Fε(x,w) = {w, v}, as both w and v intersect
a neighborhood of x and i(x)i(w) = i(w) = i(v) (the first equality is derived
from requirement (4)). Thus, |Fε(x,w)| = 2, which is a contradiction. This
means that v = w. �

Now, as requirement (4) holds, we can prove requirement (1): L is an
alternative left regular band.
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Proposition 2.10. Assume that there is a product · on L satisfying the
requirements of Definition 2.7. Let x, y ∈ L. Then (L, ·) is an alternative
left regular band, i.e.:

(1) x2 = x,
(2) x · (x · y) = (x · x) · y, x · (y · y) = (x · y) · y,
(3) x · y · x = x · y.

Proof. As x ∈ Fε(x, x), we get that x2 = x (by Remark 2.8(1)). Thus we
have to prove that x ·(x ·y) = x ·y and x ·y = (x ·y) ·y. If we denote z = x ·y,
then x ⊆ z̄. Thus x · (x · y) = x · z = z = x · y (the second equality is by
Remark 2.8(4), since we can assume that x 6= y). Note that if |Pε(x, y)| > 0
then i(z) = i(x)i(y) and thus i(z) = i(x)i(y) = i(x)i(y)i(y) = i(z)i(y)
(since this holds in (L1

2)
n) and so z ∈ Fε(z, y); thus z · y = z (by Remark

2.8(1)). Otherwise, |Pε(x, y)| = 0 and thus x · y = x, i.e. z = x. Thus
z · y = x · y = x = z, i.e. z · y = z in any case.

Therefore, (L, ·) is an alternative magma. Thus the flexible identity

(x · y) · x = x · (y · x)

holds for any two faces x, y ∈ L and the expression x · y · x is well-defined.
Again, if |Pε(x, y)| > 0 then i(x · y) = i(x)i(y) and so i(x · y) = i(x)i(y) =

i(x)i(y)i(x) = i(x ·y)i(x) and so we have that x ·y ∈ Fε(x ·y, x) and thus by
Remark 2.8(1), x · y = x · y · x. Otherwise, |Pε(x, y)| = 0 and thus x · y = x
and so x · y · x = x · x · x = x = x · y �

Remark 2.11. Note that the fact that the geometric product (as already
described in Definition 2.7) is alternative (rather than associative) is not
unnatural. Indeed, this kind of phenomena appears also when looking at
the poset of the faces of a building, and more generally, in a projection poset
(see [2, p. 26] for its definition).

There are several ways to complete the definition of the product. In this
subsection, we will show one way to do so, though we cannot guarantee that
the product will be associative (see Example 2.13 for a real CL arrangement
inducing a non-associative product).

Definition 2.12. (Part II: Geometric product on L(A))
With the notation of Definition 2.7, we continue the definition of the

geometric product on L(A). Explicitly, we have that |Fε(P1, P2)| = 2, P1 6⊆
P2, i.e. P2 6∈ Fε(P1, P2) (by Remarks 2.8(1) and 2.8(4)). This situation can
only happen when P1 is a point (see Remark 2.8(2)), P1 6⊆ P2, and all the
components of A passing through P1 are tangent to each other (at P1), see
Remark 2.8(2).

If P1 and P2 are on the same unbounded 1–dimensional component H,
then P1 · P2 will be the face (in Fε(P1, P2)) we get after moving from P1 on
H in the direction of P2 (see Figure 4(a)).

Otherwise, either P1 · P2 is a chamber or that P1 and P2 are on the
same bounded 1–dimensional component (i.e. an ellipse). For each P ∈
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Fε(P1, P2), let ℓP be the minimal length of an arc passing through the point
P1, a generic point in P and a generic point in P2. If the minimum of
the set {ℓP }P∈Fε(P1,P2) is achieved only once, say, at a face P0, then define

P1 ·P2
.
= P0 (see Figure 4(b)). However, if there exist two faces P ′, P ′′ such

that:

min
P∈Fε(P1,P2)

{ℓP } = ℓP ′ = ℓP ′′ ,

then draw a circle C through P1, a generic point in P ′ (or in P ′′) and a
generic point in P2 and define P1 · P2

.
= P , where P ∈ {P ′, P ′′} is the face

we are in after moving slightly clockwise on C from P1 (see Figure 4(c)).

P
1

P
2

P
3

P
4

(c)

P
1

P
2

P
3

P
4

(b)

P
1 P

2
P

3

P
4

(a)

Figure 4. Different situations for the geometric product on

L(A): In part (a), Fε(P1, P2) = {P3, P4} and P1 and P2 are on the

same unbounded 1–dimensional component. Thus, P1 ·P2 = P3. In

part (b), P2 6∈ Fε(P1, P2) = {P3, P4}. Moreover, ℓP3
< ℓP4

, so we

have: P1 · P2 = P3. In part (c), again P2 6∈ Fε(P1, P2) = {P3, P4},

but in this case ℓP3
= ℓP4

, so we draw a circle C through P1, a

generic point in P ′ = P3 and a generic point in P2, and move on

it clockwise to get: P1 · P2 = P4.

Example 2.13 (Non-associative product). Look at the real CL arrangement
A0 presented in Figure 5. All the labeled faces in Figure 5 are faces on the

x

w

y

m

z

b

Figure 5. An example of a non-associative geometric prod-
uct:

b = x · (y · z) 6= (x · y) · z = w
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circle, where x, y are tangent points and b, w,m and z are 1-dimensional
faces. We use Definition 2.12 in order to compute (x · y) · z and x · (y · z).

Note that Fε(x, y) = {b, w} and ℓb = ℓw. Thus, we should go clockwise
on the circle C from x to y and therefore x · y = w, (x · y) · z = w · z = w.
However, Fε(y, z) = {m,w} and ℓm < ℓw. Thus y · z = m and by the same
reasoning, x ·m = b. Therefore x · (y · z) = x ·m = b. Thus the geometric
product is not associative for this CL arrangement.

Note that L0(A0) is an associative LRB, by Proposition 2.5.

Remark 2.14. Let A be a real CL arrangement.
(1) If L0 is a semigroup, the construction of L implies that there are CL

arrangements which induce two non-isomorphic LRBs (i.e. L and L0) with
the same associated semi-lattice L. A simple example for this is a line and
a circle tangent to it: L0 has 6 elements, while L has 7 elements, where the
product in L is taken as the one defined in Definition 2.12 (in this case, L
is indeed an associative LRB, see Example 2.18).

(2) Given a magma (L, ·) (here we do not require that the operation · will
be specifically defined), one can define another semi–lattice L′ such that
there exists an epimorphism L → L′ in the following way: for x, y ∈ L
define x ∼ y if x ·y = x and y ·x = y. As this relation is reflexive, symmetric
and transitive, L′ .

= L/ ∼ is a semi–lattice (see e.g. [18, p. 153]). Taking L
to be the associated face set of a CL arrangement, we note that L′ should not
be the intersection lattice L. For example, the arrangement consisting of a
conic intersecting transversally a line has the property that |Fε(P1, P2)| = 1
for every P1, P2 ∈ L and thus the geometric product, as defined in Definition
2.7, is associative. However, the two intersection points are identified in L′

but remain distinct in L. However, if A is a line arrangement (or, more
generally, a hyperplane arrangement), then L = L′, where the product in
L = L0 is induced by the product in (L1

2)
n (see e.g. [17]).

2.4.2. The associative product. As we saw in Example 2.13, the product
defined in Definition 2.12 is not necessarily associative. Moreover, it does
not satisfy requirement (2), i.e., if x · y = z then i(x)i(y) = i(z), where
i : L → L0 is the sign function. In this section, we define a different product
on L that will be associative and satisfy requirement (2). However, in order
for that to happen, we have to assume that L0 is closed under multiplication
(induced by (L1

2)
n; see Example 2.3(1) for an example of an arrangement

whose Image(i) is not closed under this multiplication).

Definition 2.15. Let A be a real CL arrangement such that L0 is closed
under the product induced by (L1

2)
n. Define a function j : L0 → L as follows.

For every a ∈ L0, if |i
−1(a)| = 1, then j(a)

.
= i−1(a). Otherwise, choose an

element a0 ∈ i−1(a) and define j(a)
.
= a0.

For any two faces x, y ∈ L define x · y
.
= j(i(x)i(y)).



12 MICHAEL FRIEDMAN AND DAVID GARBER

Proposition 2.16. Let (L, ·) be the face poset of a real CL arrangement,
when the product is defined as in Definition 2.15 (i.e. the function j is
already given). Then:

(1) x · (y · z) = (x · y) · z.
(2) x · y · x = x · y.
(3) x2 is not necessarily equal to x.

Proof. Properties (1) and (2) are immediate, since these identities are al-
ready satisfied in L0 (as a subset of (L

1
2)

n), i.e. i(x)(i(y)i(z)) = (i(x)i(y))i(z)
and i(x)i(y)i(x) = i(x)i(y). For property (3), look at the arrangement con-
sists of a line intersecting transversally a circle. Let p1, p2 be the two inter-
section points, and denote α = i(p1). Note that i(p1) = i(p2) = α. We may
choose j(α) = p1. and thus, p22 = p1. For the other choice, i.e. j(α) = p2,
we get that p21 = p2. �

Remark 2.17. (1) The product defined in Definition 2.15 satisfies x2 = x3

(this is a specific case of Proposition 2.16(2), when taking x = y). Thus
(L, ·) is an aperiodic semigroup, i.e. for every x ∈ L, x2 is an idempotent
and the set {x2 : x ∈ L} is an LRB, isomorphic to L0.

(2) Note that once there are different faces in L having the same image
under i, then Definition 2.15 does not define a unique product on L, as it
depends on the choice made by the function j in this definition.

2.5. LRBs coming from hyperplane arrangements and CL arrange-

ments. We give an example of an LRB, induced by a CL arrangement,
which cannot be embedded in (L1

2)
n for any n ∈ N. This immediately

implies that this LRB is not isomorphic to the face LRB of a hyperplane
arrangement.

Example 2.18. Consider the real CL arrangement A which consists of a
line and a circle tangent to it (see Figure 6). This arrangement has 7 faces,
and we denote the two parts (i.e. faces) of the line by b and a, the circle
by c, and the face below the line and outside the circle by d (note that
i(a) = i(b)). Let e be the tangency point. As usual, denote the set of faces
by L.

b a

c

d

e

Figure 6

The product on L is defined using Definition 2.12 (actually, in this exam-
ple, Definition 2.7 is enough). Note that e is the identity element and one can
check that (L, ·) is an associative LRB. We have the following multiplication
table for {a, b, c}:
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a2 = a, b2 = b, c2 = c,

a · b = a, a · c = c · a = d,

b · a = b, b · c = c · b = d.

Assume that we have a monomorphism h : L → (L1
2)

n for some n. Note
that the equalities

a · b = a, b · a = b

imply that h(a) and h(b) have zeros in the same coordinates.
As a 6= b, h(a) 6= h(b), which means that there exists j, 1 ≤ j ≤ n, such

that (h(a))j 6= (h(b))j and both coordinates are not zero (so without loss of
generality, one is + and the other is −). But

(h(d))j = (h(a · c))j = (h(a))j(h(c))j = (h(a))j 6=

(h(b))j = (h(b))j(h(c))j = (h(b · c))j = (h(d))j ,

by the multiplication laws in L1
2, which is a contradiction.

Remark 2.19. We note here that L(A) (with the product defined using
Definition 2.7) is an example of a left regular band which is not geometric
(i.e. it cannot be embedded in (L1

2)
n for any n, see [14, Section 3.7]).

Moreover, note that for the LRB L0(A) (which is contained in (L1
2)

2),
one cannot find a hyperplane arrangement A′ ⊂ R

N such that L0(A) ∼=
L(A′) = L0(A

′). Indeed, L0(A) has 6 elements, has a unit (0, 0) and the
three elements (+,+), (−,−), (−,+) form the unique two-sided ideal. Thus,
if such a hyperplane arrangement A′ exists, it should be a central hyperplane
arrangement with three chambers, which is impossible.

In fact, this can be generalized: given a line and a parabola tangent
to it, then the LRB of faces is not a sub-LRB of (L1

2)
n, using the same

method (again, we use the product as defined in Definition 2.12, which is
also associative in this case). This means that whenever a CL arrangement
has a singular point which is locally of the form y(y − x2) = 0, then, if we
define the product on the set of faces using Definition 2.12 and this product
is associative, then it can not be a sub-LRB of (L1

2)
n, for any n.

Remark 2.20. (Steinberg and Margolis, private communication)
Note that if S is an LRB and k is a field, then there exists r ∈ N such that

the semigroup algebra kS can be embedded in k[(L1
2)

r], even if S cannot be
embedded in (L1

2)
m for any m. Indeed, kS is a basic algebra (see [16]) and

thus it is a subalgebra of some triangular matrix algebra. Note that the
algebra of n×n triangular matrices can be embedded in the tensor product
of n− 1 copies of the algebra of 2× 2 triangular matrices. Since the algebra
of (L1

2)
r is the tensor product of r copies of the algebra of L1

2 which is the
algebra of 2× 2 triangular matrices, this shows that every triangular matrix
algebra is embedded in (L1

2)
r for some r.
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3. Plane curve arrangements: structure of sub-LRBs

Note that for any arrangement of smooth hypersurfaces {f1 = 0, . . . , fm =
0} in R

N (where fi ∈ R[x1, . . . , xN ], N > 1), one can associate an m-
tuple in ({+,−, 0})m to any face in the arrangement, describing the position
of this face with respect to the hypersurfaces fi. Explicitly, for any such
arrangement A = {f1 = 0, . . . , fm = 0} we have, as before, an associated
subset L0 of (L1

2)
m induced by the vectors of signs.

Note: From now on, we assume that L0 is an LRB, i.e. it is closed under
the multiplication induced by (L1

2)
m. Moreover, to simplify notations, we

assume that each Hi is connected in R
N .

In this section, we want to study the explicit structure of sub-LRBs of L0

for a given arrangement A induced by the hypersurfaces {H1, . . . ,Hm} in
R
N , where Hi is defined by the hypersurface {fi = 0}.

3.1. The deletion-restriction principle. Let H
.
= Hi ∈ A be a given

hypersurface. As before, one can define two associated LRBs. The first is
the deleted LRB, corresponding to the deletion of the hypersurface H from
A, and the second is the restricted LRB, corresponding to the restriction
of the arrangement A to H. Explicitly, AH = A − {H} is the deleted
arrangement and AH = {K ∩ H|K ∈ AH} is the restricted arrangement.
Then, L0(A

H) is obtained from L0(A) by deleting the ith coordinate.
We also define:

L0(A)|H
.
= {x ∈ L0(A) : (x)i = 0} ⊂ (L1

2)
m.

L0(A)|H is a sub-LRB of L0(A), to which corresponds the restricted ar-
rangement AH as a sub-LRB. Indeed, it is a subset of L0(A) and thus the
associativity and the properties x2 = x, xyx = xy are immediately satis-
fied. The closure under multiplication is obvious. Note that ♯L0(AH) =
♯(L0(A)|H).

As H is not necessarily a hyperplane, AH is an arrangement in H, but it
is not necessarily an arrangement in R

k for some k (i.e. though H can be
embedded in R

N , we look at the arrangement in H). However, when the
arrangement is in R

2, one can ask what are the relations between L0(AH)
and L0(A)|H . Note that when either H is a bounded component or an
unbounded one, AH is a collection of points {p1, . . . , pk} on H. There are
two cases to consider - where H is an unbounded component and where H
is a bounded one.

If H is an unbounded component, we can set a direction on H, defined by
choosing a continuous family of tangent vectors at each point on H. Then
for each point p ∈ H, each point pj (for 1 ≤ j ≤ k) determines a triple of
signs {+,−, 0} describing the position of p with respect to pj. Obviously, if
q is another point in the same face of p, then the k-tuples of signs of p and
q are the same. As usual, we get that the set L0(AH) is contained in (L1

2)
k.
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Moreover, the LRB structure of L0(AH), induced by the LRB structure of
(L1

2)
k, describes the movement of a generic point along the chosen tangent

vector field.
On the other hand, if H is a bounded component in R

2, i.e. an oval,
we can consider AH as an arrangement of points {p1, . . . , pk} on a circle.
However, we cannot treat as in the former case, since there is no meaning
to the phrase ”the point q is to the right of the point p” when we are on an
oval. However, there is another way to associate an LRB structure to AH .
Let H = C be a bounded oval and {p1, . . . , pk} points on it numerated con-
secutively. We show now that the associated LRB structure is independent
of the numeration, i.e. of the choice of the initial point p1. Let p′1 (resp.
p′2) be a point to the right of p1 (resp. p2), very close to p1 (resp. p2). Let
Ci = C − {p′i}, i ∈ {1, 2}, see Figure 7(a).
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--- + +

-- +- +- +

C

Figure 7. The LRB structure associated to an arrangement
of points on a conic

We think of C1 (resp. C2) as a straight segment that starts at the point
p′1 (resp. p′2), when the section that starts at pk (resp. p1) ends at a point
p′′1 (resp. p′′2), which, on C1 (resp. C2), is identified with p′1 (resp. p′2), see
Figure 7(b). Given a point p ∈ Ci (i = 1, 2), every point pj , 1 ≤ j ≤ k,
determines a sign for p chosen from the triple of signs {+,−, 0}, depending
whether p is to the right (or to the left) of pj, to the left of it (or to the
right, resp.) or equal to it respectively. Note that AH has 2k faces. For sign
assignments on the different realizations of AH , see Figure 7(c). Thus, when
ignoring the infinitesimally-small section between p′1 and p1 (resp. between
p′2 and p2), we get that C1 (resp. C2) consists of 2k faces. Note that the
most left and the most right sections on AH are identified; this is the reason
that on C1 (resp. C2), the right-most section is ignored. Thus, for every
face on C1 (resp. C2) one can assign a k-tuple in (L1

2)
k, as described above.

This gives L0(C1) and L0(C2) a structure of an LRB.

Proposition 3.1. The LRBs L0(C1) and L0(C2) are isomorphic. There-
fore, the LRB structure on AH is independent of the choice of the point p′1.

Proof. First, note that L0(C1) consists of the following 2k elements (starting
from the right-most point (in this case p1) and going left over all the other
faces):

L0(C1) = {(0,+,+, . . . ,+), (−,+,+, . . . ,+), (−, 0,+, . . . ,+),
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(−,−,+, . . . ,+), . . . , (−,−,−, . . . ,−)}.

L0(C2) consists of the following 2k elements (starting from the right-most
point (in this case p2) and going left over all the other faces):

L0(C2) = {(+, 0,+,+, . . . ,+), (+,−,+,+, . . . ,+), (+,−, 0,+, . . . ,+),

(+,−,−,+, . . . ,+), . . . , (+,−,−, . . . ,−, 0), (+,−,−, . . . ,−,−),

(0,−,−, . . . ,−,−), (−,−,−, . . . ,−,−)}.

Both LRBs describe the movement over the 2k faces along a bounded
straight segment with k marked points, i.e. given faces x and y, then x · y
is the face we enter in after the movement from x to y on this line and thus
they are isomorphic. Thus the explicit isomorphism from L0(C1) to L0(C2)
maps the points pi 7→ pi(mod k)+1 and the sections of C1 are mapped to the
corresponding sections of C2, according to the mapping of the points. �

Thus, we can choose a point p infinitesimally-close to the point p1 and we
delete it. By this way, we can consider the LRB associated to AH−{p}, as in
the case of unbounded component (when ignoring the infinitesimally-small
section between p and p1). As was shown, this LRB does not depend on
the location of p (when the only condition is that p 6= pj for all j) up to an
isomorphism. Denote this associated LRB by L0(AH), which is a sub-LRB
of (L1

2)
k. For an explicit example, see Figure 10 and Example 3.7(3) below.

We are ready to describe the structure of the sub-LRBs of L0(A) induced
by the components of A ⊂ R

2. Recall that for α ∈ (L1
2)

k, (α)i denotes the
value of the ith coordinate of α.

We start with the trivial case of line arrangements in R
2 (which can be

easily generalized to hyperplane arrangements), as a preparation for the
main proposition, which deals with arrangements of smooth real curves (see
Proposition 3.6).

Lemma 3.2. Let A = {H1, . . . ,Hm} be an arrangement of lines in R
2,

such that Hi = {fi = 0}. Denote H = H1 and let H ∩ {H2, . . . ,Hm} =
{p1, . . . , pk} ⊂ H. Then, there is an isomorphism of LRBs:

ϕ : L0(AH) → L0(A)|H ⊆ (L1
2)

m,

satisfying the following properties:

(1) (ϕ(L0(AH)))1 = 0.
(2) For every j > 1:

(a) If H ∩Hj = ∅, then (ϕ(L0(AH)))j is constant (either + or −,
depending on the mutual position of the parallel lines H and Hj).
Explicitly, all the vectors in ϕ(L0(AH)) have the same sign in the
jth coordinate.

(b) If H ∩ Hj = {ps}, then (ϕ(L0(AH)))j = (L0(AH))s, up to a
constant scalar multiplication in {±1}. The index of the right hand
side is the index of ps in the arrangement of points on H = H1, i.e.
in L0(AH).
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Before the proof, we illustrate this lemma by an example.
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H1
- + + -

1 2 3 4 5

p1 p2

(c)

x� x� x� x� x�

Figure 8. An example for illustrating Lemma 3.2: fi are
the faces contained in H1 in the face set L(A). xi (and x′i)
are the faces of the face set L0(AH1

).

Example 3.3. Figure 8(a) presents an arrangement A and Figures 8(b)
and 8(c) present two arrangements of points on a line, both can be thought
of as the restricted arrangement AH1

. Note that the difference between the
arrangements in Figures 8(b) and 8(c) is that the signs assigned with respect
to the point p2 are opposite.

(1) Considering the arrangement in Figure 8(b), the faces of AH1
are

denoted by x1, . . . , x5; their corresponding images, i.e. these faces in
the arrangement A are denoted by f1, . . . , f5. Let H = H1. Then,
the corresponding LRBs are

L0(AH) = {i(x1) = (−,−), i(x2) = (0,−), i(x3) = (+,−),

i(x4) = (+, 0), i(x5) = (+,+)},

and

L0(A)|H = ϕ(L0(AH)) = {i(f1) = (0,+,−,−,−), i(f2) = (0,+, 0,−, 0),

i(f3) = (0,+,+,−,+), i(f4) = (0,+,+, 0,+), i(f5) = (0,+,+,+,+)}.

(a) First, note that (ϕ(L0(AH)))1 = 0 (case (1) of the lemma).
(b) Since H ∩H2 = ∅, (ϕ(L0(AH)))2 = +, i.e., by case (2)(a), the

second coordinate in all the vectors of ϕ(L0(AH)) is +.
(c) Since H3 ∩H = H5 ∩H = {p1},

(ϕ(L0(AH)))3 = (ϕ(L0(AH)))5 = (L0(AH))1

(by case (2)(b)).
(d) Since H4 ∩ H = {p2}, (ϕ(L0(AH)))4 = (L0(AH))2 (again by

case (2)(b)).
(2) Considering the arrangement in Figure 8(c), the faces of AH1

are
denoted by x′1, . . . , x

′
5. In this case:

L0(AH) = {i(x′1) = (−,+), i(x′2) = (0,+), i(x′3) = (+,+),

i(x′4) = (+, 0), i(x′5) = (+,−)}.
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As before, since H3 ∩H = H5 ∩H = {p1},

(ϕ(L0(AH)))3 = (ϕ(L0(AH)))5 = (L0(AH))1.

On the other hand, as H4∩H = {p2}, (ϕ(L0(AH)))4 = −(L0(AH))2.
Explicitly, in contrast to Example (1)(d) above, one has to multiply
by the scalar −1 to all the values in (L0(AH))2 in order to obtain
(ϕ(L0(AH)))4.

Remark 3.4. Note that L0(AH) ⊆ (L1
2)

k and L0(A)|H ⊆ (L1
2)

m. In order
not to confuse between the different vectors of signs when we talk on a
corresponding face which can be thought of as both in L(AH) and in L(A),
we denote

iA : L(A) → (L1
2)

m, Image(iA) = L0(A)

and

iH : L(AH) → (L1
2)

k, Image(iH) = L0(AH),

where both functions describe the vectors of signs in L0(A) (resp. L0(AH))
of a face in L(A) (resp. L(AH)).

Proof of Lemma 3.2. Case (1) is obvious (since we are on H1).
For case (2)(a), note that if H ∩Hj = ∅, then Hj is parallel to H and all

the faces of A with support in H are either on the halfplane {fj > 0} (in this
case (ϕ(L0(AH)))j = +) or on {fj < 0} (in this case (ϕ(L0(AH)))j = −).

As for case (2)(b): assume that H ∩Hj = {ps} and let c be a face of A
with supp(c) ⊆ H. As c goes over all the faces such that supp(c) ⊆ H, it
passes over all the set Image(ϕ). Then, either c ⊂ {fj > 0}, c ⊂ {fj < 0}
or c ⊂ {fj = 0}. In the third case, c = ps ∈ H and thus (iH(c))s = 0 and
as c ∈ Hj, (iA(c))j = 0. As for the first two cases, the fact that c is in
one of the two halfplanes is determined by the position of H with respect
to Hj (as c ⊂ H), which reduced to checking if c is located to the right of
{ps} = H∩Hj or to its left. Therefore, up to a constant scalar multiplication
by {±1} (for all faces c such that supp(c) ⊆ H), c ⊂ {fj > 0} is equivalent
to the fact that c is to the right of ps. The (constant) scalar multiplication
is needed, since a priori there is no connection between the sign in L0(AH)
that is assigned to the faces to the right of ps and the sign in L0(A) assigned
to these faces in the halfplane above Hj (see Figures 8(b) and 8(c) for an
example of two different sign-assignments for AH). �

Remark 3.5. Note that there is a natural LRB structure on L0(AH), that
is induced by L0(A), in the following way: if the sign in L0(A) that is given
to the halfplane {fj > 0} is + (in the jth coordinate, where Hj = {fj = 0}
and H ∩ Hj = {ps}), and the section {x > ps} on the line H is contained

in {fj > 0}, then the sign in L0(AH) associated to {x > ps} (i.e. in the sth

coordinate) will also be +. If {x < ps} ⊂ {fj > 0}, then the sign associated
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to the faces contained in this section will be +. In the case of this naturally
induced signs to AH , the scalar multiplication in Lemma 3.2 is not needed.

Note that Lemma 3.2 is more general, as we do not assume any a priori
connection between the signs associated to the halfplanes in A and the signs
associated to the half-lines in AH .

We now pass to the general case of arrangements of smooth curves.

Proposition 3.6. Let A = {Hi}
m
i=1 be an arrangement of smooth connected

curves in R
2, such that Hi = {fi = 0}. Let H

.
= H1 and H∩{H2, . . . ,Hm} =

{p1, . . . , pk} ⊂ H. Then there is a bijective function, which is not necessarily
an isomorphism of LRBs,

ϕ : L0(AH) → L0(A)|H ⊆ (L1
2)

m

satisfying:

(1) (ϕ(L0(AH)))1 = 0.
(2) For every j > 1:

(a) If H ∩Hj = ∅, then (ϕ(L0(AH)))j is constant. Explicitly, all

the vectors in ϕ(L0(AH)) have the same sign in the jth coordinate.
(b) If H ∩Hj 6= ∅, let H ∩Hj = {pi}i∈Kj

, where Kj is the set of
indices of H ∩Hj. Then (up to a constant scalar multiplication by
{±1}):

(ϕ(L0(AH)))j =
∏

i∈Kj

((L0(AH))i)
mi

where mi = multpi(H ∩ Hj) is the intersection multiplicity at the
point pi, and the multiplication of signs (in the right hand side) is
the usual product (explicitly, + · + = − · − = +, + · − = − · + =
−, 0 · {±} = 0). Note that the numeration of the indices of the
right hand side is according to the numeration of the points in the
arrangement of points in H = H1.

As before, we illustrate this proposition by some examples before proving
it.

Example 3.7. (1) Figure 9(a) presents an arrangement A with three
lines and a conic tangent to one of the lines, and Figure 9(b) presents
the restricted arrangement AH1

. By Proposition 2.5, L0(A) is indeed
a semigroup. The faces of AH1

are denoted by x1, . . . , x5 and their
corresponding faces in A are denoted by f1, . . . , f5. Let H = H1.
Then, the corresponding LRBs are:

L0(AH) = {i(x1) = (−,−), i(x2) = (0,−), i(x3) = (+,−),

i(x4) = (+, 0), i(x5) = (+,+)}

and

L0(A)|H = ϕ(L0(AH)) = {i(f1) = (0,+,+,+), i(f2) = (0, 0,+,+),
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Figure 9. An example for illustrating Proposition 3.6: fi
are the faces contained in H1, in the face set L(A). xi are
faces in the face set L0(AH1

). a, b, c are faces contained in
H4.

i(f3) = (0,−,+,+), i(f4) = (0,−, 0,+), i(f5) = (0,−,+,+)}.

Then:
(a) First, note that (ϕ(L0(AH)))1 = 0 (case (1) in the proposition).
(b) Since H ∩H2 = {p1} ∈ AH , by case (2)(b) of the proposition,

(ϕ(L0(AH)))2 = −(L0(AH))1 (note the scalar multiplication by
−1).

(c) Since H3 ∩ H = {p2}, where multp2(H ∩ H3) = 2, then again
by case (2)(b), (ϕ(L0(AH)))3 = ((L0(AH))2)

2.
(d) Since H4 ∩H = ∅, then (ϕ(L0(AH)))4 = + (by case (2)(a)).

(2) Let us show that ϕ is not necessarily a homomorphism. Let H = H4.
Let a, c be the intersection points of H with the conic and b be
the 1-dimensional segment between them (see Figure 9(c)). When
considering a, b, c as faces of AH , then in L0(AH), i(a)i(c) = i(b).
However, when considering a, b, c as faces of A (see Figure 9(a)), i(a)
and i(c) have a 0 value in the coordinate corresponding to the conic.
However, i(b) does not have a 0 value in that coordinate. Thus, in
L0(A), i(a)i(c) 6= i(b).

(3) Relabel the arrangement in Figure 9(a), such that the conic will be
labeled as H1, see Figure 10(a).

The faces of AH1
are denoted by x1, . . . , x6 (see Figure 10(c)) and

their corresponding faces in A are denoted by f1, . . . , f6 (see Figure
10(a)). Let H = H1. As was explained in the paragraph before
Proposition 3.1, one can induce an LRB structure on AH . Then,
the corresponding LRBs are:

L0(AH) = {i(x1) = (−,−,−), i(x2) = (−,−, 0), i(x3) = (−,−,+),

i(x4) = (−, 0,+), i(x5) = (−,+,+), i(x6) = (0,+,+)}

and

ϕ(L0(AH)) = {i(f1) = (0,−,−,+), i(f2) = (0,−,−, 0), i(f3) = (0,−,−,−),
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Figure 10. Another example for illustrating Proposition
3.6: fi are the faces contained in H1, in the face set L(A)
(see part (a)). xi are the faces of the face set L0(AH1

) (see
part (c)). The three parts here illustrate the process of asso-
ciating an LRB structure to H1 (the conic). First, we remove
a point p from H1 to the right of p1 (see part (b)). Then,
we consider H1 as a line with this point deleted, a line which
starts from p1 (see part (c)).

i(f4) = (0,−,−, 0), i(f5) = (0,−,−,+), i(f6) = (0, 0,−,+)}.

Then:
(a) First, note that (ϕ(L0(AH)))1 = 0 (case (1) in the proposition).
(b) Since H ∩H2 = {p1} ∈ AH , when m1 = multp1(H ∩H2) = 2,

then by case (2)(b), (ϕ(L0(AH)))2 = −((L0(AH))1)
2 (note the

scalar multiplication by −1).
(c) Since H3 ∩H = ∅, then (ϕ(L0(AH)))3 = − (by case (2)(a)).
(d) Since H4 ∩H = {p2, p3}, where

m2 = multp2(H ∩H4) = multp3(H ∩H4) = 1,

then by case (2)(b),

(ϕ(L0(AH)))4 = (L0(AH))2 · (L0(AH))3.

Remark 3.8. Note that if every singular point is locally a node (as in
the case, for example, of a line arrangement), then one can easily see that
Proposition 3.6 is indeed a generalization of Lemma 3.2.

We use the same notations introduced in Remark 3.4.

Proof. The proofs of cases (1) and (2)(a) are identical to the corresponding
proofs in Lemma 3.2. The fact that ϕ is not necessarily an isomorphism is
shown by Example 3.7(2).

We now prove case (2)(b). Let j > 1 and assume that H∩Hj = {pi}i∈Kj
.

Let c be a face of A with supp(c) ⊆ H. Note that if c = pa, a ∈ Kj , then
(iH(c))i = 0 in L0(AH) and (iA(c))j = 0 in L0(A)|H = ϕ(L0(AH)) ⊂ L0(A);
thus case (2)(b) is satisfied when c is 0-dimensional. Therefore, we can look
only at a face c with dim(c) = 1. Then, either c ⊂ {fj > 0} or c ⊂ {fj < 0}.
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We claim that the corresponding vector of signs is determined by the relative
position of c with respect to the points {pi}: the (usual) product of the signs
(of the ith coordinates of L0(AH), where i ∈ Kj) describes whether c is in
{fj > 0} or in {fj < 0}. Let us explicitly check a few cases:

(1) If H ∩Hj = {pi} is a single transversal intersection point (mi = 1),
then, as H and Hj has only one connected component in R

2, we can
proceed as in case (2)(b) in Lemma 3.2.

(2) If H ∩Hj = {pi} is a single tangent point (mi = 2), then we claim

that the jth coordinate of ϕ(L0(AH)) is constant: either + or −
(except for the face x = pi, whose sign in the jth coordinate is 0,
as was described above for the case that dim(c) = 0). This is since
H is either entirely outside or entirely inside {Hj > 0}, and the jth

coordinate is determined according to the signs attached to the two
domains of the plane partitioned by the curve Hj. In the first case
(iA(c))j = + and in the second case (iA(c))j = −. Also, in any case
(iH(c)i)

2 = + and thus we proved that (iA(c))j = ±((iH(c))i)
2 =

{±1}, thus the jth coordinate is indeed constant.
(3) Generalizing case (2), if H∩Hj = {pi} is a single singular point with

multiplicity mi > 2, then all we are interested in is the parity of mi.
If mi is even, then locally at pi, the curve Hj does not pass to the
“other side” of H, and thus the treatment of this case is as the case
when mi = 2. If mi is odd, then locally at pi, the curve Hj does
pass to the “other side” of H, and thus the treatment of this case is
as in case (1), where mi = 1.

(4) Assume now thatH∩Hj = {ps1 , ps2} are two transversal intersection
points (ms1 = ms2 = 1; for example, when H is a line and Hj is a
circle). Recall that the structure of the induced LRB on a pointed
real curve C ∪ {p1, . . . , pk} allows us to think on faces which are to
the right (or to the left) of a point pi, 1 ≤ i ≤ k. Assume without
loss of generality that ps2 is to the right of ps1 .

If H is an unbounded curve, then the fact that c ⊂ {fj > 0} is
equivalent to the fact that c is to the right of ps1 or to the left of ps2 .
In the first case, (iH(c))s1 · (iH(c))s2 = + ·+ = + = (iA(c))j . In the
second case, (iH(c))s1 · (iH(c))s2 = − · − = + = (iA(c))j . We use a
similar argument when c ⊂ {fj < 0}.

If H is a bounded oval, then, as described in the paragraph before
Proposition 3.1, one chooses a point p infinitesimally-close to a point
pi ∈ {p1, . . . , pk}. Thus an LRB structure on the set of faces of AH

is induced, independent of the choice of p, when looking on H as a
bounded segment. Therefore, we can use the same argument used
in the case of an unbounded curve.

(5) Generalizing case (4), assume that H ∩Hj = {ps1 , . . . , psn}, i.e. the
intersection of H and Hj is a transversal intersection of n points
(msi = 1, 1 ≤ i ≤ n).



ON LEFT REGULAR BANDS AND REAL CONIC-LINE ARRANGEMENTS 23

Assume that H is an unbounded curve and thus without loss of
generality, we can numerate the points {psi} consecutively, such that
the point psn will be the most right point. Assume also that in L0(A),
the domain {fj > 0} induces the sign + in the jth coordinate. Let
c be a 1-dimensional face in AH . Assume now that c is to the right
of psn . Thus (iH(c))s1 · . . . · (iH(c))sn = + · . . . · + = + in L0(AH).
In addition, if c ⊂ {fj > 0}, then in L0(A) (or, more accurately, in
L0(A)|H), (iA(c))j = + (otherwise (iA(c))j = −).

Now, if we move to the consecutive 1-dimensional face c′, adjacent
to c (i.e. between psn and psn−1

), then in L0(AH),

(iH(c′))s1 · . . . · (iH(c′))sn−1
· (iH(c′))sn = + · . . . ·+

︸ ︷︷ ︸

n−1 times

·− = −,

while in L0(A), as c′ ⊂ {fj < 0} (if indeed c ⊂ {fj > 0}), (iA(c
′))j = −.

Note that if c ⊂ {fj < 0}, then c′ ⊂ {fj > 0}, so (iA(c
′))j = +, i.e.

there a constant scalar multiplication by {±1} of
∏

v(iH(c))sv .
In this way, we can proceed to the next adjacent 1–dimensional

face and so on, till we have reached to the leftmost face, i.e. to the
face to the left of ps1 , proving case (2)(b) for this type of intersection.

The treatment of the case when H is a bounded oval is similar to
the former case (see also case (4)).

(6) In other cases, i.e. when H ∩Hj = {ps1 , . . . , psn} and msi ≥ 1, then
this case is treated as case (5) (i.e. treating each face separately,
starting from the most right face and continuing to its adjacent face,
and so on) combined with the insights of cases (1),(2),(3).

�

3.2. Embedding-deletion principle. The sub-LRBs induced by a restric-
tion to a connected component are of course not the only sub-LRB of L0(A).
In order to see the geometric meaning of different sub-LRBs, we combine
the procedures of restriction and deletion described above.

Let A = {H1, . . . ,Hm} be an arrangement of smooth connected curves
in R

2, such that L0(A) is an LRB. Let H0 be another smooth connected
curve in R

2. Denote A′ = A ∪H0 and assume that L0(A
′) is also an LRB.

Then, L0(A) is a sub-LRB of (L1
2)

m, and L0(A
′) is a sub-LRB of (L1

2)
m+1,

where the first coordinate in each element in L0(A
′) describes the position

of the face with respect to H0. Let d1 : (L1
2)

m+1 → (L1
2)

m be the deletion
epimorphism, deleting the first coordinate of an element in (L1

2)
m+1.

Lemma 3.9. d1(L0(A
′)|H0

) is a sub-LRB of L0(A).

Proof. L0(A
′)|H0

is an LRB and thus also d1(L0(A
′)|H0

) is an LRB, as d1 is
a homomorphism. Note that one can also compute L0(A

′)|H0
by applying

the function ϕ on L0(A
′
H0

), as described in Proposition 3.6. �

Example 3.10. Look at Figure 11.
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Figure 11. An example for Lemma 3.9.

Figure 11(a) presents an arrangement A, consisting of two lines H1,H2

intersecting transversally, and Figure 11(b) presents the arrangement A′ =
A ∪ H0, where H0 is a conic tangent to the line H1. Let f1, f2 be the
faces of the arrangement A′

H0
(see Figure 11(b)). Then, L0(A) = (L1

2)
2 and

L0(A
′)|H0

= {i(f1) = (0, 0,+), i(f2) = (0,+,+)}. Therefore, as can easily
be checked, d1(L0(A

′)|H0
) = {(0,+), (+,+)} is a sub-LRB of (L1

2)
2.

4. Conic-Line arrangements: Combinatorics

In this section, we present some restrictions on the combinatorics induced
by CL arrangements, and especially by the fact that these arrangements form
a partition of the plane. We start by recalling the deletion-restriction argu-
ment for hyperplane arrangements. The main references for the following
two subsections are [6, 15].

4.1. Preliminaries: The deletion-restriction argument. Let
A = {Hi}

n
i=1 ⊂ R

N = V be a hyperplane arrangement, and let fi ∈ R[x, y]
be the corresponding forms of the hyperplanes. Let also L = L(A) be the
semi-lattice of non-empty intersections of elements of A, called the intersec-
tion poset (ordered by inclusion).

As before, given H ∈ A, let AH = A− {H} be the deleted arrangement,
and AH = {K ∩ H|K ∈ AH} be the restricted arrangement. Recall that
C(A) is the set of chambers of A, i.e. the components of RN −A. Then, we
have (see [19]):

(3) |C(A)| = |C(AH)|+ |C(AH)|.

4.2. Restrictions on the combinatorics. Recall that for an arrangement
of n lines in CP

2, defined by the equations {fi = 0}ni=1, we have the following
formula:

n(n− 1) =
∑

r>1

tr · r(r − 1),

where tr is the number of intersection points of multiplicity r in the ar-
rangement (i.e. points which are locally of the form of an intersection of
r lines at a point). This formula can be induced by Bézout’s theorem for
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the intersection of the curve C = {f1f2 · · · fn = 0} and its polar curve with
respect to a generic point x ∈ CP

2, x 6∈ C. That is, the local multiplicity of
the intersection of C and Polx(C) at an intersection point of multiplicity r
is r(r−1), where the polar curve Polx(C) is defined as follows: given a plane
curve C = {f = 0} (in CP

2, with coordinates (x0 : x1 : x2)), take a generic
point x = (p0 : p1 : p2) 6∈ C in CP

2 and define the polar curve Polx(C) as
follows:

Polx(C) =

{

p0
∂f

∂x0
+ p1

∂f

∂x1
+ p2

∂f

∂x2
= 0

}

.

We look now at CL arrangements in CP
2, which are not necessarily real

CL arrangements (see Definition 1.1), i.e. these arrangements consist of
conics and lines defined over C. For such arrangements in CP

2 we have
other types of singular points, besides being locally an intersection of r
lines. We depict in Figure 12 the different singular points for arrangements
with one conic and also write the local multiplicity mp of the intersection
of C and Polp(C) at such points. We leave it to the reader to verify these
simple calculations.

1 2 k 1 2 k-1

k

(1) (2) (3)

Figure 12. The local intersection multiplicities are: case
(1): mp = (k + 1)k; case (2): mp = 4; case (3): mp =
k2 + k + 2.

Remark 4.1. For an arrangement consisting of one conic and n lines in
CP

2, we have:

(4) (n+ 2)(n + 1) = 2 +
∑

p∈Sing(A)

mp,

where the summand 2 appears as the intersection multiplicity of C and its
polar curve at each of the two branch points is 1.

Formulas for an arrangement with m conics and n lines can be computed
similarly.

4.2.1. Real arrangements. Note that equation (4) becomes an inequality
(with the sign ≥) if we are working with real CL arrangements in RP

2.
We follow Hirzebruch’s analysis [13], specifically for real CL arrangements.

A real CL arrangement defines a cellular decomposition of RP2. Denote by
pr the number of cells bounded by an r-gon, and by tr the number of singular
points p (of the arrangement) such that r curves pass through p. Let v, e
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and f be the number of vertices, edges and cells respectively. Using the fact
that v − e + f = 1 and that v =

∑
tr, e =

∑
rtr =

1
2

∑
rpr, f =

∑
pr, we

get that:

3 +
∑

(r − 3)tr +
∑

(r − 3)pr = 0,

or
∑

r≥4

(r − 3)pr = p2 − 3−
∑

r≥2

(r − 3)tr.

As the left hand side is always non-negative, we get the following conclusion:

Lemma 4.2.

3 +
∑

r≥4

(r − 3)tr ≤ p2 + t2.

Note that while for real line arrangements, when excluding the case of
pencils, t2 ≥ 3 (as p2 = 0), for CL arrangements the above lemma does not
hold anymore: for the arrangement consists of three lines in generic position
and a conic passing through the three intersection points (as in Figure 2),
t2 = 0 and p2 = 3.

4.3. Chamber counting. For a real CL arrangement, the deletion-restriction
formula (3) for chamber counting does not hold anymore. For example, for
the arrangement A appearing in Figure 13,

|C(A)| = 4, |C(AH)| = 2, |C(AH)| = 3 ⇒ |C(A)| 6= |C(AH)|+ |C(AH)|.

On the other hand,

|C(AC)| = 2, |C(AC)| = 2 ⇒ |C(A)| = |C(AC)|+ |C(AC)|.

This is in fact a general phenomena (see also Figure 14 for another example):

H
C

Figure 13. An example for the restriction-deletion formula
for a CL arrangement.

Proposition 4.3. Let A ⊂ R
2 be a real CL arrangement and C ∈ A be a

conic. Then:

|C(A)| = |C(AC)|+ |C(AC)|.

Proof. Define:

P = {X ∈ C(AC) : C ∩X 6= ∅}, Q = {X ∈ C(AC) : C ∩X = ∅}.

Then: |C(AC)| = |P |+ |Q|.
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Numerate the chambers in C(AC), i.e. the sections on the conic C:
C(AC) = {si}

k
i=1, separated by the points C ∩ (AC). Every section sj di-

vides a chamber Y ∈ P into two parts (maybe after adding a new chamber
to P , induced by previous sections si for i < j, see Figure 14) and leaves
the chambers of Q unchanged. That is, the number of new chambers added
to the arrangement AC is exactly |C(AC)|. �

s
1

s
2

s
3

L

C

Figure 14. A parabola C and a line L, intersecting the
parabola twice:

|C(A)| = 5, |C(AC )| = 3, |C(AC)| = 2.

Note that the section s1 divides the chamber X (the half-
plane above the line) in C(AC) into two chambers, and then
s3 divides one of these chambers, again, into two chambers.

Remark 4.4. Note that though this proof is similar to the proof of the
deletion-restriction argument for chamber counting for line arrangements
(see e.g. [15]), a line cannot “return” to a chamber once it has divided it.

However, the deletion-restriction argument is changed while deleting a
line. In order to formulate this change accurately, we start by introducing
some notations.

Definition 4.5. Let A ⊂ R
2 be a real CL arrangement.

(1) Let H ∈ A be a line. Define the function:

bound : C(AH) → {Y ∈ P (C(A)) : |Y | = 2}

bound(E) = {X1,X2}, where E ⊂ X1 ∩X2,

where P (C(A)) is the power set of C(A) and X is the closure of X.
(2) For E1, E2 ∈ C(AH), define the following equivalence relation ∼:

E1 ∼ E2 ⇔ bound(E1) = bound(E2),

and define:

b(H) = C(AH)/ ∼ .

For example, for the arrangement in Figure 15, |b(H)| = 2.

Remark 4.6. It is easy to see that:

(1) |b(H)| ≤ |C(AH)|.
(2) If A is a line arrangement, then b(H) = C(AH) for any H ∈ A.
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H
1

1

2

Figure 15. An illustration of the elements in b(H).

Proposition 4.7. Let H be a line in a real CL arrangement A. Then:

|C(A)| = |C(AH)|+ |b(H)|.

Note that by Remark 4.6(2), Proposition 4.7 is indeed a natural general-
ization of the situation for line arrangements to real CL arrangements.

Proof. For every chamber X ∈ C(AH) such that H ∩ X 6= ∅, the line H
divides X into a certain number of chambers; we denote this number by kX .
Thus:

|C(A)| = |C(AH)|+
∑

X∈C(AH )
H∩X 6=∅

(kX − 1),

since every chamber X ∈ C(AH) in the sum splits into kX chambers, but
we do not count X itself, as it is already counted in |C(AH)|. For each
X ∈ C(AH) in the sum, denote:

X =

kX⋃

i=1

Xi, HX = H ∩X,

that is, (the interior of) X is divided into kX chambers Xi, whose union (of
their closure) is (the closure of) X.

Note that HX is possibly a union of disjoint sections and HX ⊂ C(AH).
Therefore, we need to prove that 1 + |b(HX)| = kX . For convenience, we
rotate the arrangement in such a way that the line H will be horizontal,
and we numerate the sections of HX from right to left, which induces a
numeration H1,H2, . . . of the sections of b(HX) from right to left. For each
Hi ∈ b(HX), 1 ≤ i ≤ |b(HX)|, we look at the pair bound(Hi) = {Xi1 ,Xi2};
see Figure 16 for an example.

We show that for each i < j, either |bound(Hi)∩bound(Hj)| = 1 or there
is a sequence Hi+1, . . . ,Hj−1 such that for each k, i ≤ k < j, |bound(Hk) ∩
bound(Hk+1)| = 1. Indeed, |bound(Hi) ∩ bound(Hj)| < 2, otherwise Hi ∼
Hj. If |bound(Hi)∩bound(Hj)| = 0, look at bound(Hs) for s ∈ {i, i+1, i+2}
(assuming that Hi 6∼ Hi+1 andHi+1 6∼ Hi+2). Assume by contradiction that
|bound(Hi) ∩ bound(Hi+1)| = 0. This means that we have the situation
depicted in Figure 17.

However, this situation is impossible, since the sections are consecutive,
and if {X1,X2} ∩ {X3,X4} = ∅, then Hi,Hi+1 will not dissect the same
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H
H1H2H3H3H4

X1

X2

X3

X4

X5

C

Figure 16. An example for the partition of HX , where X =
X1 ∪ · · · ∪ X5 is a chamber contained inside the interior of
the conic C and X1, . . . ,X5 are the chambers whose union is
X. The sections of HX = H ∩X are H1, . . . ,H4 under the
equivalence relation ∼.

Hi
Hi+1

X1

X2

X3

X4

Figure 17. |bound(Hi) ∩ bound(Hi+1)| = 0

(single) chamber X ∈ C(AH) (since X1,X2 and X3,X4 will be contained
in different chambers of C(AH)) – indeed, even before the operation of ∼,
one can connect a generic point from Hi with a generic point from Hi+1

with a continuous path which lies only in X, which mean that the above
intersection is always non-empty.

Thus, we define recursively the following map ℓX : (HX/∼) → {X1, . . . ,XkX} :

ℓX(H1) is one of the chambers X such that H1 ⊂ X . Define ℓX(Hi) for
i > 1 to be one of the chambers X ′ such that Hi ⊂ X ′ and for every
j < i, ℓX(Hj) 6= X ′. Up to the choice of X, the map is well-defined, as
for every 1 < i there is only one option to choose (recall that for each
i, |bound(Hi) ∩ bound(Hi+1)| = 1). By the definition of ℓX , the map is
injective. Therefore, |b(HX)| = kX − 1.

�

Remark 4.8. By the same arguments we have used above, one can easily
see that Proposition 4.7 holds for arrangements in RP

2 too. However, in
Definition 4.5(1), the definition of the function bound should be changed as
follows:

bound : C(AH) → {Y ∈ P (C(A)) : |Y | ≤ 2}

bound(E) = {X1,X2} such that E ⊂ X1 ∩X2 or E ⊂ X1.
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