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Abstract

This paper considers the simulation of self-sustained oscillations in reed and brass instru-
ments, based on a compact continuous-time formulation of the sound production mechanism.
The control parameters such as the mouth pressure and the player’s embouchure, but also
the acoustic resonator and the reed may vary with respect to time, allowing the analysis of
transient and non-stationary phenomena like changes of regime. A particular attention is
first given to staccato notes, with comparison of the evolution of the instantaneous frequency
in simulations to theoretical and experimental results. This shows the importance of using
realistic control parameters on the onset of the oscillations. When the acoustic resonator is
modelled using a modal expansion with non-stationary resonance frequencies and damping,
it is also possible to simulate and study slurs and musical effects like the wah-wah, gaining
some insight on the mechanisms involved.

1 Introduction

In sound analysis or synthesis, transients are necessary in the sense that they carry infor-
mation useful to listener to identify the instrument and to perceive the musician intention.
Time-domain simulation is helpful in understanding the relation between variation in con-
trol parameters and characteristics of the resulting sound. The present paper considers the
time-domain simulation using modal expansion for the behaviour of the passive parts of the
reed instruments, i.e. the reed and the resonator (the nonlinear part corresponding to the
coupling between airflow and the reed acting as a valve). This allows taking into account in
a simple way the variation of the control parameters, such as the mouth pressure and the
player’s embouchure, but also the acoustic resonator and the reed whose parameters may
vary with respect to time, allowing the analysis of transient and non-stationary phenomena
like changes of regime.

In the assumption of linear acoustics, a resonator can be fully described by its input
impedance, and this quantity can be expanded into modes of the resonator. This leads to
the solving of a set of Ordinary Differential Equations. Modal analysis is widely used in mu-
sical acoustics to analyse and reproduce the vibration of complex vibrating structures, but
few applications have been treated for self-sustained instruments (Ref. [1] for the study of the
bowed string, Ref. [2] for sound synthesis, and Ref. [3] for a dynamical system approach).
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We first present the modelling of the problem, based upon a classical description of the
different parts of the instrument, then the time domain simulation as performed within the
Moreesc tool [4], and present two examples: the first one is the mouth pressure rises in
clarinet-like instrument, and the effect of the speed of the rise on the resulting attack. The
second one concerns brass instruments, first slurred transients obtained when the natural
frequencies of the lips are varying during the sound for a given length of the resonator, then
the wah-wah effect simulating dynamic variation of the input impedance of the trumpet.

2 Modelling

The elementary model used by many authors (see e.g. [5]) assumes the representation of
the sound production mechanism by an acoustic resonator and an exciter, and their mutual
coupling. This leads to a system of three equations modelling the reed (cane or lip reed)
motion, the acoustic waves in the bore of the instrument and the flow of air through the
reed channel. Those are formulated using a control-theory approach, defining a state vector
X () and its dynamics dX/dt = f(X,t,...). Hereafter are described the partial state vector
associated with each part of the system:

X =X, X0, Xr]". (1)

2.1 Reed motion

Extending previous models such as the massless reed [6] or the single d.o.f. [7], a general class
of transfer function is considered, relating the reed channel opening A(t) to the driving term,
here the pressure difference Ap(¢):
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with M < N, or, using the Laplace transform
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where s is the Laplace variable (usually evaluated on the frequency axis s = jw), and ag = 1.
This simplifies for the single d.o.f. reed with natural angular frequency w,, damping g, and
stiffness K, to N =2, M =0 and a1 = q,w,, ag = w% and by = w%/Kr. The observable canonical
form is adopted, with the partial state vector:
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Note also that refinements such as beating reed are handled using contact forces as additional
driving terms.

2.2 Acoustic resonator

While it is possible to fine-grainly describe the pecularities of the geometry and of the phe-
nomena at the open tone holes or at the bell, the focus is here given to the results of those
on the input impedance of the bore. This approach is valid since the valve-bore coupling is
localised at the entrance of the bore. Furthermore, the input impedance is parametrised in
order to avoid convolution with a long tailed impulse response. The mouthpiece pressure
p(t) is expanded as a sum of components p,(¢) defined by the modal expansion of the input
impedance:
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Poles s, and residues C, can be derived analytically for simple models [8], from numerical
identification on a measured input impedance or estimated through a spatial modal anal-
ysis (with observation at the bore entrance). Hermitian symmetry implies real or complex
conjugates poles (and residues), so that

pt)= )Y 2Re(pa®)+ ) pald). (6)
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The partial state vector thus contains the components p,(¢) such that Sm(s,(¢)) =0, and its
dynamics is given by Eq. (5).

2.3 Airflow

According to Hirchberg [6], the airflow through the reed channel u(¢) can be described by a
stationnary expression based on the Bernoulli theorem:

u(t) = h(t), | 2Aﬁ ®) )

with p the air density. Within this approximation, the flow rate u(¢) is a simple observable
so that the partial state vector related to fluid mechanics is empty. Reed motion induced
flow only adds a term in the previous expression, and a partial state vector Xs; appears if an
instationnary flow description is considered.

3 Time-domain simulation

3.1 ODE integration

Eqgs. (2), (5) and (7) define a continuous-time formulation that do not require to be transposed
to the discrete-time domain. In fact a wide family of Ordinary Differential Equations (ODE)
solvers are able to handle such a formulation, allowing extra precautions when approching
singular points such as instants when the system becomes stiff or leaves this property. When
considering stability of the scheme, the adaptative step-size and/or order-size provide a deep
advantage in comparison with fixed step-size scheme like Euler method for instance. The
following integrators have been tested in the present study:

Explicit Euler method: the bounded stability region requires small time steps. For usual
audio sampling frequencies, this condition forbids the explicit single-step method, lead-
ing to instability and explosion of the computed solution. Practically, the sampling fre-
quency can be increased (by a factor M), it is quite usual for the time step to be about
0.01/f; (M =100 intermediate steps between samples at the usual audio sampling fre-
quency fs =44.1kHz). The result is then obtained discarding the intermediate steps, as
in the following Runge-Kutta methods.

Explicit Runge-Kutta methods of order 5(4) and 8(5,3) perform adaptive step size to bound
the local truncation error. As in the Euler integrator, the intermediate steps used to ob-
tain the high order are discarded.

VODE and LSODA are multistep methods that re-use previous steps to gain efficiency in-
stead of computing and discarding intermediate steps. They are also variable-order and
adaptive step size, and can use both implicit Adams-Moulton methods (AM) or Back-
ward differentiation formulas (BDF) depending on whether the problem is locally stiff
or not. LSODA has the advantage of automatically performing the switch between the
two methods when stiffness has been detected.

3.2 Time-varying control parameters

Simulation requires that the control parameters are not oversimplified in order for the results
to sound perceptively natural. As noted in [9] and also in [10] on clarinet and [11] on brass
instruments, it is essential to understand how to perform starting transients and transition



between slurred notes. The current code has been designed to allow the definition of time-
variable mouth pressure and reed channel opening at rest, but also to dynamically change
the reed transfer function and the input impedance using coefficients a, and b,,, poles s, and
residues C,, that are allowed to change with respect to time. This involves using academic
profiles such as step or smoothed steps, measured mouth pressure or even interpolation be-
tween two configurations of the acoustic resonator. The continuous-time domain formulation
is preserved through the approximation of sampled signals by cubic spline if needed. Results
below will present a few simulations using this process.

4 Results

4.1 Mouth pressure rise and quality of the attack

Previous studies [12, 13] showed how the time needed for setting the mouth pressure to its
steady value affects the oscillation growth. For slow rise (about 10 ms), there is an exponential
growth of the fundamental frequency partial that only transfers some energy to the higher
harmonics when saturating (i.e. when the nonlinearity of the airflow relationship gets in-
volved). On the contrary, the quickly rising input (less than 1 ms) distributes energy amongst
all the resonances before mode-locking ensures reorganisation into partials, as shown by De-
but [12] defining master and slave components. These results are extended here by simulat-
ing the attack of a 50 cm long cylinder mode (with radius 7 mm, truncated to 8 modes) with a
cane reed (w, = 27 x 1.5 kHz, ¢, = .4 and K, = 0.5 GPa/m?, aperture at rest 7 mm?) for mouth
pressure growing from 0 to 1708 Pa with various rise time.
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Figure 1: Starting transients for various rise time of the mouth pressure. Left: blue curves for
input pressure signal, red curve for mouth pressure. Upper right: amplitude of signals. Lower
right: oscillation frequency deviation to steady-state frequency (same colors as for the upper right
axes, quickly rising mouth pressure only). F, = 44.1 kHz.

Signals on Fig. 1 show an apparent delay in the start of the sound for rise times greater
than 5 ms. However, the amplitude extraction evidences that all oscillations have exponential
growth with a time constant independant of the rise time before reaching the steady state.



Note that the latter seems also to be the same for all the simulations, even for smaller rise
time.

In his PhD thesis [12], Debut explained why the frequency is not the same during the
very short time when the functioning can be regarded as linear, and during the steady-state
regime. For the former, the eigenfrequencies differ from the eigenfrequencies of the passive
resonator due to the energy supply at the input of the bore, and can be much higher if the
sudden increase of the mouth pressure is large. The result shown in Fig. 1 (lower right axes)
is in accordance with the work by Debut (Ref. [12], page 109): for the most sudden attack, the
instantaneous frequency starts with more than 20 cents above the steady-state frequency.
The oscillation frequency then evolves when the harmonics fit into the multimodal resonator,
explained as the mode locking phenomenon by Ref. [14].

Concerning oscillations occurring during the first 60 milliseconds, they are due to the
analysis method. It is well known that instantaneous frequency estimation on nonstationary
multi-components signals is a tricky problem that combines the choice of the time-frequency
analysis window and the speed of variations of amplitude and frequency modulation laws.
However several questions can be asked about this frequency variation. Preliminary exper-
imental studies have been done with professional clarinettists. They exhibit a similar ten-
dency, i.e. in general the instantaneous frequency decreases during the first milliseconds,
but sometimes, it increases. Obviously many other reasons can be sought than the previous
one. As an example, the tuning control by the instrumentalist can be the main reason of this
behaviour, but this remains to be investigated. Moreover the perceptive effect of this varia-
tion is not known, and it is not sure that it is important, because the duration is very short.
Further work is needed.

4.2 Slurred transients in brass instruments

The slurred transients are investigated simulating the sound production when increasing
and decreasing the natural frequency of the lips of a brass musician. The measured input
impedance of a Yamaha YTR1335 trumpet has been expanded on 12 modes, with a parametri-
sation error less than 2% (see Fig. 2).
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Figure 2: Measured input impedance of the trumpet and modal expansion.

For a linear decrease from 1kHz to 100 Hz of the natural frequency of the lips (modelled
as a single d.o.f. oscillator with ¢, = 0.1 and K, = 0.8 GPa/mz), downwards slurs are ob-
served (see Fig. 3, red curves) when the lips resonance frequency goes too far beyond each of
the acoustic resonance frequencies. These changes of regime define playing frequency ranges
that are almost centered on the resonance frequencies of the bore (+50cents). On the contrary,
upwards slurred transients happen when w, crosses one of the bore resonances, i.e. leading to
sharper notes. This is what is expected when focusing on oscillation threshold (see e.g. [15]).
This difference between the behaviors of the upwards and downwards slurred transients cor-
responds to the feeling of the musician when practising three-notes (up then down, or down



then up), requiring important changes on the lips tension. Another consequence is that the
musician has to adopt some strategy to overcome the sharper note obtained on upward slur.
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Figure 3: Upward (red curves) and downward (black curves) slurs of a trumpet. No valve change,
linear variation of w,. Dotted lines are the acoustic resonances frequencies.

It is also interesting to investigate how the change of regime takes place. In Fig. 4, the
lower step of the mouthpiece pressure signal seems to lose stability, like an unstable ampli-
tude modulation until the slur occurs and the amplitude modulation vanishes too, leading
to the flatter note. Comparison with the phenomena presented by two players in Ref. [11]
requires further investigation on the strategies adopted by these musicians.
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Figure 4: Zoom on a downward slur of a trumpet: time-domain signal and instantaneous fre-
quency.

4.3 Wah-wah effect

Last result focuses on the wah-wah effect on the trumpet. Using a rubber plunger mute at
several distances from the bell, a series of four input impedance measurements has been
expanded onto modes, allowing to define trajectories for each of the poles and residues. Ar-
bitrary 2 s-long sequences of closing and opening of the bell have been modelled as shown
in Fig. 5 (left axes, solid curves are trajectories of the modulus of the poles). Simulation for
time-invariant characteristics of the lips (w, =27 x500Hz, ¢, =0.1, K, = 0.8 GPa/m?) leads to
sound production with instantaneous frequency oscillating over a range of 20 cents (dashed
curve in Fig. 5, left axes). The main effect is visible on the amplitude modulation (Fig. 5,
upper right axes), and on the spectral centroid frequency (Fig. 5, lower right axes), leading to
perceptible variations of the loudness and timbre.
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Figure 5: Deviation, amplitude and spectral centroid frequency for the wah-wah effect simula-
tion.

References

[1] J. Antunes, M. G. Tafasca, and L. L. Henrique, “Simulation of the bowed-string
dynamics-part 1- a nonlinear modal approach”, in Actes du 5éme congrés francais
d’acoustique, 285—-288 (2000).

[2] R. E. Caussé, J. Bensoam, and N. Ellis, “Modalys, a physical modeling synthesizer: More
than twenty years of researches, developments, and musical uses”, in 162nd Meet. Acous.
Soc. Am. (2011).

[3] A.Barjau and V. Gibiat, “Study of woodwind-like systems through nonlinear differential
equations. part ii. real geometry”, J. Acous. Soc. Am. 102, 3032-3037 (1997).

[4] F. Silva, Ch. Vergez, J. Kergomard and Ph. Guillemain, “Moreesc : Modal Resonator
- Reed Interaction Simulation Code”, URL http://moreesc.lma.cnrs-mrs.fr/, (last
accessed on jan. 21th, 2013).

[5] A. Chaigne and J. Kergomard, Acoustique des instruments de musique (Belin) (2008).

[6] A. Hirschberg, J. Kergomard, and G. Weinreich, eds., Mechanics of Musical Instruments,
CISM Courses and Lectures No.355 (Springer-Verlag, Wien - New York) (1995).

[7]1 T. A. Wilson and G. S. Beavers, “Operating modes of the clarinet”, J. Acous. Soc. Am. 56,
653-658 (1974).

[8] F. Silva, “Emergence des auto-oscillations dans un instrument de musique & anche sim-
ple”, Ph.D. thesis, Aix Marseille University (2009).

[9] J. M. Grey, “Multidimensional perceptual scaling of musical timbres”, J. Acous. Soc. Am.
61, 1270-1277 (1977).

[10] P. Guillemain and A. Merer, “Réles du controle et du timbre dans la perception du naturel
de sons de clarinette”, in 10éme Congrés Frangais d’Acoustique, (2010).

[11] S. Logie, P. Chick, John, S. Stevenson, and M. Campbell, “Upward and downward slurred
transients on brass instruments: Why is one not simply the inverse of the other?”, in
10éme Congres Francais d’Acoustique, (2010).

[12] V. Debut, “Deux études d’'un instrument de musique de type clarinette : analyse des
fréquences propres du résonateur et calcul des auto-oscillations par décomposition
modale”, Ph.D. thesis, Université de la Méditerranée - Aix-Marseille I (2004).

[13] F. Silva, V. Debut, J. Kergomard, C. Vergez, A. Deblevid, and P. Guillemain, “Simulation
of single reed instruments oscilations based on modal decomposition of bore and reed
dynamics”, in Proceedings of the International Congress of Acoustics (Espagne Madrid),
(2007).

[14] N. H. Fletcher, “Mode locking in nonlinearly excited inharmonic musical oscillators”, J.
Acous. Soc. Am. 64, 1566-1569 (1978).

[15] J. S. Cullen, J. Gilbert, and D. M. Campbell, “Brass instruments: Linear stability anal-
ysis and experiments with an artificial mouth”, Acta Acustica united with Acustica 86,
704-724 (2000).


http://moreesc.lma.cnrs-mrs.fr/

	Introduction
	Modelling
	Reed motion
	Acoustic resonator
	Airflow

	Time-domain simulation
	ODE integration
	Time-varying control parameters

	Results
	Mouth pressure rise and quality of the attack
	Slurred transients in brass instruments
	Wah-wah effect


