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Reducibility is a powerful proof method which applies to various properties of
typed terms in different type systems. For strong normalization, different vari-
ants are known, such as Girard’s reducibility candidates, Tait’s saturated sets and
biorthogonals. They differ by the closure conditions imposed to types interpreta-
tions, called here reducibility families.

This paper is about the computational and observational properties underlying
untyped reducibility. Our starting point is the comparison of reducibility families
w.r.t. their ability to handle rewriting, for which their possible stability by union
plays an important role. Indeed, usual saturated sets are generally stable by union,
but with rewriting it can be difficult to define a uniform notion of saturated sets.
On the other hand, rewriting is more naturally taken into account by reducibility
candidates, but they are not always stable by union. It seems that for a given rewrite
relation, the stability by union of reducibility candidates should imply the ability
to naturally define corresponding saturated sets. In this paper, we seek to devise
a general framework in which the above claim can be substantiated. In particular,
this framework should be as simple as possible, while allowing the formulation of
general notions of reducibility candidates and saturated sets.

We present a notion of non-interaction which allows to define neutral terms and
reducibility candidates in a generic way. This notion can be formulated in a very
simple and general framework, based only on a rewrite relation and a set of contexts,
called elimination contexts, required to satisfy some simple properties. This provides
a convenient level of abstraction to prove fundamental properties of reducibility
candidates, to compare them with biorthogonals, and to study their stability by
union. Moreover, we propose a general form of saturated sets, issued from the
stability by union of reducibility candidates.

∗INRIA Sophia Antipolis - Méditerranée, Everest project, 2004 route des Lucioles - BP 93, 06902 Sophia
Antipolis Cedex, France
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1 Introduction

The most flexible termination proof methods for various extensions of typed λ-calculi use type
interpretations. All these methods follow the same pattern, which is a variation of realizability
called reducibility and due to Girard [Gir72]. Besides termination, reducibility can also be
used to build realizability models of programming languages [Pit00, VM04, Vou04], or to study
program extraction from proofs [Kri04].

The reducibility method proceeds in two stages. First, types are interpreted by sets of strongly
normalizing terms. Second, the adequacy of the interpretation has to be shown: typable terms
must belong to the interpretation of their types. However, not every interpretation is ade-
quate. The adequate ones rely on particular closure conditions, which are called reducibility
families in this paper. There are essentially three different kinds of reducibility families: Gi-
rard’s reducibility candidates [Gir72], Tait’s saturated sets [Tai75] and interpretations based on
biorthogonality [Par97] issued from linear logic [Gir87].

We are interested in the comparison and the understanding of reducibility techniques. Gen-
eral facts are known on the comparison of Girard’s and Tait’s closure conditions [Gal89, Luo90,
Wer94]. Moreover, [Gal89] provides a precise study of typed and untyped reducibility. Re-
ducibility proofs have been explored abstractly in [Gal95], with aim of isolating ingredients
specific to strong normalization from those which can be generalized to abstract realizabil-
ity models. Different work, but in a similar framework, seek to obtain strong normalization
arguments from abstract realizability models [HO93].

In this paper, we focus on computational and observational properties underlying untyped
reducibility. Our approach is to compare reducibility families w.r.t. their stability by union
and their ability to handle rewriting. While we use stability by union as a tool to explore
reducibility, this property is necessary or desired in some cases [Abe06a, BR06, Tat07].

Let us briefly explain why stability by union is interesting to compare reducibility candidates
and saturated sets. Adequacy requires reducibility families to be closed by forms of expansions
which preserve some properties such as strong normalization or ”good interaction” with elimina-
tion contexts. Roughly speaking, the essential difference between Tait’s and Girard’s conditions
is the following. Given an elimination term t and a closed set S, for t to belong to S, Tait’s
conditions require only that the weak-head reduct of t belongs to S, while Girard’s conditions
require that all reduct of t belong to S. The correctness of Tait’s conditions is usually easy
to establish for orthogonal reduction systems, and so is their stability by union. On the other
hand, Girard’s conditions are always correct but not always stable by union. As a matter of a
fact, with rewriting it is in general difficult to define a direct notion of saturated sets, the rea-
son being that some rewrite system do not admit stable by union reducibility families [Rib07c].
Intuitively, the stability by union of Girard’s sets should imply the correctness of the corre-
sponding Tait’s conditions. The goal of this paper is to provide a general framework in which
this claim can be substantiated. The difficulty is to devise a framework as simple as possible,
in which it makes sense to define general notions of reducibility candidates and saturated sets.

After having presented our notations and given basic definitions in Sect. 2, our first step,
carried out in Sect. 3, is to isolate and analyze some elementary computational properties on
which saturated sets rely, and to precisely see when and how they are used in proofs of basic
and well-known results on saturated sets.

This leads in Sect. 4 to the main contribution of this paper: a generic definition of Girard’s
reducibility candidates relying on a non-interaction property between some terms and contexts.
Our framework only assumes a rewrite relation and a set of contexts, called elimination contexts,
which satisfy some simple properties. We define a general notion of neutral terms, as being the

3



terms which interact with no elimination contexts. Terms which are not neutral are observable
since they interact with some elimination contexts. We call them values. The notion of non-
interaction allows to isolate and prove fundamental properties of reducibility candidates. These
ideas have been sketched in [Rib08]. The prominent role of elimination contexts in reducibility
has already been underlined [Abe04, Mat05], as well as the importance of their interactions
with terms [Kri04]. Moreover, the idea of non-interaction is implicitly present in [Gal95, LS05].
However, this notion seems not to have been previously identified for itself and systematically
developed as in this paper. We show in Sect. 5 that it also provides a convenient level of
abstraction to define biorthogonals and to sketch a comparison with reducibility candidates.

We apply this framework to the study of stability by union in Sect. 6, and thus generalize
results of [Rib07b]. Technically, stability by union relies on standardization. The important
role of this property in normalization is well-known, in particular with the study of needed
redexes and perpetual reductions (see for instance [vRS95, KOvO01]). One contribution of
our approach is that stability by union gives an abstract and order-theoretic point of view
on standardization in reducibility, in particular thanks to the principal reduct and the strong
principal reduct properties.

Our approach is guided by order-theoretical ideas, such as the notion of specialization pre-
order, which leads to elegant characterization of stability by union. These order-theoretic ideas
seem new in the study of reducibility for normalization, with the exception of [Gal95], where
they are not developed for themselves but used as a basis of a more complex framework using
the notions of covers and sheaves. Moreover, we have been inspired by the topological notions
used to build realizability models of programming languages in [VM04, Vou04].

We come back in Sect. 7 to the comparison of reducibility candidates and saturated sets. We
show that our framework allows to define a form of general saturated sets. They apply exactly
when reducibility candidates are stable by union, and have a strong correspondence with them,
generalizing that of [Rib07b]. However, they do not relate well with usual saturated sets. To get
a precise correspondence, it is possible that a notion such as external redexes [KOvO01] may
have been better than the strong principal reduct property. We did not follow this line because
the formulation of such a notion needs precise syntactical knowledge on rewrite relations, in
particular it is crucial to know how redexes are nested in each other [KOvO01, Mel05].

Finally, we conclude in Sect. 8, where we also present directions for future research.

The paper is based on parts of the PhD thesis of the author [Rib07a] (in French). It ex-
tends and presents in a uniform way results and ideas which have been sketched or presented
in [Rib07b, Rib07c, Rib08]. We assume familiarity with typed λ-calculus [Bar92], reducibil-
ity [Gal89, Kri90] and rewriting [Ter03]. Most of the other notions are presented in full details.

2 Preliminaries

This section presents the basic ingredients of the paper. We begin by our notations on (typed) λ-
calculus and rewriting in Sect. 2.1. We then define type interpretations and reducibility families
in Sect. 2.2. The latter depend on the notion of closure operator, which is also briefly recalled.

Given a set A, ~a denotes a finite sequence of elements of A of length |~a|.

2.1 Terms, Reductions and Typing

Terms. A signature Σ is a family of countable sets (Σn)n∈N such that Σn contains algebraic
symbols of arity n. We consider λ-terms with uncurried symbols f in a signature Σ and variables
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in a set X = {x, y, z, . . . }. They are given by the following grammar:

t, u ∈ Λ(Σ) ::= x | λx.t | t u | f(t1, . . . , tn) where f ∈ Σn .

As usual, terms are identified modulo renaming of bound variables (α-conversion). Let Λ

be the set of pure λ-terms Λ(∅). A substitution is a function σ from X to Λ(Σ) of finite
domain. The capture avoiding application of the substitution σ to the term t is written tσ or
t[σ(x1)/x1, . . . , σ(xn)/xn] if Dom(σ) = {x1, . . . , xn}.

Algebraic symbols can contain the binary symbol 〈 , 〉 of pairing and the two unary projec-
tions π1 and π2 . This gives the λ-calculus with products. In this paper, it is convenient to
describe it by extending the syntax of λ-terms with

t, u ∈ Λ(Σ) ::= . . . | 〈t, u〉 | π1 t | π2 t ,

where it is assumed that 〈 , 〉, π1 , π2 /∈ Σ.

Reductions. Let →R be a binary relation on Λ(Σ).

(i) We denote by →+
R the transitive closure of →R, by →∗

R its reflexive and transitive closure,
and by ←R its inverse. Moreover, we write t→k

R u if t→∗
R u in less than k ∈ N steps.

(ii) Given A ⊆ Λ(Σ), we let

(A)R =def {t | ∃u. u ∈ A ∧ t→R u}

and (A)∗R =def {t | ∃u. u ∈ A ∧ t→∗
R u} .

Given t ∈ Λ(Σ), we write (t)R for ({t})R and (t)∗R for ({t})∗R. We say that t is R-reducible
(or reducible) if (t)R 6= ∅ and that it is R-normal (or normal) otherwise.

(iii) We denote by SNR the set of strongly R-normalizing (or strongly-normalizing) terms for
→R, which is the smallest set of terms such that

∀t. (∀u. t→R u =⇒ u ∈ SNR) =⇒ t ∈ SNR .

(iv) We define the product extension of →R as (t1, . . . , tn) →R (u1, . . . , un) when there is
k ∈ {1, . . . , n} such that tk→R uk and ti = ui for all i 6= k.

Definition 2.1.1 (Rewrite Relation) Let →R be a relation on (Λ(Σ) \ X ) × Λ(Σ).
We say that →R is closed by substitutions if t→R u implies tσ→R uσ, and that it is closed

by contexts if it is closed by the following rules:

t →R u

λx.t →R λx.u

(t1, t2) →R (u1, u2)

t1 t2 →R u1 u2

(t1, . . . , tn) →R (u1, . . . , un)

f(t1, . . . , tn) →R f(u1, . . . , un)

where f ∈ Σ ⊎ {〈 , 〉, π1 , π2 }. We say that →R is a rewrite relation on Λ(Σ) if it is closed by
contexts and substitutions.

In the following, →R denotes a rewrite relation on Λ(Σ). Note that variables x ∈ X are always
in R-normal form. Given two relations →A and →B, we write →AB for →A ∪→B.

The reduction relations→β of the λ-calculus and→π of products are the least rewrite relations
on Λ(Σ) containing respectively 7→β and 7→π, where

(λx.t)u 7→β t[u/x] and π1 〈t1, t2〉 7→π t1 π2 〈t1, t2〉 7→π t2 .
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Rewriting. A rewrite system R on Λ(Σ) is a set of pairs written

f(l1, . . . , ln) 7→R r ,

where r ∈ Λ(Σ) and for all i ∈ {1, . . . , n}, li is an algebraic term, that is, a term on the grammar

p ::= x | g(p1, . . . , pm) where g ∈ Σm .

The reduction relation→R issued from a rewrite system R is the least rewrite relation on Λ(Σ)

containing 7→R. In this paper, we also consider some particular cases of rewriting, namely
constructor rewriting and orthogonal rewriting.

Definition 2.1.2 (Constructor Rewriting) Assume given a set C ⊆ Σ of constructor sym-
bols c. A constructor rewrite system with constructors in C is a rewrite system R such that for
each rule f(l1, . . . , ln) 7→R r and all i ∈ {1, . . . , n}, the term li is a pattern, that is, a term on
the grammar

p ::= x | c(p1, . . . , pn) where c ∈ C .

Orthogonal rewriting is a widespread, well-understood form of rewriting [Ter03].

Definition 2.1.3 (Orthogonal Rewriting) A rewrite system R is orthogonal if there is no
superpositions of rewrite rules and if all rules are left-linear.

A logically powerful orthogonal constructor rewrite system, realizing Spector’s double negation
shift, is studied in [CS06]. It is originally presented in curried form, but can can also be written
in our framework with algebraic symbols of fixed arity. For the purpose of this paper, it is
convenient to have in mind a very simple system.

Example 2.1.4 Peano’s numbers are build using the constructors 0 (of arity 0) and S (of
arity 1). The following system, defining addition, is an orthogonal constructor rewrite system:

plus(x, 0) 7→plus x plus(x, S(y)) 7→plus plus(S(x), y) .

Typing. Given base types B ∈ B, simple types with products are defined as usual:

T,U ∈ T⇒×(B) ::= B | U⇒ T | T × U .

We denote by T⇒(B) (resp. T×(B)) the set of pure simple types (resp. pure products types),
which are types T ∈ T⇒×(B) with no occurrence of × (resp. ⇒).

Typing contexts are functions Γ of finite domain from X to T⇒×(B) written x1 : T1, . . . , xn : Tn.
The typing relation Γ ⊢⇒× t : T of the λ-calculus with products is the least relation closed under
the following rules:

(Ax)
Γ, x : T ⊢ x : T

(⇒I)
Γ, x : U ⊢ t : T

Γ ⊢ λx.t : U⇒ T
(⇒E)

Γ ⊢ t : U⇒ T Γ ⊢ u : U

Γ ⊢ t u : T

(×E)
Γ ⊢ t : T1 × T2

Γ ⊢ πi t : Ti

(i ∈ {1, 2}) (×I)
Γ ⊢ t1 : T1 t2 : T2

Γ ⊢ 〈t1, t2〉 : T1 × T2

6



The typing relation Γ ⊢⇒ t : T of the pure λ-calculus (resp. Γ ⊢× t : T of the pure product
calculus) is the restriction of ⊢⇒× to contexts Γ : X 7→ T⇒(B) and to types T ∈ T⇒(B) (resp.
Γ : X 7→ T×(B) and T ∈ T×(B)).

Given a type assignment τ : Πn∈N.Σn 7→ P(T⇒×(B)n+1), the typing relation Γ ⊢⇒×τ of the
λ-calculus with products and algebraic symbols typed in (Σ, τ) is the least relation closed under
the rules of ⊢⇒× and the rule

(Symb)
Γ ⊢ t1 : T1 . . . Γ ⊢ tn : Tn

Γ ⊢ f(t1, . . . , tn) : T
(T1, . . . , Tn, T) ∈ τ(f)

The λ-calculus with typed algebraic symbols is obtained from τ : Πn∈N.Σn 7→ P(T⇒(B)n+1). Its
typing relation ⊢⇒τ is the least relation closed under the rules of ⊢⇒ and the rule (Symb).

In the following, we denote by Tty(B) an arbitrary set of types build from base types B ∈ B,
arrow types ⇒ and product types ×, and by ⊢ty an arbitrary type system obtained by any
combination of the pure λ-calculus, products and typed algebraic symbols.

Typed rewriting. Given τ : Πn∈N.Σn 7→ P(Tty(B)n+1), a rewrite system R is typed in ⊢tyτ

if for all f ∈ Σ, all (T1, . . . , Tn, T) ∈ τ(f) and for each rewrite rule f(~l) 7→R r there exists a
(necessarily unique) context Γ with Dom(Γ) = FV(f(~l)) such that

Γ ⊢tyτ f(~l) : T and Γ ⊢tyτ r : T .

A constructor rewrite system is typed if it is typed as a rewrite system and if moreover, for all
c ∈ C, τ(c) is of the form {(~T,B)} with B ∈ B.

Example 2.1.5 (Ex. 2.1.4 continued) The structure of Peano’s numbers can be typed using
the base type Nat ∈ B, by putting τ(0) = {Nat} and τ(S) = {(Nat,Nat)}. If moreover τ(plus) =

{(Nat,Nat,Nat)}, then the rewrite system 7→plus is a typed constructor rewrite system.

2.2 Reducibility

Given a type system ⊢ty and a rewrite relation →R, we are interested in properties of some
methods to prove that typable terms are strongly R-normalizing.

Type interpretations. The methods we are interested in are based on type interpretations
which map types T to sets of strongly normalizing terms JTK. A type interpretation can be used
to prove strong normalization when it is adequate, that is when

⊢ty t : T implies t ∈ JTK .

Definition 2.2.1 (Type Interpretation) Let →R be a rewrite relation on Λ(Σ).

(i) A type interpretation is a map J K : Tty(B) 7→ P(Λ(Σ)) such that X ⊆ JTK ⊆ SNR for all
T ∈ Tty(B).

(ii) A type interpretation J K is adequate for a type system ⊢ty if

(

Γ ⊢ty t : T ∧ σ |=J K Γ
)

=⇒ tσ ∈ JTK ,

where σ |=J K Γ iff σ(x) ∈ JΓ(x)K for all x ∈ Dom(Γ).
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If we have a type interpretation J K which is adequate for a type system ⊢ty, then every term
typable in ⊢ty is strongly normalizing.

Proposition 2.2.2 (Strong Normalization) Let →R be a rewrite relation on Λ(Σ) and ⊢ty

be a type system. If J K : Tty(B) 7→ P(SNR) is a type interpretation which is adequate for ⊢ty,
then

Γ ⊢ty t : T =⇒ t ∈ SNR .

Proof. Define the substitution σ =def [x/x | x ∈ Dom(Γ)]. Since J K is a type interpretation,
we have X ⊆ JTK for all T ∈ Tty(B), hence σ |=J K Γ . Since J K is adequate for ⊢ty, we have
tσ = t ∈ JTK, hence t ∈ SNR since J K is a type interpretation.

Closure operators. Adequacy requires interpretations J K to satisfy some closure properties.
It turns out that closure operators provide a convenient level of abstraction to formulate and
reason on these properties. Our use of closure operators is inspired from [Vou04, VM04]. We
recall here some facts on this notion.

Let D = (D,≤,
∨

,
∧

,⊥,⊤) be a complete lattice.

Definition 2.2.3 (Closure Operator) A closure operator on D is a function ( ) : D 7→ D

which is idempotent: d = d for all d ∈ D; extensive: d ≤ d for all d ∈ D; and monotone:
d ≤ e implies d ≤ e for all d, e ∈ D.

An element d ∈ D is closed for ( ) if d = d. We denote by D the set of closed elements of D.

Proposition 2.2.4 An element d ∈ D is closed for ( ) if and only if d = e for some e ∈ D.

Proof. The ”only if” direction is trivial. If d = e, then d = e = e = d by impotence.

Closure operators preserve greatest lower bounds.

Proposition 2.2.5 X ⊆ D =⇒
∧

X ∈ D.

Proof. Given X ⊆ D, we show that
∧

X =
∧

X. Since ( ) is extensive, it suffices to show that
∧

X ≤
∧

X. By definition of
∧

, this holds if
∧

X ≤ d for all d ∈ X. But if d ∈ X, since
∧

X ≤ d,
by monotony of ( ) we deduce

∧

X ≤ d, hence
∧

X ≤ d because d is closed.

It follows that the set of closed element of D is also a complete lattice. But note that its least
upper bounds may not be the least upper bounds of D. Let

∨

X =def

∨

X for all X ⊆ D.

Lemma 2.2.6 D =def (D,≤,
∨

,
∧

,⊥,⊤) is a complete lattice.

Proof. First, since ( ) is extensive, we have ⊤ ≤ ⊤, hence ⊤ = ⊤. By monotony of ( ), for all
d ∈ D we have ⊥ ≤ d ≤ ⊤. Moreover, by Prop. 2.2.5, the g.l.b.’s of D are given by

∧

.
Let us now show that

∨

gives the l.u.b.’s of D. Let X ⊆ D. We have
∨

X ≤
∨

X by extensivity,
hence

∨

X is an upper bound of X. We now show that it is the least upper bound of X: if e ∈ D

is such that d ≤ e for all d ∈ X, then
∨

X ≤ e. But if d ≤ e for all d ∈ X, then
∨

X ≤ e by
definition of

∨

, hence
∨

X ≤ e by monotony. It follows that
∨

X ≤ e because e is closed.

In particular, given a closure operator ( ) : P(D) 7→ P(D), the greatest element of the complete
lattice P(D) is D and its g.l.b.’s are given by intersections.
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Reducibility families. Using closure operators, we can study and compare general properties
of interpretations J K, by opposition to properties of particular instances JTK. Therefore, we
assume that a type interpretation J K is a map from types to a set of subsets of SNR called a
reducibility family. Using the notion of reducibility family is even mandatory when dealing with
impredicative type systems such as system F [Gir72, GLT89, Gal89].

Recall that by definition of a rewrite relation, variables x ∈ X are always in normal form.

Definition 2.2.7 (Reducibility Family) Let →R be a rewrite relation on Λ(Σ).

(i) A reducibility family for →R is a collection of sets Red issued from a closure operator
Red : P(SNR) 7→ SN (SNR) such that X ⊆ Red(X) for all X ⊆ SNR.

(ii) A type interpretation in Red is a type interpretation which is a map J K : Tty(B) 7→ Red.

By assuming that Red is given by a closure operator, we know that it is a complete lattice whose
g.l.b. are given by intersections. According to Prop. 2.2.2, if we have a type interpretation J K
which is adequate for a type system ⊢ty, then every term typable in ⊢ty is strongly normalizing.

Proposition 2.2.8 (Strong Normalization) Let →R be a rewrite relation on Λ(Σ), ⊢ty

be a type system and Red be a reducibility family for →R. If J K : Tty(B) 7→ Red is a type
interpretation which is adequate for ⊢ty, then

Γ ⊢ty t : T =⇒ t ∈ SNR .

3 Toward Saturated Sets

In this section, we analyze some requirements on a type interpretation J K in order to satisfy
the conditions of Def. 2.2.1. Namely

— X ⊆ JTK ⊆ SNR for all T ∈ Tty(B),

— if Γ ⊢ty t : T and σ |=J K Γ then tσ ∈ JTK.

We consider the pure λ-calculus, the λ-calculus with binary products, and the combination
of λ-calculus with rewriting. As we will see, in first two cases we are naturally lead to Tait’s
saturated sets [Tai75]. The main characteristic of these sets is that types interpretations JTK
are closed by strong-normalization-preserving weak-head expansions. However, the situation is
more complex with rewriting. Indeed, we will see in Ex. 3.5.1 that some rewrite system do not
admit any notion of weak standardization preserving strong normalization. This prevent us
from defining a general natural notion of Tait’s saturated sets for rewriting.

Our aim is to isolate and analyze some elementary computational properties on which sat-
urated sets rely, and to precisely see when and how they are used in the proofs of basic and
well-known results on saturated sets. This leads to the notion of non-interaction, on which our
reducibility candidates of Sect. 4 are based. The content of this section was briefly sketched
in [Rib08].

3.1 Basic Mechanisms with Products

We begin by recalling some basic mechanisms of reducibility. We concentrate on a very simple
system which only features product types. Our plan is to see some sufficient conditions to
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ensure that a type interpretation J K is adequate. For the sake of simplicity, typing contexts are
leaved implicit.

The rules

(×E0)
t : T1 × T2

πi t : Ti

(i ∈ {1, 2}) (×I0)
t1 : T1 t2 : T2

〈t1, t2〉 : T1 × T2

impose that

if t ∈ JT1K × JT2K then π1 t ∈ JT1K and π2 t ∈ JT2K, (×E0)

if t1 ∈ JT1K and t2 ∈ JT2K then 〈t1, t2〉 ∈ JT1K × JT2K; (×I0)

that is

{〈t, u〉 | t ∈ JT1K ∧ u ∈ JT2K} ⊆ JT1K × JT2K ⊆ {t | π1 t ∈ JT1K ∧ π2 t ∈ JT2K} . (1)

Property (1) leads to

∀t, u. (t ∈ JT1K ∧ u ∈ JT2K) =⇒ (π1 〈t, u〉 ∈ JT1K ∧ π2 〈t, u〉 ∈ JT2K) .

In particular, if we interpret base types B ∈ B by SNπ, we need that for all T ∈ T×(B),

∀t, u. (t ∈ JTK ∧ u ∈ SNπ) =⇒ (π1 〈t, u〉 ∈ JTK ∧ π2 〈u, t〉 ∈ JTK) . (2)

In words, JTK has to be closed by strong-normalization preserving weak head expansion. Let
us now see how we can ensure this property for all T ∈ T×(B). We reason by induction on
T ∈ T×(B), assuming that × is a function from P(Λ(Σπ))2 to P(Λ(Σπ)) satisfying (1).

T = B ∈ B. We must show that

∀t, u ∈ SNπ. π1〈t, u〉 ∈ SNπ ∧ π2〈t, u〉 ∈ SNπ . (3)

T = T1 × T2. We must show that for all t ∈ JT1K × JT2K and all u ∈ SNπ,

π1 π1〈t, u〉, π1 π2〈u, t〉 ∈ JT1K ∧ π2 π1〈t, u〉, π2 π2〈u, t〉 ∈ JT2K . (4)

The induction on types imposes, via (4), that (2) is satisfied for terms placed inside contexts
of the form πi1 · · ·πin . These contexts correspond, at the term level, to elimination rules of
product types. We call them elimination contexts. Our use of elimination contexts is inspired
from [Abe04, Mat05]. In the case of products, they are given by the following abstract syntax:

E[ ] ∈ E× ::= [ ] | π1 E[ ] | π2 E[ ] .

If we write (2) using elimination contexts as in (4), then we get the following property: for all
T ∈ T×(B), all t1, t2, and all E[ ] ∈ E×,

(t2 ∈ SNπ ∧ E[t1] ∈ JTK) =⇒ E[π1〈t1, t2〉] ∈ JTK ,

(t1 ∈ SNπ ∧ E[t2] ∈ JTK) =⇒ E[π2〈t1, t2〉] ∈ JTK .
(5)

In other words, the interpretation of types must be stable by elimination contexts.

Remark 3.1.1 The relation {(E[t], E[u]) | E[ ] ∈ E× ∧ t 7→π u} corresponds for products to
the weak-head β-reduction of the λ-calculus (see also Rem. 3.2.3).
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3.2 Pure Lambda-Calculus

We are now going to use the intuitions for the products presented in the preceding section to
define saturated sets for the simply typed λ-calculus. The material presented here can be found
in a slightly different form in [Kri90, Bar92, GLT89]. We focus on the rules (⇒E) and (⇒I):

(⇒E)
Γ ⊢ t : U⇒ T Γ ⊢ u : U

Γ ⊢ t u : T
(⇒I)

Γ, x : U ⊢ t : T

Γ ⊢ λx.t : U⇒ T

Reasoning as in (1), we obtain that ⇒ must satisfy, for all substitution σ such that σ |= Γ ,

{(λx.t)σ | ∀u. u ∈ JUK =⇒ tσ[u/x] ∈ JTK}

⊆ JUK⇒ JTK ⊆

{tσ | ∀u. u ∈ JUK =⇒ tσ u ∈ JTK} . (6)

There are different possible definitions of ⇒ satisfying (6). We use an interpretation based
on eliminations, in the sense of [Mat98].

Definition 3.2.1 (Function Space) Define ⇒ : P(Λ(Σ)) × P(Λ(Σ)) 7→ P(Λ(Σ)) as

A⇒ B =def {t | ∀u. u ∈ A =⇒ t u ∈ B} .

We now define the interpretation of simples types T ∈ T⇒(B). As in Sect. 3.1, we interpret base
types by SNβ.

Definition 3.2.2 (Type Interpretation) The interpretation of a type T ∈ T⇒(B) is the set
JTK defined by induction on T as follows:

JBK =def SNβ if B ∈ B ,

JU⇒ TK =def JUK⇒ JTK .

We are now going to show that the interpretation J K is adequate. With the same reasoning
as in (2), it follows from (6) that for all T ∈ T⇒(B),

∀t, u. u ∈ SNβ =⇒ (t[u/x] ∈ JTK =⇒ (λx.t)u ∈ JTK) . (7)

Remark 3.2.3 The relation {(E[t], E[u]) | E[ ] ∈ E⇒ ∧ t 7→β u} is the weak-head β-reduction.
Hence, type interpretations are closed by weak-head β-expansion. Weak head reduction is the
main notion of the Krivine’s Abstract Machine, and stability by weak-head expansion is the
main property required by truth values of [Kri04].

In order show that J K is a type interpretation, we must to show that X ⊆ JTK and JTK ⊆ SNβ

for all T ∈ T⇒(B). These two properties are not independent from each other. Indeed, knowing
that JUK, JTK ⊆ SNβ is not enough to ensure that JUK⇒ JTK ⊆ SNβ because

∅⇒ JTK = {t | ∀u. u ∈ ∅ =⇒ t u ∈ JTK} = Λ(Σ) . (8)

Thus we can have JUK ⇒ JTK ⊆ SNβ only if JUK 6= ∅. This is ensured by X ⊆ JUK. On the
other hand, in order to show that X ⊆ JUK ⇒ JTK, we have to show that x u ∈ JTK for all
u ∈ JUK and all x ∈ X . Hence, assuming that JTK ⊆ SNβ, we must have JUK ⊆ SNβ in order
to have X ⊆ JUK⇒ JTK. To summarize, we need X ⊆ JUK ⊆ SNβ for all type U.

11



Remark 3.2.4 Note that when T occurs on the left of an arrow, the property X ⊆ JTK ⊆ SNβ

is needed because we use reducibility to prove strong normalization. In other frameworks, and
if we are interested in other properties than strong normalization, for instance as in [Kri04], it
may happen that no condition is imposed on the interpretation of the left argument of an arrow.

The property X ⊆ JTK ⊆ SNβ must be satisfied for bases types, but also for the function
space. This leads us to formulate them using elimination contexts, as in (5).

Definition 3.2.5 (Elimination Contexts) Let Σ be a signature. The set E⇒ is generated by
the following grammar:

E[ ] ∈ E⇒ ::= [ ] | E[ ] t where t ∈ Λ(Σ) .

Note that E[t] ∈ SNβ implies t ∈ SNβ. If we formulate property (7) and X ⊆ JTK ⊆ SNβ

using elimination contexts, then we get that types must be interpreted by sets A ⊆ SNβ such
that for all E[ ] ∈ E , all x ∈ X and all t, u ∈ Λ,

E[ ] ∈ SNβ =⇒ E[x] ∈ A , (9)

(E[t[u/x]] ∈ A ∧ u ∈ SNβ) =⇒ E[(λx.t)u] ∈ A . (10)

The sets A ⊆ SNβ satisfying (9) and (10) are Tait’s saturated sets [Tai75] (see also [Kri90,
Bar92, Gal89]).

Definition 3.2.6 (Saturated Sets) The set SATβ of β-saturated sets is the set of all S ⊆ SNβ

such that

(SAT1) if E[ ] ∈ SNβ and x ∈ X then E[x] ∈ S,

(SAT2β) if E[t[u/x]] ∈ S and u ∈ SNβ then E[(λx.t)u] ∈ S.

In order to ensure that Def. 3.2.6 makes sense, we have to show that SATβ is not empty. This
amounts to showing that SNβ ∈ SATβ. We must check properties (9) and (10) with A = SNβ,
which in this case are consequences of two important facts.

First, a reduction step from a term of the form E[(λx.t)u] (resp. E[x]) occurs either in the
elimination context E[ ] or in the term (λx.t)u, but involves no interaction between them. This
is expressed by the following obvious lemma.

Lemma 3.2.7 (Non-Interaction)

E[x]→β v =⇒
(

v = E ′[x] with E[ ]→β E ′[ ]
)

(11)

E[(λx.t)u]→β v =⇒
(

v = E ′[s] with (E[ ], (λx.t)u)→β (E ′[ ], s)
)

(12)

Second, property (10) follows from property (12) and the fact that (λx.t)u ∈ SNβ as soon as
t[u/x] ∈ SNβ and u ∈ SNβ. This property holds in turn thanks to the Weak Standardization
Lemma, which was used in [Alt93] for extensions of the Calculus of Constructions. It is obvious
for the pure λ-calculus.

Lemma 3.2.8 (Weak Standardization)

(λx.t)u→β v =⇒
(

v = t[u/x] or v = (λx.t ′)u ′ with (t, u)→β (t ′, u ′)
)
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Proof. Since E[ ] is of the form [ ]t1 . . . tn, the property is

(λx.t)ut1 . . . tn
β

//

β

��

t[u/x]t1 . . . tn

β∗

��

(λx.t ′)u ′t ′1 . . . t ′n β
// t ′[u ′/x]t ′1 . . . t ′n

We can now show that SNβ ∈ SATβ. The proof scheme used for the clause (SAT2β), which
relies on non-interaction and on weak standardization, is fundamental in this paper.

Lemma 3.2.9 SNβ ∈ SATβ.

Proof. We check the clauses (SAT1) and (SAT2β).

(SAT1) By induction on E[ ] ∈ SNβ, using property (11).

(SAT2β) Assume that E[t[u/x]], u ∈ SNβ. We must show that E[(λx.t)u] ∈ SNβ, hence that
for all v, if E[(λx.t)u]→β v then v ∈ SNβ. Note that E[ ], t ∈ SNβ since E[t[u/x]] ∈ SN .
We reason by induction on tuples (E[ ], t, u) ordered by the product extension of →β.

Let v such that E[(λx.t)u]→β v. By property (12), there are two cases.

— v = E ′[(λx.t)u] with E[ ]→β E ′[ ]. In this case, we conclude by induction hypothesis.
Note that E ′[t[u/x]] ∈ SNβ since E[ ]→β E ′[ ].

— v = E[s] with (λx.t)u→β s. By Lem 3.2.8, there are two subcases.

– s = (λx.t ′)u ′ with (t, u) →β (t ′, u ′). In this case, we conclude by induction
hypothesis. Note that E[t ′[u ′/x]] ∈ SNβ since (t, u)→β (t ′, u ′).

– s = t[u/x]. Since E[t[u/x]] ∈ SNβ by assumption.

We now show that A ⇒ B ∈ SATβ for all A,B ∈ SATβ. Since JA ⇒ BK = JAK ⇒ JBK, this
implies the adequacy of J K and that X ⊆ JTK ⊆ SNβ for all T ∈ T⇒(B). It follows that J K is a
type interpretation in the sense of Def. 2.2.1.

Proposition 3.2.10 If A,B ∈ SATβ then A⇒ B ∈ SATβ.

Proof. We first show that A⇒ B ⊆ SNβ. If t ∈ A⇒ B, since A ∈ SATβ we have tx ∈ B for
all x ∈ X , hence tx ∈ SNβ because B ∈ SATβ. It follows that t ∈ SNβ.

We now check the clauses (SAT1) and (SAT2β).

(SAT1) If E[ ] ∈ SN and u ∈ A, since A ∈ SATβ we have u ∈ SN , hence E[x]u ∈ B for all
x ∈ X since B ∈ SATβ. It follows that E[x] ∈ A⇒ B for all x ∈ X .

(SAT2β) If E[t[u/x]] ∈ A⇒ B with u ∈ SN , then for all v ∈ A we have E[t[u/x]]x ∈ B, hence
E[(λx.t)u]v ∈ B because B ∈ SATβ. It follows that E[(λx.t)u] ∈ A⇒ B.

It follows that J K : T⇒(B) 7→ SATβ. We conclude the section by showing that J K is indeed an
adequate interpretation. As usual, this is proved by induction on typing derivations.

Lemma 3.2.11 (Adequacy) If Γ ⊢⇒ t : T and σ |= Γ then tσ ∈ JTK.
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Proof. By induction on Γ ⊢⇒ t : T .

(Ax)

Γ, x : T ⊢ x : T

We have σ(x) ∈ JTK by assumption.

(⇒I)
Γ, x : U ⊢ t : T

Γ ⊢ λx.t : U⇒ T

Let σ |= Γ . We have to show that (λx.t)σ ∈ JUK⇒ JTK.

First, we can assume that x /∈ FV(σ) ∪ Dom(σ). Hence we have (λx.t)σ = λx.(tσ). Now,
let u ∈ JUK. By induction hypothesis, we have t(σ[u/x]) ∈ JTK. Moreover, we have
t(σ[u/x]) = (tσ)[u/x] because x /∈ FV(σ). By (SAT2β), we have (λx.tσ)u ∈ JTK because
u ∈ JUK ⊆ SNβ and tσ[u/x] ∈ JTK. It follows that λx.(tσ) ∈ JUK⇒ JTK.

(⇒E)
Γ ⊢ t : U⇒ T Γ ⊢ u : U

Γ ⊢ t u : T

By definition of ⇒ .

3.3 Lambda-Calculus with Products

In this section, we sketch the extension to the λ-calculus with products of the reasoning of
Sect. 3.2. As for ⇒ , we use a definition of the product space × based on eliminations. It
is defined as

A × B =def {t | π1 t ∈ A ∧ π2 t ∈ B} .

The interpretation J K is then extended to products as follows:

JBK =def SNβπ if B ∈ B ,

JU⇒ TK =def JUK⇒ JTK ,

JU × TK =def JUK × JTK .

The elimination contexts are the straightforward extension of those defined in Def. 3.2.5. The
set E⇒× is generated by the following grammar:

E[ ] ∈ E⇒× ::= [ ] | E[ ] t | π1 E[ ] | π2 E[ ] ,

where t ∈ Λ(Σ). As for the pure λ-calculus, property (5) leads us to saturated sets.

Definition 3.3.1 (Saturated Sets) The set SATβπ of βπ-saturated sets is the set of all
S ⊆ SNβπ such that

(SAT1) if E[ ] ∈ SNβπ and x ∈ X then E[x] ∈ S,

(SAT2β) if E[t[u/x]] ∈ S and u ∈ SNβπ then E[(λx.t)u] ∈ S,

(SAT2π1) if E[t1] ∈ S and t2 ∈ SNβπ then E[π1〈t1, t2〉] ∈ S,

(SAT2π2) if E[t2] ∈ S and t1 ∈ SNβπ then E[π2〈t1, t2〉] ∈ S.
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As for the pure λ-calculus, it is important to check that SNβπ ∈ SATβπ. We rely on non-
interaction properties extending (11) and (12):

E[x]→βπ v =⇒
(

v = E ′[x] with E[ ]→βπ E ′[ ]
)

(13)

E[(λx.t)u]→βπ v =⇒
(

v = E ′[s] with (E[ ], (λx.t)u)→βπ (E ′[ ], s)
)

E[πi〈t1, t2〉]→βπ v =⇒
(

v = E ′[s] with (E[ ], πi〈t1, t2〉)→βπ (E ′[ ], s)
)

(14)

Weak standardization is also a direct extension of Lem 3.2.8.

(λx.t)u→βπ v =⇒
(

v = t[u/x] or v = (λx.t ′)u ′ with (t, u)→βπ (t ′, u ′)
)

(15)

πi〈t1, t2〉→βπ v =⇒
(

v = ti or v = πi〈t
′
1, t

′
2〉 with (t1, t2)→βπ (t ′1, t

′
2)

)

(16)

Reasoning as in Lem. 3.2.9, we obtain the non-emptiness of SATβπ.

Lemma 3.3.2 SNβπ ∈ SATβπ.

Proof. We only check the clauses (SAT2π1) and (SAT2π2). We have to show that for all
i ∈ {1, 2},

(t3−i ∈ SNβπ ∧ E[ti] ∈ SNβπ) =⇒ E[πi〈t1, t2〉] ∈ SNβπ .

We show that for all v, E[πi〈t1, t2〉] →βπ v implies v ∈ SNβπ. We reason by induction on
(E[ ], t1, t2) ordered by the product extension of →βπ.

Let v such that E[π〈t1, t2〉]→βπ v. By property (14), there are two cases.

— v = E ′[πi〈t1, t2〉] with E[ ] →βπ E ′[ ]. In this case, we conclude by induction hypothesis.
Note that E ′[ti] ∈ SNβπ since E[ ]→βπ E ′[ ].

— v = E[s] with πi〈t1, t2〉→βπ s. By property (16) there are two subcases.

– s = πi〈t
′
1, t

′
2〉 with (t1, t2) →βπ (t ′1, t

′
2). In this case, we conclude by induction

hypothesis. Note that E[t ′i] ∈ SNβπ since (t1, t2)→βπ (t ′1, t
′
2).

– s = ti. Since E[ti] ∈ SNβπ by assumption.

Finally, we have A1 × A2, A2 ⇒ A1 ∈ SATβπ for all A1, A2 ∈ SATβπ. The proof is similar to
that of Prop. 3.2.10.

Proposition 3.3.3 If A1, A2 ∈ SATβπ then

A2⇒ A1 ∈ SATβπ , (⇒)

A1 × A2 ∈ SATβπ . (×)

Proof. The fact that A2 ⇒ A1 ∈ SNβπ can be shown exactly as in Prop. 3.2.10. Moreover,
if t ∈ A1 × A2, then πit ∈ Ai ⊆ SNβπ, hence t ∈ SNβπ. In the case of (⇒), the clause (SAT1)

is dealt with as in Prop. 3.2.10. The case of (×) is similar.

(SAT1) If E[ ] ∈ SN and x ∈ X , then πiE[x] ∈ Ai because Ai ∈ SATβπ and πiE[ ] ∈ E⇒×. It
follows that E[x] ∈ A1 × A2 for all x ∈ X .

We now consider the clauses (SAT2β) and (SAT2πi). The satisfaction of (SAT2β) in the case
of (⇒) can be shown as in Prop. 3.2.10. However, it is interesting to see that (⇒) and (×) can
be dealt with in a uniform way. Let i ∈ {1, 2} and t 7→βπ u with

t = (λx.t1)t2 and u = t1[t2/x] , (SAT2β)

t = πi(t1, t2) and u = ti . (SAT2πi)

Assume that t2 ∈ SNβπ in the case of (SAT2β) and that t3−i ∈ SNβπ in the case of (SAT2πi).
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(⇒) We have E[u] ∈ A2⇒ A1 and we must show that E[t] ∈ A2⇒ A1. For all v ∈ A2, since
E[ ]v ∈ E⇒× and E[u]v ∈ A1, we have E[t]v ∈ A1 because A1 ∈ SATβπ. It follows that
E[t] ∈ A2⇒ A1.

(×) We have E[u] ∈ A1 × A2 and we must show that E[t] ∈ A1 × A2. For all j ∈ {1, 2}, since
πjE[ ] ∈ E⇒× and πjE[u] ∈ Aj, we have πjE[t] ∈ Aj because Aj ∈ SATβπ. It follows that
E[t] ∈ A1 × A2.

It follows that J K : T⇒×(B) 7→ SATβπ. We now sketch the adequacy proof of J K.

Lemma 3.3.4 (Adequacy) If Γ ⊢⇒× t : T and σ |= Γ then tσ ∈ JTK.

Proof. By induction on Γ ⊢⇒× t : T . We only detail the cases which differ from Lem. 3.2.11.

(×I)
Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢ 〈t1, t2〉 : T1 × T2

Let σ |= Γ . We have to show that 〈t1, t2〉σ = 〈t1σ, t2σ〉 ∈ JT1K × JT2K. By induction
hypothesis, we have t1σ ∈ JT1K and t2σ ∈ JT2K. It follows that for all i ∈ {1, 2} we have
πi〈t1σ, t2σ〉 ∈ JTiK by (SAT2πi), hence 〈t1σ, t2σ〉 ∈ JT1K × JT2K.

(×E)
Γ ⊢ t : T1 × T2

Γ ⊢ πi t : Ti

(i ∈ {1, 2})

By definition of × .

3.4 The Closure Operator of Saturated Sets

In this section, we check that SATβ and SATβπ are indeed reducibility families in the sense of
Def. 2.2.7. Since we know that X ⊆ S and S ⊆ SNβ (resp. S ⊆ SNβπ) for all S ∈ SATβ (resp.
all S ∈ SATβπ), it remains to show that SATβ (resp. SATβπ) is given by a closure operator. We
focus on the closure operator of SATβπ.

Definition 3.4.1 We define the functions SATi : P(SNβπ) 7→ P(SNβπ) by induction on i ∈ N

as follows

SAT0(X) =def X ∪ {E[x] | E[ ] ∈ E⇒× ∩ SNβπ ∧ x ∈ X } ,

SATi+1(X) =def SATi(X) ∪ {E[(λx.t)u] | E[t[u/x]] ∈ SATi(X) ∧ u ∈ SNβπ}

∪ {E[π1 〈t1, t2〉] | E[t1] ∈ SATi(X) ∧ t2 ∈ SNβπ}

∪ {E[π2 〈t1, t2〉] | E[t2] ∈ SATi(X) ∧ t1 ∈ SNβπ} .

We define the function SAT : P(SNβπ) 7→ P(SNβπ) as SAT(X) =def

⋃

i∈N
SATi(X).

We now show that SAT( ) is a closure operator defining the βπ-saturated sets, in the sense of
Def. 3.3.1.

Lemma 3.4.2 If X ⊆ SNβπ, then SAT(X) is the least βπ-saturated set containing X.

Proof. We first show that SAT(X) ∈ SATβπ for all X ⊆ SNβπ. We begin by checking that
SATi(X) ⊆ SNβπ for all i ∈ N. We reason by induction on i.
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Base case (i = 0). Since X ⊆ SNβ, we have SAT0(X) ⊆ SNβπ because E[ ] ∈ SNβπ implies
E[x] ∈ SNβπ by non-interaction (property (13)).

Induction case. Let t ∈ SATi+1(X). If t ∈ SATi(X) then t ∈ SNβπ by induction hypothesis.
Otherwise, t 7→βπ u and we reason as in Lem. 3.2.9 and Lem. 3.3.2.

We now check that clauses (SAT1), (SAT2β) and (SAT2πi) are satisfied by SAT(X).

(SAT1). If E[ ] ∈ SNβπ, then we have E[x] ∈ SAT0 ⊆ SAT(X).

(SAT2β) and (SAT2πi). We only detail (SAT2β). If E[t[u/x]] ∈ SAT(X), then there is i ∈ N

such that E[t[u/x] ∈ SATi(X). We then deduce that E[(λx.t)u] ∈ SATi+1(X) ⊆ SAT(X) if
moreover u ∈ SNβπ.

We now show that given X ⊆ SNβπ, we have SATi(X) ⊆ S for all S ∈ SATβπ such that X ⊆ S.
We reason by induction on i.

Base case (i = 0). Since S ∈ SATβπ and X ⊆ S.

Induction case. Assume that t ∈ SATi+1(X). If t ∈ SATi(X) then t ∈ S by induction hypothesis.
Otherwise, t = E[u] with u 7→βπ v and E[v] ∈ SATi(X). We get E[v] ∈ S by induction
hypothesis and deduce E[u] ∈ S by (SAT2β) and (SAT2πi).

It follows that
SATβπ = {SAT(X) | X ⊆ SNβπ} .

We now show that SAT : P(SNβπ) 7→ P(SNβπ) is a closure operator.

Lemma 3.4.3 SAT : P(SNβπ) 7→ P(SNβπ) is a closure operator.

Proof.

— Idempotency. By Lem. 3.4.2.

— Extensivity. Let X ∈ P(SNβπ). By induction on i, we get X ⊆ SATi(X) for all i ∈ N,
hence X ⊆ SAT(X) =

⋃

i∈N
SATi(X).

— Monotony. Let X ⊆ Y with X, Y ∈ P(SNβπ). By induction on i ∈ N, we get SATi(X) ⊆
SATi(Y). We deduce that SAT(X)i ⊆

⋃

j∈N
SATj(Y) for all i, hence that

⋃

i∈N
SATi(X) ⊆

⋃

j∈N
SATj(Y).

Since SATβπ is defined by the closure operator SAT : P(SNβπ) 7→ P(SNβπ), according to
Lem. 2.2.6, it is a complete lattice whose maximal element is SNβπ and whose g.l.b.’s are given
by intersections.

3.5 Lambda-Calculus with Rewriting

In Sect. 3.2 and Sect. 3.3, we have sketched some basic mechanisms of reducibility for the
pure λ-calculus and the λ-calculus with binary products. In the section, we consider the case
of typed rewriting. Our objective is to present some general principles of the insertion of a
rewrite relation in the reducibility proofs presented in Sect. 3.2 and Sect. 3.3. They will lead
us somehow outside the framework of saturated sets. We build on [BJO02, Bla07].
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Let R be a rewrite system typed in the λ-calculus with products. We begin by reasoning as
in Sect. 3.3. Consider an interpretation of types T ∈ T⇒×(B) defined as in Sect. 3.3, but with
JBK =def SNβπR:

JBK =def SNβπR if B ∈ B ,

JU⇒ TK =def JUK⇒ JTK ,

JT × UK =def JTK × JUK .

(17)

We use the elimination contexts of Sect. 3.3, and we consider saturated sets SATβπ defined as in
Def. 3.3.1, but using SNβπR instead of SNβπ. Following the reasoning of Sect. 3.2 and Sect. 3.3,
we can show that the interpretation J K defined above maps types T ∈ T⇒×(B) to saturated sets
JTK ∈ SATβπ. Moreover, the non-interaction properties (11), (12) and (14), as well as the weak
standardization properties (15) and (16) are still valid, using the rewrite relation→βπR instead
of →β and →βπ. This implies that J K is a type interpretation in the sense of Def. 2.2.1 and
ensures the adequacy of the typing rules (⇒I), (⇒E), (×I) and (×E).

We now discuss the rule

(Symb)
Γ ⊢ t1 : T1 . . . Γ ⊢ tn : Tn

Γ ⊢ f(t1, . . . , tn) : T
(T1, . . . , Tn, T) ∈ τ(f)

The interpretation J K is adequate for this rule if we have f(t1, . . . , tn) ∈ JTK as soon as ti ∈ JTiK
for all i ∈ {1, . . . , n}. We now take a look at the closure properties of J K that may allow to
take rewriting into account. As for the λ-calculus with products, we can use a non-interaction
property similar to (12) and (14): for all E[ ] ∈ E⇒×,

E[f(t1, . . . , tn)]→βπR v =⇒
(

v = E ′[s] with (E[ ], f(t1, . . . , tn))→βπR (E ′[ ], s)
)

. (18)

But rewrite systems do not satisfy in general the weak standardization lemma. Therefore, as
shown by the following example, there are rewrite systems such that given E[ ] ∈ SNβR, in order
to get E[f(t1, . . . , tn)] ∈ SNβR we need v ∈ SNβπR for all v such that E[f(t1, . . . , tn)]→βR v.

Example 3.5.1 Consider the confluent system

p 7→R λx. λy. λz. g(x y) p 7→R λx. λy. λz. g(x z) g(x) 7→R a

whose symbols are typed as follows:

Γ ⊢ p : (B⇒ B)⇒ B⇒ B⇒ B

Γ ⊢ t : B

Γ ⊢ g(t) : B Γ ⊢ a : B

We have p ∈ SNβR, but there are untyped elimination contexts which separate the terms

λx. λy. λz. g(x y) and λx. λy. λz. g(x z)

with respect to strong normalization. For instance, we have

(λx. λy. λz. g(x y)) δ a δ ∈ SNβR (λx. λy. λz. g(x z)) δ a δ /∈ SNβR

(λx. λy. λz. g(x y)) δ δ a /∈ SNβR (λx. λy. λz. g(x z)) δ δ a ∈ SNβR

where δ =def λx.x x, hence δ δ /∈ SNβ. This example is related to the problem of stability by
union, and will be explained using a weak observational preorder in Sect. 6.4.
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Hence, for a given rewrite system R, there may not be any notion of weak-head expansion
which preserves strong normalization. Therefore, we need a stronger clause than (SAT2β) and
(SAT2πi). Example 3.5.1 shows that in general we can not do better than

(∀v. E[f(t1, . . . , tn)]→βπR v =⇒ v ∈ JTK) =⇒ E[f(t1, . . . , tn)] ∈ JTK . (19)

Property (19) holds for the interpretation J K. In order to prove it, we need to show the stability
by reduction of JTK.

Proposition 3.5.2 If t ∈ JTK and t→βπR u then u ∈ JTK.

Proof. By induction on T . Let t ∈ JTK and u such that t→βπR u.

T = B ∈ B. In this case, we have JTK = SNβπR, which is stable by reduction.

T = T2 ⇒ T1 and T = T1 × T2. We only detail T2 ⇒ T1 since T1 × T2 is similar and simpler.
Let v ∈ JT2K. Since t ∈ JT2K ⇒ JT1K, we have tv ∈ JT1K, hence uv ∈ JT1K by induction
hypothesis. It follows that u ∈ JT2K × JT1K.

Note that stability by reduction is not a property specified by saturated sets, even for the pure
λ-calculus (see for instance [Wer94]).

Example 3.5.3 Consider the terms t =def λx.(λy.y)x and u =def λx.x. We have t →β u,
but u /∈ SAT({t}) and t /∈ SAT({u}), where SAT( ) is the closure operator of SATβπ defined in
Def. 3.4.1.

Proof. It is sufficient to note that for all X ⊆ SNβ, all terms of the form λx.v which belong
to SAT(X) already belong to X.

We now show property (19).

Proposition 3.5.4 For all T ∈ T⇒×(B),

(∀v. E[f(t1, . . . , tn)]→βπR v =⇒ v ∈ JTK) implies E[f(t1, . . . , tn)] ∈ JTK .

Proof. By induction on T .

T = B ∈ B. In this case JTK = SNβπR and we conclude by definition of SNβπR.

T = T2⇒ T1 and T = T1× T2. We only detail T2⇒ T1 since T1× T2 is similar and simpler. Let
u ∈ JT2K. We reason by induction on u ∈ SNβπR. By non-interaction (property (18)), if
E[f(~t)]u →βπR v, then v = E ′[t ′]u ′ with (E[ ], f(~t), u) →βπR (E ′[ ], t ′, u ′). There are two
cases.

— E[f(~t)]→βπR E ′[t ′]. We have E ′[t ′] ∈ JT2K⇒ JT1K by assumption, hence v ∈ JT1K.

— u →βπR u ′. We have u ′ ∈ JT2K since JT2K is stable by reduction (Prop. 3.5.2), and
we conclude by induction hypothesis.

Let us apply Prop. 3.5.4 and Prop. 3.5.2 to show the correctness of the rule (Symb). Assume
that

Γ ⊢ t1 : T1 . . . Γ ⊢ tn : Tn

Γ ⊢ f(t1, . . . , tn) : T
(T1, . . . , Tn, T) ∈ τ(f)

By Prop. 3.5.4, we have f(t1, . . . , tn) ∈ JTK if v ∈ JTK for all v such that f(t1, . . . , tn) →βπR v.
Let ti ∈ JTiK for all i ∈ {1, . . . , n}. We reason by induction on the tuple (t1, . . . , tn) ordered by
the product extension of →βπR. Let v such that f(t1, . . . , tn)→βπR v. There are two cases:
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— v = f(t ′1, . . . , t
′
n) with (t1, . . . , tn)→βπR (t ′1, . . . , t

′
n). By Prop. 3.5.2 we have t ′i ∈ JTiK for

all i ∈ {1, . . . , n}, and we conclude by induction hypothesis.

— There is a rule f(l1, . . . , ln) 7→R r and a substitution σ such that v = rσ and ti = liσ for
all i ∈ {1, . . . , n}. In this case, we could conclude if we knew that rσ ∈ JTK for all σ such
that liσ ∈ JTiK for all i ∈ {1, . . . , n}.

The sufficient condition of the second case is the computability of rewrite rules. This is a well-
known condition [Bla07], which is at the basis of some termination criteria for the combination
of rewriting with typed λ-calculi [BR06, BJO02]. As shown above, this implies the adequacy of
the interpretation J K.

Lemma 3.5.5 (Computability of Rewrite Rules) Let R be a rewrite system typed in ⊢⇒×τ.
Then, J K is adequate for ⊢⇒×τ if for all rule f(l1, . . . , ln) 7→R r with

Γ ⊢ t1 : T1 . . . Γ ⊢ tn : Tn

Γ ⊢ f(t1, . . . , tn) : T
(T1, . . . , Tn, T) ∈ τ(f)

and all substitution σ we have

(l1σ ∈ JT1K ∧ . . . ∧ lnσ ∈ JTnK) =⇒ rσ ∈ JTK .

To summarize, J K maps types to saturated sets S ∈ SATβπR such that S ⊆ SNβπR and

(SAT0) if t ∈ S and t→βπR u then u ∈ S,

(SAT1) if E[ ] ∈ SNβπR and x ∈ X then E[x] ∈ S,

(SAT2β) if E[t[u/x]] ∈ S and u ∈ SNβπR then E[(λx.t)u] ∈ S,

(SAT2πi) if t3−i ∈ SNβπR and E[ti] ∈ S then E[πi(t1, t2)] ∈ S,

(SAT2R) if ∀v. E[f(t1, . . . , tn)]→βπR v =⇒ v ∈ S then E[f(t1, . . . , tn)] ∈ S.

As seen above, these saturated sets work well, but their formulation is rather ad-hoc and lacks
uniformity.

4 Neutral Terms and Reducibility Candidates

In this section we present our notion of reducibility candidates. The originality of our approach
is to define neutral terms generically from a non-interaction property between terms and some
contexts called elimination contexts. Thus, we can formulate a notion of reducibility candidates
in a very simple framework, which only assumes a rewrite relation and a set of contexts, required
to satisfy some simple properties. Our generalization comes from this principle of definition for
neutral terms, while our reducibility candidates use the usual clauses [GLT89, Gal89].

Let us present the main ideas. In contrast with saturated sets, the closure properties of
reducibility candidates can be formulated in a uniform way. They are based on clauses similar
to (SAT0) and (SAT2R), used in Sect. 3.5 above to handle rewriting in saturated sets. In
particular, a reducibility candidate for rewriting C ⊆ SNβπR satisfies

(t ∈ C ∧ t→βπR u) =⇒ u ∈ C , (20)

(∀v. E[f(t1, . . . , tn)]→βπR v =⇒ v ∈ C) =⇒ E[f(t1, . . . , tn)] ∈ C . (21)
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The uniformity of reducibility candidates comes from the possibility to formulate a clause, called
the neutral term property, which implies (21) as well as (SAT1), (SAT2β) and (SAT2π). This is
due to neutral terms, that enjoy non-interaction properties such as (11), (12) and (18), with
some contexts called elimination contexts.

The idea developed in this section is to start from the notion of non-interaction to define
reducibility candidates generically. The key point is that non-interaction can be formulated in
a very simple framework, assuming only a rewrite relation →R on Λ(Σ) and a set E of contexts
called elimination contexts. More precisely, a term t ∈ Λ(Σ) is called neutral if it interacts with
no contexts E[ ] ∈ E :

E[t]→R v implies
(

v = E ′[t ′] with (E[ ], t)→R (E ′[ ], t ′)
)

. (22)

This notion of neutral term is sufficient to formulate the neutral term property: if t is neutral,
then any reducibility candidate C is required to satisfy

(∀v. t→R v =⇒ v ∈ C) =⇒ t ∈ C .

Girard’s reducibility candidates rely on the fact that since neutral terms do not interact with
elimination contexts, their properties w.r.t. reducibility can be shown by induction on SNR. In
our framework, this means that if C is a reducibility candidate, then for all neutral term t and
all elimination context E[ ], we have

(∀u. t→R u =⇒ E[u] ∈ C) =⇒ E[t] ∈ C . (23)

This property is central in reducibility, it holds for saturated sets SATβπ and for biorthogonals.
In our framework, it follows from some simple assumptions on →R and E which define when E
is a set of elimination contexts for →R. We show it in Lem. 4.2.5.

We first give a general notion of neutral term in Sect. 4.1, which lead to a general notion
of reducibility candidates presented in Sect. 4.2. We then study more precisely reducibility
candidates. Their closure operator is defined in Sect. 4.3. From the material of Sect. 2.2 we
deduce that reducibility candidates form a complete lattice, whose least element is studied in
Sect. 4.4. Finally, we explore their order-theoretic structure in Sect. 4.5.

The ideas developed here were sketched in [Rib08] and Sect. 4.5 generalizes results of [Rib07b].

4.1 Neutral Terms

Our starting point is the fact that some terms do not interact with elimination contexts. We
have seen this in Sect. 3 with properties (11), (12), (14) and (18). We recall them here:

E[x]→βπR v =⇒
(

v = E ′[x] with E[ ]→βπR E ′[ ]
)

(24)

E[(λx.t)u]→βπR v =⇒
(

v = E ′[t ′] with (E[ ], (λx.t)u)→βπR (E ′[ ], t ′)
)

E[πi〈t1, t2〉]→βπR v =⇒
(

v = E ′[t ′] with (E[ ], πi〈t1, t2〉)→βπR (E ′[ ], t ′)
)

E[f(t1, . . . , tn)]→βπR v =⇒
(

v = E ′[t ′] with (E[ ], f(t1, . . . , tn))→βπR (E ′[ ], t ′)
)

.

Terms which do not interact with elimination contexts are called neutral. For instance, if the
contexts E[ ] above are elimination contexts, then the following terms are neutral

x (λx.t)u πi 〈t1, t2〉 f(t1, . . . , tn) .

21



Evaluation contexts. In order to get a general notion of neutral term, we first need a general
notion of elimination contexts. Elimination contexts will be defined as a subset of what we call
evaluation contexts. The only assumption made on evaluation contexts is that they must be
stable by reduction. This will be sufficient to get the instance of property (21) in the case of
C = SNβπR:

(∀v. E[f(t1, . . . , tn)]→βπR v =⇒ v ∈ SNβπR) =⇒ E[f(t1, . . . , tn)] ∈ SNβπR .

Definition 4.1.1 (Evaluation Contexts) Let [ ] ∈ X be a distinguished variable and→R be a
rewrite relation on Λ(Σ). A set of evaluation contexts for→R is a set E of terms E[ ] containing
at least one occurrence of [ ], and which is stable by reduction: if E[ ] ∈ E and E[ ] →R t then
t = F[ ] ∈ E.

If t ∈ Λ(Σ) and E[ ] ∈ E then we let E[t] =def (E[ ])[t/[ ]].

Example 4.1.2 Given a rewrite system R, the contexts

E[ ] ∈ E⇒× ::= [ ] | E[ ] t | π1 E[ ] | π2 E[ ]

defined in Sect. 3.3 are evaluation contexts for →βπR.

Note that E[ ] binds no variables of t in E[t] since E[t] = E[ ][t/x]. Allowing variable capture in
evaluation contexts may lead to unexpected phenomenas, see Ex. 4.1.8. The assumption that
E[ ] contains at least one occurrence of [ ] ensures that t ∈ SNR as soon as E[t] ∈ SNR.

Neutral terms. We now give our formulation of the notion of neutral term, which is more
general than the usual ones [GLT89, Gal89]. Neutral terms are the terms that do not interact
with evaluation contexts. The generality comes from the fact that our notion of neutrality is
methodological it relies on no particular syntactic construction. We assume given a set E of
evaluation contexts for →R.

Definition 4.1.3 (Neutral Terms) A term t is neutral for →R in E if for all E[ ] ∈ E,

∀v. E[t]→R v =⇒
(

v = E ′[t ′] with (E[ ], t)→R (E ′[ ], t ′)
)

.

We denote by NRE the set of neutral terms for →R in E.

The set Nβ of neutral terms for →β in

E[ ] ∈ E⇒ ::= [ ] | E[ ] t

is the set of all the terms of the form

E[x] or E[(λx.t)u] with E[ ] ∈ E⇒ .

The set Nπ of neutral terms for →π in

E[ ] ∈ E× ::= [ ] | π1 E[ ] | π2 E[ ]

is the set of all the terms of the form

E[x] or E[πi 〈t1, t2〉] with E[ ] ∈ E⇒ .

However, the shape of neutral terms for →βπ in E⇒× is more complex. For instance the term
π1 λx.t is neutral.
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Values. In fact, the terms which have the most interesting shape are the terms that are not
neutral. These are the terms which interact with elimination contexts. They are therefore
observable, and we call them values.

Definition 4.1.4 (Values) A value for →R in E is a term which is not neutral. We denote
by VRE the set of values for →R in E.

Values are determined by the shape of evaluation contexts. The values for →βπ in E⇒× are
exactly the terms of the form

λx.t or 〈t1, t2〉 .

Given a rewrite system R, the terms of the shape E[f(t1, . . . , tn)] with E[ ] ∈ E⇒× are all neutral
for →βπR in E⇒×. Indeed, as for the λ-calculus with products, the values are exactly the terms
of form λx.t or 〈t, u〉. However, in the case of constructor rewriting (Def. 2.1.2), we would
like to build values from constructors. This is particularly useful with inductive types [BJO02].
According to Def. 4.1.4, we have to make them observable. To this end, we introduce appropriate
destructors d ∈ D in elimination contexts. To each c ∈ C of type (~T,B) with |~T | > 0 and each
i ∈ {1, . . . , |~T |}, we associate a new unary destructor symbol dc,i ∈ D defined by the rewrite rule

dc,i(c(x1, . . . , xn)) 7→D xi .

Let ℧ be a new nullary symbol. For the elimination of a nullary constructor c, we use a new
unary destructor dc ∈ D defined by the rewrite rule

dc(c) 7→D ℧ .

Lemma 4.1.5 Given a rewrite system R with constructors in C, let E⇒×C be the set of terms
defined by the grammar

E[ ] ∈ E⇒×C ::= [ ] | E[ ] t | π1 E[ ] | π2 E[ ] | d(E[ ]) ,

where d ∈ D. Then, E⇒×C is a set of evaluation contexts for →βπRD. The values for →βπRD

in E⇒×C are exactly the terms of the form

λx.t or 〈t1, t2〉 or c(t1, . . . , tn) where c ∈ C .

Example 4.1.6 Consider the system presented at Ex. 2.1.4. Its values for →βπRD in E⇒×C

are the terms of the form

λx.t or 〈t1, t2〉 or S(t) or 0 .

Indeed, we have

(λx.t)u →β t[u/x] πi 〈t1, t2〉 →π ti dS,1(S(t)) →D t and d0(0) →D ℧ .

Note that values are preserved by reduction in all our examples.
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Some consequences of non-interaction. In this paragraph, we explore some basic conse-
quences of non-interaction on the strong normalizability of neutral terms in evaluation contexts.

First, the non-interaction of neutral terms with evaluation contexts is sufficient, together
with the assumption that evaluation contexts are stable by reduction, to ensure the strong
normalization of a neutral term t plugged in a strongly normalizing elimination context E[ ], as
soon as E[u] is strongly normalizing for all one-step reduct u of t. This property is crucial for
reducibility candidates.

Lemma 4.1.7 Let →R be a rewrite relation, E[ ] ∈ E ∩SNR be an evaluation context for →R,
and let t ∈ NRE be a neutral term. Then,

(∀u. t→R u =⇒ E[u] ∈ SNR) =⇒ E[t] ∈ SNR .

Proof. We have to show that v ∈ SNR for all v such that E[t]→R v. We reason by induction
on E[ ] ∈ SNR. Let v such that E[t] →R v. Since t is neutral, we have v = E ′[t ′] with
(E[ ], t)→R (E ′[ ], t ′), and there are two cases.

Case of E[ ]→R E ′[ ]. We have E ′[ ] ∈ E since E is stable by reduction and E ′[ ] ∈ SNR since
E[ ] ∈ SNR. For all u ∈ (t)R, since E[u]→R E ′[u] and E[u] ∈ SNR, we have E ′[u] ∈ SNR.
Hence, we can apply the induction hypothesis on E ′[ ] and we conclude that E ′[t] ∈ SNR.

Case of t→R t ′. In this case, we have E[t ′] ∈ SNR by assumption.

Note that the induction principle of the above proof uses the hypothesis that evaluation contexts
are stable by reduction.

We now come back to the assumption that evaluation contexts do not bind variables. Recall
that this follows from the definition E[t] =def (E[ ])[t/[ ]], which uses the capture-avoiding sub-
stitution. To allow variable capture in evaluation contexts, it is therefore sufficient to let E[t]

be the textual replacement of [ ] by t in E[ ]. As shown by the following example, borrowed
from [vRS95], this may cause subtle interactions between contexts and some open terms that
would usually else be neutral.

Example 4.1.8 (Binding Evaluation Contexts – [vRS95]) Recall from Ex. 3.5.1 that
δ δ /∈ SNβ where δ = λx.x x, and consider the following set of evaluation contexts for →β:

Ebind =def E⇒ ∪ {E[(λy.[ ]) δ] | E[ ] ∈ E⇒}

Given E[ ] ∈ Ebind, let E[t] be the textual replacement of [ ] by t in E[ ].
Let

C[ ] =def (λy.[ ]) δ and t =def (λx.z) (y y)

As expected, the term t is neutral in E⇒, but it is not in Ebind because

C[t] = (λy.(λx.z) (y y)) δ →β (λx.z) (δ δ)

while (λx.z)(δ δ) is not of the form C ′[t ′] with C ′[ ] ∈ Ebind and (C[ ], t)→β (C ′[ ], t ′).
This interaction between t and C[ ] is critical since the property of Lem. 4.1.7 would fail if t

where neutral in Ebind. Indeed, we have (t)β = {z}, and since C[z] = (λy.z)δ ∈ SNβ, we get

∀v. t→β v =⇒ C[v] ∈ SNβ

However,
C[t] = (λy.(λx.z) (y y)) δ →β (λx.z) (δ δ) /∈ SNβ
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Note that if we have defined C[u] as C[ ][u/[ ]], using the capture-avoiding substitution instead
of the textual replacement, then t would have been neutral in Ebind, but this would not have break
Lem 4.1.7 since C[t] would have been the term (λy ′.(λx.z) (y y)) δ with y ′ 6= y.

Now, recall the property SNβ ∈ SATβ (resp. SNβπ ∈ SATβπ) proved in Lem. 3.2.9 (resp.
Lem. 3.3.2). This property holds because, for the λ-calculus with product, we can define a
strong-normalization preserving notion of weak-head expansion. Namely, we have shown that
given E[ ] ∈ E⇒×, we have

(t2 ∈ SNβπ ∧ E[t1[t2/x]] ∈ SNβπ) =⇒ E[(λx.t1) t2] ∈ SNβπ ,

(t3−i ∈ SNβπ ∧ E[ti] ∈ SNβπ) =⇒ E[πi 〈t1, t2〉] ∈ SNβπ .

The non-interaction of neutral terms with evaluation contexts is sufficient to show that the
two properties above still hold when E[ ] ∈ E is any evaluation context such that (λx.t1)t2 and
πi 〈t1, t2〉 are neutral for →βπ in E . It is interesting to show this in a slightly more general
framework.

Lemma 4.1.9 Let →R be a rewrite relation on Λ(Σ).

(i) Let E be a set of elimination contexts for→βR such that (λx.t)u ∈ NβRE for all t, u ∈ Λ(Σ).

For all E[ ] ∈ E, if E[t[u/x]] ∈ SNβR and u ∈ SNβR then E[(λx.t)u] ∈ SNβR.

(ii) Let E be a set of elimination contexts for →πR such that πi〈t1, t2〉 ∈ NπRE for all t1, t2 ∈
Λ(Σ) and all i ∈ {1, 2}.

For all E[ ] ∈ E, if E[ti] ∈ SNπR and t3−i ∈ SNπR then E[πi(t1, t2)] ∈ SNπR.

Proof. We only show (i) because (ii) is similar and simpler.

(i) Assume that E[t[u/x]], u ∈ SNβR. We must show that E[(λx.t)u] ∈ SNβR, hence that
for all v, if E[(λx.t)u]→βR v then v ∈ SNβR.

We reason as in Lem. 3.2.9, using the non-interaction of (λx.t)u with E[ ], which follows
from the assumption that (λx.t)u is neutral in E for →βR, and weak standardization
(Lem 3.2.8).

We have E[ ], t ∈ SNβR since E[t[u/x]] ∈ SNβR and since E[ ] contains at least one
occurrence of [ ]. We reason by induction on tuples (E[ ], t, u) ordered by the product
extension of →βR.

Let v such that E[(λx.t)u]→βR v. By non-interaction, there are two cases.

— v = E ′[(λx.t)u] with E[ ]→βR E ′[ ]. In this case, we conclude by induction hypothe-
sis. Note that E ′[t[u/x]] ∈ SNβR since E[ ]→βR E ′[ ].

— v = E[s] with (λx.t)u→βR s. By Lem 3.2.8, there are two subcases.

– s = (λx.t ′)u ′ with (t, u) →βR (t ′, u ′). In this case, we conclude by induction
hypothesis. Note that E[t ′[u ′/x]] ∈ SNβR since (t, u)→βR (t ′, u ′).

– s = t[u/x]. Since E[t[u/x]] ∈ SNβR by assumption.

4.2 Reducibility Candidates

The key property of reducibility candidates w.r.t. neutral terms is the neutral term property (22):
if C is a reducibility candidate and t is a neutral term, then

(∀v. t→R v =⇒ v ∈ C) =⇒ t ∈ C .

In particular, every reducibility candidate contains all neutral terms in normal form.
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Elimination contexts. In order to get a reducibility family in the sense of Def. 2.2.7, we need
that all reducibility candidate contains the variables. In the case of usual reducibility candidates,
this follows from property (24) which ensures that variables are neutral terms. In order to
generalize this notion, we assume that evaluation contexts do not interact with variables. This
amounts to assuming that all variables are neutral terms. Since variables are moreover assumed
to be in normal form (by Def. 2.1.1 of rewrite relations), it follows that they belong to every
reducibility candidate.

Evaluation contexts must satisfy another interesting property, which is used to ensure that
the function space ⇒ and the product space × preserve reducibility candidates (this will
actually be shown in Prop. 4.4.5). Let us consider the case of products. As seen above, E× is a
set of evaluation contexts for →π. Moreover, the neutral term property writes

(∀v. t→π v =⇒ v ∈ C) =⇒ t ∈ C . (25)

Suppose that we want to show that if both A1 and A2 are reducibility candidates, then A1×A2 is
also a reducibility candidate. In particular, we have to prove that A1×A2 satisfies property (25),
as soon as A1 and A2 also do. So let t be a neutral term for→π in Eπ such that (t)π ∈ A1×A2.
By definition of A1×A2, this means that π1 v ∈ Ai for all v ∈ (t)π and all i ∈ {1, 2}. Since πi [ ]

is an evaluation context, and since t is neutral, we know that

(πi t)π = {πi v | v ∈ (t)π} ,

and it follows that (πi t)π ⊆ Ai. Now, how can we conclude ? By using that the term πi t is
also neutral. Hence, by applying property (25) to Ai, since (πi t)π ⊆ Ai, we have πi t ∈ Ai. By
definition of A1 × A2, we deduce that t ∈ A1 × A2.

The key-point of the above reasoning was to use an instance of the following property:

(t ∈ Nπ ∧ E[ ] ∈ Eπ) =⇒ E[t] ∈ Nπ .

Therefore, we are interested in evaluation contexts such that

(t ∈ NRE ∧ E[ ] ∈ E) =⇒ E[t] ∈ NRE .

In words, neutral terms have to closed by composition with evaluation contexts. This leads to
the notion of elimination contexts.

Definition 4.2.1 (Elimination Contexts) Let E be a set of evaluation contexts for →R.
Then E is a set of elimination contexts for →R if

(i) all variables are neutral: X ⊆ NRE ,

(ii) if t ∈ NRE and E[ ] ∈ E then E[t] ∈ NRE .

All the evaluation contexts seen above are elimination contexts:

— E⇒ is a set of elimination contexts for →β,

— E× is a set of elimination contexts for →π,

— E⇒× is a set of elimination contexts for →βπ and for →βπR, where R is a rewrite system,

— E⇒×C is a set of elimination contexts for →βπRD, where R is a rewrite system with
constructors in C.
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Reducibility candidates. We now define reducibility candidates in the usual way [GLT89,
Gal89]: our generalization regards neutral terms and their definition using elimination contexts.
Assume that E is a set of elimination contexts for →R.

Definition 4.2.2 (Reducibility Candidates) The set CRRE of reducibility candidates for
→R in E is the set of all C ⊆ SNR such that

(CR0) if t ∈ C and t→R u then u ∈ C,

(CR1) if t ∈ NRE and ∀u. t→R u =⇒ u ∈ C then t ∈ C.

The clause (CR1) is the neutral term property.

Example 4.2.3 For the pure λ-calculus and the λ-calculus with products, if we take as elimi-
nation contexts respectively E⇒ and E⇒×, then our definition correspond to the usual one (see
for instance [GLT89]). Moreover,

— we let CRβ be the set of reducibility candidates for →β in E⇒,

— we let CRβπ be the set of reducibility candidates for →βπ in E⇒×,

— given a rewrite system R, we let CRβπR (resp. CRβR) be the set of reducibility candidates
for →βπR in E⇒× (resp. for →βR in E⇒); if moreover C is a set of constructors for R,
then we let CRβπRC (resp. CRβRC) be the set of reducibility candidates for→βπRD in E⇒×C

(resp. for →βRD in E⇒C).

As we have done with saturated sets in Sect. 3, in order to show that CRRE is not empty, we
show that SNR ∈ CRRE . Since it is clear that SNR is stable by reduction, it remains to show
that SNR satisfies the neutral term property. But this is trivial, since SNR is the smallest set
such that (t)R ⊆ SNR implies t ∈ SNR. We thus have

Lemma 4.2.4 SNR ∈ CRRE .

As said at the beginning of this section, Girard’s reducibility candidates rely on the fact that
since neutral terms do not interact with elimination contexts, their properties w.r.t. reducibility
can be shown by induction on SNR. This is property (23), shown in Lem. 4.2.5 below, which
extends Lem. 4.1.7 to all reducibility candidates when elimination contexts are used in place of
evaluation contexts.

Lemma 4.2.5 Let t ∈ NRE and E[ ] ∈ E ∩ SNR. Then for all C ∈ CRRE ,

(∀u. t→R u =⇒ E[u] ∈ C) =⇒ E[t] ∈ C .

Proof. First, since t ∈ NRE and E[ ] ∈ E , we have E[t] ∈ NRE by Def. 4.2.1.(ii). Hence we only
have to show that (E[t])R ⊆ C.

We reason by induction on E[ ] ∈ SNR. Let v such that E[t] →R v. Since t is neutral, we
have v = E ′[t ′] with (E[ ], t)→R (E ′[ ], t ′), and there are two cases.

Case of E[ ]→R E ′[ ]. We have E ′[ ] ∈ E by Def. 4.1.1. and E ′[ ] ∈ SNR since E[ ] ∈ SNR.
For all u ∈ (t)R, since E[u] →R E ′[u] and E[u] ∈ C, we have E ′[u] ∈ C by (CR0). Hence
we can apply the induction hypothesis on E ′[ ] and conclude that E ′[t] ∈ C.

Case of t→R t ′. In this case we have E[t ′] ∈ C by assumption.
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In particular, given a rewrite system R with constructors in C, reducibility candidates in CRβπRC

satisfy property (21) for non-constructor symbols f ∈ Σ \ C. Moreover, reducibility candidates
C ∈ CRβπ satisfy clauses (SAT0), (SAT2β) and (SAT2πi). This property is already known for
the pure λ-calculus [Gal89] and for the λ-calculus with products [Luo90]. Our formulation of
reducibility candidates allows to formulate it in a more general and modular way. Thanks to
the neutral term property, the proof is actually the same as for Lem. 4.1.9.

Lemma 4.2.6 Let →R be a rewrite relation on Λ(Σ).

(SAT1) Let E be a set of elimination contexts for →R.

For all C ∈ CRRE , if E[ ] ∈ E ∩ SNR and x ∈ X then E[x] ∈ C.

(SAT2β) Let E be a set of elimination contexts for →βR such that (λx.t)u ∈ NβRE for all
t, u ∈ Λ(Σ).

For all C ∈ CRβRE and all E[ ] ∈ E, if E[t[u/x]] ∈ C and u ∈ SNβR then E[(λx.t)u] ∈ C.

(SAT2πi) Let E be a set of elimination contexts for →πR such that πi〈t1, t2〉 ∈ NπRE for all
t1, t2 ∈ Λ(Σ) and all i ∈ {1, 2}.

For all C ∈ CRπRE and all E[ ] ∈ E, if E[ti] ∈ C and t3−i ∈ SNπR then E[πi(t1, t2)] ∈ C.

Proof.

(SAT1). By definition, the terms of the form E[x] with E[ ] ∈ E satisfy

∀v. E[x]→R v =⇒
(

v = E ′[x] with E ′[ ] ∈ E and E[ ]→R E ′[ ]
)

.

There are thus neutral terms whose reducts are all neutrals. We conclude by induction
on E[ ] ∈ SNR.

(SAT2β) and (SAT2πi). We only show the case of (SAT2β) because (SAT2πi) is similar and
simpler.

We have to show that if E[t[u/x]] ∈ C with u ∈ SNβR then E[(λx.t)u] ∈ C. Since
E[(λx.t)u] ∈ NβRE , by (CR1) it is sufficient to show that E[(λx.t)u]→βR v implies v ∈ C.

We can therefore reason as in Lem. 4.1.9, using the non-interaction of (λx.t)u with E[ ],
which follows from the assumption that (λx.t)u is neutral in E for →βR, and weak stan-
dardization (Lem. 3.2.8).

We have E[ ], t ∈ SNβR since E[t[u/x]] ∈ SNβR and since E[ ] contains at least one
occurrence of [ ]. We reason by induction on tuples (E[ ], t, u) ordered by the product
extension of →βR.

Let v such that E[(λx.t)u]→βR v. By non-interaction, there are two cases.

— v = E ′[(λx.t)u] with E[ ]→βR E ′[ ]. In this case, we conclude by induction hypothe-
sis. Note that E ′[t[u/x]] ∈ C thanks to (CR0).

— v = E[s] with (λx.t)u→βR s. By Lem 3.2.8, there are two subcases.

– s = (λx.t ′)u ′ with (t, u) →βR (t ′, u ′). In this case, we conclude by induction
hypothesis. Note that E[t ′[u ′/x]] ∈ C thanks to (CR0).

– s = t[u/x]. Since E[t[u/x]] ∈ SNβR by assumption.
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4.3 The Closure Operator of Reducibility Candidates

Because →R needs not to be finitely branching, the closure operator of reducibility candidates
is not always definable by induction on N. This is in contrast with SAT( ). Recall that we only
consider countable signatures. It follows that Λ(Σ) is a countable set, hence that the closure
operator of CR can be defined by induction on countable ordinals. Therefore, we consider a
well-ordered set (O,≤) satisfying the axioms of the countable ordinals, as presented for instance
in [Gal91].

Let →R be a rewrite relation on Λ(Σ) and E be a set of elimination contexts for →R.

Definition 4.3.1

— We define the function CR : P(SNR) 7→ P(SNR) as follows:

CR(X) =def X ∪ {t ∈ NRE | ∀u. t→R u =⇒ u ∈ X} .

— We define the functions CRa : P(SNR) 7→ P(SNR) by induction on a ∈ O as follows:

CR0(X) =def (X)∗R
CRa+1(X) =def CR(CRa(X))

CRλ(X) =def

⋃

a<λ CRa(X) if λ is a limit ordinal .

It is clear that CR is a monotone function on P(SNR). It follows that given X ∈ P(SNR), CR

is monotone on the complete lattice {(Y)∗R | X ⊆ Y ⊆ SNR}, on which it therefore has a least
fixpoint. We now check that this fixpoint is CRpX

(X) for some countable ordinal pX ∈ O.

Proposition 4.3.2 Given X ⊆ SNR,

(i) for all a, b ∈ O, if a ≤ b then CRa(X) ⊆ CRb(X),

(ii) there is pX ∈ O such that CRpX
(X) is the least fixpoint of CR in {(Y)∗R | X ⊆ Y ⊆ SNR},

(iii) we have CRpX
(X) = CRa(X) whenever pX ≤ a ∈ O.

Proof.

(i) By induction on b ∈ O.

(ii) Assume that the property does not hold. Then, by (ii) we have CRa(X) ( CRb(X) for all
a, b ∈ O such that a < b. Since O is not countable, we would have an uncountable set
{tb | b ∈ O} ⊆ Λ(Σ). But this is not possible since Λ(Σ) is countable. It follows that the
least fixpoint of CR in {(Y)∗R | X ⊆ Y ⊆ SNR} is CRpX

(X) for some pX ∈ O.

(iii) By induction on a.

An important point is that t ∈ CRpX
(X) if and only if t ∈ CRa(X) for some non-limit ordinal

a < pX. In other words, if t ∈ CRa(X) with a as small as possible, then a is either 0 or of the
form b + 1. Indeed, if t ∈ CRλ(X) for a limit ordinal λ, then by definition of CRλ(X) there is
some a < λ such that t ∈ CRa(X).

Definition 4.3.3 We define the function CR : P(SNR) 7→ P(SNR) as CR(X) =def CRpX
(X),

where CRpX
(X) is the least fixpoint of CR in {(Y)∗R | X ⊆ Y ⊆ SNR}.

We now check that CR is indeed the closure operator which defines reducibility candidates.
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Lemma 4.3.4 If X ⊆ SNR then CR(X) is the least reducibility candidate containing X.

Proof. We begin by showing that CR(X) ∈ CRRE for all X ⊆ SNR. First, since CR is a map on
P(SNR), it is clear that CR(X) ⊆ SNR. We now check the clauses (CR0) and (CR1).

(CR0) Let t →R u and t ∈ CRa(X) with a as small as possible. If a = 0, then we have
u ∈ (X)∗R = CR0. Otherwise, a = b + 1, t ∈ NRE and u ∈ CRb(X) by definition.

(CR1) Let t ∈ NRE with (t)R ⊆ CR(X). There is a < pX such that (t)R ⊆ CRa(X), hence
t ∈ CRa+1(X).

We now show by induction on a that CRa(X) ⊆ C for all C ∈ CRRE containing X. By (CR0), we
have CR0(X) = (X)∗R ⊆ C. If t ∈ CRa+1(X) \ CRa(X) then t ∈ NRE and by induction hypothesis
(t)R ⊆ CRa(X) ⊆ C, hence t ∈ C by (CR1). Moreover, if λ is a limit ordinal, then by induction
hypothesis we have CRa(X) ⊆ C for all a < λ, hence CRλ(X) ⊆ C.

It follows that CRRE = {CR(X) | X ⊆ SNR}. Let us now show that CR( ) is a closure operator.

Lemma 4.3.5 CR : P(SNR) 7→ P(SNR) is a closure operator.

Proof.

— Idempotency. By Lem. 4.3.4.

— Extensivity. Let X ∈ P(SNR). By induction on a ∈ O, we have X ⊆ CRa(X) for all a ∈ O,
hence X ⊆ CR(X) = CRpX

(X).

— Monotony. Let X ⊆ Y ∈ P(SNR). By induction on a ∈ O, we have CRa(X) ⊆ CRa(Y) for
all a ∈ O. It follows that CR(X) = CRpX

(X) ⊆ CRpX
(Y).

It remains to show that CRpX
(Y) ⊆ CRpY

(Y). This is follows from Prop. 4.3.2.(i) if pX ⊆ pY,
and otherwise we have CRpX

(Y) = CRpY
(Y) by Prop. 4.3.2.(iii).

Since CRRE is defined by the closure operator CR : P(SNR) 7→ P(SNR), it follows from Lem. 2.2.6
that it is a complete lattice whose maximal element is SNR, and whose g.l.b.’s are given by
intersections.

4.4 Hereditary Neutral Terms

In Sect. 3.2, we have seen that to get a type interpretation with saturated sets for the pure
λ-calculus, we must ensure that A ⇒ B ∈ SATβ whenever A,B ∈ SATβ. In particular, this
implies that A ⇒ B ⊆ SNβ, hence that A 6= ∅. Moreover, showing that A 6= ∅ amounts to
showing that X ⊆ A. Therefore, we have to show that each reducibility candidate contains X .
To this end, it is sufficient to show that the least reducibility candidate contains X .

In this section, we define and prove some properties of this set, also called the set of hereditary
neutral terms, and denoted by HNRE , where→R is a rewrite relation and E is a set of elimination
contexts for →R.

Definition 4.4.1 (Hereditary Neutral Terms) We define HNRE , the set of hereditary
neutral terms for →R in E as the least set such that

∀t ∈ NRE . (∀u. t→R u =⇒ u ∈ HNRE) =⇒ t ∈ HNRE .
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In words, a term is hereditary neutral if and only it is a strongly normalizing neutral terms
whose reducts are neutrals. The closure operator CR( ) is a convenient tool to show that HNRE

is the least reducibility candidate.

Proposition 4.4.2 HNRE is the least element of CRRE .

Proof. By Lem. 2.2.6, the least element of CRRE is the closure of the least element ∅ of P(SNR).
But we have HNRE = CR(∅) since CR(∅) is the least set such that

CR(∅) = CR(∅) ∪ {t ∈ NRE | ∀u. t→R u =⇒ u ∈ CR(∅)} .

According to the discussion at the beginning of Sect. 4.2, rewrite relations and eliminations
contexts are defined in such a way that variables are neutral terms in normal form. We thus
have X ⊆ HNRE , and we deduce that X ⊆ C for all candidate C.

We let HNβ (resp. HNβπ) be the set of hereditary neutral terms for →β in E⇒ (resp. for
→βπ in E⇒×). For the pure λ-calculus, recall that neutral terms are exactly the terms of the
form

E[x] or E[(λx.t)u] with E[ ] ∈ E⇒ .

Hence β-normal neutral terms are of the form E[x], and hereditary neutral terms are exactly
the strongly normalizing terms which reduces to a term of the form E[x] (recall that values are
preserved by reduction). Moreover, HNβ is the least element of SATβ.

Proposition 4.4.3 HNβ ⊆ S for all S ∈ SATβ.

Proof. Let S ∈ SATβ. We have to show that t ∈ HNβ implies t ∈ S. By Prop. 4.4.2 and
Prop. (ii), for all t ∈ HNβ, there is a least a ∈ O such that t ∈ CRa(∅). By induction on a ∈ O,
we show that if a is the least ordinal such that t ∈ CRa(∅), then t ∈ S. Note a is either 0 or a
successor ordinal b + 1, and that the first case is not possible since CR0(∅) = ∅. So assume that
t ∈ CRb+1(∅). Then t ∈ Nβ and (t)R ⊆ CRb(∅) ⊆ SNβ. Since t is neutral, there are two cases.

— If t = E[x], then E[ ] ∈ SNβ since (t)β ⊆ SNβ, hence t ∈ S by (SAT1).

— Otherwise, t = E[(λx.t1)t2]. We have t2, E[t1[t2/x]] ∈ SNβ since (t)β ⊆ SNβ and
E[t1[t2/x]] ∈ S since CRb(∅) ⊆ S by induction hypothesis. It follows that t ∈ S by
(SAT2β).

An interesting property of hereditary neutral terms is that they are stable by composition
with strongly normalizing elimination contexts. This is a consequence of the assumption that
neutral terms are stable by composition with elimination contexts.

Proposition 4.4.4 If t ∈ HNRE and E[ ] ∈ E ∩ SNR then E[t] ∈ HNRE .

Proof. We reason by induction on pairs (E[ ], t) ordered by the product extension of →R.
So, let t ∈ HNRE and E[ ] ∈ E ∩ SNR. Since E[t] ∈ NRE , we have E[t] ∈ HNRE whenever

(E[t])R ⊆ HNRE . Now, let v such that E[t] →R v. Since t is neutral, it follows that v = E ′[t ′]

with (E[ ], t)→R (E ′[ ], t ′). Moreover, we have t ′ ∈ HNRE since t ∈ HNRE . Thus v ∈ HNRE by
induction hypothesis.

Since variables are hereditary neutral, it follows from Prop. 4.4.4 that E[x] ∈ HNRE for all
E[ ] ∈ E ∩ SNR and all x ∈ X . We can now conclude the discussion at the beginning of this
section, and show that for pure λ-calculus we have A ⇒ B ∈ CRβ for all A,B ∈ CRβ. As with
Lem. 4.1.9 and Lem. 4.2.6, it is interesting to show this in a slightly more general framework.
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Proposition 4.4.5

(i) If [ ] t ∈ E for all t ∈ Λ(Σ), then

C1, C2 ∈ CRRE =⇒ C2⇒ C1 ∈ CRRE .

(ii) If πi [ ] ∈ E for all i ∈ {1, 2}, then

C1, C2 ∈ CRRE =⇒ C1 × C2 ∈ CRRE .

Proof. First, by using that X ⊆ HNRE ⊆ C for all C ∈ CRRE , we get C2⇒ C1, C1×C2 ⊆ SNR,
exactly as with saturated sets in Prop. 3.2.10 and Prop. 3.3.3.

We now check that C2⇒ C1 and C1×C2 satisfy the clauses (CR0) and (CR1). We only detail
the case of ⇒ , because that of × is similar and simpler.

(CR0) As in Prop. 3.5.2.

(CR1) Let t ∈ NRE such that (t)R ⊆ C2 ⇒ C1 and let a ∈ C2. For all u ∈ (t)R, we have
ua ∈ C1. Since [ ]a ∈ SNR, it follows from Lem. 4.2.5 that ta ∈ C1. We conclude that
t ∈ C2⇒ C1.

We have now sufficient material to show that in the case of the λ-calculus with products, CRβπ

is a reducibility family which lead to an adequate type interpretation. Adequacy is obtained as
in Lem. 3.3.4, by combining Lem. 4.2.6 with Prop. 4.4.5.

4.5 The Structure of Reducibility Candidates

In this section, we explore further the structure of reducibility candidates.
We begin by some general properties of closure operators on powersets. In particular, a

closure operator ( ) : P(D) 7→ P(D) gives a specialization preorder . on D, such that each
closed set X ⊆ D is downward-closed w.r.t. .. Applying these facts to reducibility candidates,
we get that every candidate is downward-closed w.r.t. the specialization preorder issued from
the closure operator CR( ).

Moreover, we discuss necessary and sufficient conditions for a term to belong to a reducibility
candidate. We get characterizations of the membership of a term to a candidate based on the
notion of values (i.e. non-neutral terms, see Def. 4.1.4). This is in fact the meaning of the
neutral term property (clause (CR1)): given a set X ⊆ SNR which is stable by reduction, its
closure CR(X) only adds neutral terms.

Finally, we refine both that characterization and the specialization preorder of CR( ) in the
main result of this section: reducibility candidates are downward-closed w.r.t. the weak obser-
vational preorder .V ⊆ SNR × SNR defined as

t .V u if and only if ∀v ∈ V. t→∗
R v =⇒ u→∗

R v .

This section generalizes to reducibility candidates CRRE results published in [Rib07b] where the
preorder .V has been first presented.

Closure operators on powersets. Given a closure operator ( ) : P(D) 7→ P(D), we let

P(D) =def

{
X | X ⊆ D

}
.

We first look at the partition of a closed set X ∈ P(D) according to the least closed sets
containing each of its elements. Given d ∈ D, we write d for {t}. The following proposition says
that given X ∈ P(D), the set of d for d ∈ X is a basis of X.

32



Proposition 4.5.1 Given a closure operator ( ) : P(D) 7→ P(D), for all X ⊆ D we have

X =
⋃{

d | d ∈ X
}

.

Proof. By extensivity, we have d ∈ d for all d ∈ D, hence X ⊆
⋃

{d | d ∈ X}. Conversely, if
d ∈ X then d ⊆ X by extensivity and idempotency. It follows that

⋃

{d | d ∈ X} ⊆ X.

We can apply Prop. 4.5.1 to reducibility candidates, since they are defined by the closure
operator CR( ). This will be useful in Sect. 6 to study the stability by union of reducibility
candidates. Given t ∈ SNR, we write CR(t) for CR({t}).

Corollary 4.5.2 For all C ∈ CRRE we have

C =
⋃

{CR(t) | t ∈ C} .

Proof. By Prop. 4.5.1 and Lem. 4.3.4.

Our second point is that a closure operator on P(D) gives rise to a preorder, that we see as
an observational preorder. When P(D) is a topology, it corresponds to the usual specialization
preorder of P(D) [AC98].

Definition 4.5.3 (Specialization Preorder) The specialization preorder . ⊆ D × D of a
closure operator ( ) : P(D) 7→ P(D) is defined as

d . e if and only if d ⊆ e .

Note that we have d ∈ e if and only if d . e. The intuition is that if d ∈ e, then every observation
made on e is also made on d. Hence d . e means that d is more precisely characterized by its
observations than e.

Proposition 4.5.4 For all d, e ∈ D, we have d ∈ e if and only if d . e.

Proof. Indeed, if d . e, then d ∈ d ⊆ e. Conversely, if d ∈ e we have d ⊆ e by extensivity
and idempotency of ( ).

Closed sets are downward-closed w.r.t. .. This means that if d ∈ X for some X ∈ P(D), then
every e which is more precisely characterized than d by its observations belongs to X.

Proposition 4.5.5 Every X ∈ P(D) is downward-closed w.r.t. ..

Proof. If e ∈ X and d . e, then d ∈ d ⊆ e ⊆ X = X.

Hence reducibility candidates come with a specialization preorder, w.r.t. which each candidate
is downward-closed.

The values of reducibility candidates. The goal of this paragraph is to obtain the material
needed to get an interesting characterization of the specialization preorder of reducibility can-
didates. To this end, we discuss necessary and sufficient conditions for a term to belong to a
reducibility candidate. The key point is that reducibility candidates are in some sense char-
acterized by their values. We assume given a rewrite relation →R and a set E of elimination
contexts for →R.
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Definition 4.5.6 Given X ⊆ Λ(Σ), the set V(X) of values of X is defined as

V(X) =def {v ∈ V | v ∈ (X)∗R} .

It is clear that V(X) ⊆ SNR whenever X ⊆ SNR. Given t ∈ Λ(Σ), we denote V({t}) by V(t).
We thus have V(t) = {v ∈ V | t→∗

R v}.
We first show that in some sense, a reducibility candidate is characterized by its values.

Lemma 4.5.7 (First Characterization) Given C ∈ CRRE and t ∈ SNR, we have

t ∈ C if and only if V(t) ⊆ C .

Proof. Since V(t) ⊆ (t)∗R, by (CR0) it is clear that t ∈ C implies V(t) ⊆ C.
For the converse, we reason by induction on t ∈ SNR. So, let t ∈ SNR such that V(t) ⊆ C.

If t is itself a value, then t ∈ V(t) and we are done. Otherwise, t is neutral and by (CR1) it is
sufficient to show that (t)R ⊆ C. But for all u ∈ (t)R, we have V(u) ⊆ V(t) ⊆ C, hence u ∈ C

by induction hypothesis. It follows that t ∈ C.

We thus have a first simple characterization of the membership of a term to a reducibility
candidate. Note that in particular, if t ∈ HN, we have V(t) = ∅ ⊆ C hence t ∈ C for all C ∈ CR:
this gives us a second proof that HN is the least element of CR.

The next step is to refine Lem. 4.5.7 into the following: given t ∈ SNR and X ⊆ SNR, we
have

t ∈ CR(X) if and only if V(t) ⊆ V(X) .

While Lem. 4.5.7 tells us that CR(X) is characterized by its values V(CR(X)), this second charac-
terization relies on the fact that the values of CR(X) are exactly those of X. This is a consequence
of the following proposition.

Proposition 4.5.8 Given X ⊆ SNR and t ∈ SNR, we have

t ∈ CR(X) if and only if [t ∈ (X)∗R or (t ∈ NRE and (t)R ⊆ CR(X))] .

Proof. The ”if” direction directly follows from the definition of CR( ) (Def. 4.3.3).
For ”only if” direction, let a ∈ O be the least ordinal such that t ∈ CRa(X). There are two

cases: either a = 0 and t ∈ (X)∗R, or a = b + 1 and t ∈ NRE with (t)R ⊆ CRb(X).

Lemma 4.5.9 (Second Characterization) Given X ⊆ SNR and t ∈ SNR, we have

t ∈ CR(X) if and only if V(t) ⊆ V(X) .

Proof. It follows from Prop. 4.5.8 that V(CR(X)) = V(X), and we conclude by Lem. 4.5.7.

Observational reducibility. We can now give a direct definition of the specialization preorder
of reducibility candidates. It follows from Lem. 4.5.9, which gives that t ∈ CR(u) if and only if
V(t) ⊆ V(u), that is, if and only if every value of t is a value of u. We can formulate this with
a weak observational preorder ⊑V on terms.

Definition 4.5.10

(i) We define ⊑V ⊆ Λ(Σ) × Λ(Σ) as

t ⊑V u if and only if V(t) ⊆ V(u) .
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(ii) We let .V be the restriction of ⊑V to SNR × SNR, that is

t .V u if and only if (t, u ∈ SNR and t ⊑V u) .

It is .V , the restriction of ⊑V to strongly normalizing terms, which is the specialization preorder
of CR( ). Before showing this in Lem. 4.5.13 below, let us make a few remarks.

First, it is clear that t→R u implies u ⊑V t and moreover u .V t if t ∈ SNR. Furthermore,
⊑V is compatible with elimination contexts.

Proposition 4.5.11 If t ⊑V u, then for all E[ ] ∈ E we have E[t] ⊑V E[u].

Proof. For all n ∈ N, all v ∈ V and all E ∈ E , we show that E[t] →n
R v implies E[u] →∗

R v

whenever t ⊑V u. We reason by induction on n.
If t is not neutral, then u →∗

R t since t ⊑V u. It follows that E[u] →∗
R E[t], hence that

E[t] ⊑V E[u]. Otherwise, t is neutral and we have n ≥ 1. So, assume that E[t] →R w →n
R v.

Since t is neutral, we have w = E ′[t ′] with (E[ ], t)→R (E[ ], t ′), and there are two cases.

— If E[ ]→R E ′[ ] and t = t ′, then since E is stable by →R, by induction hypothesis on n we
have E ′[u]→∗

R v, hence E[u]→∗
R v.

— Otherwise, we have t→R t ′ and E ′[ ] = E[ ]. Since t ′ ⊑V t and t ⊑V u, we have t ′ ⊑V u

hence E[u]→∗
R v by induction hypothesis.

Note that Prop. 4.5.11 implies that if [ ] ∈ E , then for all t, u ∈ Λ(Σ),

t ⊑V u if and only if ∀E[ ] ∈ E . E[t] ⊑V E[u] .

Remark 4.5.12 Observational preorders where introduced to characterize behavioral equiv-
alence: two pieces of programs are observationally equivalent iff when plugged in a program
context, the obtained programs both diverges or evaluates to the same value.

Usually, contexts are arbitrary terms C[ ], possibly under a binder. With closed terms, thanks
to Milner’s Context Lemma, this is equivalent to observation in applicative contexts (our elim-
ination contexts E⇒). Of course, this fails for open terms. See [AC98] for a presentation and
references on the subject.

In the pure λ-calculus, closed values are abstractions, hence closed non-neutral terms cor-
respond to the usual notion of value. Moreover, we have t ⊑V u iff for all E[ ] we have
E[t] ⊑V E[u]. Thus, with ⊑V we observe the reduction to values of open terms plugged in
elimination contexts. Hence the name weak observational preorder.

We now show that .V is indeed the specialization preorder of CR( ), in the sense of Def. 4.5.3.

Lemma 4.5.13 .V is the specialization preorder of CR( ).

Proof. By Prop. 4.5.4 it is sufficient to show that t .V u if and only if t ∈ CR(u). But given
t, u ∈ SNR, by Lem. 4.5.9 we have t ∈ CR(u) if and only if V(t) ⊆ V(u), that is, if and only if
t .V u.

Note that Lem. 4.5.13 implies, given t ∈ SNR, that CR(t) is the the initial segment of (SNR,.V)

whose maximal element is t, that is CR(t) = {u | u .V t}.
We then arrive at our third and main characterization of the membership of a term to a

candidate. It says that reducibility candidates are downward-closed w.r.t. .V . This follows from
the combination of Cor. 4.5.2, which gives the topological structure of reducibility candidates
as defined by a closure operator, and of Lem. 4.5.13, which characterizes the specialization
preorder of reducibility candidates in terms of values.
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Theorem 4.5.14 Reducibility candidates are downward-closed w.r.t. .V .

Our first characterization (Lem. 4.5.7) says that the membership of a strongly normalizing term
to a candidate is entirely determined by the membership of its values to that candidate. Now,
Thm 4.5.14 says that given t ∈ NRE ∩SNR, a term u such that t .V u captures all the relevant
information on t w.r.t. reducibility: if u ∈ C for some C ∈ CRRE , then t ∈ C. This result
will be strengthened in Cor. 7.1.1, after having studied and compared the stability by union of
reducibility candidates and the closure by union of biorthogonals.

5 Biorthogonals

We now present a third reducibility family. This family is defined using an orthogonality re-
lation between terms and elimination contexts. The idea underlying this interpretation comes
from linear logic [Gir87]. Concerning reducibility, biorthogonals where introduced to take into
account calculi for polarized classical logic: they have been used to show the strong normal-
ization of the second order λµ-calculus [Par97], and they are the basis of Krivine’s realizability
for classical logic [DK00, Kri04]. Biorthogonals have also proved to be useful to show subtle
computational properties of functional programing languages [Pit00, VM04, Vou04, MV05].

Let us try to present the main ideas in the case of the simply typed λ-calculus. Consider the
interpretation of simple types given in Def. 3.2.2:

JBK = SNβ if B ∈ B
JU⇒ TK = JUK⇒ JTK .

Since any simple type T ∈ T⇒(B) can be written T = T1 ⇒ . . . ⇒ Tn ⇒ B, its interpretation
can be written JT1K⇒ . . . JTnK⇒ SNβ, that is

JTK = {t | ∀u1 ∈ JT1K, . . . , un ∈ JTnK. t u1 . . . un ∈ SNβ} .

It follows that if we map T to the set of elimination contexts

JTK⊥⊥ =def {[ ]u1 . . . un | u1 ∈ JT1K, . . . , un ∈ JTnK} ,

then we have
JTK =

{
t | ∀E[ ]. E[ ] ∈ JTK⊥⊥ =⇒ E[t] ∈ SNβ

}
.

Moreover, if we let t ⊥⊥ E[ ] when E[t] ∈ SNβ, we obtain

JTK =
{

t | ∀E[ ]. E[ ] ∈ JTK⊥⊥ =⇒ t ⊥⊥ E[ ]
}

. (26)

This construction is a form of orthogonality.

5.1 Orthogonality as a Galois Connection

We first present orthogonality as a Galois connection arising from a binary relation ⊥⊥ between
two sets A and Π. Results presented in this section are well-known, see e.g. [VM04, Vou04].
We give the proofs for the sake of completeness and because some of them are important in
Sect. 6.4.

Definition 5.1.1 (Orthogonality) Let A and Π be two sets, and let ⊥⊥ ⊆ A× Π.
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— Given A ⊆ A, the orthogonal of A w.r.t. ⊥⊥ is

A⊥⊥ =def {π ∈ Π | ∀a. a ∈ A =⇒ a ⊥⊥ π} .

— Symmetrically, the orthogonal of P ⊆ Π w.r.t. ⊥⊥ is

P⊥⊥ =def {a ∈ A | ∀π. π ∈ P =⇒ a ⊥⊥ π} .

The orthogonality operators ( )⊥⊥ : P(A) 7→ P(Π) and ( )⊥⊥ : P(Π) 7→ P(A) form a Galois
connection between the complete lattices (P(A),⊆) and (P(Π),⊇).

Proposition 5.1.2 (Adjunction) For all A ⊆ A and all P ⊆ Π, we have

A ⊆ P⊥⊥ if and only if P ⊆ A⊥⊥ .

Proof. We only show one direction, the other one being symmetric. Assume that A ⊆ P⊥⊥

and let us show that P ⊆ A⊥⊥. By assumption, for all a ∈ A, we have a ⊥⊥ π for all π ∈ P.
Hence for all π ∈ P, we have a ⊥⊥ π for all a ∈ A. It follows that P ⊆ A⊥⊥.

Galois connections induce closure operators.

Proposition 5.1.3 The maps ( )⊥⊥⊥⊥ : P(A) 7→ P(A) and ( )⊥⊥⊥⊥ : P(Π) 7→ P(Π) are closure
operators.

Proof. We only consider the case of ( )⊥⊥⊥⊥ : P(A) 7→ P(A), because the other one is symmetric.

— Extensivity. For all X ⊆ A we have X⊥⊥ ⊆ X⊥⊥, hence X ⊆ X⊥⊥⊥⊥ by Prop. 5.1.2.

We deduce from this property that ( )⊥⊥ is anti-monotone:

X ⊆ Y =⇒ Y⊥⊥ ⊆ X⊥⊥ . (27)

Indeed, if X ⊆ Y, then by extensivity we have X ⊆ Y⊥⊥⊥⊥, hence Y⊥⊥ ⊆ X⊥⊥ by Prop. 5.1.2.

— Monotonicity. If X ⊆ Y then by (27) we have Y⊥⊥ ⊆ X⊥⊥, hence X⊥⊥⊥⊥ ⊆ Y⊥⊥⊥⊥ by (27) again.

— Idempotency. Because

X⊥⊥ = X⊥⊥⊥⊥⊥⊥ . (28)

Indeed, we have X⊥⊥ ⊆ X⊥⊥⊥⊥⊥⊥ by extensivity and X⊥⊥⊥⊥⊥⊥ ⊆ X⊥⊥ by applying Prop. 5.1.2 to
X ⊆ X⊥⊥⊥⊥⊥⊥⊥⊥, which is obtained by two applications of extensivity.

Definition 5.1.4 (Biorthogonals)

(i) A set A ⊆ A (resp. P ⊆ Π) is a biorthogonal if A = A⊥⊥⊥⊥ (resp. P = P⊥⊥⊥⊥).

(ii) We denote by P(A)⊥⊥⊥⊥ (resp. P(Π)⊥⊥⊥⊥) the set of biorthogonals of P(A) (resp. P(Π)),
and by P⋆(A)⊥⊥⊥⊥ (resp. P⋆(Π)⊥⊥⊥⊥) the set of biorthogonals of non-empty subsets of P(A)

(resp. P(Π)).

Proposition 5.1.5 A ⊆ A (resp. P ⊆ Π) is a biorthogonal if and only if there exists X ⊆ Π

(resp. X ⊆ A) such that A = X⊥⊥ (resp. P = X⊥⊥).

Proof. If A is a biorthogonal then by definition we have A = (A⊥⊥)⊥⊥. Conversely, if A = Y⊥⊥

then A⊥⊥⊥⊥ = Y⊥⊥⊥⊥⊥⊥, hence A⊥⊥⊥⊥ = Y⊥⊥ = A by (28).

37



5.2 Biorthogonals for Reducibility

Let us now present how these ideas can be applied to reducibility. We define type interpreta-
tions based on biorthogonality relying on the relation suggested by (26). We stay in the same
framework as for reducibility candidates in Sect. 4. Therefore, we consider a rewrite relation
→R on Λ(Σ) and a set E of elimination contexts for →R in the sense of Def. 4.2.1.

Definition 5.2.1 We define ⊥⊥ ⊆ Λ(Σ) × E as

t ⊥⊥ E[ ] if and only if E[t] ∈ SNR .

The non-empty subsets of SNR which are biorthogonals w.r.t. ⊥⊥ are reducibility candidates in
the sense of Def. 4.2.2. Note that non-emptiness is mandatory. Similarly to happen with ⇒
in property (8) (on page 11 in Sect. 3.2), the orthogonal in E of ∅ ∈ P(Λ(Σ)) is E :

∅⊥⊥ = {E[ ] ∈ E | ∀t. t ∈ ∅ =⇒ t ⊥⊥ E[ ]} = E .

Hence the biorthogonal of ∅ ∈ P(Λ(Σ)) is Λ(Σ) itself.

Lemma 5.2.2 P⋆(SNR)⊥⊥⊥⊥ ⊆ CRRE .

Proof. Let C ∈ P⋆(SNR)⊥⊥⊥⊥. We check that C satisfies the clauses (CR0) and (CR1).

(CR0) If t ∈ C and t →R u, then for all context E[ ] ∈ C⊥⊥ we have E[t] →R E[u], hence
E[u] ∈ SNR.

(CR1) Let t ∈ NRE be such that (t)R ⊆ C. We must show that E[t] ∈ SNR for all E[ ] ∈ C⊥⊥.
Since C is a non-empty subset of SNR, we have C⊥⊥ ⊆ SNR. We reason by induction on
E[ ] ∈ SNR. Let v such that E[t]→R v. Since t is neutral, by definition we have v = E ′[t ′]

with (E[ ], t)→R (E ′[ ], t ′), and there are two cases:

— v = E[u] with t→R u. In this case we have E[u] since u ∈ C and E[ ] ∈ C⊥⊥.

— v = E ′[t] with E[ ] →R t ′. We then have E ′[ ] ∈ C⊥⊥ because for all u ∈ C, E[u] →R

E ′[u] and E[u] ∈ SNR, hence E ′[u] ∈ SNR. It follows that E ′[t] ∈ SNR by induction
hypothesis.

Therefore, in the λ-calculus with products, since E⇒× is a set of elimination contexts for →βπ,
by Lem. 4.2.6 we have P⋆(SNβπ)⊥⊥⊥⊥ ⊆ SATβπ.

In order to get a valid and adequate interpretation, it remains to show that the function and
product space constructors preserve biorthogonals. To this end, it is interesting to observe, in
the case of the pure λ-calculus, how the type interpretation (26) goes through the structure of
simple types. In the base case, we have JTK = SNβ = {[ ]}⊥⊥. Consider now a type of the form
U⇒ T . The main idea is that for all t, u ∈ Λ(Σ) and all E[ ] ∈ E⇒ , we have

t u ⊥⊥ E[ ] if and only if t ⊥⊥ E[[ ]u] .

It follows that

JUK⇒ JTK = {t | ∀u ∈ JUK, ∀E[ ] ∈ JTK⊥⊥. tu ⊥⊥ E[ ]}

= {t | ∀u ∈ JUK, ∀E[ ] ∈ JTK⊥⊥. t ⊥⊥ E[[ ]u]}

= {E[[ ]u] | u ∈ JUK ∧ E[ ] ∈ JTK⊥⊥}⊥⊥ .
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Definition 5.2.3 If [ ] t ∈ E for all t ∈ Λ(Σ), then given A ⊆ Λ(Σ) and P ⊆ E, we let

A · P =def {E[[ ]u] | u ∈ A ∧ E[ ] ∈ P} .

We now show that the function and product spaces constructor preserve biorthogonals.

Proposition 5.2.4

(i) If [ ] t ∈ E for all t ∈ Λ(Σ), the for all A,B ⊆ SNR we have

A⇒ B⊥⊥⊥⊥ = (A · B⊥⊥)⊥⊥ .

(ii) If πi [ ] ∈ E for all i ∈ {1, 2}, then for all A1, A2 ⊆ SNR we have

A⊥⊥⊥⊥
1 × A⊥⊥⊥⊥

2 = {E[π1[ ]] | E[ ] ∈ A⊥⊥
1 }⊥⊥ ∩ {E[π2[ ]] | E[ ] ∈ A⊥⊥

2 }⊥⊥ .

Proof.

(i) We have t ∈ A⇒ B⊥⊥⊥⊥ if and only if E[tu] ∈ SNR for all u ∈ A and all E[ ] ∈ B⊥⊥.

(ii) We have t ∈ A⊥⊥⊥⊥
1 ×A⊥⊥⊥⊥

2 if and only if E[πit] ∈ SNR for all i ∈ {1, 2} and all E[ ] ∈ A⊥⊥
i .

According to Prop 5.1.5 and Prop. 5.1.3, it follows that A⊥⊥⊥⊥ ⇒ B⊥⊥⊥⊥ and A⊥⊥⊥⊥ × B⊥⊥⊥⊥ are
biorthogonals for all A,B ⊆ SNβπ. If moreover A and B are not empty, then A⊥⊥⊥⊥ and B⊥⊥⊥⊥ are
saturated sets, hence A⊥⊥⊥⊥ ⇒ B⊥⊥⊥⊥, A⊥⊥⊥⊥ × B⊥⊥⊥⊥ ∈ SATβπ by Prop. 3.3.3. Hence biorthogonals
provide a valid and adequate type interpretation for the λ-calculus with products.

6 Stability by Union

A reducibility family Red is stable by union if

∀R. ∅ 6= R ⊆ Red =⇒
⋃

R ∈ Red .

The main question concerning stability by union is the following: given a rewrite relation →R,
does there exists a reducibility family Red for →R which is stable by union and leads to an
adequate type interpretation ?

For the pure λ-calculus, it is well known that the answer is positive: Tait’s saturated sets
(presented in Sec. 2.2) are stable by union and lead to an adequate type interpretation. This
has been exploited for instance in [Abe06a, Tat07].

But with rewriting, the question is more difficult. We have seen in Sec. 2.2 that because
rewrite systems in general do not satisfy the weak standardization lemma (Lem 3.2.8), in general
we need a reducibility family satisfying a clause like (19). But this is precisely what makes
stability by union difficult. Assume given R ⊆ Red such that for all v ∈ (E[f(~t)])βR, we have
v ∈

⋃

R. Then, unless we find A ∈ R such that (E[f(~t)])βR ⊆ A, there is no reason to have
E[f(~t)] ∈

⋃

R.
By the way, using intersection and union types, we have shown in [Rib07c] that there are

confluent rewrite systems for which every reducibility family that leads to an adequate type
interpretation is not stable by union. However, there are cases in which we can obtain a
reducibility family which is stable by union.

In this section, we study necessary and sufficient conditions for Girard’s reducibility candi-
dates to be stable by union; and a necessary and sufficient condition for the closure by union
of biorthogonals to be reducibility candidates. This generalizes results of [Rib07b]. We will
see that the second condition is strictly more general than the first one. Hence, reducibility
candidates strictly contain a reducibility family which can be stable by union even when they
are themselves not stable by union.
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6.1 Closure by Union of a Closure Operator

When trying to get a stable by union reducibility family, it is convenient think on what happens
at the level of closure operators. Therefore, we begin by looking at the shape of the closure by
union of a closure operator ( ) on P(D), where D is some arbitrary set.

Similarly as with biorthogonals in Sect. 5, given a closure operator ( ) on P(D), we denote
by P⋆(D) the set of closures of elements of P(D) \ {∅}:

P⋆(D) =def

{
X | ∅ 6= X ⊆ D

}
.

In Sect. 4.5, we have seen that a closure operator ( ) : P(D) 7→ P(D) gives a specialization
preorder . ⊆ D × D such that every closed set X ∈ P(D) is downward-closed w.r.t. .. The
closure by union of P⋆(D) is the set O of all non-empty subsets of D which are downward-closed
w.r.t. ..

Definition 6.1.1 Let O be the set of non-empty X ⊆ D which are downward-closed w.r.t. ..

To show that O is the closure by union of P⋆(D), it is convenient to use the following property
on the structure of elements of O (see also Prop. 4.5.1).

Proposition 6.1.2 X ∈ O if and only if X =
⋃
{
d | d ∈ X

}
.

Proof. We begin by the ”only if” direction. Given X ∈ O, if d ∈ X, then d ∈ d. Conversely, if
d ∈ e for some e ∈ X, then d . e hence d ∈ X since X is downward-closed.

For the ”if” direction, if X =
⋃

{d | d ∈ X}, then X is downward-closed since every d is
downward-closed by Prop. 4.5.5.

We now show that O is the closure by union of P⋆(D).

Proposition 6.1.3 Given a closure operator ( ) : P(D) 7→ P(D), O is the least set such that

P⋆(D) ⊆ O and
(

∅ 6= C ⊆ O =⇒
⋃

C,
⋂

C ∈ O
)

.

Proof. Stability by intersection and union are both trivial.
We show that P⋆(D) ⊆ O. Given X ∈ P⋆(D) and d, e such that d . e and e ∈ X, we have

d ⊆ e ⊆ X ⊆ X, hence d ∈ X since d ∈ d.
Let Ω be a set containing P⋆(D) and which is stable by intersection and union. We have

to show that O ⊆ Ω. If X ∈ O, then X =
⋃

{d | d ∈ X} by the above observation. But
{d | d ∈ X} ⊆ Ω since for all d ∈ X we have d ∈ P⋆(D). It follows that

⋃

{d | d ∈ X} ∈ Ω.

Recall that by Lem. 2.2.6, the set P⋆(D) is itself closed by non-empty intersections. Hence,
Prop. 6.1.3 implies that P⋆(D) is closed by union if and only if P⋆(D) = O.

6.2 Saturated Sets

We begin by considering the case of saturated sets. For the pure λ-calculus and some of its
extensions, such as the λ-calculus with products, stability by union of saturated sets is straight-
forward and well-known, see for instance [Wer94, Abe06b, Tat07]. In general, this is not the
case of the combination of λ-calculus with rewriting. We will see in Sect. 6.4 that Ex. 3.5.1,
which prevented us from uniformly defining saturated sets for rewriting, hides in fact a problem
of stability by union.
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In this section, we briefly review why saturated sets SATβπ for the λ-calculus with products
are stable by union. Recall that SATβπ is defined in Def. 3.3.1. Moreover, as seen in Sect. 3.4,
these saturated sets are defined by the closure operator SAT( ) : P(SNβπ) 7→ P(SNβπ). By
Prop. 4.5.1, every S ∈ SATβπ satisfies

S =
⋃

{SAT(t) | t ∈ S} . (29)

Now, it follows from Prop. 6.1.2 and Prop. 6.1.3 that SATβπ is stable by union if and only if all
non-empty S ⊆ SNβπ satisfying (29) is a saturated set. This can be easily checked.

Theorem 6.2.1 The set SATβπ is closed by union.

Proof. Let S ⊆ SNβπ satisfying (29).
The clause (SAT1) is obvious: if E[ ] ∈ E⇒× ∩ SNβπ and x ∈ X then E[x] ∈ SAT(t) for all

t ∈ S, hence E[x] ∈ S.
The clauses (SAT2β) and (SAT2πi) can be dealt with together. Let t 7→βπ u such that

t ∈ SNβπ and E[u] ∈ S. We have E[u] ∈ SAT(v) for some v ∈ S, hence E[t] ∈ SAT(v) ⊆ S.

6.3 Reducibility Candidates

We now discuss the case of reducibility candidates. We begin by a general characterization of
their stability by union which is based on the material of Sect. 4.5, and which generalizes results
of [Rib07b]. We then apply it to show that for the pure λ-calculus, the λ-calculus with products,
and the combination of λ-calculus with orthogonal constructor rewriting, reducibility candidates
are stable by union. The proofs for the pure λ-calculus and the λ-calculus with products are
adapted from [Rib07b]. For orthogonal rewriting, the proof is published in [Rib08].

Stability by union. Let →R be a rewrite relation on Λ(Σ) and E be a set of elimination
contexts for →R. In Sect. 4.5, we have seen that the specialization preorder of CR( ) is the
preorder .V ⊆ P(SNR) × P(SNR) defined as

t .V u if and only if ∀v ∈ V. t→∗ v =⇒ u→∗ v .

Therefore, according to the discussion after Prop. 6.1.3, CR is stable by union if and only if it
is the set OV of all non-empty subsets of SNR which are downward-closed w.r.t. .V .

Definition 6.3.1 We let OV be the set of non-empty subsets of SNR which are downward-
closed w.r.t. .V .

There are rewrite relations with which reducibility candidates are not stable by union. This
means that there are rewrite relations→R and elimination contexts E⇒ such that CRRE is strictly
included in OV . Besides the examples of [Rib07c], for which there are no reducibility families
which are stable by union, there are very simple confluent rewrite systems for which reducibility
candidates are not stable by union.

Example 6.3.2 Consider the confluent system

p 7→R λx.c1 p 7→R λx.c2 ci 7→R d .

Taking E⇒ as elimination contexts, the values for →βR in E⇒ are exactly the terms of the form
λx.t. Consider now the set

C =def CR(λx.c1) ∪ CR(λx.c2) .
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Since the sets CR(λx.ci) are downward-closed w.r.t. .V , it is clear that C is downward-closed
w.r.t. .V . Hence, if CRβR were stable by union, then we would have C ∈ CRβR.

However, this is not the case. First, note that λx.c1 and λx.c2 are two distinct values. Hence
they are not comparable w.r.t. .V . Therefore, given i ∈ {1, 2}, we have λx.c3−i /∈ CR(λx.ci). But
since p →R λx.c3−i, this implies that p /∈ CR(λx.ci). It follows that p /∈ C, while p is a neutral
term such that (p)βR = {λx.c1, λx.c2} ⊆ C.

It is therefore interesting to see what can ensure OV ⊆ CRRE . Given C ∈ OV , let us see under
which conditions we can have C ∈ CRRE . First, the clause (CR0) is trivially satisfied: given
t ∈ C and u ∈ (t)R, we have u .V t hence u ∈ C.

Concerning the neutral term property (clause (CR1)), let t ∈ SNR∩NRE be a reducible term
such that (t)R ⊆ C. Since C is downward-closed w.r.t. .V , the only general way to get t ∈ C is
to ensure that there is u ∈ C such that t .V u. Now, take

C(t) =def

⋃

{CR(u) | u ∈ (t)R} .

In this case, we have t ∈ C(t) if and only if there is u ∈ (t)R such that t .V u. In other words,
every strongly normalizing reducible neutral term t must have a reduct u such that every value
of t is a value of u. Such a u is a strong principal reduct of t.

Definition 6.3.3 (Strong Principal Reduct) Given a reducible term t ∈ NRE ∩ SNR, a
term u ∈ (t)R such that t .V u is a strong principal reduct of t1.

We say that →R satisfies the strong principal reduct property or that →R has strong principal
reducts when every reducible strongly normalizing neutral term has a strong principal reduct.

We now characterize the stability by union of reducibility candidates. In fact, ensuring that
the set C(t) ∈ OV above is a reducibility candidate for all reducible t ∈ SNR∩NRE amounts to
ensuring that all C ∈ OV are reducibility candidates.

Theorem 6.3.4 (Stability by Union of Reducibility Candidates) The following are
equivalent:

(i) CRRE is stable by union,

(ii) CRRE = OV ,

(iii) every reducible strongly normalizable neutral term t has a strong principal reduct.

Proof.

(i) =⇒ (ii). Let C ⊆ SNR be a non-empty set downward-closed w.r.t. .V . Since CR(t) is
downward closed w.r.t. .V for all t ∈ SNR, we have C =

⋃

{CR(t) | t ∈ C}. Hence C ∈ CR

because CR is stable by union.

(ii) =⇒ (iii). Let t ∈ N ∩ SNR be reducible. For all u ∈ (t)R, the set CR(u) is non-empty and
downward-closed w.r.t. .V . Therefore, the set C of all v such that v ∈ CR(u) for some
u ∈ (t)R is non-empty and downward-closed w.r.t. .V . It follows that C ∈ CR and that
t ∈ C since (t)R ⊆ C. Hence there is u ∈ (t)R such that t .V u.

1Called ”principal reduct” in [Rib07b].
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(iii) =⇒ (i). Let ∅ 6= C ⊆ CR. In order to show
⋃

C ∈ CR, the key-point is to show that if t ∈ N
is such that (t)R ⊆

⋃

C then t ∈
⋃

C. If (t)R = ∅ then t ∈ C for all C ∈ C and we are
done. Otherwise, we have t ∈ SNR since (t)R ⊆

⋃

C ⊆ SNR. Let u be a strong principal
reduct of t. There is C ∈ C such that u ∈ C, and since t .V u and C is downward-closed
w.r.t. .V , we have t ∈ C, hence t ∈

⋃

C.

This result deserves a few remarks. First, by Thm. 4.5.14, we always have CRRE ⊆ OV . Hence,
Thm. 6.3.4 says that CRRE is stable by union if and only if OV ⊆ CRRE .

The second and more important point is that Thm 6.3.4 is gives an interesting information on
the structure of Girard’s reducibility candidates. It says that Girard’s reducibility candidates
are stable by union exactly when they are exactly the non-empty subsets of SNR which are
downward-closed w.r.t. .V . This gives a nice ”straight” structure to candidates, which is very
simple compared to that appearing in their definition. Of course, this makes sense only if there
are non-trivial rewrite relations for which this holds.

We now show that it is actually the case for the pure λ-calculus, the λ-calculus with products
and the combination of λ-calculus with orthogonal constructor rewriting.

Pure lambda-calculus. We show that for the pure λ-calculus, reducibility candidates CRβ are
stable by union. This property has also been shown by M. Tatsuta2. Recall that in Ex. 4.2.3,
we have defined CRβ as the set of reducibility candidates for →β in the elimination contexts

E[ ] ∈ E⇒ ::= [ ] | E[ ] t .

Moreover, recall that the neutral terms for →β in E⇒ are exactly the terms of the form

E[x] or E[(λx.t)u] with E[ ] ∈ E⇒ .

By Thm. 6.3.4, the stability by union of CRβ is equivalent to the strong principal reduct property,
which holds in the case of the pure λ-calculus thanks to non-interaction (Lem. 3.2.7) and weak
standardization (Lem. 3.2.8). This means that the stability by union of CRβ relies on the
same properties as those used in Sect. 3.2 to show that saturated sets define an adequate type
interpretation. We further discuss this point in Sect. 7.2.

The strong principal reduct property follows from the fact that weak-head β-reduction gives
strong principal reducts. We do not give the proof here, since it is subsumed by that of the
λ-calculus with products (Prop. 6.3.11 below).

Proposition 6.3.5 For all E[ ] ∈ E⇒ we have E[(λx.t)u] ⊑V E[t[u/x]].

Lemma 6.3.6 (Strong Principal Reduct Property) In the pure λ-calculus, every reducible
strongly normalizable neutral term t has a strong principal reduct.

Proof. Let t ∈ Nβ ∩ SNβ be reducible. There are two cases.

t = E[x] with E[ ] ∈ E⇒ ∩ SNβ. We get t ∈ HNβ by Prop. 4.4.4. Hence V(t) = ∅ and every
u ∈ (t)β is a strong principal reduct of t.

t = E[(λx.t1)t2]. By Prop. 6.3.5, and using that E[(λx.t1)t2], E[t1[t2/x]] ∈ SNβ.

We thus obtain the stability by union of CRβ.

2Private communication.
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Corollary 6.3.7 CRβ is stable by union.

By Prop. 6.3.5, weak-head β-reduction gives strong principal reducts. It is interesting to note
that the converse is false: as shown in the following example, there are neutral terms t with
V(t) 6= ∅ that have strong principal reducts which are not weak-head reducts. The idea of this
example comes from the notions of prime redex and of canonical form of [Reg94, DHR96].

Example 6.3.8 Consider a strongly normalizing neutral term t of the form

(λy1. (λy2. λx.v)u2)u1 where y1, y2 /∈ v .

All the values of t are reducts of λx.v. Of course, we can obtain λx.v from t by first contracting
the head-redex of t:

(λy1. (λy2. λx.v)u2)u1 7→β (λy2. λx.v)u2 7→β λx.v .

We can also obtain it by first contracting (λy2.λx.v)u2, which is not the weak-head redex of t:

(λy1. (λy2. λx.v)u2)u1 →β (λy1. λx.v)u1 7→β λx.v .

Hence, (λy1.λx.v)u1 is a strong principal reduct of t but it is not a weak-head reduct of t.

Lambda-calculus with products. We now turn to the λ-calculus with products. Recall that
in Ex. 4.2.3, we have defined CRβπ as the set of reducibility candidates for →βπ in elimination
contexts

E[ ] ∈ E⇒× ::= [ ] | E[ ] t | π1 E[ ] | π2 E[ ] .

As noted in Sect. 4.1, there are neutral term with a ”bad” shape, such as π1 λx.t (this term is
even hereditary neutral if t ∈ SNβπ). Therefore, in contrast with the pure λ-calculus, there are
neutral terms which are not of the form E[t] with t either a variable or a redex. Fortunately,
these terms are harmless since they are hereditary neutral when strongly normalizing. A similar
property is used in [Tat07], although stated differently. In order to show this, we explicitly
work with weak-head βπ-reduction (see Rem. 3.2.3). Weak-head redexes are called key redexes
in [Luo90].

Definition 6.3.9 (Weak-Head βπ-Reduction) The relation→wh of weak-head βπ-reduction
is defined as

E[t]→wh E[u] if and only if t 7→βπ u .

We denote by HNFβπ the set of terms which are in weak-head βπ-normal form.

Note that a weak-head βπ-reducible term is necessarily neutral. Moreover, neutral terms with
a ”bad” shape such that π1 λx.t are in weak-head βπ-normal form.

As with the pure λ-calculus, the strong principal reduct property is split in two cases, distin-
guishing hereditary neutral terms from the neutral terms which have at least one value. The
first step toward the strong principal reduct property is to show that a neutral term which
has at least one value has a weak-head βπ-redex. In other words, strongly normalizing neutral
terms in weak-head βπ-normal form are hereditary neutral. This is a direct consequence of the
fact that the set HNFβπ ∩Nβπ is stable by βπ-reduction. In order to show this property, it is
convenient to work with atomic elimination contexts ǫ[ ] and atomic introduction contexts ι[ ]

defined as follows:

ǫ[ ] ::= [ ] t | πi [ ] ι[ ] ::= λx.[ ] | 〈[ ], t〉 | 〈t, [ ]〉 .

It is clear that all values are of the form ι[t] and that all βπ-redexes are of the form ǫ[ι[t]]. We
write ǫ[ ] ⊥ ι[ ] when ǫ[ι[x]] is a βπ-redex for all x ∈ X .
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Proposition 6.3.10 If t ∈ HNFβπ ∩Nβπ and t→βπ t ′ then t ′ ∈ HNFβπ ∩Nβπ.

Proof. By induction on t. The case t ∈ X is trivial. Assume t = ǫ[t1] and let t →βπ t ′.
Since t ∈ HNFβπ, we have t ′ = ǫ ′[t ′1] with (t1, ǫ[ ]) →βπ (t ′1, ǫ

′[ ]), hence t ′ ∈ Nβπ. If
t1 ∈ Nβπ, then t1 ∈ Nβπ∩HNFβπ and by induction hypothesis t ′1 ∈ Nβπ∩HNFβπ. It follows
that t ′ = ǫ ′[t ′1] ∈ HNFβπ. Otherwise, t1 = ι[t2] with ǫ[ ] 6⊥ ι[ ]. Hence, t ′1 = ι ′[t ′2] with
(t2, ι[ ])→βπ (t ′2, ι

′[ ]), and ǫ ′[ ] 6⊥ ι ′[ ]. Hence t ′ = ǫ ′[ι ′[t ′2]] ∈ HNFβπ.

We now show that weak-head βπ-reduction gives strong principal reducts. This subsumes
Prop. 6.3.5.

Proposition 6.3.11 If t→wh u then t ⊑V u.

Proof. We show that for all n ∈ N, for all E[ ] ∈ E⇒ , all t, u ∈ Λ(Σ) such that t 7→βπ u and
all v ∈ V,

E[t]→n
βπ v implies E[u]→∗

βπ v .

Note that we must have n ≥ 1 since E[t] is neutral. We reason by induction on n.

Base case (n = 1). In this case, we have E[t] →βπ v. If v 6= E[u], then by non-interaction
(properties (11), (12) and (14)) and weak standardization (properties (15) and (16)),
there are t ′, u ′ such that v = E ′[t ′] with (E[ ], t) →βπ (E ′[ ], t ′) and t ′ 7→βπ u ′ ←∗

βπ u,
hence v is neutral, which yields a contradiction. It follows that v = E[u] and we are done.

Induction case. Assume that E[t] →βπ w →n
βπ v. If w 6= E[u], by non-interaction and weak-

standardization, there are t ′, u ′ such that w = E ′[t ′] with (E[ ], t) →βπ (E ′[ ], t ′) and
t ′ 7→βπ u ′ ←∗

βπ u. In this case, by induction hypothesis on n we get E ′[u ′]→∗
βπ v, hence

E[u]→∗
βπ v.

The strong principal reduct property is shown similarly as for the pure λ-calculus (Lem. 6.3.6).
We then deduce the stability by union of CRβπ using Thm. 6.3.4.

Lemma 6.3.12 (Strong Principal Reduct Property) In the λ-calculus with products, every
reducible strongly normalizable neutral term t has a strong principal reduct.

Proof. Let t ∈ Nβπ ∩ SNβπ be reducible. If t is hereditary neutral, then V(t) = ∅, hence
every u ∈ (t)βπ is a strong principal reduct of t. Otherwise, by Prop. 6.3.10 we know that t

has weak-head βπ-reduct u and we have t .V u by Prop. 6.3.11.

Corollary 6.3.13 CRβπ is stable by union.

Orthogonal constructor rewriting. We finish this section by discussing the case of construc-
tor rewriting. Recall that given a rewrite system R with constructors in C, the reducibility
candidates CRβRC have been defined in Ex. 4.2.3.

We have seen that weak standardization allows to prove the existence of strong principal
reducts for the pure λ-calculus and for the λ-calculus with products. On the other hand, as seen
in Ex. 6.3.2 and Ex. 3.5.1, there are confluent rewrite systems which lack weak standardization.
This prevents both reducibility candidates from being stable by union and saturated sets from
being uniformly defined.

We are looking for a property similar to weak standardization which implies the existence of
strong principal reducts. Weak standardization is a particular case of standardization, which
has been shown for orthogonal first-order rewriting in [HL91], has been generalized to first-order
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rewriting in [Bou85] and has been extensively explored and generalized to abstract rewriting
in [Mel05]. In our framework, it implies that starting from a neutral term, there are possibly
different classes of head redexes, each of them leading to possibly disjoint sets of values.

However, this is too weak to get the strong principal reduct property, because it asks for a
canonical way of producing values: even if there can be different principal reducts of a given
term, they must all have exactly the same values. Hence, we need that all values of a neutral
term can be produced by contracting the same head redex. As seen above, this is the case of the
λ-calculus with products: if a neutral term has at least one value, then it has a unique (weak)
head redex, and any value can be obtained in a derivation starting with the contraction of this
redex. Therefore, it is natural to seek for a class of rewrite systems on which standardization
implies the existence of strong principal reducts. This is the case of orthogonal constructor
rewriting. Recall from Def. 2.1.3 that a rewrite system is orthogonal when it is left-linear and
has no critical pair. For instance, this is the case of the rewrite system of Ex. 2.1.4.

In contrast with the λ-calculus with products, standardization alone is not exactly what we
need to get strong principal reducts. This comes from the fact that orthogonality does not imply
sequentiality [HL91]: even if any derivation from a neutral term t to a value can be reorganized
in a derivation starting by a head redex, this reorganization may not be directly readable
from the structure of that term. Thus, we need a convenient characterization of head redexes.
To this end, we use the notion of external redex, developed in the framework of Conditional
Combinatory Expression Reduction Systems (CCERS) [KOvO01, GKK05]. Intuitively, a redex
is external in a term if its descendants occur under no redex argument in any derivation starting
from this term. We can show that contracting an external redex gives a strong principal reduct.
Moreover, it has been shown in [KOvO01] that orthogonal CCERS have external redexes. We
then obtain the strong principal reduct property for the λ-calculus combined with orthogonal
constructor rewriting since it is an orthogonal CCERS.

The proof that the λ-calculus combined with orthogonal constructor rewriting has strong
principal reducts leads us outside of the technical scope of this paper. It has been published
in [Rib08].

Theorem 6.3.14 ([Rib08]) If R is an orthogonal rewrite system with constructors in C, then
CRβRC is stable by union.

6.4 Closure by Union of Biorthogonals

We now look at the application of Prop. 6.1.3 to biorthogonals. We begin by considering the
general case of a closure operator defined by orthogonality, in the sense of Def. 5.1.4. We then
apply these ideas to biorthogonals for reducibility, in the sense of Def. 5.2.1. The content of
this section was briefly sketched in [Rib07c].

The general case. Consider two sets A and Π and a binary relation ⊥⊥ ⊆ A× Π. Recall that
by Prop. 5.1.3, ( )⊥⊥⊥⊥ is a closure operator. By Lem. 2.2.6, this implies that biorthogonals are
stable by intersections. In particular,

(A ∩ B)⊥⊥⊥⊥ = A⊥⊥⊥⊥ ∩ B⊥⊥⊥⊥ = A ∩ B for all A,B ∈ P(A)⊥⊥⊥⊥ .

However, biorthogonality does not behave that well with union.

Proposition 6.4.1 For all A,B ∈ P(A) (resp. P(Π)), we have

A⊥⊥ ∩ B⊥⊥ = (A ∪ B)⊥⊥ , (30)

A⊥⊥ ∪ B⊥⊥ ⊆ (A ∩ B)⊥⊥ . (31)
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Proof. We begin by (30). First, since A,B ⊆ A ∪ B, we have (A ∪ B)⊥⊥ ⊆ A⊥⊥, B⊥⊥ thanks to
property (27), hence (A ∪ B)⊥⊥ ⊆ A⊥⊥ ∩ B⊥⊥. Conversely, since A⊥⊥ ∩ B⊥⊥ ⊆ A⊥⊥, B⊥⊥, by two
applications of Prop. 5.1.2 we obtain A,B ⊆ (A⊥⊥ ∩ B⊥⊥)⊥⊥, hence A ∪ B ⊆ (A⊥⊥ ∩ B⊥⊥)⊥⊥ and
(A⊥⊥ ∩ B⊥⊥) ⊆ (A ∪ B)⊥⊥ by Prop. 5.1.2 again.

Concerning (31), since A ∩ B ⊆ A,B, we have A⊥⊥, B⊥⊥ ⊆ (A ∩ B)⊥⊥ by property (27), hence
A⊥⊥ ∪ B⊥⊥ ⊆ (A ∩ B)⊥⊥.

Note that the converse of (31) is not true in general: if π is orthogonal to every element of
A ∩ B, in general there is no reason for π to be orthogonal to every element of A or to every
element of B. It follows from Prop. 6.4.1 that

A⊥⊥⊥⊥ ∪ B⊥⊥⊥⊥ ⊆ (A⊥⊥ ∩ B⊥⊥)⊥⊥ = (A ∪ B)⊥⊥⊥⊥ . (32)

But in general A⊥⊥⊥⊥ ∪ B⊥⊥⊥⊥ 6= (A ∪ B)⊥⊥⊥⊥. In words, biorthogonals are in general not stable by
union.

Remark 6.4.2 The biorthogonal closure of union is quite informative: if a ∈ (A∪B)⊥⊥⊥⊥ then
a⊥⊥π for all π ∈ A⊥⊥ ∩B⊥⊥. Hence, through not stable by union, biorthogonals can nevertheless
be interesting in presence of union types [Vou04, VM04, Rib07c].

Moreover, given biorthogonals A and B, there is a nice symmetry between

(A ∪ B)⊥⊥⊥⊥ = (A⊥⊥ ∩ B⊥⊥)⊥⊥ and (A ∩ B)⊥⊥⊥⊥ = (A⊥⊥ ∪ B⊥⊥)⊥⊥

(the latter is obtained by applying (30) to (A ∩ B)⊥⊥⊥⊥ = A⊥⊥⊥⊥ ∩ B⊥⊥⊥⊥ = A ∩ B).

Similarly as with reducibility candidates, the closure operator ( )⊥⊥⊥⊥ gives a specialization
preorder .⊥⊥⊥⊥ such that according to Prop. 6.1.3, the closure by union of P⋆(A)⊥⊥⊥⊥ is the set
of all non-empty A ⊆ A which are downward-closed w.r.t. .⊥⊥⊥⊥. Note that we have

a .⊥⊥⊥⊥ b if and only if a⊥⊥⊥⊥ ⊆ b⊥⊥⊥⊥ .

However, we prefer to reason with an other preorder, which gives better intuitions when elements
of A are seen as ”programs” and the elements of Π are seen as ”contexts” (i.e. ”co-programs”).

Definition 6.4.3 We define the relation .⊥⊥ ⊆ A×A by

a .⊥⊥ b if and only if a⊥⊥ ⊆ b⊥⊥ .

We thus have a .⊥⊥ b if and only if

∀π ∈ Π. a ⊥⊥ π =⇒ b ⊥⊥ π .

Seeing a⊥⊥π as a test of program a against context π, we have a .⊥⊥ b if and only if b succeeds
on all tests on which a succeeds.

The preorders .⊥⊥ and .⊥⊥⊥⊥ are exactly symmetric:

a .⊥⊥ b if and only if b .⊥⊥⊥⊥ a . (33)

This is a direct consequence of the two following properties of ( )⊥⊥, numbered respectively (27)
and (28) in Sect. 5, page 37:

(

X ⊆ Y =⇒ Y⊥⊥ ⊆ X⊥⊥
)

and X⊥⊥ = X⊥⊥⊥⊥⊥⊥ .

It follows from Prop. 6.1.3 and (33) that the closure by union of P⋆(A)⊥⊥⊥⊥ is the set of all
non-empty A ⊆ A which are upward-closed w.r.t. .⊥⊥.

Definition 6.4.4 Let O⊥⊥ be the set of non-empty A ⊆ A which are upward-closed w.r.t. .⊥⊥.
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Biorthogonality for reducibility. We now look at how these notions apply to reducibility. Let
→R be a rewrite relation and E be a set of elimination contexts for→R. Recall that in Def. 5.2.1
we have defined ⊥⊥ ⊆ Λ(Σ) × E as

t ⊥⊥ E[ ] if and only if E[t] ∈ SNR .

We write .SN for .⊥⊥ and OSN for O⊥⊥.
Recall that by Lem. 5.2.2 we have P⋆(SNR)⊥⊥⊥⊥ ⊆ CRRE . Moreover, note that t→R u implies

t .SN u. The question, now, is how to ensure OSN ⊆ CRRE . The reasoning is analogous to
that of Sect. 6.3 with reducibility candidates. Given D ∈ OSN , it is clear that D is stable by
reduction since

∀t, u. t→R u =⇒ t .SN u .

The case of (CR1) is less clear. Consider a strongly-normalizing reducible neutral term t and
assume that D is the set D(t) ∈ OSN defined as

D(t) =def {v | ∃u ∈ (t)R. u .SN v} .

In order to have t ∈ D(t), there must be a term u ∈ (t)R such that u .SN t. We say that u is
a principal reduct of t.

Definition 6.4.5 (Principal Reduct) Given a reducible term t ∈ NRE∩SNR, a term u ∈ (t)R

such that u .SN t is a principal reduct of t.
We say that →R satisfies the principal reduct property or that →R has principal reducts when

every reducible strongly normalizing neutral term has a principal reduct.

As for reducibility candidates, with which the existence of strong principal reducts characterizes
that OV ⊆ CRRE , the existence of principal reducts characterizes that OSN ⊆ CRRE .

Theorem 6.4.6 The following are equivalent:

(i) OSN ⊆ CRRE ,

(ii) every reducible term t ∈ NRE ∩ SNR has a principal reduct.

Proof.

(i) =⇒ (ii). Let t ∈ NRE ∩ SNR be reducible. By assumption, the set D(t) defined above is a
reducibility candidate, hence t ∈ D(t). It follows that there is u ∈ (t)R such that u.SN t.

(ii) =⇒ (i). Consider C ∈ OSN and let us check that it is a reducibility candidate.

— (CR0). If t ∈ C and t→R u then u ∈ SNR and t .SN u hence u ∈ C.

— (CR1). Let t ∈ NRE such that (t)R ⊆ C. Note that t ∈ SNR since C ⊆ SNR.

If (t)R = ∅ then t ∈ HNRE , hence t ∈ C by Prop. 6.4.12. Otherwise, by assumption
there is some u ∈ (t)R such that u .SN t, hence t ∈ C because (t)R ⊆ C.

Note that there exist rewrite relations →R such that there are reducible t ∈ SNR ∩ NRE

which have no principal reduct. In fact, this was exactly the problem underlined in Ex. 3.5.1
concerning the definition of saturated sets for rewriting. We recall it here.
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Example 6.4.7 Consider the confluent system

p 7→R λx. λy. λz. g(x y) p 7→R λx. λy. λz. g(x z) g(x) 7→R a

We have p ∈ SNβR, but there are untyped elimination contexts which separate the terms

λx. λy. λz. g(x y) and λx. λy. λz. g(x z)

with respect to strong normalization. For instance, we have

(λx. λy. λz. g(x y)) δ a δ ∈ SNβR (λx. λy. λz. g(x z)) δ a δ /∈ SNβR

(λx. λy. λz. g(x y)) δ δ a /∈ SNβR (λx. λy. λz. g(x z)) δ δ a ∈ SNβR

where δ =def λx.x x, hence δ δ /∈ SNβ. This means that the terms

λx. λy. λz. g(x y) and λx. λy. λz. g(x z)

are not comparable w.r.t. .SN , hence that p has no principal reduct.

The principal reduct property is very close to the strong principal reduct property defined
in Def. 6.3.3. The names come from the fact that every strong principal reduct is a principal
reduct. This follows from the next proposition.

Proposition 6.4.8 For all t, u ∈ SNR, we have

t .V u =⇒ u .SN t .

Proof. Let u ∈ SNR. We show that for all t .V u and all E[ ] ∈ u⊥⊥, we have E[t] ∈ SNR.
We reason by induction on pairs (E[ ], t) ordered by the product extension of →R.

Let v such that E[t]→R v. There are two cases.

— If t ∈ V, then u→∗
R t since t .V u. Hence E[u]→∗

R v and v ∈ SNR.

— Otherwise, we have v = E ′[t ′] with (E[ ], t) →R (E ′[ ], t ′). If E[ ] →R E ′[ ], we have
v = E ′[t] ∈ SNR by induction hypothesis, since E[u] →R E ′[u] ∈ SNR. Otherwise, we
have v = E[t ′] with t →R t ′. Since t ′ .V t, we get t ′ .V u, hence v = E[t ′] ∈ SNR by
induction hypothesis.

The converse of the above property is not true in general, even for the pure λ-calculus. This
implies that in general, we do not have CRRE ⊆ OSN .

Example 6.4.9

— We have [λx.y]~t ∈ SNβ for all [ ]~t ∈ SNβ. Hence λx.x.SN λx.y, whereas λx.x and λx.y

are not comparable w.r.t. .V .

It follows that λx.y /∈ CR(λx.x), hence that CR(λx.x) is not upward-closed w.r.t. .SN .
This implies that CRβ 6⊆ OSN .

— There are rewrite system which have principal reducts but not strong principal reducts.
This is the case of the rewrite system of Ex. 6.3.2:

p 7→R λx.c1 p 7→R λx.c2 ci 7→R d .

The terms λx.c1 and λx.c2 are not comparable w.r.t. .V but they are equivalent w.r.t.
≃SN . Hence p has principal reducts and OSN ⊆ CRβπR.
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Since Prop. 6.4.8 implies that every strong principal reduct is a principal reduct, by Thm. 6.3.4
and Thm. 6.4.6, we get that OSN ⊆ CRRE whenever CRRE is stable by union.

Corollary 6.4.10 If CRRE is stable by union then OSN ⊆ CRRE .

Remark 6.4.11 One can wonder whether the equivalence relations

≃N =def .N ∩ &N and ≃SN =def .SN ∩ &SN

issued from the preorders .V and .SN could be extended to coherent congruency on Λ(Σ).
This is not possible for pure λ-calculus. Indeed, ≃V identifies all hereditary neutral terms,

including those which are not βη-convertible. (by Prop. 6.4.8, ≃SN identifies more than ≃V).
Therefore, by Böhm’s theorem [Böh68] (see also [Kri90]), these congruences identify all pure
λ-terms.

The reducibility family OSN . We have given in Thm. 6.4.6 a necessary and sufficient condition
to get OSN ⊆ CR, and we have shown that this condition is met when reducibility candidates
are stable by union. On the other hand, we have shown in Sect. 6.3 that it is actually the case
for the combination of λ-calculus with orthogonal constructor rewriting. Hence, there are cases
where OSN ⊆ CR. It is therefore tempting to use OV as a reducibility family. In this paragraph,
we show that this is possible, under some conditions on elimination contexts.

First, it is clear that SNR ∈ OSN . Moreover, we have HNRE ⊆ C for all C ∈ OSN .

Proposition 6.4.12 If C ∈ OSN then HNRE ⊆ C.

Proof. If t ∈ HNRE then by Prop. 4.4.4 we have E[t] ∈ HNRE ⊆ SNR for all E[ ] ∈ E ∩ SNR.
It follows that u .SN t for all u ∈ SNR, hence that t ∈ C since C is not empty.

Furthermore, if E contains and is stable by pre-composition with the elimination contexts E⇒×,
then the function space and the binary product constructors preserve OSN .

This relies on the following simple property of .SN . Let E[ ] ∈ E such that for all F[ ] ∈ E ,
we have F[E[ ]] ∈ E . Then,

t .SN u implies E[t] .SN E[u] . (34)

Lemma 6.4.13 Let →R be a rewrite relation on Λ(Σ).

(i) Let E be a set of elimination contexts for →R such that for all t ∈ Λ(Σ), we have [ ] t ∈ E
and F[[ ] t] ∈ E for all F[ ] ∈ E. Then A⇒ B ∈ OSN for all A,B ∈ OSN .

(ii) Let E be a set of elimination contexts for →R such that for all i ∈ {1, 2}, we have πi [ ] ∈ E
and F[πi [ ]] ∈ E for all F[ ] ∈ E. Then A × B ∈ OSN for all A,B ∈ OSN .

Proof. We only detail (i) because (ii) is similar and simpler.
To get A⇒ B ⊆ SNR, we reason as in Prop. 3.2.10, using that HNRE ⊆ A by Prop 6.4.12.
Moreover, A ⇒ B is upward-closed w.r.t. .SN : since the assumptions allow to apply (34),

we get that t .SN u implies tv .SN uv for all v ∈ Λ(Σ).
Finally, A⇒ B is not empty: given t ∈ HNRE , for all u ∈ A ⊆ SNR we have tu ∈ HNRE by

Prop. 4.4.4, hence tu ∈ B by Prop. 6.4.12.
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The hypothesis of Lem. 6.4.13 are satisfied by the elimination contexts E⇒×. Moreover, the sets
C ∈ OSN satisfy clauses (SAT1), (SAT2β) and (SAT2πi

). Indeed, strongly normalizing terms of
the form E[x] are hereditary neutral, and we have

t1[t2/x] .SN (λx.t1)t2 and ti .SN πi 〈t1, t2〉 for all t1, t2 ∈ SNβπ

by reasoning as in Lem. 3.3.2, using weak standardization and non-interaction. Hence, reasoning
as in the end of Sect. 4.4, we get that OSN is a reducibility family which leads to an adequate
type interpretation for the λ-calculus with products.

7 Back to Reducibility Candidates and Saturated Sets

This section is devoted to the application of the results on stability by union to the exploration
of reducibility candidates and saturated sets. We begin by giving a more precise result on how
the preorder .V characterizes the membership of a term to a reducibility candidate. We then
compare reducibility candidates and the saturated sets which are stable by reduction. This
comparison was first presented in [Rib07b] and strengthen known results [Gal89, Luo90].

This leads us to general notion of saturated sets SATRE which only applies when →R has
strong principal reducts. We get a general correspondence between CRRE and SATRE , stating
that CRRE is exactly the set SAT∗

RE of S ∈ SATRE which are stable by reduction. However, even
in the case of the pure λ-calculus, the instance SATβE⇒

of SATRE does not correspond to the
usual saturated sets SATβ. A precise correspondence may need a notion such that of external
redexes [KOvO01], but this seems too syntactical to be included in our framework yet.

7.1 Reducibility Candidates

In this section, we strengthen Thm. 4.5.14 using the material developed to compare the stability
by union of reducibility candidates and the reducibility family OSN , Recall that Thm. 4.5.14
states that reducibility candidates are downward-closed w.r.t. .V . This means that for all
C ∈ CRRE and all t, u ∈ Λ(Σ),

(t .V u and u ∈ C) implies t ∈ C .

In fact, the observational preorder .V captures information on reducibility in a quite stronger
sense. First, Prop. 6.4.8 can be rephrased as

(t .V u and E[u] ∈ SNR) implies E[t] ∈ SNR . (35)

On the other hand, Prop. 4.5.11 says that

t ⊑V u implies E[t] ⊑V E[u] (36)

(recall that .V is the restriction of ⊑V to SNR × SNR). Combining (35) with (36), we get

(t .V u and E[u] ∈ SNR) implies E[t] .V E[u] . (37)

Using the downward-closure of CRRE (Thm. 4.5.14), we arrive at the following property, which
can be seen as merging of Thm. 4.5.14 and Lem. 4.2.5.

Corollary 7.1.1 For all C ∈ CRRE ,

(t .V u and E[u] ∈ C) implies E[t] ∈ C .
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7.2 A Comparison of Reducibility Candidates and Saturated Sets

In this section, we compare Girard’s reducibility candidates and Tait’s saturated sets using the
material developed in Sect. 6. We show that the strong principal reduct property allows to
give a precise correspondence between CRβ and the saturated sets S ∈ SATβ which are stable
by reduction. For the λ-calculus with products, we show that we need saturated sets different
from SATβπ to get the same correspondence.

Pure lambda-calculus. The stability by union of CRβ relies on a strong connection between
CRβ and the set SATβ of β-saturated sets. Recall that these saturated sets were defined Def. 3.2.6
as the set of all S ∈ SNβ such that

(SAT1) if E[ ] ∈ SNβ ∩ E⇒ and x ∈ X then E[x] ∈ S,

(SAT2β) if E[t[u/x]] ∈ S and u ∈ SNβ then E[(λx.t)u].

In Lem. 4.2.6, we have shown that every C ∈ CRβ satisfies the clauses (SAT1) and (SAT2β),
hence that C ∈ SATβ. It is interesting to note that the proof for (SAT2β) hides the property
shown in Prop. 6.3.5. In order to see why, given C ∈ CRβ, let us show that C satisfies (SAT2β).
Therefore, let E[ ] ∈ E⇒ ∩ SNβ and t, u ∈ SNβ. We have to show that

E[t[u/x]] ∈ C implies E[(λx.t)u] ∈ C .

According to Thm. 4.5.14, taking

C =def CR(E[t[u/x]]) ,

this amount to showing that E[(λx.t)u] ∈ SNβ and

E[(λx.t)u] .V E[t[u/x]] .

In words, E[t[u/x]] is a strong principal reduct of E[(λx.t)u].
The stability by union of CRβ can be rephrased as a precise correspondence between CRβ and

a subset of the saturated sets SATβ: reducibility candidates are exactly the saturated sets which
are stable by reduction. Recall that stability by reduction is not satisfied by all S ∈ SATβ, as
shown in Ex. 3.5.3.

Definition 7.2.1 Let SAT∗
β be the set of all S ∈ SATβ such that

(SAT0) if t ∈ S and t→β u then u ∈ S.

Lemma 7.2.2 CRβ = SAT∗
β.

Proof. If C ∈ CRβ then C satisfies (SAT0) by (CR0), and the clauses (SAT1), (SAT2β) follow
from Lem. 4.2.6.

Conversely, if S ∈ SAT∗
β then S satisfies (CR0). Consider the case of (CR1). If t is a neutral

term such that (t)β ⊆ S, then we have t ∈ SNβ. Moreover, either t = E[x] and t ∈ S by (SAT1),
or t = E[(λx.u)v] and we get t ∈ S by (SAT2β) since E[u[v/x]] ∈ S.

This gives a second proof that CRβ is stable by union: since the clause (SAT0) is preserved by
union, we get the stability by union of SAT∗

β by Thm. 6.2.1, hence the stability by union of CRβ

by Lem. 7.2.2.
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Lambda-calculus with products. We now turn to the case of λ-calculus with products. In
contrast with the pure λ-calculus, the closure by reduction of SATβπ is not CRβπ. This is due
to the bad shape of some neutral terms in Eβπ, already noticed in Sect. 4.1 and Sect. 6.3: since
HNβπ contains terms not of the form E[x] with E[ ] ∈ E⇒×, HNβπ is not the least element
of SATβπ. Therefore, we use a modified notion saturated sets SATm

βπ in which the usual clause
(SAT1) is subsumed by requiring that HNβπ is the least element of SATm

βπ.

Definition 7.2.3 We let SATm
βπ be the set of all S ∈ SATβπ such that HNβπ ⊆ S and

(SAT0) if t ∈ S and t→βπ u then u ∈ S.

Note that SATm
βπ is not empty since it contains SNβπ. As for the stability by union of CRβπ in

Sect. 6.3, ”bad” neutral terms are dealt with thanks to Prop. 6.3.10.

Lemma 7.2.4 CRβπ = SATm
βπ.

Proof. If C ∈ CRβπ then C satisfies the clause (SAT0) by (CR0), and the clauses (SAT2β),(SAT2πi)

by Lem 4.2.6. Moreover, we have HNRE ⊆ C by Prop. 4.4.2.
Conversely, if S ∈ SATm

βπ then S satisfies (CR0). For (CR1), let t be a neutral term such
that (t)βπ ⊆ S. Note that t ∈ SNβπ. If t ∈ HNβπ then t ∈ S by definition. Otherwise,
by Prop 6.3.10, t is of the form E[u] where u is a βπ-redex and we conclude by (SAT2β) and
(SAT2πi).

7.3 Toward a General Notion of Saturated Sets

We have seen that proving the stability by union of CRβ amounts to showing that CRβ is the
set SAT∗

β of all S ∈ SATβ which are stable by reduction. This suggests a connection between the
stability by union reducibility candidates and conditions to get sound saturated sets.

In this section, we propose a general notion of saturated sets SATRE based on the strong
principal reduct property. As with reducibility candidates CRRE , these saturated sets only
depend on a rewrite relation→R and a set of elimination contexts E . In contrast with reducibility
candidates, they are applicable only when→R has the strong principal reduct property (that is,
strictly less often than the reducibility family OSN ). We show that in the case of the λ-calculus
with products, these saturated sets give an adequate type interpretation. Moreover, we show
that CRRE is exactly the set SAT∗

RE of all S ∈ SATRE which are stable by reduction. However,
even in the case of the pure λ-calculus, the instance SATβE⇒

of SATRE does not correspond to
the usual saturated sets SATβ (see Rem. 7.3.2).

Assume given a rewrite relation →R and a set of elimination contexts E such that →R has
strong principal reducts.

Definition 7.3.1 The set SATRE is the set of all S ⊆ SNR such that

(SAT1) HNRE ⊆ S,

(SAT2) for all t ∈ NRE ∩ SNR, if t→R u with t .V u and u ∈ S then t ∈ S.

In order to make no confusion with SATβ and SATβπ, defined respectively in Def. 3.2.6 and
Def. 3.3.1, we write SATβE⇒

and SATβπE⇒×
for the respective instantiations of SATRE to the

pure λ-calculus and the λ-calculus with products.
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Remark 7.3.2 For the pure λ-calculus, we do not have SATβ = SATβE⇒
: as shown in Ex.6.3.8,

a term t ∈ Nβ \ HNβ can have a strong principal u reduct which is not a weak-head reduct.
Hence t ∈ SATβE⇒

(u) while t /∈ SATβ(u).
To get a precise correspondence, it is possible that a syntactical notion such that of external

redexes [KOvO01] can be used instead of the strong principal reduct property. However, it is not
clear yet how this can fit in our framework, because this notion seems to need a precise syntactical
knowledge on rewrite relations, such as a nesting preorder between redexes [KOvO01, Mel05].

We now show that the function space ⇒ and the product space × preserve SATRE

under the same conditions as for CR in Lem. 4.4.5. The proof relies on property (37), shown in
Sect. 7.1: given t, u ∈ SNR and E[ ] ∈ E ,

(t .V u and E[u] ∈ SNR) implies E[t] .V E[u] .

Lemma 7.3.3

(i) If [ ] t ∈ E for all t ∈ Λ(Σ), then

A,B ∈ SATRE =⇒ A⇒ B ∈ SATRE .

(ii) If πi [ ] ∈ E for all i ∈ {1, 2}, then

A,B ∈ SATRE =⇒ A × B ∈ SATRE .

Proof. We only detail (i) because (ii) is similar and simpler. To get A⇒ B ⊆ SNR, we reason
as in Prop. 3.2.10, using that HNRE ⊆ A by (SAT1).

(SAT0) As for (CR0) in Prop. 4.4.5.

(SAT1) Given t ∈ HNRE , for all u ∈ A ⊆ SNR we have tu ∈ HNRE by Prop. 4.4.4, hence
tu ∈ B by Prop. 6.4.12.

(SAT2) Let t ∈ NRE ∩ SNR be reducible and let u ∈ (t)R such that t .V u and u ∈ A ⇒ B.
Given v ∈ A ⊆ SNR, we have uv ∈ B ⊆ SNR, hence tv .V uv by (37). We deduce that
tv ∈ B since tv→R uv.

The hypothesis of Lem. 7.3.3 are satisfied by the elimination contexts E⇒×. Moreover, since
the λ-calculus with products has strong principal reducts (Lem. 6.3.12), every S ∈ SATβπE⇒×

satisfies the clauses (SAT2β) and (SAT2πi). Hence, SATβπE⇒×
is a reducibility family which leads

to an adequate type interpretation for the λ-calculus with products.
Our last point is a that CRRE is the of all S ∈ SATRE which are stable by reduction.

Definition 7.3.4 Let SAT∗
RE be the set of all S ∈ SATRE such that

(SAT0) if t ∈ S and t→R u then u ∈ S.

Lemma 7.3.5 CRRE = SAT∗
RE .

Proof. Let C ∈ CRRE . The clause (SAT0) follows from (CR0) and (SAT1) follows from Prop. 4.4.2.
For (SAT2), given a reducible term t ∈ NRE ∩ SNR and a term u ∈ (t)R such that t .V u and
u ∈ C, we have t ∈ C by Thm. 4.5.14.

Conversely, let S ∈ SAT∗
RE . The clause (CR0) follows from (SAT0). For (CR1), let t be a neutral

term such that (t)R ⊆ S. If t ∈ HNRE , then t ∈ S by (SAT1). Otherwise, V(t) 6= ∅, hence t is
reducible since t is neutral. By assumption, t has a strong principal reduct u. We have u ∈ S

since (t)R ⊆ S and we conclude that t ∈ S by (SAT2).
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Hence, by Lem. 7.2.2, we get that SAT∗
βE⇒

= SAT∗
β and by Lem. 7.2.4 that SAT∗

βπE⇒×
= SATm

βπ.
However, as seen in Ex. 6.3.8, we do not have SATβE⇒

= SATβ.
The important point is that thanks to the stability by union of reducibility candidates for

orthogonal constructor rewriting (Thm. 6.3.14), with the instance SATβRE⇒C
of SATRE we have a

reducibility family for a particular case of rewriting which has simple uniform closure properties
inspired from those of saturated sets.

8 Conclusion and Directions for Future Work

We have presented a notion of non-interaction which allows to define neutral terms and re-
ducibility candidates in a generic way. We have seen that this provides a convenient level of
abstraction to prove fundamental properties of reducibility candidates, to compare them with
biorthogonals, and to study their stability by union. Moreover, we have proposed a general
form of saturated sets based on these notions.

A direct extension of our general framework is to understand how to handle permutative
conversions (see [Mat05, Tat07] for recent works on the subject). The first interesting point
is to see how these notions of reduction behave w.r.t. to our notions of values. In particular,
it seems possible to add them after having defined the set of values, which is then preserved.
However, we do not know how to interpret this operation. Second, the more important point
is to have simple types interpretations for disjunctions. With permutative conversion, this
forces [Mat05, Tat07] to define saturated sets at hand, by putting in the closure conditions
exactly the terms with good shape. It would be interesting to understand how these closure
conditions can be defined more abstractly.

A general line of research is to understand reducibility more abstractly. We see two directions.
The first one concerns the connection of reducibility candidates with topological notions. Let
us give two examples.

— We associate the set Ft =def {C ∈ CRRE | t ∈ C} to each term t ∈ SNR. Since reducibility
candidates are stable by intersection, it is clear that Ft is a filter in the complete lattice
(CRRE ,⊆). It is completely coprime (i.e. CR(

⋃

C) ⊆ Ft implies C ∈ Ft for some C ∈ C)
when t is a value. Moreover, the stability by union of CRRE is equivalent to the fact that
Ft is completely coprime for all neutral term t ∈ SNR.

— In basic topology, the adherence of set a S is the set S of points a such that X∩ S 6= ∅ for
all open set X containing a. Note that S ⊆ S. Consider the topology Ω on SNR generated
from the basis of open sets (ext(u))u∈V , where ext(u) =def {t ∈ SNR | u ∈ V(t)}. Hence
t ∈ ext(v) for all v ∈ V(t).

Then, Lem. 4.5.7 implies that reducibility candidates are closed sets on SNR w.r.t. the
topology Ω, that is C = C for all C ∈ CRRE . Indeed, let t ∈ C. For all v ∈ V(t), the set
ext(v) is open by definition, hence there is u ∈ ext(v) ∩ C. Since v ∈ V(u), we get v ∈ C

by (CR0). It follows that V(t) ⊆ C, hence t ∈ C by Lem. 4.5.7.

Moreover, CRRE is the set of all non-empty closed set for the topology Ω exactly when it
is stable by union. Recall that by Thm. 6.3.4, CRRE is stable by union exactly when it is
the set of all C ⊆ SNR such that t ∈ C if and only if V(t) ⊆ C for all t ∈ SNR. Now, let
C = C be non empty, and let t, u such that t .V u and u ∈ C. For all V ⊆ V such that
t ∈

⋃

v∈V ext(v), we have u ∈
⋃

v∈V ext(v), hence (
⋃

v∈V ext(v)) ∩ C 6= ∅ and t ∈ C. We
deduce that C ∈ CRRE by Thm. 6.3.4.

Hence, we have a topological characterization of CRRE exactly when it is stable by union.
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A similar line of research, making connection with the notions of covers and sheaves, has been
taken in [Gal95]. These use of topological notions in reducibility deserve to be precisely studied
and compared. In particular, it is not clear how to relate the two examples above.

The second line is to understand abstractly the non-interaction property, in connection with
the standardization property and rewriting theory. This should help in particular to get a
pertinent abstract formulation of saturated sets. The difficulty is to find how to articulate stan-
dardization and interactions between terms and contexts in a general way. More precisely, the
important point is to understand how standardization can be formulated in a framework specif-
ically based on the duality of values/elimination contexts. A more general view of this duality
comes from the notion of polarities. At the computational level, the notion of computational
connective [Her08] can be an interesting framework to work on this question. Since the property
of stability by union of reducibility candidates makes the connection between standardization
and reducibility, it could be interesting to look at sufficient conditions on terms and evaluation
contexts such that standardization implies stability by union.

At the logical level, the connections between stability by union and classical logic deserve to be
clarified, in particular because stability by union can be used to interpret a form of intuitionistic
existential quantification.

Finally, one of the main question on reducibility is to understand how, as an untyped model of
typing, it can characterize logical properties of proofs. The difficulty here is that it is difficult, in
the framework of the λ-calculus, to characterize logical properties from computational properties
of untyped terms. For the fragment of logic without exponentials, Girard’s Ludics [Gir01] seems
to be a promising approach of this question on which it is appealing to test the ideas developed
in this paper.
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