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The Γ-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension

In this paper we generalize to arbitrary dimensions a one-dimensional equicoerciveness and Γ-convergence result for a second derivative perturbation of Perona-Malik type functionals. Our proof relies on a new density result in the space of special functions of bounded variation with vanishing diffuse gradient part. This provides a direction of investigation to derive approximation for functionals with discontinuities penalized with a "cohesive" energy, that is, whose cost depends on the actual opening of the discontinuity.

Introduction

We investigate in this paper a singular pertubation problem whose limit is defined on piecewise constant functions, and corresponds essentially to a subadditive penalization of the discontinuity. More precisely, we consider for Ω a bounded open subset of R n with Lipschitz boundary, and ν ∈ (0, 1], the functional F ν : L 2 (Ω) → [0, +∞] defined by

F ν (u) :=        1 2 Ω ν 3 |∇ 2 u| 2 + 1 νφ(1/ν) φ(|∇u|) dx if u ∈ H 2 (Ω),
+∞ elsewhere in L 2 (Ω).

(1.1)

Here ∇ 2 u is the hessian of u and, for a symmetric real (n × n)-matrix M , we set |M | := max{ M ξ, ξ : ξ ∈ R n , |ξ| ≤ 1}. Moreover the function φ : R → [0, +∞) is continuous, even, nondecreasing, typically nonconvex and nonconcave with φ -1 (0) = {0}, and has sublinear growth at infinity, in the sense that

∃ a ∈ [0, 1) such that lim p→+∞ φ(λp) φ(p) = λ a , λ > 0. (1.2)
In this paper we prove that the sequence (F ν ) is equicoercive and Γ-converges [START_REF] Maso | An Introduction to Γ-convergence[END_REF][START_REF] Braides | Γ-convergence for beginners[END_REF] as ν → 0 + to the functional F : L 2 (Ω) → [0, +∞] defined as follows:

F(u) :=        σ a Ju |u + -u -| 2+a 4-a dH n-1 if u ∈ X(Ω) ∩ L 2 (Ω),
+∞ elsewhere in L 2 (Ω), (1.3) where X(Ω) consists of special functions of bounded variation in Ω having gradient with no absolutely continuous part (see Section 2) and σ a > 0 is a constant depending only on a.

Our results generalize an equicoerciveness and Γ-convergence result obtained in [START_REF] Bellettini | The Γ-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type[END_REF] in the one-dimensional case. The interest in these results are twofold. A first important application of such variational problems is in the numerical analysis of fracture mechanics, and in particular the variational approach to fracture growth popularized in the 90's by G. Francfort and J. J. Marigo, built upon the Mumford-Shah functional of image processing [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variational problems[END_REF]. The original model allows to approach the so-called "Griffith" model, where the cost for opening a crack is proportional to its length or area surface. Its success for predicting realistic fractures is impressive [START_REF] Bourdin | The variational approach to fracture[END_REF], however its physical relevance is still a matter of discussion. More physical models (known as "cohesive" and initially introduced by Barenblatt), consider that for a fracture with a small opening, the cost should rather be proportional (through some non-linear correspondence) to the size of the discontinuity. Mathematically, the study of such models is more tricky. Also, finding reasonable approximations of such energies is a difficult problem (still only partially solved, if one really wants to consider linearized or non-linear elasticity energies). Some approaches need to consider a small non-cohesive term [START_REF] Ambrosio | A variational model for plastic slip and its regularization via Gamma-convergence[END_REF][START_REF] Maso | Iurlano: Fracture models as Γ-limits of damage models[END_REF]. A more physical term (with slope one when the opening goes to zero) is obtained in [START_REF] Alicandro | Free-discontinuity problems via functionals involving the L 1 -norm of the gradient and their approximations[END_REF], which can approach quite general cohesive energies in the scalar setting (and is, to our knowledge, the best and most useful result in this direction so far). It is built as a variant of Ambrosio and Tortorelli's approximation of the Mumford-Shah functional [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF]. The variant in [START_REF] Gobbino | Finite-difference approximation of free-discontinuity problems[END_REF], built upon finitedifferences approximations, lies in between the previous results since it allows to approach a partially cohesive term with an infinite slope for infinitesimal openings. This latter result is close to the model that we present here, which is however built upon different ideas. Instead of introducing a phase-field [START_REF] Alicandro | Free-discontinuity problems via functionals involving the L 1 -norm of the gradient and their approximations[END_REF] or considering finite differences, we penalize the variations of the gradient by a higher order term. This is similar to the two-wells problem which has been studied in the celebrated paper [START_REF] Conti | A Γ-convergence result for the two-gradient theory of phase transitions[END_REF] of Conti, Fonseca, Leoni. Our energy could be considered as a special case, where one well is at 0 and the other at infinity, just as [START_REF] Bouchitté | Transitions de phases avec un potentiel dégénéré à l'infini, application à l'équilibre de petites gouttes[END_REF][START_REF] Oudet | A Modica-Mortola approximation for branched transport and applications[END_REF] are to the standard Modica-Mortola energy 1 . The second motivation is the relation of our result with the long-time behaviour of solutions to the Perona-Malik equation [START_REF] Perona | Scale space and edge detection using anisotropic diffusion[END_REF], obtained as the formal L 2 -gradient flow of the functional

PM(u) := 1 2 Ω log(1 + |∇u| 2 ) dx,
and corresponding to the choice

φ(x) = log(1 + |x| 2 ), x ∈ R n , (1.4) 
and a = 0 in (1.2). The Perona-Malik equation therefore reads as

u t = div ∇u 1 + |∇u| 2 , (1.5) 
and it is ill-posed2 , due to the nonconvexity of φ. In order to overcome the backward parabolic character of (1.4), various regularizations have been suggested in the literature (see [START_REF] Bellettini | The Γ-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type[END_REF] and references therein); in particular [START_REF] Giorgi | Congetture riguardanti alcuni problemi di evoluzione[END_REF] one can consider, for ε ∈ (0, 1], the functionals

PM ε (u) := 1 2 Ω ε 2 |∇ 2 u| 2 + log 1 + |∇u| 2 dx,
and take the corresponding gradient flow equations, which amounts to add to the equation (1.5) a fourth order term multiplied by ε 2 ; see also [START_REF] Slemrod | Dynamics of measure valued solutions to a backward-forward heat equation[END_REF]. On the basis of the numerical experiments [START_REF] Bellettini | The Γ-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type[END_REF] performed when n = 1, one observes various distinct time scales for the regularized equation; in particular, in a slow time scale, the regularized solutions seem to converge to a piecewise constant function with the plateaus suitably evolving in the vertical direction. The functionals F ν are related to this slow time scale 3 setting ε 2 := ν 4 log(1 + 1 ν 2 ) and taking

PMε ν log(1+ 1 ν 2 )
. Therefore, one expects that the asymptotic limit as ν → 0 + of the gradient flow of F ν should shade some light on the behaviour of solutions to (1.5) for large times. This problem has been addressed in [START_REF] Bellettini | The Γ-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type[END_REF] when n = 1. The n-dimensional case seems much more difficult, and requires a preliminar study of the asymptotic limit of F ν and of its variational properties, and this is the content of the present paper. The most original part of this paper concerns the proof of the Γ-limsup inequality (Theorem 5.5), which relies on a new density result of simple plateaus functions in the space of special functions with bounded variation with vanishing diffuse gradient part, see Lemma 4.1. Differently with respect to the density theorem in [START_REF] Cortesani | A density result in SBV with respect to non isotropic energies[END_REF], our result is valid without assumptions on the measure of the jump set of the limit functions. This allows us to get a full Γ-convergence result, differently from other related works [START_REF] Alicandro | Free-discontinuity problems generated by singular perturbation: the n-dimensional case[END_REF][START_REF] Morini | Sequences of singularly perturbed functionals generating free-discontinuity problems[END_REF], see Remark 5.6. The plan of the paper is the following. In Section 2 we introduce the notation and recall some definitions about SBV functions and the slicing method. In Section 3 we remind the results of [START_REF] Bellettini | The Γ-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type[END_REF] regarding the one-dimensional problem. In Section 4 we state and prove our density result and eventually in Section 5 we prove the equicoerciveness and Γ-convergence theorems.

Notation

In what follows n ≥ 1, Ω ⊂ R n is a bounded open Lipschitz set, and A(Ω) is the class of all open subsets of Ω. We denote by (e 1 , . . . , e n ) a fixed orthonormal basis of R n , by | • | (respectively •, • ) the euclidean norm (respectively the euclidean scalar product) in R n . We denote by H n-1 and by dx, the (n -1)-dimensional Hausdorff measure and the Lebesgue measure in R n . The open ball of radius ρ > 0 centered at x ∈ Ω is denoted by B ρ (x). Throughout the paper, with a small abuse of language, we call sequence a family (u ν ) of functions labelled by a continuous parameter ν ∈ (0, 1]. A subsequence of (u ν ) is any sequence (u ν k ) such that ν k → 0 as k → +∞.

BV (Ω) and SBV (Ω) functions

BV (Ω) is the space of functions u ∈ L 1 (Ω) having as distributional derivative Du a measure with finite total variation. For u ∈ BV (Ω), we denote by S u the complement of the Lebesgue set of u. That is, x / ∈ S u if and only if lim ρ→0 + Bρ(x)

|u(y) -z| dy = 0 for some z ∈ R. We say that x is an approximate jump point of u if there exist ξ ∈ S n-1 and distinct a, b ∈ R such that

lim ρ→0 1 |B + ρ (x, ξ)| B + ρ (x,ξ)
|u(y) -a| dy = 0 and lim

ρ→0 1 |B - ρ (x, ξ)| B - ρ (x,ξ)
|u(y) -b| dy = 0, where B ± ρ (x, ξ) := {y ∈ B ρ (x) : ± yx, ξ > 0}. Up to a permutation of a and b and a change of sign of ξ, this characterize the triplet (a, b, ξ) which is then denoted by (u + , u -, ν u ). The set of approximated jump points is denoted by J u . The following theorem holds [START_REF] Ambrosio | Pallara: Functions of Bounded Variation and Free Discontinuity Problems[END_REF].

Theorem 2.1. The set S u is countably H n-1 -rectifiable and H n-1 (S u \J u ) = 0. Moreover Du J u = (u + -u -)ν u H n-1 J u .
We indicate by Du = ∇u dx + D s u the Radon-Nikodym decomposition of Du. Setting D c u := D s u (Ω\S u ) we get the decomposition 

Du = ∇u dx + (u + -u -)ν u H n-1 J u + D c u,

Slicing

In this section we recall the slicing method for functions with bounded variation. Let ξ ∈ S n-1 and let

Π ξ := {y ∈ R n : y, ξ = 0}.
If y ∈ Π ξ and E ⊂ R n , we define the one-dimensional slice

E ξy := {t ∈ R : y + tξ ∈ E}.
For u : Ω → R, we define u ξy : Ω ξy → R as

u ξy (t) := u(y + tξ), t ∈ Ω ξy . (2.1)
Functions in GSBV (Ω) can be characterized by one-dimensional slices (see [START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF]Thm. 4.1]).

Theorem 2.2. Let u ∈ GSBV (Ω). Then for all ξ ∈ S n-1 we have

u ξy ∈ GSBV (Ω ξy ) for H n-1 -a.e. y ∈ Π ξ .
Moreover for such y, we have

u ′ ξy (t) = ∇u(y + tξ), ξ for a.e. t ∈ Ω ξy , (2.2) 
J u ξy = {t ∈ R : y + tξ ∈ J u }, (2.3 
)

and u ξy (t ± ) = u ± (y + tξ) or u ξy (t ± ) = u ∓ (y + tξ), (2.4) 
according to whether ν u , ξ > 0 or ν u , ξ < 0. Finally, for every Borel function g : Ω → R,

Π ξ t∈Ju ξy g ξy (t) dH n-1 (y) = Ju g | ν u , ξ | dH n-1 .
(2.5)

Conversely if u ∈ L 1 (Ω)
and if for all ξ ∈ {e 1 , . . . , e n } and almost every y ∈ Π ξ we have u ξy ∈ SBV (Ω ξy ) and

Π ξ |Du ξy |(Ω ξy ) dH n-1 (y) < +∞, then u ∈ SBV (Ω).

The one-dimensional case

In this section we briefly record the main results of [START_REF] Bellettini | The Γ-limit and the related gradient flow for singular perturbation functionals of Perona-Malik type[END_REF], obtained in dimension n = 1, that will be necessary in order to analyze the problem in arbitrary dimension. For I ⊂ R a bounded open interval we consider the functional

F ν (u, I) :=          1 2 I ν 3 (u ′′ ) 2 + 1 νφ(1/ν) φ(u ′ ) dx if u ∈ H 2 (I), +∞ if u ∈ L 1 (I) \ H 2 (I)
and

F(u, I) :=      σ a x∈Ju |u(x + ) -u(x -)| 2+a 4-a if u ∈ X(I), +∞ if u ∈ L 1 (I) \ X(I),
where X(I) is defined, accordingly to the n-dimensional case, as X(I) := {u ∈ SBV (I) :

u ′ = 0}.
Then the following results hold [9, Lemma 3. Theorem 3.3 (Γ-convergence). We have

Γ(L 1 (I)) -lim ν→0 + F ν (•, I) = F(•, I),
and the same result holds true for the Γ(L 2 (I))-limit.

We also remind the construction of the recovery sequence in the proof of the Γlim sup inequality in Theorem 3.3. For any η > 0 and s ≥ 0, let

Y η (s) := ψ ∈ H 2 ((0, η)) : ψ(0) = 0, ψ(η) = s, ψ ′ (0) = ψ ′ (η) = 0 . Define e a (s) := 1 2 inf (0,η) (ψ ′′ ) 2 + |ψ ′ | a dx : η > 0, ψ ∈ Y η (s) .
Then it turns out that e a (s) = σ a s 2+a 4-a , for a suitable constant σ a > 0.

Fix now b > 0 and s > 0. Let (η, ψ) ∈ (0, +∞) × Y η (s) be such that

η 0 (ψ ′′ ) 2 + |ψ ′ | a dx ≤ σ a s 2+a 4-a + b.
For a function of X(I) of the form u = s 1 [0,+∞) , a recovery sequence (u ν ) ⊂ H 2 (I) is given by

u ν (x) :=    0 x < 0, ψ( x ν ) x ∈ [0, ην], s x > ην,
in the sense that for every δ > 0 we have that (u ν ) tends to u in L 1 ((-δ, δ)) and lim sup

ν→0 + F ν (u ν , (-δ, δ)) = σ a s 2+a 4-a + b = F(u, (-δ, δ)) + b, so that in particular lim b→0 + lim sup ν→0 + F ν (u ν , (-δ, δ)) = F(u, (-δ, δ)).
A similar construction can be made for s < 0.

4 The n-dimensional case: a density result Let θ : R → R + be an even lower semicontinuous function, subadditive and nondecreasing on (0, +∞), and continuous at t = 0, such that θ(0) = 0, lim t→0 θ(t) t = +∞. Let us notice that the functions s → |s| 

E(u, A) :=        Ju∩A θ u + -u -dH n-1 if u ∈ P(A), +∞ elsewhere in L 1 (A). (4.1)
We recall that E(•, A) is L 1 (A)-lower semicontinuous [START_REF] Ambrosio | Pallara: Functions of Bounded Variation and Free Discontinuity Problems[END_REF]Ex. 5.23].

In this section we want to prove the following result, which is the main technical tool of this paper, and will be used in the proof of Theorem 5.5.

Lemma 4.1 (Density). Let u ∈ P(Ω) be such that E(u, Ω) < +∞. Then there exists a sequence (u h ) ⊂ P(Ω) with the following properties:

-lim

h→0 + u h = u in L 1 (Ω); -lim h→0 + E(u h , Ω) = E(u, Ω);
-J u h is contained in a finite union of facets of polytopes 4 for any h ∈ N. In particular for any h ∈ N,

H n-1 (Ω ∩ J u h ) = H n-1 (Ω ∩ J u h ) and H n-1 (J u h ) < +∞.
Proof. Let Ω ′ ⊃⊃ Ω be an open set and let us denote still by u ∈ P(Ω ′ ) an extension of u such that H n-1 (J u ∩ ∂Ω) = 0 (see [START_REF] Giusti | Minimal surfaces and functions of bounded variation[END_REF]). We also fix a representative of u defined everywhere. We will need an auxiliary functional E 0 defined as follows: for any open set

A ⊆ Ω ′ E 0 (v, A) :=        Jv∩A ν v 1 θ(v + -v -) dH n-1 if v ∈ P(A), +∞ elsewhere in L 1 (A), (4.2) 
where, for ξ = (ξ 1 , . . . , ξ n ) ∈ R n , we let

ξ 1 := |ξ 1 | + • • • + |ξ n |.
Again by [START_REF] Ambrosio | Pallara: Functions of Bounded Variation and Free Discontinuity Problems[END_REF]Ex. 5.23], the functional E 0 (•, A) is L 1 (A)-lower semicontinuous.

Observe that ν ∈ S n-1 implies ν 1 ≥ 1, with equality only if ν coincides with one of the vectors of the orthonormal basis (e 1 , . . . , e n ) of R n . In particular

E(u, Ω) ≤ E 0 (u, Ω).
From our assumptions on θ, we have that E(u, Ω) decreases under truncation. By the lower semicontinuity of E(u, Ω), this implies that setting u T := max(-T, min(T, u)) for any T > 0, then E(u T , Ω) converges to E(u, Ω) as T ↑ +∞. Hence, with no loss of generality, we can assume that u ∈ L ∞ (Ω).

We divide the proof into five steps. In the first step we construct a suitable discrete approximation u y ε of u, defined on points of a lattice. For any δ > 0 set

Ω δ := {x ∈ R n : dist(x, Ω) < δ}.
Step 1. Let ε > 0 be such that Ω ε := Ω 2n 1/2 ε ⊂⊂ Ω ′ and, for any y ∈ [0, 1) n , set

u y ε (x) := u(x + εy), x ∈ εZ n ∩ Ω ′ .
Define the discrete energy D y ε of u y ε as

D y ε := ε n-1 n i=1 x,x+εe i ∈Ω ε/2 θ u y ε (x + εe i ) -u y ε (x) . (4.3) 
where Ω ε/2 := Ω n 1/2 ε . We claim that

(0,1) n D y ε dy ≤ E 0 (u, Ω ε ). (4.4)
To show the claim, we will follow some arguments in [START_REF] Gobbino | Finite difference approximation of the Mumford-Shah functional[END_REF], [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF] [18] and [START_REF] Chambolle | Ponsiglione: Piecewise rigidity[END_REF]. Let us first establish an inequality in one dimension: given a bounded open interval I ⊂ R, ε > 0 sufficiently small and v ∈ P(I), we have

ε -1 I∩(I-ε) θ(v(t + ε) -v(t)) dt ≤ t∈Jv θ(v + (t) -v -(t)). (4.5) 
Indeed, for almost any t ∈ I ∩ (Iε), using the subadditivity of θ it follows

θ(v(t + ε) -v(t)) ≤ s∈Jv∩(t,t+ε) θ(v + (s) -v -(s)).
Therefore, using Fubini's Theorem,

I∩(I-ε) θ (v(t + ε) -v(t)) dt ≤ I∩(I-ε) s∈Jv 1 (t,t+ε) (s)θ v + (s) -v -(s) dt = s∈Jv θ v + (s) -v -(s) I∩(I-ε) 1 (t,t+ε) (s) dt,
which implies (4.5).

We can now prove claim (4.4). Since

(0,1) n D y ε dy = ε n-1 n i=1 x,x+εe i ∈Ω ε/2 (0,1) n θ u(x + εy + εe i )) -u(x + εy) dy,
making the variable change x ′ := εy + x (for fixed x) gives

(0,1) n D y ε dy ≤ε -1 n i=1 Ω ε/2 θ u(x ′ + εe i ) -u(x ′ ) dx ′ =ε -1 n i=1 Πe i (Ωε/2) e i ζ θ u(ζ + (t + ε)e i ) -u(ζ + te i ) dt dH n-1 (ζ).
If, for any i = 1, . . . , n and H n-1 -almost every ζ ∈ Π e i we define as in Section 2.2, the onedimensional slice u e i ζ as

u e i ζ (t) := u(ζ + te i ) for almost each t ∈ R such that ζ + te i ∈ Ω ′ , we get, (0,1) n D y ε dy ≤ ε -1 n i=1 Πe i (Ωε/2) e i ζ θ u e i ζ (t + ε) -u e i ζ (t) dt dH n-1 (ζ).
Hence, using (4.5),

(0,1) n D y ε dy ≤ n i=1 Πe i s∈Ju e i ζ ∩(Ωε) e i ζ θ u + e i ζ (s) -u - e i ζ (s) dH n-1 (ζ).
Therefore, by (2.5),

(0,1) n D y ε dy ≤ n i=1 Ju∩Ωε | ν u , e i | θ u + -u -dH n-1 = E 0 (u, Ω ε ),
which is claim (4.4). The proof of Step 1 is concluded.

In the next step we define a suitable piecewise constant interpolation u y ε of u y ε having the property that E(u y ε , Ω) and E 0 (u y ε , Ω) coincide.

Step 2. Let ε and y be as in Step 1. Define the function u y ε : Ω → R as

u y ε (z) := x∈εZ n u y ε (x) 1 C y ε (x) (z), z ∈ Ω, (4.6) 
where C y ε (x) denotes the open coordinate hypercube centered at x + εy of side ε, i.e.,

C y ε (x) := x + εy + (-ε/2, ε/2) n .
Clearly u ε y ∈ P(Ω) and its jump set is contained in the union of the facets of the hypercubes C y ε (x). Let us prove that (i) lim

ε→0 (0,1) n u y ε -u L 1 (Ω) dy = 0; (ii) E(u y ε , Ω) = E 0 (u y ε , Ω) ≤ D y ε .
To show (i) and (ii), we assume without loss of generality that all functions are extended to 0 outside Ω ′ . Making the variables change (x, y) ∈ εZ n × [0, 1) n → y ′ := εy + x and then

y ′ ∈ R n → ξ = z -y ′ (for fixed z),
we obtain

(0,1) n u y ε -u L 1 (Ω) dy = (0,1) n R n x∈εZ n u(εy + x)1 C y ε (x) (z) -u(z) dzdy = (0,1) n R n | x∈εZ n u(εy + x) -u(z) 1 C y ε (x) (z)| dzdy ≤ (0,1) n x∈εZ n R n |u(εy + x) -u(z)| 1 C y ε (x) (z) dzdy =ε -n R n R n |u(y ′ ) -u(z)| 1 (-ε 2 , ε 2 ) n (z -y ′ ) dzdy ′ =ε -n R n R n |u(z -ξ) -u(z)| 1 (-ε 2 , ε 2 ) n (ξ) dzdξ =ε -n (-ε 2 , ε 2 ) n u(• -ξ) -u(•) L 1 (R n ) dξ = (-1 2 , 1 2 ) n u(• -εξ) -u(•) L 1 (R n ) dξ,
which tends to zero as ε → 0 by the dominated convergence theorem. This proves (i).

The equality in (ii) follows from the fact that ν u y ε (x) 1 = 1 for H n-1a.e. x ∈ J u y ε , since the jump of u y ε is contained in facets of coordinate hypercubes. The inequality in (ii) follows from the definition of E 0 (see (4.2)) and definitions (4.3) of D y ε and (4.6) of u y ε . From (i) we deduce that there exists a set A ⊂ (0, 1) n with |A| = 1 and a subsequence (ε k ) ⊂ (0, 1) converging to zero such that u y ε k → u in L 1 (Ω) as k → ∞ for any y ∈ A. From Step 1 and Fatou's lemma we have

(0,1) n lim inf k→+∞ D y ε k dy ≤ E 0 (u, Ω).
Hence there exists a point y ∈ A and a further subsequence (still denoted by (ε k )) such that in addition there exists the lim k→+∞ D y ε k and

lim k→+∞ D y ε k ≤ E 0 (u, Ω).
Summarizing, we have shown that given u ∈ P(Ω) ∩ L ∞ (Ω), if we set

u k := u y ε k , k ∈ N,
the sequence (u k ) ⊂ P(Ω) has the following properties:

(a) u k L ∞ (Ω) ≤ u L ∞ (Ω) for any k ∈ N, (b) lim k→∞ u k -u L 1 (Ω) = 0, (c) lim sup k→∞ E 0 (u k , Ω) ≤ E 0 (u, Ω), (d) E 0 (u k , Ω) = E(u k , Ω)
and J u k is contained in a finite union of facets of coordinate hypercubes for any k.

To prove the theorem, it remains to show that we can replace E 0 (u, Ω) with E(u, Ω) on the right hand side of the inequality in assertion (c).

Step 3. Let A ⊂ R n be a bounded open set with Lipschitz boundary and let To prove (4.10) it is enough to show that for any ϕ

v ∈ P(A)∩L ∞ (A) be with E(v, A) < +∞. Let (v k ) ⊂ P(A) be a sequence converging to v in L 1 (A) such that v k L ∞ (A) ≤ v L ∞ (A) for any k ∈ N and lim k→∞ E 0 (v k , A) = E 0 (v, A). Then lim k→∞ ∂A |T v k -T v| dH n-1 = 0, (4.7 
∈ (C c (Ω)) d with ϕ L ∞ (Ω) ≤ 1, we have Ω ϕ, µ ≤ lim h→+∞ k |µ(B h k )|.
For any h, k ∈ N pick a point x h k ∈ B h k , and define

ϕ h (x) := k ϕ(x h k ) 1 B h k (x), x ∈ Ω.
Using the uniform continuity of ϕ and assumption (4.9), we have lim h→+∞ ϕ-ϕ h L ∞ (Ω,µ) = 0. Therefore

Ω ϕ, µ = Ω ϕ h , µ + Ω (ϕ -ϕ h ), µ ≤ k |µ(B h k )| + o(1), (4.11) 
and (4.10) follows.

In the next (final) step we show that it is possible to replace E 0 (u, Ω) with E(u, Ω) in (c), by suitably modifying the sequence (u k ).

Step 5. Let δ > 0 and y ∈ (0, δ) n . For each z ∈ δZ n let us denote by C δ (z) the open hypercube y + z + (0, δ) n . Possibly modifying the choice of the origin y, we can assume that

|Du| Ω \ z∈δZ n C δ (z) = 0. (4.12)
We will apply the construction described in Steps 1,2 to each of the sets Ω ∩ C δ (z) and then glue together the sequences thus obtained. Notice that it may happen that the set Ω∩C δ (z) is not Lipschitz (if non empty); however we already know that u is defined on Ω ′ which strictly contains Ω. Let us define the vector-valued Radon measure µ as

µ(B) := B∩Ju θ u + -u -ν u dH n-1 , B Borel set ⊆ Ω. Observe that |µ|(B) = B∩Ju θ (u + -u -) dH n-1 .
With any hypercube C δ (z) we associate a unit vector ξ z ∈ S n-1 such that

ξ z , µ Ω ∩ C δ (z) = |µ Ω ∩ C δ (z) |. (4.13)
If we consider an orthonormal basis of R n having ξ z as the first vector and if we let • 1,z be the • 1 norm in this basis, from Steps 1 and 2 we can find a sequence ( 

u δ k ) ⊂ L 1 (Ω ∩ C δ (z)) converging to u in L 1 (Ω ∩ C δ (z)
E(u δ k , Ω ∩ C δ (z)) ≤ Ju∩C δ (z) ν u 1,z d|µ| ≤ Ju∩C δ (z) | ξ z , ν u | d|µ| + c Ju∩C δ (z) 1 -ξ z , ν u 2 d|µ| =E(u, Ω ∩ C δ (z)) + c Ju∩C δ (z) 1 -ξ z , ν u 2 d|µ|,
where c > 0 is a constant controlling the euclidean norm of a vector with its • 1 -norm. Using the same construction for all z such that J u ∩ C δ (z) = ∅, and gluing together the functions obtained in each hypercube, we construct u k ∈ L 1 (Ω) such that

E(u k , Ω) = z∈δZ n E(u k , Ω ∩ C δ (z)) + Ω \ z∈δZ n C δ (z) θ u + k -u - k dH n-1 . (4.14) 
We notice that the jump set of the u k 's consists of the union of the facets of the lattice and of the jump set inside each hypercubes. Recalling (4.12) and Step 3, possibly passing to a (not relabelled) subsequence, we can assume that the traces of u k on both sides of each facet of a hypercube C δ (z) converge |µ|-almost everywhere to the same limit (which is the trace of u) as k → +∞, hence the last term on the right hand side of (4.14) tends to zero by the continuity of θ at 0. Therefore there exists k

∈ N such that, if k > k, then u k -u L 1 (Ω) < δ and 
E(u k , Ω) ≤ z∈δZ n Ju∩C δ (z) | ξ z , ν u | d|µ| + c Ju∩C δ (z) 1 -ξ z , ν u 2 d|µ| + δ ≤E(u, Ω) + c z∈δZ n Ju∩C δ (z) 1 -ξ z , ν u 2 d|µ| + δ, (4.15) 
where in the last inequality we made use of (4.13). The proof is therefore achieved if we show that the last sum on the right hand side of (4.15) can be made small for δ > 0 sufficiently small. We have

z∈δZ n Ju∩C δ (z) 1 -ξ z , ν u 2 d|µ| = z∈δZ n Ju∩C δ (z) (1 -ν u , ξ z )(1 + ν u , ξ z ) d|µ| (4.16) 
≤ z∈δZ n Ju∩C δ (z) 1 -ν u , ξ z d|µ| 1/2 2|µ|(Ω).
Observing that from (4.13)

Ju∩C δ (z) 1 -ν u , ξ z d|µ| ≤ |µ|(Ω) - z∈δZ n |µ(Ω ∩ C δ (z))|,
by

Step 4 we see that the right hand side of (4.16) can be made arbitrarily small if δ > 0 is small enough. This concludes the proof.

Equicoerciveness and Γ-convergence

Using a slicing argument and Theorem 4.1, the results of Section 3 can be generalized in n-dimensions.

We remind that F ν : L 2 (Ω) → [0, +∞] and F : L 2 (Ω) → [0, +∞] are defined in (1.1) and (1.3), respectively. If A ∈ A(Ω) and u ∈ H 2 (A) we define the localized functional F ν (u, A) as

F ν (u, A) := 1 2 A ν 3 |∇ 2 u| 2 + 1 νφ(1/ν) φ(|∇u|) dx. Similarly, if u ∈ X(A) ∩ L 2 (A), we set F(u, A) := σ a A∩Ju |u + -u -| 2+a 4-a dH n-1 .
We will need the following lemma on the supremum of a family of measures (see [START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF]).

Lemma 5.1. Let µ : A(Ω) → [0, +∞) be a superadditive set function and let λ be a positive measure on Ω. For any i ∈ N let ψ i be a Borel function on Ω such that µ(A) ≥ A ψ i dλ for all A ∈ A(Ω). Then

µ(A) ≥ A ψ dλ ∀A ∈ A(Ω)
where ψ := sup

i∈N ψ i .
We start our n-dimensional analysis with the following two results, which are independent of Lemma 4.1.

Theorem 5.2 (Equicoerciveness). Let (u ν ) ⊂ H 2 (Ω) be a sequence satisfying

sup ν F ν (u ν , Ω) < +∞ (5.1)
and such that Ω u ν dx = 0. Then there exist a function u ∈ X(Ω) ∩ L 2 (Ω) and a subsequence of (u ν ) weakly * converging to u in BV (Ω).

Proof. By Lemma 3.1, there exist ν ∈ (0, 1], a decreasing function ω : (0, ν) → (0, +∞) with lim ν→0 + ω(s) = 0 and a constant C > 0 such that for every interval I ⊂ R, every v ∈ H 2 (I) and ν ∈ (0, ν), inequality (3.1) holds, namely, for ν ∈ (0, ν),

I |v ′ | dx ≤ |I| ω(ν) + CF ν (v, I).
Therefore, if v ∈ H 2 (Ω) and ξ ∈ S n-1 , by (5.5),

Ω | ∇v, ξ |dx = Π ξ Ω ξy | ∇v(y + tξ), ξ | dt dH n-1 (y) = Π ξ Ω ξy |v ′ ξy | dt dH n-1 (y) ≤ Π ξ |Ω ξy | ω(ν) + CF ν (v ξy , Ω ξy ) dH n-1 (y) ≤ |Ω| ω(ν) + CF ν (v, Ω).
(5.2)

Letting ξ = e i and summing (5.2) over i ∈ {1, . . . , n}, we deduce using (5.1), that there exists a positive constant κ such that

sup ν Ω |∇v ν | dx ≤ κ sup ν |Ω| ω(ν) + F ν (v ν , Ω) < +∞. ( 5.3) 
Thus if Ω u ν dx = 0 then there exist a function u ∈ BV (Ω) and a subsequence of (u ν )

weakly * converging to u in BV (Ω).

Theorem 5.3 (Γ-liminf ). We have 

F(•, A) ≤ Γ(L 2 (Ω)) -lim ν→0 + F ν (•, A), A ∈ A(Ω). ( 5 
F ν (u, A) = Π ξ 1 2 A ξy ν 3 |∇ 2 u(y + tξ)| 2 + 1 νφ(1/ν) φ(|∇u(y + tξ)|) dt dH n-1 (y) ≥ Π ξ 1 2 A ξy ν 3 ( ∇ 2 u(y + tξ)ξ, ξ ) 2 + 1 νφ(1/ν) φ( ∇u(y + tξ)ξ, ξ ) dt dH n-1 (y) = Π ξ
F ν (u ξy , A ξy ) dH n-1 (y).

(5.5)

Let now (u ν ) ⊂ H 2 (A) be a sequence converging to u in L 2 (A) as ν → 0 + . By Fubini's theorem and Fatou's lemma we have (u ν ) ξy → u ξy in L 2 (A ξy ) for H n-1 -almost every y ∈ Π ξ .

Hence by (5.5) and Theorem 3.3,

σ a x∈Ju ξy ∩A ξy |u ξy (x + ) -u ξy (x -)| 2+a 4-a ≤ lim inf ν→0 + F ν ((u ν ) ξy , A ξy ) .
Thus, applying once more Fatou's lemma,

Π ξ   σ a x∈Ju ξy ∩A ξy |u ξy (x + ) -u ξy (x -)| 2+a 4-a   dH n-1 (y) ≤ lim inf ν→0 + F ν (u ν , A). (5.6) 
Let us first show that u ∈ X(Ω).

(5.7)

Let T > 0 and set u T := max(-T, min(T, u)). By the results of Section 3 we know that (u T ) ξy ∈ X(A ξy ) and thus by (5.6) and (5.1),

Π ξ |D(u T ) ξy |(A ξy ) dH n-1 (y) < +∞, ξ ∈ S n-1 , H n-1 -a.e. y ∈ Π ξ .
Therefore, by Theorem 2.2 it follows that u ∈ GSBV (A). By (5.3) we also know that u ∈ BV (A) and thus u ∈ SBV (A). Now for every ξ ∈ S n-1 ,

A | ∇u, ξ |dx = Π ξ A ξy | ∇u(y + tξ), ξ | dt dH n-1 (y) = Π ξ A ξy |u ′ ξy (t)| dt dH n-1 (y) = 0.
Hence ∇u = 0 almost everywhere, so that u ∈ X(A). This concludes the proof of (5.7). By Theorem 2.2 (a), we get lim inf

ν→0 + F ν (u ν , A) ≥ σ a A∩Ju |u(x + ) -u(x -)| 2+a 4-a | ν u , ξ | dH n-1 (y). (5.8) 
We now let γ be the superadditive increasing set function defined on A(Ω) by

γ(A) := Γ -lim inf ν→0 + F ν (u, A)
and we let λ be the Radon measure defined as

λ := |u(x + ) -u(x -)| 2+a 4-a H n-1 J u .
Fix a sequence (ξ i ) i∈N dense in S n-1 . By (5.8) we have

γ(A) ≥ A ψ i dλ, i ∈ N,
where

ψ i (x) :=    | ν u (x), ξ i | if x ∈ J u 0 if x ∈ A\J u .
Hence by Lemma 5.1,

Γ -lim inf ν→0 + F ν (u, A) ≥ A sup i ψ i (x) dλ = F(u, A).
We next pass to the proof of the Γ-limsup inequality. We start by studying the particular case u = s1 E , adapting the proof from [4, Prop 3.5].

Thus by Cauchy-Schwarz's inequality,

ν 3 ην 0 |u ′′ ν ||u ′ ν | dt ≤ν ην 0 ν 3 (u ′′ ν ) 2 dt 1 2 η 0 (ψ ′ ) 2 dt 1 2 = O(ν).
We can similarly bound the term

ν 3 ην 0 (u ′ ν ) 2 dt ||∇ 2 d|| 2 ∞ . Finally since ∂E is smooth, lim t→0 + H n-1 ({x ∈ A : d(x) = t}) = H n-1 (A ∩ ∂E).
Therefore, using the one-dimensional result in Section 3, we obtain lim sup

ν→0 + F ν ( u ν , A) ≤ σ a |s| 2+a 4-a H n-1 (A ∩ ∂E) + b.
Letting b → 0 + we obtain the thesis.

We can now prove the Γ-limsup, following the proof of [4, Prop 3.6].

Theorem 5.5 (Γ-limsup). We have

Γ(L 2 (A)) -lim sup ν→0 + F ν (•, A) ≤ F(•, A), A ∈ A(Ω).
Proof. Thanks to the density Lemma 4.1, it is enough to prove the Γ-limsup inequality on those functions having a jump set contained in a finite union of facets of polytopes. Accordingly, we take

u = k i=1 s i 1 C i ,
where k ∈ N, s i ∈ R and C i ⊆ A are closed polytopes with pairwise empty intersection of their interior parts. We can further assume that all C i are convex. Set

C k+1 := A\ k i=1 C i and I := {(i, j) : i, j ∈ {i, . . . , k + 1}, i < j, H n-1 (C i ∩ C j ) = 0}.
For δ > 0 let

V δ := x ∈ A : dist x, k i=1 ∂C i < δ and V δ ij := x ∈ A : dist(x, ∂C i ∩ ∂C j ) < δ , (i, j) ∈ I.
For any (i, j) ∈ I choose functions

g ij ∈ C ∞ c (R n ) such that g ij = 1 on V δ ij , g ij = 0 on A \ V 2δ ij , and 
||∇g ij || ∞ ≤ c δ , ||∇ 2 g ij || ∞ ≤ c δ 2 ,
where c > 0 is a constant independent of δ, i and j. We now let

h ij := g ij   (l,m)∈I g lm + (l,m)∈I (1 -g lm )   -1
, and

h 0 := (l,m)∈I (1 -g lm )   (l,m)∈I g lm + (l,m)∈I (1 -g lm )   -1
.

These functions are defined so that

h 0 + (i,j)∈I h ij = 1 and h ij = g ij on V 2δ ij \
(l,m) =(i,j)

V 2δ lm and h 0 = 1 on A\V 2δ .

It can be verified that

||∇h ij || ∞ ≤ c δ , ||∇h 0 || ∞ ≤ c δ , ||∇ 2 h ij || ∞ ≤ c δ 2 , ||∇ 2 h 0 || ∞ ≤ c δ 2 .
Let (u ν ij ) ⊂ H 2 (Ω) be the recovery sequence constructed as in Proposition 5.4 related to

u ij :=    s i -s j on S + ij 0 on S - ij ,
where S ij is the hyperplane containing C i ∩ C j and S ± ij := {x ∈ Ω : x = y ± tν ij , y ∈ S ij , t ∈ R + }, with ν ij the unit internal normal to C i on C i ∩ C j . We fix then δ = ην where η is given by the one-dimensional profile. Let also

u ν := h 0 u + (i,j)∈I h ij (u ν ij + s j ).
Then u ν ∈ H 2 (Ω) and u ν → u in L 2 (Ω) as ν → 0 + . Now on V 2δ ij \ (l,m) =(i,j) V 2δ lm , u ν = (1g ij )u + g ij (u ν ij + s j ) and since on V 2δ ij \V δ ij , u ν ij = u ij , we then have on this set u ν = u and ∇u ν = 0. Thus Remark 5.6. Differently with respect to the results of [START_REF] Alicandro | Free-discontinuity problems generated by singular perturbation: the n-dimensional case[END_REF][START_REF] Morini | Sequences of singularly perturbed functionals generating free-discontinuity problems[END_REF] (which rely on the density theorem of [START_REF] Cortesani | A density result in SBV with respect to non isotropic energies[END_REF]) using Lemma 4.1 we obtain a full Γ-convergence result. Moreover, we have compactness in BV for the n-dimensional problem which is a missing feature in most of the papers tackling similar problems such as [START_REF] Alicandro | Free-discontinuity problems generated by singular perturbation: the n-dimensional case[END_REF][START_REF] Morini | Sequences of singularly perturbed functionals generating free-discontinuity problems[END_REF].

F ν   u ν , V 2δ ij \ (l,m) =(i,j) V 2δ lm   = F ν   u ν , V δ ij \ (l,m) =(i,j) V 2δ lm   ≤ F ν u ν ij , A ∩ V δ ij . ( 5 
We conclude by mentioning that our theorems are a first step toward a general approximation theorem in SBV (see the related papers [START_REF] Cortesani | Sequences of non-local functionals which approximate free discontinuity problems[END_REF][START_REF] Cortesani | A density result in SBV with respect to non isotropic energies[END_REF][START_REF] Alicandro | Free-discontinuity problems generated by singular perturbations[END_REF][START_REF] Alicandro | Free-discontinuity problems generated by singular perturbation: the n-dimensional case[END_REF]) for free discontinuity functionals having, in general, also a bulk term.

  where denotes the restriction. When n = 1 we use the symbol u ′ in place of ∇u, and u(x ± ) to indicate the right and left limits at x. We let SBV (Ω) := {u ∈ BV (Ω) : D c u = 0}, GSBV (Ω) := {u ∈ L 1 (Ω) : max(-T, min(T, u)) ∈ SBV (Ω) ∀T ∈ R}, and X(Ω) := {u ∈ SBV (Ω) : ∇u = 0}.

Lemma 3 . 1 .

 31 2 and Section 4]. There exist ν > 0, a decreasing function ω : (0, ν) → (0, +∞) with lim ν→0 + ω(s) = 0, and a constant C > 0 such that for any u ∈ H 2 (I) and ν ∈ (0, ν), I |u ′ | dx ≤ |I|ω(ν) + CF ν (u, I). (3.1) Theorem 3.2 (Equicoerciveness). Let (u ν ) ⊂ H 2 (I) be a sequence satisfying sup ν∈(0,1] F ν (u ν , I) < +∞ and such that I u ν dx = 0 for any ν ∈ (0, 1]. Then there exist a function u ∈ X(I) and a subsequence of (u ν ) weakly* converging to u in BV (I).

2+a 4 -

 4 a satisfy these properties. Define P(Ω) := {u ∈ GSBV (Ω) : ∇u = 0 in Ω} and for any A ∈ A(Ω) set

Step 4 .

 4 ) where T v k (resp. T v) denotes the trace of v k (resp. of v) on ∂A. This follows from the fact that, if v ∈ P(A) ∩ L ∞ (A), then there exists a constant c > 0 depending only θ and v L ∞ (A) such that B |Dv| ≤ cE 0 (v, B) for any open set B ⊆ A. A careful analysis of [6, Theorem 3.88] (see also [29, Section 5.3]), the L 1 (A)-lower semicontinuity of v → E 0 (v, B) for any open set B ⊆ A and the fact that E 0 (v, •) is a regular measure, imply (4.7). Let µ be a Radon measure on Ω with values in R d , d ≥ 1, with total variation measure |µ| and |µ|(Ω) < +∞. For any h ∈ N, let us consider a family {B h k }, where B h k are nonempty Borel subsets of Ω with B h k 1 ∩ B h k 2 = ∅ when k 1 , k 2 ∈ N and k 1 = k 2 , and

  ) and satisfying properties (a)-(d) with Ω ∩ C δ (z) in place of Ω, and such that lim sup k→∞

. 11 )

 11 On V 2δ ij ∩ V 2δ lm , we have (remember that |∇u ν ij | ≤ ||ψ ′ || ∞ /ν) |∇u ν | ≤ |u||∇h 0 | + (i,j)∈I |∇h ij ||s j | + |∇u ν ij | ≤ C ν , for a suitable constant C > 0 independent of ν. Since H n-2 (C i ∩ C j ∩ C l ∩ C m ) < +∞ (where H n-2 is the (n -2)-dimensional Hausdorff measure) we have |V 2δ ij ∩ V 2δ lm | = O(ν 2) and thusV 2δ ij ∩V 2δ lm 1 νφ(1/ν) φ(|∇u ν |) dx ≤ Cν φ(C/ν) φ(1/ν) .As lim ν→0 + φ(C/ν) φ(1/ν) = C a , this shows that limν→0 + V 2δ ij ∩V 2δ lm 1 νφ(1/ν) φ(|∇u ν |) dx = 0.Similarly,lim ν→0 + V 2δ ij ∩V 2δ lm ν 3 |∇ 2 u ν | 2 dx = 0and therefore limν→0 + F ν (u ν , V 2δ ij ∩ V 2δ lm ) = 0.(5.12)Eventually on A\V 2δ , u ν = u and ∇u = 0, thus F ν (u ν , A\V 2δ ) = 0.(5.13)Putting together (5.11), (5.12) and (5.13) we find by Proposition 5H n-1 (A ∩ C i ∩ C j ) =F(u, A).

  .[START_REF] Alicandro | Free-discontinuity problems generated by singular perturbation: the n-dimensional case[END_REF] Proof. The proof follows closely[START_REF] Alicandro | Free-discontinuity problems generated by singular perturbation: the n-dimensional case[END_REF] Prop. 3.4]. Fix ξ ∈ S n-1 , u ∈ H 2 (Ω), A ∈ A(Ω) and let as usual u ξy : A ξy → R be the slice defined as in Section 2.2, i.e., u ξy (t) := u(y + tξ), t ∈ A ξy .Since for almost every t ∈ A ξy and H n-1 -almost every y

	u ′ ξy (t) = ∇u(y + tξ), ξ	and	u ′′ ξy = ∇ 2 u(y + tξ)ξ, ξ ,
	by Fubini's Theorem and being φ nondecreasing,	

See also[1, 30, 

[START_REF] Conti | Rigidity and gamma convergence for solid-solid phase transitions with SO(2) invariance[END_REF][START_REF] Braides | Approximation of Free-Discontinuity Problems[END_REF] for related problems.

See for instance[38, 

[START_REF] Kawohl | Maximum and comparison principle for one-dimensional anisotropic diffusion[END_REF][START_REF] Ghisi | Gradient estimates for the Perona-Malik equation[END_REF][START_REF] Gobbino | Entire solutions of the one-dimensional Perona-Malik equation[END_REF][START_REF] Bellettini | Convergence of discrete schemes for the Perona-Malik equation[END_REF][START_REF] Bellettini | Global solutions to the gradient flow equation of a nonconvex functional[END_REF][START_REF] Bellettini | Classification of the equilibria and Γ-convergence for the semi-discrete Perona-Malik functional[END_REF][START_REF] Esedoglu | An analysis of the Perona-Malik scheme[END_REF].[START_REF] Alicandro | Free-discontinuity problems via functionals involving the L 1 -norm of the gradient and their approximations[END_REF] We refer also to[START_REF] Colombo | Slow time behavior of the semidiscrete Perona-Malik scheme in dimension one[END_REF] for the study of the slow time behaviour in a related semi-discrete approximation.

A polytope is a set whose boundary consists of a finite number of pieces of hyperplanes.
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Proposition 5.4. Let Ω ′ ⊃⊃ Ω be a bounded open set and let E be such that E = E ′ ∩ Ω where E ′ is a set of finite perimeter in Ω ′ such that ∂E ′ ∩ Ω ′ is a smooth hypersurface. Then

for all s ∈ R and A ∈ A(Ω). [START_REF] Ambrosio | Calculus of variations and partial differential equations. Topics on geometrical evolution problems and degree theory[END_REF]), and recall that

Let b > 0 and (u ν ) be the one-dimensional recovery sequence given in Section 3 converging to s1 {t>0} in L 2 ((-δ, δ)), so that lim

(5.10)

We next define

Then u ν ∈ H 2 (Ω) and u ν → s1 E in L 2 (Ω) as ν → 0 + . Using the coarea formula, we find

We now claim that

Indeed, since lim